2010-03-23 20:42
Все тела способны деформироваться только до известного предела. Когда этот предел достигнут, тело разрушается. Например, нить рвется, когда ее удлинение превышает известное значение; пружина ломается, когда она слишком сильно изогнута, и т. д.
Рис. 87. Если медленно натягивать нижнюю нить, то оборвется верхняя нить
Рис. 88. Резко дернув за нижнюю нить, можно разорвать ее, оставив верхнюю нить целой
Чтобы объяснить, почему произошло разрушение тела, нужно рассмотреть движение, предшествовавшее разрушению. Рассмотрим, например, причины разрыва нити в таком опыте (рис. 87 и 88). Тяжелый груз подвешен на нити; снизу к грузу прикреплена нить той же прочности. Если медленно тянуть нижнюю нить, то оборвется верхняя нить, на которой висит груз. Если же резко дернуть за нижнюю нить, то оборвется именно нижняя, а не верхняя нить. Объяснение этого опыта таково. Когда груз висит, то верхняя нить уже растянута до известной длины и ее сила натяжения уравновешивает силу притяжения груза к Земле. Медленно натягивая нижнюю нить, мы вызываем перемещение груза вниз. Обе нити при этом растягиваются, однако верхняя нить оказывается растянутой сильнее, так как она уже была растянута. Поэтому она рвется раньше. Если же резко дернуть нижнюю нить, то вследствие большой массы груза он даже при значительной силе, действующей со стороны нити, получит лишь незначительное ускорение, и поэтому за короткое время рывка груз не успеет приобрести заметную скорость и сколько-нибудь заметно переместиться. Практически груз останется на месте. Поэтому верхняя нить больше не удлинится и останется цела; нижняя же нить удлинится выше допустимого предела и оборвется.
Подобным же образом происходят разрывы и разрушения движущихся тел и в других случаях. Чтобы избежать разрывов и разрушения при резком изменении скорости, нужно применять сцепления, которые могли бы значительно растягиваться, не разрушаясь. Многие виды сцеплений, например стальные тросы, сами по себе такими свойствами не обладают. Поэтому в подъемных кранах между тросом и крюком ставят специальную пружину («амортизатор»), которая может значительно удлиняться, не разрываясь, и таким образом предохраняет трос от разрыва. Пеньковый канат, который может выдержать значительное удлинение, не нуждается в амортизаторе.
Так же разрушаются хрупкие тела, например стеклянные предметы, при падении на твердый пол. При этом происходит резкое уменьшение скорости той части тела, которая коснулась пола, и в теле возникает деформация. Если вызванная этой деформацией сила упругости недостаточна для того, чтобы сразу уменьшить скорость остальной части тела до нуля, то деформация продолжает увеличиваться. А так как хрупкие тела выдерживают без разрушения только небольшие деформации, то предмет разбивается.
63.1.
Почему в момент, когда электровоз резко трогается с места, иногда происходит разрыв сцепок вагонов поезда? В какой части поезда скорее всего может произойти разрыв?
63.2.
Почему хрупкие вещи при перевозке укладывают в стружки?
Предмет: Физика,
автор: aliaskarova2
Как найти силу разрыва нити?
Ответы
Автор ответа: MargaritaRolova
0
R = T + mg ( это уравнение в векторной форме )
R = ma ( определяется по второму закону ньютона )
Т – это сила натяжения
Т = R – mg ( векторная форма )
Автор ответа: aliaskarova2
0
Спасибо
Автор ответа: MargaritaRolova
0
незачто
Предыдущий вопрос
Следующий вопрос
Интересные вопросы
Предмет: Физика,
автор: Аноним
ПОМОГИТЕЕЕЕ
Вычисли, какая сила притяжения действует на школьника, масса которого равна 57 кг.
(Принять, что ≈10м/с2).
F = ……H
4 года назад
Предмет: Алгебра,
автор: fcfcdlhogcsl
Мы нашли машину тут , сколько у нас машин?
4 года назад
Предмет: Обществознание,
автор: sonochka07
гончарство как мастерство
4 года назад
Предмет: Математика,
автор: 254031
Из 24 л молока получается 3 л сливок. Сколько литров молока потребуется, чтобы сливок получилось в 5 раз больше? Сколько литров сливок получится из 48 л молока? Сколько литров сливок получится из 96 л молока? Сколько литров молока надо взять чтобы получить 9 л сливок? Сколько литров молока надо взять чтобы получить 18 л сливок? Сколько литров сливок получится из 192 л молока?
7 лет назад
Предмет: Биология,
автор: lizsiniaeva
1.что такое утомление мышц?
2.при какой работе мышц быстрее развивается утомление?
3.как планировать физическую нагрузку на мышцы?
Помогите кратко ответить,пожалуйста
7 лет назад
Ремонт обогревателя заднего стекла автомобиля
Хороший обзор является определяющим для безопасной эксплуатации автомобиля. В осенне-зимний период от перепадов температуры воздуха стекла запотевают, и видимость через них ухудшается. Особенно актуален вопрос прозрачности стекол в темное время суток, когда видимость и так плохая.
Эффективным способом борьбы с запотеванием автомобильных стекол является их нагрев. Лобовое стекло, как правило, подогревается направленными потоками теплого воздуха. Заднее стекло и зеркала заднего вида обычно подогреваются с помощью электроэнергии. На поверхность стекла со стороны салона автомобиля наносятся токопроводящие дорожки из высокоомного металла в виде тонких ленточек. При прохождении электрического тока через них выделяется тепловая энергия. Стекло нагревается, и вода испаряется. Через несколько минут стекло становится прозрачным.
Электрическая схема подключения обогревателя
Для успешной диагностики и ремонта системы обогрева заднего стекла автомобиля на профессиональном уровне необходимо знать электрическую схему подключения обогревателя и представлять принцип ее работы.
На фотографии представлена типовая схема подключения обогревателя заднего стекла автомобиля в бортовую электропроводку. Рассмотрим принцип ее работы.
Питающее напряжение с плюсовой клеммы аккумулятора через замок зажигания, и предохранители подается на выключатель обогревателя и на 30 (или 87) силовой контакт реле. Отрицательный вывод аккумулятора соединен с корпусом автомобиля, один из выводов нагревателя стекла тоже соединен с корпусом. При нажатии на клавишу включения обогревателя, напряжение подается на обмотку реле, реле срабатывает, силовые контакты замыкаются и соединяют выводы реле 30 и 87 между собой. Ток поступает на обогреватель, протекает через группу параллельно соединенных нитей и через корпус автомобиля возвращается на отрицательный вывод аккумулятора.
Неисправности обогревателя заднего стекла
На работоспособность обогревателя заднего стекла не обращают внимания, пока стекло не запотеет или не покроется инеем. После включения обогревателя вдруг обнаруживается, что через несколько минут стекло не стало прозрачным или видимость появилась только через часть стекла. В зависимости от внешнего проявления, даже без измерительных приборов, сразу можно сделать предположение о причине отказа.
Следует учесть, что обогреватель заднего стекла и зеркал заднего вида автомобиля возможно включить только при установке ключа зажигания в положение ON. В некоторых моделях автомобилей включение обогревателя возможно только при запущенном двигателе. Это сделано для исключения сильного разряда аккумулятора, так как обогреватель заднего стекла, в зависимости от модели автомобиля, потребляет ток от 10 А до 25 А. Для сравнения, одна автомобильная фара потребляет ток величиной всего 5 А.
Обогреватель не включается
Если индикатор на кнопке включения обогрева заднего стекла после нажатия на нее не светится, то вероятнее всего перегорел предохранитель или неисправна сама клавиша. Если индикатор светится, но, ни одна нить не греет, то причиной неисправности может быть реле или разъемы подключения обогревателя к электропроводке. В этом случае по документации на конкретную модель автомобиля необходимо определить место нахождения этих деталей и отказавшую заменить. Оперативно найти место установки реле не всегда представляется возможным, но есть способ проверить его исправность косвенным путем, о чем рассказано будет ниже.
Стекло медленно отпотевает
Иногда встречается случай, когда после включения обогревателя стекло отпотевает за время, значительно превышающее несколько минут. В таком случае, если на улице не очень большой мороз, причина может крыться в плохом контакте одного из разъемов электрической схемы. В результате сопротивление контакта увеличивается, ток ограничивается, и как следствие снижается мощность, выделяющаяся на нитях нагревателя стекла. Для проверки такой неисправности необходимо вольтметром постоянного тока (мультиметром или стрелочным тестером, включенных в режим измерения постоянного напряжения) измерять величину напряжения на входных клеммах обогревателя и аккумулятора. Напряжения не должны отличаться более чем на один вольт.
На стекле остаются горизонтальные полосы запотелости
И наконец, самый распространенный случай неисправности системы подогрева заднего стекла автомобиля, обрыв одной или нескольких нитей обогревателя нанесенных непосредственно на стекло. Этот вид неисправности сразу виден по горизонтальной полосе оставшейся запотелости на стекле после включения обогревателя.
Токопроводящие дорожки на заднем стекле обладают малой механической прочностью и при воздействии на них легко разрушаются. Поэтому запрещается удалять иней и наледь со стекла с помощью скребка. Допускается только протирка мягкой тканью. Также необходимо следить, чтобы при перевозке длинногабаритных вещей они не упирались в заднее стекло. Как правило, отдельные нити нагревателя перестают работать в результате их случайного механического разрушения. В зоне поврежденной нити после включения обогрева остаются полосы запотелости или инея.
При ремонте квартиры я перевозил в своем автомобиле напольные плинтуса и не заметил, как один из них уперся в заднее стекло. Через время, когда понадобилось отогреть заднее стекло, увидел результат своей невнимательности. Две полоски нагревателя, проходящие через середину стекла не грели, что существенно ухудшало обзор дороги. При визуальном осмотре на неработающих полосках было обнаружено по одному просвету шириной около 1 мм, как на фотографии. Встал вопрос о необходимости ремонта обогревателя заднего стекла.
Как найти место обрыва нити обогрева стекла
Определить какая нить нагревателя в обрыве не составляет труда, так как в зоне ее прохождения запотелость при работе обогревателя не исчезает. Поэтому для того, чтобы при ремонте легко было найти неисправную нить, желательно посчитать нити сверху вниз и запомнить, какая из них по номеру в обрыве, чтобы потом визуальным осмотром попробовать найти место ее повреждения. Но разрыв нити бывает настолько мал, что визуально его найти не получается. Тогда в поиске поможет вольтметр постоянного тока, омметр или индикатор напряжения. Чтобы быстро найти место неисправности в обогревательном элементе нужно представлять, как он устроен и работает.
Устройство нагревательного элемента системы подогрева стекла
Логичен вопрос, а почему бывает, что не работает только одна или несколько нитей в обогревателе, а остальные работают? Для получения ответа на этот вопрос нужно ознакомиться с устройством нагревательного элемента.
Нагревательный элемент заднего стекла автомобиля устроен следующим образом. На боковых сторонах заднего стекла нанесены две токопроводящие шины 1 и 2. К этим шинам подсоединены нити из высокоомного материала. Каждая из нитей имеет сопротивление около 10 Ом. Количество нитей зависит от высоты стекла. Таким образом, каждая нитка представляет собой отдельный нагревательный элемент, работа которого не зависит от других. Применена схема параллельного соединения нагревательных элементов. Такое схемное решение обеспечивает высокую эксплуатационную надежность обогревателя, так как обрыв одной или нескольких нитей не приводит к полному прекращению его работы.
Поиск обрыва нити обогревателя с помощью вольтметра
Для работы понадобится любой вольтметр постоянного тока с пределом измерения 15 В. В качестве вольтметра подойдет любой стрелочный тестер или цифровой мультиметр. Перед началом работы нужно включить обогреватель.
Так как одна из шин нагревательного элемента подсоединена к кузову автомобиля, то отрицательный вывод вольтметра можно соединить с корпусом автомобиля, подойдет любой винт или болт, закрученный непосредственно в кузов. Удобнее всего присоединиться к скобе замка крышки багажника зажимом типа «крокодил».
Так как визуально при прозрачном стекле узнать греет ли обогреватель сложно, то прикоснувшись положительным щупом вольтметра к шине 1, а затем к шине 2 Вы сразу это поймете. На шине 1 должно быть напряжение +12 В, а на шине 2 – 0 В. Вполне возможно, что левая шина в Вашем автомобиле будет соединена с массой, а на правую шину будет подаваться питающее напряжение. Если к шинам нет доступа, то можно измерения проводить, прикасаясь щупом к любой из нитей в местах соединения с шинами, то есть в местах выхода их из резинового уплотнителя. На фотографии это точки 1 и 5.
С помощью вольтметра легко определить, какая часть системы обогрева неисправна. Если обогреватель включен, индикатор включения на кнопке светится и на шине 1 присутствует 12 В, а нагрева нет, значит, электропроводка до шины 1 исправна. Если напряжения на шине 1 нет, то имеется плохой контакт в клемме подачи питающего напряжения на шине 1, или неисправно реле. В случае если 12 В присутствует не только на шине 1, а и на шине 2, то искать нужно плохой контакт в клемме подсоединения провода к шине 2 или цепи присоединения провода к массе автомобиля.
Поиск места обрыва нити
После проверки системы подачи питающего напряжения на обогреватель можно приступать к определению места обрыва нагревательной нити. Нить представляет собой ленточное сопротивление величиной около 10 Ом, и поэтому величина напряжения в разных ее точках имеет разную величину. Поэтому в точке 1 напряжение будет равно 12 В, в точке 3 – 6 В, а в точке 5 – 0 В. Поэтому, даже не зная какая из нитей в обрыве, ее легко можно найти, измеряя величину напряжения в серединах длины всех нитей. На оборванных нитях напряжение будет равно 12 или 0 В. Если напряжение равно 12 В, то место обрыва находится слева, а если 0 В, то справа.
Теперь достаточно щуп медленно провести в сторону обрыва, в месте резкого изменения напряжения и будет разрыв. Для примера, на фотографии это участок нити между 6 и 7 точками.
Поиск места обрыва нити с помощью омметра
С помощью мультиметра или стрелочного тестера в режиме измерения сопротивления тоже успешно можно найти место обрыва нити. Включать обогреватель при поиске омметром не нужно, но проверить исправность системы подачи питающего напряжения на нагреватель, кроме проверки цепи подключения к массе, не получится.
Если не известна оборванная нить, то нужно один конец щупа омметра подсоединить к выводу масса, а вторым по очереди касаться середин ниток нагревателя. Нить, на которой омметр покажет сопротивление в два раза больше и будет в обрыве. Для справки, сопротивление на целых нитях относительно шины 1 или 2 должно быть 2-3 Ом. В случае обрыва в нити омметр покажет 4-6 Ом.
Когда поврежденная нить найдена, необходимо конец щупа от центра подвинуть в любую сторону. Если сопротивление при передвижении щупа в сторону шины 1 будет расти, то значит обрыв находится в промежутке между шиной 1 и точкой касания щупа. Например, в месте, обозначенном точками 1 и 2. Как только щуп пройдет место обрыва, сопротивление резко уменьшится в несколько раз. Если сопротивление будет уменьшаться, значит, место обрыва нити находится между щупом и шиной 2. Например, в месте, обозначенном точками 3 и 4. Тогда нужно щуп передвигать в сторону шины 2, и когда сопротивление резко упадет, в этой точке и будет место обрыва.
Поиск места обрыва нити
с помощью Автомобильного тестера-пробника
Если нет в наличии вольтметра или омметра, то найти место обрыва нити нагревательного элемента можно с помощью самодельного автомобильного тестера-пробника, состоящего всего из одного любого светодиода и токоограничивающего резистора. Я давно уже себе сделал такой тестер, хотя располагаю любыми измерительными приборами. Самодельный автомобильный тестер-пробник всегда лежит в бардачке моей автомашины и уже не один раз приходилось ним воспользоваться.
Поиск места обрыва нити с помощью тестера-пробника мало чем отличается от поиска вольтметром. Индикатором в данном случае будет служить не стрелка или цифры, а свечение светодиода.
Прежде, чем приступать к поиску поврежденной нити пробником необходимо подать на обогреватель питающее напряжение. Сначала проверяется наличие напряжения на шине 1, светодиод должен светиться, если светодиод не светится, значит, неисправность кроется в цепи подачи питающего напряжения. Далее проверяется напряжение на шине 2, светодиод не должен светиться, если светится, значит, имеется нарушение контакта в месте подключения провода к шине или корпусу автомобиля.
Для поиска места обрыва нити нагревателя нужно медленно, легко касаясь нити вести по ней концом пробника. В точке, в которой светодиод погаснет или засветит и находится обрыв нити. Например, в точке 6 светодиод тестера будет светиться, а в точке 7, не будет. В моем случае разрывы нитей были большие и тестер пригодился только для проверки качества ремонта.
Способы ремонта нитей нагревательного элемента
Существует несколько способов восстановления работоспособности греющей нити в домашних условиях.
С помощью токопроводящих паст и клеев
Наиболее простой и эффективный, это с помощью специальных ремонтных комплектов, например DONE DEAL DD6590, предназначенный для ремонта нитей и контактов обогревателя заднего стекла как любителями, так и профессионалами. Способ хорош тем, что не требует наличия инструментов и материалов. Достаточно нанести по прилагаемой инструкции на место разрыва нити из шприца немного токопроводящей пасты, дождаться пока паста затвердеет и ремонт закончен. Но стоит такой набор более $15.
Второй способ аналогичен предыдущему. Но вместо фирменного набора применяют покупные токопроводящие клеи, например, «Элеконт», московского производителя. Клей наносится на место разрыва нити с перекрытием целой части нити по сантиметру с каждой стороны. Для получения аккуратного вида используется трафарет из изоленты или скотча. Для надежности клей наносится два раза. Между слоями токопроводящего клея желательно проложить отрезок залуженной медной проволочки диаметром 0,3-0,5 мм.
Бытует мнение, что токопроводящую пасту или клей для ремонта нитей нагревателя стекла можно изготовить самостоятельно, замешав краску или клей с опилками латуни в пропорции один к одному. Полученный состав через трафарет тонким слоем наносится на место обрыва нити в несколько слоев. Но надежность этой технологии не подтверждена практикой.
Гальваническим осаждением меди
Еще один способ – гальваническое осаждение меди. Метод ремонта нити нагревателя кажется привлекательным. Но из личной практики могу сказать, что надежность подобных покрытий в домашних условиях получается низкой. Так что я не решился воспользоваться этой технологией.
С помощью пайки мягким припоем
Широкое распространение получил механический способ восстановления целостности нитей обогревателя заднего стекла, методом пайки мягким припоем. Надежность этого способа проверена мною при ремонте нагревательных нитей заднего стекла в собственном автомобиле. Приведенная ниже пошаговая инструкция, написанная на основании моего опыта, позволит Вам без трудностей самостоятельно отремонтировать нить обогревателя всего за несколько минут практически без финансовых затрат.
По совету теоретиков из Интернета я допустил большую ошибку, попытался зачистить нить с помощью наждачной бумаги. В результате вместо разрыва нити шириной 1 мм получился разрыв величиной более 1 см. Лента нитки очень тонкая, всего с пару десятков микрон и стирается, даже самой мелкозернистой наждачной бумагой мгновенно. Нити нагревателя и так ничем не покрыты, и достаточно место пайки обезжирить с помощью лоскута, смоченного в спирте или ацетоне.
Если ширина разрыва нити менее 1 мм, то можно обойтись и без пайки дополнительного проводника. В моем случае ширина просвета была большой, и пришлось предварительно приготовить отрезок медной проволочки для перемычки. По одной нитке нагревателя протекает ток около 1 А. Исходя из этого, выбираем по таблице сечения проводов провод сечением 0,17 мм2, что соответствует диаметру 0,45 мм. Длина медной перемычки должна быть равна ширине обрыва нити плюс 2 см. Перед пайкой, перемычку нужно обязательно залудить толстым слоем оловянно-свинцового припоя ПОС-61. Нитку нагревателя лудить не нужно.
Для того, чтобы припой надежно пристал к нитке нагревателя, перед припайкой перемычки нужно нитку в зоне пайки с помощью кисточки смазать тонким слоем хлористо-цинкового флюса.
Далее перемычка прижимается к нагревательной нитке и прогревается в течение одной секунды паяльником мощностью 12 Вт. Рука отводится в сторону. Перемычка должна держаться на нитке. Пробовать ее подергать для проверки качества пайки недопустимо, отвалится, и еще оторвет кусок нитки нагревателя. К сожалению, проверено опытным путем. В результате экспериментов перемычку в конечном итоге мне пришлось паять длиной 5 см.
После припайки одного конца перемычки, плотно к нитке прижимается второй и тоже прогревается паяльником. После окончания пайки, с целью удаления остатков кислотного флюса, стекло тщательно промывается водой.
В довершение для надежности, хотя это и не обязательно, я припаянную перемычку покрыл сверху прозрачным суперклеем «Момент» на основе цианакрилатов, термостойкость которого составляет около 70 °С. Более этой температуры обогреватель не нагревается.
В результате время ремонта обрыва нити своими руками с учетом всех подготовительных работ составило не более десяти минут. Отремонтированные нити служат уже более трех лет.
Александр 19.10.2015
Добрый день!
Хочу воспользоваться Вашим методом ремонта нитей обогрева. Однако возник вопрос, какой флюс применить.
В наличии с хлористым цинком обнаружил только паяльный жир BS-10 следующего состава:
– Вазелин (основа) 80-90%;
– Парафин 6-9%;
– Цинк хлорид 4-6%;
– Аммоний хлорид 1-3%;
– Вода 2-4%.
Подойдет ли он для лужения нитей?
И еще, паяльник мощностью 25 ватт – это слишком много для такой пайки?
Заранее благодарен за помощь!
Александр
Здравствуйте, Александр!
Описанный Вами флюс подойдет.
Паяльник тоже, но надо жало заточить под углом порядка 45 градусов. Провод перемычку предварительно обильно залудить, чтобы на ней был толстый слой припоя. Обезжирить нить в месте обрыва спиртом или ацетоном и смазать место флюсом. Приложить перемычку сначала с одной стороны нити и не более чем на пол секунды прикоснуться к перемычке жалом паяльника. Отпустить перемычку, если не отвалилась, значит, припаялась, а если отвалилась операцию повторить. Далее также припаивается второй конец перемычки. На всю операцию уходит не более минуты.
Определение разрывной нагрузки и удлинения при разрыве нитей
Разрывная нагрузка
нити (Рр)
— наибольшее
усилие, выдерживаемое нитью при растяжении
до разрыва. Измеряется в ньютонах (Н),
миллиньютонах (мН), грамм-силах (гс),
килограмм-силах (кгс)
(1 кгс=-9,8
Н;
1 гс==9,8 мН).
Для сравнения
разрывной нагрузки нитей разной линейной
плотности пользуются показателем
относительной разрывной нагрузки (Ро),
т. е. разрывной нагрузки, приходящейся
на единицу линейной плотности, которая
выражается в мН/текс, Н/текс, гс/текс,
кгс/текс.
Удлинение при
разрыве (абсолютное) 1р—приращение
длины растягиваемой нити в момент
разрыва. Измеряется в мм. Относительное
разрывное удлинение (Ер)
— разрывное
удлинение нити, выраженное в процентах
к начальной (зажимной) длине нити.
Подсчитывают
средние арифметические значения
разрывной нагрузки, абсолютного и
относительного разрывного удлинения.
Среднюю разрывную нагрузку в гс
пересчитывают в мН.
По полученным
данным подсчитывают относительную
разрывную нагрузку (Ро)
по формуле:
,
(сН/текс, гс/текс),
где Рр—разрывная
нагрузка, сН, гс;
Т—линейная
плотность, текс.
Определение крутки нитей
Крутка характеризуется
количеством витков (кручений) на
1 м длины
нити. Если витки направлены снизу вверх
налево, крутка называется левой и
обозначается буквой S;
если витки направлены снизу вверх
направо, крутка называется правой и
обозначается буквой Z.
Направление нитей, скрученных вместе,
обозначается последовательно для всех
процессов скручивания: Z/S,
Z/Z/S
и т.д.
Сравнение
интенсивности скрученности нитей разной
линейной плотности производят по
коэффициенту крутки, который определяют
по формуле:
где К—крутка,
количество кручений на
1 м;
Т—линейная
плотность, текс.
5.10.3 Ткани.
ИЗУЧЕНИЕ СТРОЕНИЯ
ТКАНИ
Показателями
строения ткани являются волокнистый
состав, структурные характеристики
нитей, составляющих ткань (линейная
плотность, количество составляющих
нитей, крутка, направление крутки), вид
переплетения ткани, плотность (абсолютная
и относительная), величина и характер
изгибов нитей (фаза строения ткани),
объемное заполнение, пористость,
наполнение, опорная поверхность.
Ниже приведены
методы определения некоторых структурных
характеристик ткани, наиболее часто
используемые в практике товароведных
исследований.
При анализе строения
ткани предварительно устанавливают ее
лицевую и изнаночную стороны, направление
нитей основы и утка.
Определение
лицевой и изнаночной сторон ткани,
направления нитей основы и утка
Лицевую сторону
ткани определяют по следующим признакам:
более четкому и яркому набивному рисунку;
лучшему оформлению и более эффектной
поверхности; кромке ткани, имеющей
четкий рисунок переплетения; более
гладкой поверхности в результате опалки
ткани; плотному застилу в тканях атласного
и сатинового переплетений; диагоналевым
линиям, обычно идущим слева вверх направо
в тканях саржевого переплетения (образец
ткани должен быть расположен так, чтобы
нити основы были направлены от
наблюдателя); более короткому и ровному
ворсу или рисунчатому ворсу в драпах и
по другим признакам.
Направление нитей
основы и утка устанавливают по следующим
признакам: параллельности нитей основы
направлению кромки ткани; меньшей
растяжимости ткани в направлении основы;
большей равномерности по толщине,
гладкости, компактности, большей крутки
нитей основы; направлению ворса вдоль
основы в тканях с начесом; виду пряжи в
основе полульняных и полушерстяных
тканей, в большинстве которых основа—
хлопчатобумажная
пряжа, и другим признакам
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Изобретение относится к исследованию физико-механических свойств химических комплексных нитей технического и бытового назначения и может быть использовано в химической промышленности. Техническим результатом предлагаемого способа является повышение производительности, снижение трудоемкости, а также повышение точности за счет определения координат точек разрыва элементарных нитей в комплексной нити непосредственно в момент их разрыва. Поставленная задача достигается тем, что в предлагаемом способе определения координат точек разрыва элементарных нитей в комплексной нити, включающим растяжение до разрушения образца комплексной нити растягивающей силой и определение координат точек разрыва элементарных нитей в образце, в процессе растяжения комплексной нити дополнительно осуществляют непрерывный одновременный контроль амплитуд акустических импульсов, возникающих в момент разрыва каждой элементарной нити в комплексной нити, регистрируемых в местах приложения нагрузки на комплексную нить в точках X1 и Х2, а также длины растягиваемого образца, координаты точек разрыва элементарных нитей в образце определяют по формуле L1=LU2/(U1+U2), где L – длина растягиваемого образца, равная расстоянию между точками приложения нагрузки на комплексную нить X1 и Х2; L1 – расстояние между точкой разрыва элементарного волокна и точкой X1 регистрации сигналов; U1 и U2 – амплитуды акустических импульсов в точках регистрации X1 и Х2 соответственно. 2 ил., 2 табл.
Изобретение относится к исследованию физико-механических свойств химических комплексных нитей технического и бытового назначения и может быть использовано в химической промышленности. Одним из основных требований, предъявляемых к химическим комплексным нитям, является равномерность механических свойств элементарных нитей, а также характеристики фрикционных свойств элементарных нитей. Распределение координат точек разрывов элементарных нитей в зоне разрушения комплексной нити позволяет определить неравномерность механических свойств элементарных нитей по длине, также может быть использовано при расчете коэффициента трения между элементарными нитями в комплексных нитях различной крутки. Изучение характеристик фрикционного взаимодействия элементарных нитей позволяет определить степень реализации их механических свойств в комплексных нитях и, следовательно, повышать прочностные свойства нитей.
Наиболее близким по технической сущности к заявляемому способу является способ определения координат точек разрыва элементарных нитей в комплексной нити, включающий растяжение до разрушения образца комплексной нити растягивающей силой и определение координат точек разрыва элементарных нитей в образце, используемый в работе “Механизм разрушения комплексных нитей. Определение критической длины элементарных нитей”. Лаврова З.И., Перепелкин К. Е., Иванов М.Н. Хим. волокна. – 1997. – №5. – С.43-48.
Для данного способа используют следующую аппаратуру и материалы:
– разрывная машина типа FPZ-10/1, “Инстрон”, РМ-30 и др.
– клей ПВА (поливинилацетатный) или любой другой, не вызывающий набухания волокон или изменения их состава;
– доска с бархатным покрытием цвета, контрастного с цветом волокна;
– линейка измерительная, металлическая с миллиметровыми делениями;
– пинцет.
Перед началом испытаний приготавливают образцы. Из бумаги изготавливаются рамки (фиг.2). Зажимную длину (7) образца устанавливают равной, например, 250 мм. Зажимные части отрезков комплексной нити, предназначенные для приложения нагрузки к образцу, заклеивают в рамки, при этом не допускается затекания клея на рабочий участок более 1 мм. Образцы выдерживаются до полного затвердевания клея.
Способ определения координат точек разрыва элементарных нитей в комплексной нити осуществляют следующим образом.
Концы образца (8) жестко крепят в зажимах разрывной машины. Перерезают боковые стороны рамки (9). Включают механизм перемещения нижнего зажима разрывной машины и нагружают образец (10), например, с постоянной скоростью, до полного разрушения. Снимают из зажимов концы разрушенных образцов (8) и выдерживают их в нормальных климатических условиях в течение 24 ч до полной релаксации деформаций.
Определяют координаты точек разрыва элементарных нитей в комплексной нити следующим образом.
Для каждого конца разрушенного образца с помощью ножниц отделяют элементарные нити от зажимных частей, заклеенных в рамку. Все элементарные нити укладывают поочередно на бархатную поверхность с помощью пинцета и распрямляют до полного устранения извитости. Для этого пальцем левой руки прижимают левый конец элементарной нити к доске и осторожно проводят по волокну пальцем правой руки слева направо, распрямляя его. Линейкой измеряют длину каждой элементарной нити.
Недостатком такого способа является то, что определение координат точек разрыва волокон происходит после релаксации деформации волокон, в процессе которой под действием внутренних напряжений после разрыва элементарных нитей происходит изменение их длины, что снижает точность определения координат. Недостатком данного способа является также большая трудоемкость определения координат точек и большая продолжительность проведения испытаний.
Техническим результатом предлагаемого способа является повышение производительности, снижение трудоемкости, а также повышение точности за счет определения координат точек разрыва элементарных нитей в комплексной нити непосредственно в момент их разрыва.
Поставленная задача достигается тем, что в предлагаемом способе определения координат точек разрыва элементарных нитей в комплексной нити, включающем растяжение до разрушения образца комплексной нити растягивающей силой и определение координат точек разрыва элементарных нитей в образце, в процессе растяжения комплексной нити дополнительно осуществляют непрерывный одновременный контроль амплитуд акустических импульсов, возникающих в момент разрыва каждой элементарной нити в комплексной нити, регистрируемых в местах приложения нагрузки на комплексную нить в точках X1 и Х2, а также длины растягиваемого образца, координаты точек разрыва элементарных нитей в образце определяют по формуле
L1=LU2/(U1+U2),
где L – длина растягиваемого образца, равная расстоянию между точками приложения нагрузки на комплексную нить X1 и Х2;
L1 – расстояние между точкой разрыва элементарного волокна и точкой X1 регистрации сигналов;
U1 и U2 – амплитуды акустических импульсов в точках регистрации X1 и Х2 соответственно.
На фиг.1 представлена схема устройства для осуществления способа определения координат точек разрыва элементарных нитей в комплексной нити.
Устройство содержит первый и второй (1) и (2) приемники акустических импульсов, первый и второй измерители (3) и (4) акустических импульсов, измеритель (5) перемещения подвижного зажима, блок (6) регистрации. Первый и второй (1) и (2) приемники расположены соответственно в верхнем и в нижнем зажимах разрывной машины и осуществляют контроль акустических импульсов в точках с координатами X1 и Х2 соответственно.
Входы измерителей (3), (4) амплитуды акустических импульсов соединены с выходами первого и второго приемников (1) и (2) акустических импульсов, а их выходы – с первым и вторым входом блока (6) регистрации соответственно. Выход измерителя (5) перемещения подключен к третьему входу блока (6) регистрации.
Предлагаемый способ определения координат точек разрыва элементарных нитей в комплексной нити осуществляют следующим образом.
Для испытания берут образцы химических нитей (см. табл.1.)
Концы образца (6) жестко крепят в зажимах разрывной машины. Включают механизм перемещения нижнего зажима разрывной машины (на чертеже не показано) и нагружают образец, например, с постоянной скоростью. Регистрируют перемещение подвижного зажима измерителем (5), акустические импульсы первым и вторым приемниками (1), (2) и измеряют их амплитуды с помощью первого и второго измерителей (3) и (4) амплитуды импульсов давления. Осуществляют синхронное измерение амплитуд акустических импульсов и длины растягиваемого образца с помощью блока (5) регистрации. По измеренным значениям амплитуд акустических импульсов и длины образца определяют координаты точек разрыва элементарных нитей в комплексной нити по формуле
L1=LU2/(U1+U2),
где L – длина растягиваемого образца, равная расстоянию между точками приложения нагрузки на комплексную нить X1 и Х2;
L1 – расстояние между точкой разрыва элементарного волокна и точкой X1 регистрации сигналов;
U1 и U2 – амплитуды акустических импульсов в точках регистрации X1 и Х2 соответственно.
Таким образом, предлагаемый способ повышает производительность, снижает трудоемкость, а также повышает точность измерения за счет определения координат точек разрыва элементарных нитей в комплексной нити непосредственно в момент их разрыва (см. табл.2).
Формула изобретения
Способ определения координат точек разрыва элементарных нитей в комплексной нити, включающий растяжение до разрушения образца комплексной нити растягивающей силой и определение координат точек разрыва элементарных нитей в образце, отличающийся тем, что в процессе растяжения комплексной нити осуществляют непрерывный одновременный контроль амплитуд акустических импульсов, возникающих в момент разрыва каждой элементарной нити в комплексной нити, регистрируемых в местах приложения нагрузки на комплексную нить в точках X1 и Х2, а также длины растягиваемого образца, координаты точек разрыва элементарных нитей в образце определяют по формуле
L1=LU2/(U1+U2),
где L – длина растягиваемого образца, равная расстоянию между точками X1 и Х2 приложения нагрузки на комплексную нить;
L1 – расстояние между точкой разрыва элементарного волокна и точкой XI регистрации сигналов;
U1 и U2 – амплитуды акустических импульсов в точках регистрации X1 и Х2 соответственно.
РИСУНКИРисунок 1, Рисунок 2