В данной статье приводятся таблицы активного и индуктивного сопротивления кабелей на напряжение 6 — 35 кВ взятые из различных справочников по проектированию электрических сетей и руководящих указаний.
Значения активного и индуктивного сопротивления кабелей необходимы при расчете токов короткого замыкания и проверки кабеля на потери напряжения.
Сопротивление кабелей с бумажной, резиновой и поливинилхлоридной изоляцией на напряжение 6 — 35 кВ
1. РД 153-34.0-20.527-98 – Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования. 2002 г. Таблица П.8, страница 145.
2. Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г. Таблица 2-5, страница 48.
3. Справочник по проектированию электроснабжению. Ю.Г. Барыбина. 1990 г. Таблица 2.63, страницы 175-176.
4. Справочная книга электрика. Григорьева В.И. 2004г. Таблицы 3.9.7; 3.9.11; страницы 448-449
Если значения активных и реактивных сопротивлений кабелей, вы не нашли в приведенных таблицах. В этом случае, сопротивление кабеля можно определить по приведенным формулам с подстановкой в них фактических параметров кабелей.
Методика расчета представлена в книге: «Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г, страницы 45-48».
Активное сопротивление кабеля
1. Активное сопротивление однопроволочной жилы, определяется по формуле 2-1, Ом:
где:
- l — длина жилы, м;
- s – поперечное сечение жилы, мм2, определяется по формуле: π*d2/4;
- d – диаметр жилы кабеля;
- α20 – температурный коэффициент сопротивления, равный при 20 °С:
- 0,00393 1/град – для меди;
- 0,00403 1/град – для алюминия;
- ρ20 – удельное сопротивление материала жилы при 20 °С (температура изготовления жилы), можно принять согласно книги «Справочная книга электрика. Григорьева В.И. 2004г.» Таблица 1.14, страница 30.
- tж – допустимая температура нагрева жилы, согласно ПУЭ п.1.3.10 и 1.3.12.
2. Активное сопротивление многопроволочной жилы определяется также по формуле 2-1, но из-за конструктивных особенностей многопроволочной жилы, вместо значений ρ20 вводиться в формулу ρр равное:
- 0,0184 Ом*мм2/м – для медных жил;
- 0,031 Ом*мм2/м – для алюминиевых жил.
3. Удельное активное сопротивление жилы, отнесенное к единице длины линии 1 км, определяется из следующих зависимостей, Ом/км:
Индуктивное сопротивление кабеля
1. Удельное реактивное (индуктивное) сопротивление кабеля определяется по формуле 2-8, Ом/км:
где:
- d – диаметр жилы кабеля.
- lср – среднее геометрическое расстояние между центрами жил кабеля определяется по формуле [Л1.с.19]:
где:
- lА-В — расстояние между центрами жил фаз А и В;
- lВ-С — расстояние между центрами жил фаз В и С;
- lС-А — расстояние между центрами жил фаз С и А.
Пример
Определить активное и индуктивное сопротивление кабеля марки АВВГнг(А)-LS 3х120 на напряжение 6 кВ производства «Электрокабель» Кольчугинский завод». Длина кабельной линии L = 300 м.
Решение
1. Определяем поперечное сечение токопроводящей жилы кабеля имеющую круглую форму:
S = π*d2/4 = 3,14*13,52/4 = 143 мм2
Расчет поперечного сечение секторной жилы, а также размеры секторных жил на напряжение 0,4 — 10 кВ представлен в статье: «Расчет поперечного сечения секторной жилы кабеля«.
где: d = 13,5 мм – диаметр жилы кабеля (многопроволочные уплотненные жилы), определяется по ГОСТ 22483— 2012 таблица С.3 для кабеля с токопроводящей жилой класса 2. Класс токопроводящей жилы указывается в каталоге завода-изготовителя кабельной продукции.
Ниже представлена классификация жил кабелей, согласно ГОСТ 22483— 2012:
2. Определяем удельное активное сопротивление кабеля марки АВВГнг(А)-LS 3х120, отнесенное к единице длины линии 1 км, Ом/км:
где:
- l = 1000 м – длина жилы, м;
- α20 – температурный коэффициент сопротивления, равный при 20 °С:
- 0, 00393 1/град – для меди;
- 0,00403 1/град – для алюминия;
- ρр – удельное сопротивление материала многопроволочной жилы, равное:
- 0,0184 Ом*мм2/м – для медных жил;
- 0,031 Ом*мм2/м – для алюминиевых жил;
- tж = 65 °С — допустимая температура нагрева жилы, для кабеля напряжением 6 кВ, согласно ПУЭ п.1.3.10.
3. Определяем удельное активное сопротивление кабеля, исходя из длины кабельной трассы:
где: L = 0,3 км – длина кабельной трассы, км;
4. Определяем среднее геометрическое расстояние между центрами жил кабеля, учитывая что жилы кабеля расположены в виде треугольника.
где:
- lА-В = 20,3 мм — расстояние между центрами жил фаз А и В;
- lВ-С = 20,3 мм — расстояние между центрами жил фаз В и С;
- lС-А = 20,3 мм — расстояние между центрами жил фаз С и А.
Что бы определить расстояние между центрами жил кабеля, нужно знать диаметр жил кабеля d = 13,5 мм и толщину изоляции жил из поливинилхлоридного пластиката dи.ж = 3,4 мм, согласно ГОСТ 16442-80 таблица 4. Определяем расстояние между центрами жил фаз равное 20,3 мм (см.рис.1).
5. Определяем удельное реактивное (индуктивное) сопротивление кабеля марки АВВГнг(А)-LS 3х120, Ом/км:
где: d = 13,5 мм – диаметр жилы кабеля;
6. Определяем удельное реактивное сопротивление кабеля, исходя из длины кабельной трассы:
Сопротивление кабелей с изоляцией из сшитого полиэтилена на напряжение 6 — 35 кВ
Значения активного и реактивного (индуктивного) сопротивления кабелей с изоляцией из сшитого полиэтилена приводятся в каталогах завода-изготовителя. Для ознакомления приведу лишь некоторых производителей кабельной продукции.
«Электрокабель» Кольчугинский завод» – Каталог кабельной продукции.
В таблице 12 – приводятся значения активного сопротивления кабелей согласно ГОСТ 22483-2012
Компания «Estralin» — Каталог силовые кабели и кабельные системы 6 – 220 кВ.
Компания «Камкабель» — Настольная книга проектировщика. Кабели с изоляцией из сшитого полиэтилена на напряжение 6-35 кВ.
Справочники по проектированию электрических сетей и руководящие указания, которые упомянуты в данной статье, вы сможете найти, скачав архив.
Литература:
1. Расчет токов короткого замыкания в электросетях 0,4-35 кВ, Голубев М.Л. 1980 г.
Всего наилучшего! До новых встреч на сайте Raschet.info.
Содержание
- Реактивное сопротивление XL и XC
- Реактивное сопротивление катушки индуктивности.
- Реактивное сопротивление конденсатора.
- Калькулятор расчёта реактивного сопротивления
- Активное и индуктивное сопротивление кабелей – таблица
- Особенности активного сопротивления
- Таблица и расчет по формуле
- Действие индуктивного сопротивления кабельных линий
- Определение активных и индуктивных сопротивлений проводов
- Определение активного сопротивления проводов
- Определение индуктивного сопротивления проводов
- Определение сопротивления кабелей на напряжение 6 — 35 кВ
- Сопротивление кабелей с бумажной, резиновой и поливинилхлоридной изоляцией на напряжение 6 — 35 кВ
- Активное сопротивление кабеля
- Индуктивное сопротивление кабеля
- Сопротивление кабелей с изоляцией из сшитого полиэтилена на напряжение 6 — 35 кВ
Реактивное сопротивление XL и XC
Реактивное сопротивление – электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах.
Элементы, обладающие реактивным сопротивлением, называют реактивными.
Реактивное сопротивление катушки индуктивности.
При протекании переменного тока I в катушке, магнитное поле создаёт в её витках ЭДС, которая препятствует изменению тока.
При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении — положительна и препятствует его убыванию, оказывая таким образом сопротивление изменению тока на протяжении всего периода.
В результате созданного противодействия, на выводах катушки индуктивности в противофазе формируется напряжение U, подавляющее ЭДС, равное ей по амплитуде и противоположное по знаку.
При прохождении тока через нуль, амплитуда ЭДС достигает максимального значения, что образует расхождение во времени тока и напряжения в 1/4 периода.
Если приложить к выводам катушки индуктивности напряжение U, ток не может начаться мгновенно по причине противодействия ЭДС, равного -U, поэтому ток в индуктивности всегда будет отставать от напряжения на угол 90°. Сдвиг при отстающем токе называют положительным.
Запишем выражение мгновенного значения напряжения u исходя из ЭДС (ε), которая пропорциональна индуктивности L и скорости изменения тока: u = -ε = L(di/dt).
Отсюда выразим синусоидальный ток .
Интегралом функции sin(t) будет -соs(t), либо равная ей функция sin(t-π/2).
Дифференциал dt функции sin(ωt) выйдет из под знака интеграла множителем 1/ω.
В результате получим выражение мгновенного значения тока со сдвигом от функции напряжения на угол π/2 (90°).
Для среднеквадратичных значений U и I в таком случае можно записать .
В итоге имеем зависимость синусоидального тока от напряжения согласно Закону Ома, где в знаменателе вместо R выражение ωL, которое и является реактивным сопротивлением:
Реактивное сопротивлениие индуктивностей называют индуктивным.
Реактивное сопротивление конденсатора.
Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда – накопления и отдачи энергии электрическим полем между его обкладками.
В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное. Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю. Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.
В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току, обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.
Если приложить к конденсатору напряжение U, мгновенно начнётся ток от максимального значения, далее уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума. Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.
Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt).
Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2).
Тогда для синусоидального напряжения u = U ampsin(ωt) запишем выражение мгновенного значения тока следующим образом:
Отсюда выразим соотношение среднеквадратичных значений .
Закон Ома подсказывает, что 1/ωC есть не что иное, как реактивное сопротивление для синусоидального тока:
Реактивное сопротивление конденсатора в технической литературе часто называют ёмкостным. Может применяться, например, в организации ёмкостных делителей в цепях переменного тока.
Калькулятор расчёта реактивного сопротивления
Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.
Источник
Активное и индуктивное сопротивление кабелей – таблица
В любых электрических сетях имеет место потеря напряжения под влиянием различных факторов. В основном это такие параметры, как проводимость и сопротивление, которые следует учитывать при выполнении расчетов. Для цепей постоянного тока можно обойтись обычными характеристиками. Однако, при использовании переменного тока потребуется вычислить активное и индуктивное сопротивление кабелей. Для того чтобы правильно ориентироваться в этих параметрах, необходимо хорошо представлять себе особенности каждого из них.
Особенности активного сопротивления
Сопротивление в электротехнике является важнейшим параметром, с помощью которого какая-то часть электрической цепи оказывает противодействие проходящему по ней току. Образованию данной величины способствуют изменения электроэнергии и ее переход в другие виды энергетических состояний.
Подобное явление характерно лишь для переменного тока, под действием которого образуются активные и реактивные сопротивления кабелей. Этот процесс представляет собой необратимые изменения энергии или передачу и распределение ее между отдельными элементами цепи. Если изменения электроэнергии принимают необратимый характер, то такое сопротивление будет активным, а если имеют место обменные процессы, оно становится реактивным. Например, электрическая плита выделяет тепло, которое обратно в электрическую энергию уже не превращается.
Данное явление в полной мере затрагивает любые виды провода и кабеля. При одинаковых условиях, они будут по-разному сопротивляться прохождению постоянного и переменного тока. Подобная ситуация возникает из-за неравномерного распределения переменного тока по сечению проводника, в результате чего образуется так называемый поверхностный эффект.
Таблица и расчет по формуле
Как показывает таблица, поверхностный эффект не критично влияет на проводники, состоящие из цветных металлов и работающие при переменном напряжении с частотой 50 Гц. Поэтому для выполнения расчетов, сопротивления таких кабелей под действием постоянного и переменного тока принимаются условно равными.
Кроме таблицы, для расчетов проводников из алюминия и меди используется специальная формула r = (l * 10 3 )/ γ 3 * S = r * l, в которой l – длина (км), γ – удельное значение проводимости конкретного материала (м/ом * мм 2 ), r – активное сопротивление 1 км кабеля (Ом/км), S – поперечное сечение (мм 2 ).
Значение активного сопротивления кабелей зависит также от температуры окружающей среды. Для того чтобы вычислить r при точной температуре Θ, необходимо воспользоваться еще одной формулой r = r20 * [l + α * (Θ – 20)] = (l * 10 3 )/ γ20 * S * [l + α * (Θ – 20)]. Здесь α является температурным коэффициентом сопротивления, r20 – активное сопротивление при t 20 C, γ20 – удельная проводимость при этой же температуре. Эти расчеты необходимы, когда определяется точное активное и индуктивное сопротивление какого-либо проводника.
Активное сопротивление стальных проводов существенно превышает аналогичный показатель проводников из цветных металлов. Это связано с более низкой удельной проводимостью и наличием поверхностного эффекта, выраженного намного ярче по сравнению с медными и алюминиевыми проводами. Кроме того, в линиях со стальными проводами активная энергия значительно теряется на перемагничивание и вихревые токи, поэтому такие потери становятся дополнительным компонентом активного сопротивления.
У стальных проводников существует зависимость активного сопротивления от величины протекающего тока, поэтому в расчетах неприемлемо использование постоянного значения удельной проводимости.
Действие индуктивного сопротивления кабельных линий
Полное сопротивление электрической цепи разделяется на активное и индуктивное сопротивление. Из них последнее является составной частью реактивного сопротивления, возникающего во время прохождения переменного тока через элементы, относящиеся к реактивным. Индуктивность считается основной характеристикой катушек, не учитывая активное сопротивление их обмоток. Как правило, реактивное сопротивление возникает под влиянием ЭДС самоиндукции. При ее росте, в зависимости от частоты тока, происходит одновременное увеличение сопротивления.
Источник
Определение активных и индуктивных сопротивлений проводов
Доброго времени суток. В данной статье речь пойдет о расчете активных и индуктивных сопротивлений для воздушных и кабельных линий из цветных металлов, таких как медь и алюминий. Данные расчеты обычно приходится выполнять, когда нужно выполнить расчет токов короткого замыкания в распределительных сетях.
Определение активного сопротивления проводов
Активное сопротивлении проводов проще всего определять по справочным данным, составленным на основании ГОСТ 839-80 – «Провода неизолированные для воздушных линий электропередач» таблицы 1 – 4. Данные таблицы вы сможете найти непосредственно в самом ГОСТ, приведу лишь не которые.
Пользоваться всеми известными формулами по определению активного сопротивления — не рекомендуется [Л1. с.18],связано это с тем, что действительное сечение отличается от номинального сечения, провода выпускались в разное время, по разным ГОСТ и ТУ и величины удельной проводимости (ρ) и удельного сопротивления (γ) у них разные:
- γ – значение удельной проводимости для медных и алюминиевых проводов при температуре 20 °С принимается: для медных проводов – 53 м/Ом*мм2; для алюминиевых проводов – 31,7 м/Ом*мм2;
- s – номинальное сечение провода(кабеля),мм2;
- l – длина линии, м;
- ρ – значение удельного сопротивления принимается: для медных проводов — 0,017-0,018 Ом*мм2/м; для алюминиевых проводов – 0,026 — 0,028 Ом*мм2/м, см. таблицу 1.14 [Л2. с.30].
Активные сопротивления стальных проводов математическому расчету не поддаются. Поэтому рекомендую для определения активного сопротивления использовать приложения П23 – П25 [Л1. с.80,81].
Определение индуктивного сопротивления проводов
Индуктивное сопротивление воздушных линий для стандартной частоты f = 50 Гц и относительной магнитной проницаемости для цветных металлов µ = 1, определяется по известной всем формуле [Л1.с.19]:
- Dср. – среднее геометрическое расстояние между проводами, мм;
- dр – расчетный диаметр провода (мм2), определяется по ГОСТ 839-80, таблицы 1 -4;
Среднее геометрическое расстояние между проводами определяется по формуле [Л1.с.19]:
- D1-2 — расстояние между проводами первой и второй фазы;
- D2-3 — расстояние между проводами второй и третей фазой;
- D1-3 — расстояние между первой и третей фазой.
Данные значения определяются по чертежам опор линий электропередачи.
Для упрощения расчетов индуктивного сопротивления проводов рекомендуется использовать приложения П28-П31 [Л1.с.83-85], предварительно определив значение Dср.
Если же нужно выполнить приближенный расчет, то можно использовать в расчетах средние значения сопротивлений:
- для линий 0,4 – 10 кВ х = 0,3 Ом/км;
- для линий 35 кВ х = 0,4 Ом/км;
- для стальных проводов использовать приложение П6 [Л1.с.70];
Индуктивное сопротивление кабелей рассчитать довольно сложно, из-за различной их конструкции. Поэтому активные и индуктивные сопротивления кабелей рекомендуется принимать по справочникам, приложение П7 [Л1.с.70].
Если же нужно выполнить приближенный расчет, можно принять индуктивные сопротивления:
- для кабелей сечением 16 – 240 мм2 х = 0,06 Ом/км для напряжения до 1000 В;
- для кабелей сечением 16 – 240 мм2 х = 0,08 Ом/км для напряжения 6 – 10 кВ;
- для проводов проложенных на роликах х = 0,20 Ом/км;
- для проводов проложенных на изоляторах х = 0,25 Ом/км;
1. Расчет токов короткого замыкания в электросетях 0,4-35 кВ, Голубев М.Л. 1980 г.
2. Справочная книга электрика. Григорьева В.И. 2004 г.
Источник
Определение сопротивления кабелей на напряжение 6 — 35 кВ
В данной статье приводятся таблицы активного и индуктивного сопротивления кабелей на напряжение 6 — 35 кВ взятые из различных справочников по проектированию электрических сетей и руководящих указаний.
Значения активного и индуктивного сопротивления кабелей необходимы при расчете токов короткого замыкания и проверки кабеля на потери напряжения.
Сопротивление кабелей с бумажной, резиновой и поливинилхлоридной изоляцией на напряжение 6 — 35 кВ
1. РД 153-34.0-20.527-98 – Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования. 2002 г. Таблица П.8, страница 145.
2. Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г. Таблица 2-5, страница 48.
3. Справочник по проектированию электроснабжению. Ю.Г. Барыбина. 1990 г. Таблица 2.63, страницы 175-176.
4. Справочная книга электрика. Григорьева В.И. 2004г. Таблицы 3.9.7; 3.9.11; страницы 448-449
Если значения активных и реактивных сопротивлений кабелей, вы не нашли в приведенных таблицах. В этом случае, сопротивление кабеля можно определить по приведенным формулам с подстановкой в них фактических параметров кабелей.
Методика расчета представлена в книге: «Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г, страницы 45-48».
Активное сопротивление кабеля
1. Активное сопротивление однопроволочной жилы, определяется по формуле 2-1, Ом:
- l — длина жилы, м;
- s – поперечное сечение жилы, мм2, определяется по формуле: π*d 2 /4;
- d – диаметр жилы кабеля;
- α20 – температурный коэффициент сопротивления, равный при 20 °С:
- 0,00393 1/град – для меди;
- 0,00403 1/град – для алюминия;
- ρ20 – удельное сопротивление материала жилы при 20 °С (температура изготовления жилы), можно принять согласно книги «Справочная книга электрика. Григорьева В.И. 2004г.» Таблица 1.14, страница 30.
- tж – допустимая температура нагрева жилы, согласно ПУЭ п.1.3.10 и 1.3.12.
2. Активное сопротивление многопроволочной жилы определяется также по формуле 2-1, но из-за конструктивных особенностей многопроволочной жилы, вместо значений ρ20 вводиться в формулу ρр равное:
- 0,0184 Ом*мм2/м – для медных жил;
- 0,031 Ом*мм2/м – для алюминиевых жил.
3. Удельное активное сопротивление жилы, отнесенное к единице длины линии 1 км, определяется из следующих зависимостей, Ом/км:
Индуктивное сопротивление кабеля
1. Удельное реактивное (индуктивное) сопротивление кабеля определяется по формуле 2-8, Ом/км:
- d – диаметр жилы кабеля.
- lср – среднее геометрическое расстояние между центрами жил кабеля определяется по формуле [Л1.с.19]:
- lА-В — расстояние между центрами жил фаз А и В;
- lВ-С — расстояние между центрами жил фаз В и С;
- lС-А — расстояние между центрами жил фаз С и А.
Определить активное и индуктивное сопротивление кабеля марки АВВГнг(А)-LS 3х120 на напряжение 6 кВ производства «Электрокабель» Кольчугинский завод». Длина кабельной линии L = 300 м.
1. Определяем поперечное сечение токопроводящей жилы кабеля имеющую круглую форму:
S = π*d 2 /4 = 3,14*13,5 2 /4 = 143 мм 2
Расчет поперечного сечение секторной жилы, а также размеры секторных жил на напряжение 0,4 — 10 кВ представлен в статье: «Расчет поперечного сечения секторной жилы кабеля«.
где: d = 13,5 мм – диаметр жилы кабеля (многопроволочные уплотненные жилы), определяется по ГОСТ 22483— 2012 таблица С.3 для кабеля с токопроводящей жилой класса 2. Класс токопроводящей жилы указывается в каталоге завода-изготовителя кабельной продукции.
Ниже представлена классификация жил кабелей, согласно ГОСТ 22483— 2012:
2. Определяем удельное активное сопротивление кабеля марки АВВГнг(А)-LS 3х120, отнесенное к единице длины линии 1 км, Ом/км:
- l = 1000 м – длина жилы, м;
- α20 – температурный коэффициент сопротивления, равный при 20 °С:
- 0, 00393 1/град – для меди;
- 0,00403 1/град – для алюминия;
- ρр – удельное сопротивление материала многопроволочной жилы, равное:
- 0,0184 Ом*мм2/м – для медных жил;
- 0,031 Ом*мм2/м – для алюминиевых жил;
- tж = 65 °С — допустимая температура нагрева жилы, для кабеля напряжением 6 кВ, согласно ПУЭ п.1.3.10.
3. Определяем удельное активное сопротивление кабеля, исходя из длины кабельной трассы:
где: L = 0,3 км – длина кабельной трассы, км;
4. Определяем среднее геометрическое расстояние между центрами жил кабеля, учитывая что жилы кабеля расположены в виде треугольника.
- lА-В = 20,3 мм — расстояние между центрами жил фаз А и В;
- lВ-С = 20,3 мм — расстояние между центрами жил фаз В и С;
- lС-А = 20,3 мм — расстояние между центрами жил фаз С и А.
Что бы определить расстояние между центрами жил кабеля, нужно знать диаметр жил кабеля d = 13,5 мм и толщину изоляции жил из поливинилхлоридного пластиката dи.ж = 3,4 мм, согласно ГОСТ 16442-80 таблица 4. Определяем расстояние между центрами жил фаз равное 20,3 мм (см.рис.1).
5. Определяем удельное реактивное (индуктивное) сопротивление кабеля марки АВВГнг(А)-LS 3х120, Ом/км:
где: d = 13,5 мм – диаметр жилы кабеля;
6. Определяем удельное реактивное сопротивление кабеля, исходя из длины кабельной трассы:
Сопротивление кабелей с изоляцией из сшитого полиэтилена на напряжение 6 — 35 кВ
Значения активного и реактивного (индуктивного) сопротивления кабелей с изоляцией из сшитого полиэтилена приводятся в каталогах завода-изготовителя. Для ознакомления приведу лишь некоторых производителей кабельной продукции.
«Электрокабель» Кольчугинский завод» – Каталог кабельной продукции.
В таблице 12 – приводятся значения активного сопротивления кабелей согласно ГОСТ 22483-2012
Компания «Estralin» — Каталог силовые кабели и кабельные системы 6 – 220 кВ.
Компания «Камкабель» — Настольная книга проектировщика. Кабели с изоляцией из сшитого полиэтилена на напряжение 6-35 кВ.
Справочники по проектированию электрических сетей и руководящие указания, которые упомянуты в данной статье, вы сможете найти, скачав архив.
1. Расчет токов короткого замыкания в электросетях 0,4-35 кВ, Голубев М.Л. 1980 г.
Поделиться в социальных сетях
Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» и «PayPal» .
Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.
Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.
Представляю вашему вниманию таблицу с расчетными формулами для определения основных параметров силовых.
В данной статье я хотел бы рассказать, как ограничивать токи короткого замыкания в сетях напряжением.
В таблице 1 представлены расчетные формулы для определения основных параметров асинхронных.
В данной статье речь пойдет о выборе сечения жил контрольных кабелей при питании катушек контакторов и.
Исходные данные: Требуется обеспечить питание двух трансформаторов ТМ-4000/10 от подстанции. Линия.
Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.
Источник
Активное и реактивное сопротивление кабеля
Содержание
- 1 Кабель и провод
- 2 Активное сопротивление
- 3 Определение индуктивного сопротивления
- 4 Греющий кабель
- 5 Видео по теме
Передача электроэнергии от источника до электроустановок осуществляется с помощью проводов и кабелей. Неизбежные потери энергии связаны с наличием сопротивления протекающему электрическому току, что характерно для всех металлических токопроводящих жил. При использовании постоянного тока сопротивление кабелей имеет только активную (омическую) компоненту. В случае переменного тока необходимо учитывать как активную, так и реактивную составляющие сопротивлений.
Кабель и провод
Часто оба эти термина используются как синонимичные для обозначения похожих видов электротехнической продукции. Однако некоторая разница всё-таки имеется. На картинке ниже продемонстрировано, чем отличаются кабеля и изолированные провода друг от друга.
Провод состоит из одной токопроводящей жилы, которая может быть моножилой, либо набором тонких жил, сплетённых в одно целое. Провод имеет защитное, диэлектрическое покрытие. Кабель — это несколько проводов, сгруппированных под общей изоляционной оболочкой.
Общепринятая терминология приведена в разделе 2 ПУЭ (данная аббревиатура означает «Правила устройства электроустановок»). Она касается:
- проводов;
- токопроводов;
- кабельных линий напряжением от 0 до 220 кВ;
- воздушных линий электропередач до 1 кВ и выше 1 кВ.
Активное сопротивление
В качестве исходных проводников для изготовления токопроводящих жил могут использоваться различные металлы. При производстве массовой кабельной продукции чаще всего применяются:
- Медь.
- Алюминий.
- Сталеалюминевые комбинации.
Однонаправленный ток в металлах создаётся свободными электронами под действием приложенного электрического поля. Беспрепятственное движение электронов ограничивается атомами и ионами кристаллической решётки, которые непрерывно совершают тепловые колебания. Дополнительное сопротивление могут оказывать структурные дефекты и примеси. Потеря электрической энергии электронами приводит к тепловому нагреву металла.
Активное или омическое сопротивление проводов определяется по формуле:
где:
- ρ — удельное сопротивление металла (Ом*мм2/м);
- l — длина провода (м);
- S — сечение провода (мм2).
Удельное сопротивление металлических проводников можно узнать из справочной литературы.
Полезной величиной, используемой на практике, является удельное активное сопротивление равное сопротивлению 1.0 км кабеля. Для некоторых часто применяемых марок этот параметр равен:
- Провод АС 70 (одна стальная жила, обвитая алюминиевой проволокой) —0.42 Ом/км.
- Провод АПвП (алюминиевая токопроводящая жила) — 0.160 Ом/км.
- Кабель 1х70 (медная жила) — 0.28 Ом/км.
- Провод СИП-3 1х50 (самонесущий изолированный провод с сечением 50 мм2) — 0.923 Ом/км.
Определение индуктивного сопротивления
Полное сопротивление электрического кабеля при его использовании в электроцепях постоянного тока складывается из омических сопротивлений проводов, входящих в его состав. При работе с переменным током возникает реактивное сопротивление, которое разделяется на емкостное и индуктивное. Полное сопротивление — это корень квадратный из суммы квадратов этих составляющих. Графически оно отображается гипотенузой прямоугольного треугольника, катетами которого являются активное и реактивное сопротивление кабелей.
Для кабелей существенно индуктивное сопротивление. Физический механизм его возникновения заключается в том, что движущиеся электроны создают магнитное поле. При постоянном токе магнитное поле не меняется. Но как только происходит периодическое изменение тока, возникает эффект самоиндукции, открытый английским физиком М. Фарадеем. Самоиндукция тормозит ток, то есть, появляется дополнительная составляющая сопротивления.
Значение индуктивного сопротивления зависит от нескольких параметров:
- Расстояния между электропроводами.
- Диаметра электропровода (жилы).
- Величины тока.
- Частоты.
Определить величину реактивного сопротивления кабельной линии можно с помощью формул, учитывающих данные факторы. Чтобы быстро определить активное и реактивное сопротивление провода или кабеля, понадобится таблица с указанием основных характеристик самых распространенных видов электрокабелей.
Зачастую возникает необходимость в определении индуктивного сопротивления кабельной линии определенной протяженности. В данном случае следует воспользоваться довольно простой формулой:
ХL определяется с помощью такой формулы:
Чтобы самому не напрягаться с расчетом сопротивления, можно воспользоваться онлайн-калькулятором.
Греющий кабель
Интересной разновидностью кабельной продукции является греющий кабель (ГК). Его целевое назначение — эффективное преобразование электрической энергии в тепловую. Ток, проходя по всей длине кабеля, равномерно нагревает кабельное пространство. Примеры применения ГК:
- Тёплые полы.
- Системы подогрева бетона в осенне-зимний период.
- Антиоблединительные системы, предотвращающие сходы льда и снега в жилищно-коммунальном хозяйстве.
- Подогрев почвы в теплицах.
Сопротивление греющего кабеля можно легко измерить обычным мультиметром, имеющим такую опцию. Одним из паспортных параметров ГК является выделяемая тепловая мощность на погонный метр. Зная общую длину уложенного ГК, можно вычислить общую выделяемую мощность Р по общеизвестной формуле:
Из этой формулы можно найти сопротивление:
Если измеренное сопротивление ГК близко к тому, что рассчитано с помощью формулы, то в целостности и работоспособности кабеля можно не сомневаться.
Пользуясь формулой сопротивления, можно рассчитать сечение кабеля. Такой расчет необходим в связи с тем, что электропроводка является наиболее уязвимым местом в системе, обеспечивающей электроэнергией дома. Если сечение кабеля не будет соответствовать мощности электроприборов, то это может стать причиной довольно серьезных последствий. Ведь чем меньше диаметр провода, тем выше его сопротивление и, следовательно, провод будет нагреваться сильнее. Выделяемое тепло спровоцирует повреждение изоляции, что в свою очередь может стать причиной выхода из строя домашней проводки и даже пожара.
Видео по теме
В любых электрических сетях имеет место потеря напряжения под влиянием различных факторов. В основном это такие параметры, как проводимость и сопротивление, которые следует учитывать при выполнении расчетов. Для цепей постоянного тока можно обойтись обычными характеристиками. Однако, при использовании переменного тока потребуется вычислить активное и индуктивное сопротивление кабелей. Для того чтобы правильно ориентироваться в этих параметрах, необходимо хорошо представлять себе особенности каждого из них.
Что такое сопротивление, его природа
Сопротивление (обозначается латинской буквой R) — это одна из главных характеристик проводников. В зависимости от сферы применения это свойство может играть как положительную, так и отрицательную роль при использовании проводника.
В первую очередь проводниками могут быть металлы и металлические сплавы. Атомы в металле имеют свободные электроны, которые и являются носители заряда. Электроны в металле все время беспорядочно двигаются от атома к атому. Если к ним подключить электрический ток, то их движение становится упорядоченным. При столкновении электрона с атомной структурой электрон отдаёт свою энергию металлу, тем самым нагревая его. Чем больше структурных препятствий на пути электрона, тем больше R металла.
Емкостная проводимость
Одним из эксплуатационных показателей остается данный параметр, обозначающий емкость между проводниками и землей, а также аналогичный показатель между самими токопроводниками.
Для его определения в трехфазной линии воздушных передач применяется выражение:
Можно увидеть прямую зависимость рабочей емкости от уменьшения расстояния между кабелями и их сечения. Следовательно, для линий низкого напряжения данная величина всегда будет больше, чем для высокого.
Проводимость подобного вида в воздушных линиях одноцепной конструкции рассчитывается так:Токи емкостного происхождения существенно влияют на работу линий с рабочими характеристиками напряжения лот 110 кВ и более, а также в магистралях уложенными кабелями с идентичными параметрами выше 10 кВ.
Попытка применить именно подобный способ для самостоятельного выполнения будет весьма непростой задачей, ведь в нем применяются и различные конструктивные нюансы типа геометрических характеристик, и диэлектрическая проницаемость изоляционного слоя, и многие другие вводные. Следовательно, оптимальным решением будет информация из таблиц, составленных производителями для конкретной марки кабеля. В каталогах все данные приведены с учетом номинального напряжения для каждой модификации.
Для начала линии, когда мы имеем дело с холостым ходом, емкостный ток определяется так:
Данный показатель будет объективным только при полностью обесточенных приемниках электричества.
Большое значение обозначенная емкость в любой рассматриваемой конструкции имеет для точного выполнения предварительных расчетов для устройств компонентов защиты и элементов заземления.
Для воздушной линии действительна такая формула:
Для кабельных магистралей:
Особенности активного сопротивления
Активное сопротивление — это единица, показывающая R на участке в электрической цепи, на котором электрическая энергия переходит в тепловую, механическую или любую другую энергию. Из-за того что переменный тоκ проходит неравномерно, R переменного и постоянного тока будет различаться при их равных параметрах. Это правило действует на электрокабели и электролинии. Но для электрокабелей из цветных металлов с частотой переменного напряжения 50 Герц это правило практически неприменимо, так как в этом случае активное R всегда одинаково при любом токе.
Стальные электропровода имеют лучшее активное R в сравнении с цветными металлами.
Сопротивление кабелей с бумажной, резиновой и поливинилхлоридной изоляцией на напряжение 6 — 35 кВ
1. РД 153-34.0-20.527-98 – Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования. 2002 г. Таблица П.8, страница 145.
2. Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г. Таблица 2-5, страница 48.
3. Справочник по проектированию электроснабжению. Ю.Г. Барыбина. 1990 г. Таблица 2.63, страницы 175-176.
4. Справочная книга электрика. Григорьева В.И. 2004г. Таблицы 3.9.7; 3.9.11; страницы 448-449
Если значения активных и реактивных сопротивлений кабелей, вы не нашли в приведенных таблицах. В этом случае, сопротивление кабеля можно определить по приведенным формулам с подстановкой в них фактических параметров кабелей.
Методика расчета представлена в книге: «Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г, страницы 45-48».
Активное сопротивление кабеля
1. Активное сопротивление однопроволочной жилы, определяется по формуле 2-1, Ом:
где:
- l — длина жилы, м;
- s – поперечное сечение жилы, мм2, определяется по формуле: π*d2/4;
- d – диаметр жилы кабеля;
- α20 – температурный коэффициент сопротивления, равный при 20 °С:
- 0,00393 1/град – для меди;
- 0,00403 1/град – для алюминия;
- ρ20 – удельное сопротивление материала жилы при 20 °С (температура изготовления жилы), можно принять согласно книги «Справочная книга электрика. Григорьева В.И. 2004г.» Таблица 1.14, страница 30.
- tж – допустимая температура нагрева жилы, согласно ПУЭ п.1.3.10 и 1.3.12.
2. Активное сопротивление многопроволочной жилы определяется также по формуле 2-1, но из-за конструктивных особенностей многопроволочной жилы, вместо значений ρ20 вводиться в формулу ρр равное:
- 0,0184 Ом*мм2/м – для медных жил;
- 0,031 Ом*мм2/м – для алюминиевых жил.
3. Удельное активное сопротивление жилы, отнесенное к единице длины линии 1 км, определяется из следующих зависимостей, Ом/км:
Индуктивное сопротивление кабеля
1. Удельное реактивное (индуктивное) сопротивление кабеля определяется по формуле 2-8, Ом/км:
где:
- d – диаметр жилы кабеля.
- lср – среднее геометрическое расстояние между центрами жил кабеля определяется по формуле [Л1.с.19]:
где:
- lА-В — расстояние между центрами жил фаз А и В;
- lВ-С — расстояние между центрами жил фаз В и С;
- lС-А — расстояние между центрами жил фаз С и А.
Пример
Определить активное и индуктивное сопротивление кабеля марки АВВГнг(А)-LS 3х120 на напряжение 6 кВ производства «Электрокабель» Кольчугинский завод». Длина кабельной линии L = 300 м.
Решение
1. Определяем поперечное сечение токопроводящей жилы кабеля имеющую круглую форму:
S = π*d2/4 = 3,14*13,52/4 = 143 мм2
Расчет поперечного сечение секторной жилы, а также размеры секторных жил на напряжение 0,4 — 10 кВ представлен в статье: «Расчет поперечного сечения секторной жилы кабеля«.
где: d = 13,5 мм – диаметр жилы кабеля (многопроволочные уплотненные жилы), определяется по ГОСТ 22483— 2012 таблица С.3 для кабеля с токопроводящей жилой класса 2. Класс токопроводящей жилы указывается в каталоге завода-изготовителя кабельной продукции.
Ниже представлена классификация жил кабелей, согласно ГОСТ 22483— 2012:
2. Определяем удельное активное сопротивление кабеля марки АВВГнг(А)-LS 3х120, отнесенное к единице длины линии 1 км, Ом/км:
где:
- l = 1000 м – длина жилы, м;
- α20 – температурный коэффициент сопротивления, равный при 20 °С:
- 0, 00393 1/град – для меди;
- 0,00403 1/град – для алюминия;
- ρр – удельное сопротивление материала многопроволочной жилы, равное:
- 0,0184 Ом*мм2/м – для медных жил;
- 0,031 Ом*мм2/м – для алюминиевых жил;
- tж = 65 °С — допустимая температура нагрева жилы, для кабеля напряжением 6 кВ, согласно ПУЭ п.1.3.10.
3. Определяем удельное активное сопротивление кабеля, исходя из длины кабельной трассы:
где: L = 0,3 км – длина кабельной трассы, км;
4. Определяем среднее геометрическое расстояние между центрами жил кабеля, учитывая что жилы кабеля расположены в виде треугольника.
где:
- lА-В = 20,3 мм — расстояние между центрами жил фаз А и В;
- lВ-С = 20,3 мм — расстояние между центрами жил фаз В и С;
- lС-А = 20,3 мм — расстояние между центрами жил фаз С и А.
Что бы определить расстояние между центрами жил кабеля, нужно знать диаметр жил кабеля d = 13,5 мм и толщину изоляции жил из поливинилхлоридного пластиката dи.ж = 3,4 мм, согласно ГОСТ 16442-80 таблица 4. Определяем расстояние между центрами жил фаз равное 20,3 мм (см.рис.1).
5. Определяем удельное реактивное (индуктивное) сопротивление кабеля марки АВВГнг(А)-LS 3х120, Ом/км:
где: d = 13,5 мм – диаметр жилы кабеля;
6. Определяем удельное реактивное сопротивление кабеля, исходя из длины кабельной трассы:
Удельное сопротивление
Удельное сопротивление (ρ) — это единица, показывающая способность проводника затруднять прохождение электрического тока.
С помощью него можно оценивать параметры электрических проводников из разных материалов. ρ проводника всегда увеличивается при увеличении длины и уменьшении сечения, в интернациональной системе длина проводника равна 1 метру, а сечение -1 мм2.
Похожее: Драгметаллы в лампах телевизора
ДЕЯТЕЛЬНОСТЬ
- Видеонаблюдение
Заказать расчёт - Охранная сигнализация
Заказать расчёт - Контроль доступа
Заказать расчёт - Пожарная сигнализация
Заказать расчёт - Пожаротушение
Заказать расчёт - Огнезащитные преграды
Заказать расчёт - Огнезащитная обработка
Заказать расчёт - Расчёт категории
Заказать расчёт - Автоматизация
Заказать расчёт - Частотный привод
Заказать расчёт - Учёт энергоносителей
Заказать расчёт - Грозозащита, Заземление
Заказать расчёт - Электромонтаж
Заказать расчёт - Локальные сети и СКС
Заказать расчёт - Спутниковая связь
Заказать расчёт - Аудио и видеосистемы
Заказать расчёт
Расчёт индуктивного и ёмкостного сопротивления производиться по формулам:
XC=1/(2π×F×C); XL=2π×F×L
XL — Индуктивное сопротивление, (Ом)
XC — Ёмкостое сопротивление, (Ом)
F — Частота сигнала, (Гц)
Расчёт будет справедлив только на синусоидальном токе.
Для расчёта какого – либо параметра необходимо ввести два других значения.
Расчёт индуктивного и ёмкостного сопротивления | |
Единицы измерения при расчёте ёмкости: | kГц, нФ, Ом MГц, пФ, Ом |
Единицы измерения при расчёте индуктивности: | kГц, мГн, Ом MГц, мкГн, Ом |
Частота сигнала: | |
Величина (ёмкость или индуктивность): | |
Реактивное сопротивление: | |
*Формат ввода – х.хх (разделитель – точка) |
Разрешается копирование java-скриптов при условии ссылки на источник.
ВСЕ РАСЧЁТЫ
Активное сопротивление проводов, кабелей и линий
Из-за того что переменный ток проходит неравномерно, то при одинаковых условиях тока переменного и постоянного R будет отличаться. Как уже было сказано, стальные электропровода имеют лучшее активное R по сравнению с проводниками из цветных металлов, которые имеют одинаковое R при любой силе тока.
Напротив, активное R электрокабелей из стали всегда зависит от электрического тока, поэтому удельную постоянную проводимость в этом случае никогда не используют. Активное R электрокабеля определяют с помощью формулы: R=l/у*s.
Конденсатор в цепи переменного тока
Ну а теперь давайте вместо резистора поставим конденсатор.
Смотрим осциллограммы:
Как вы видите, конденсатор обладает сопротивлением, так как сила тока в цепи значительно уменьшилась. Но обратите внимание, что произошел сдвиг желтой осциллограммы, то бишь осциллограммы силы тока.
Вспоминаем алгебру старшие классы. Итак, полный период T — это 2П
Теперь давайте прикинем, какой сдвиг фаз у нас получился на графике:
Где-то примерно П/2 или 90 градусов.
Почему так произошло? Во всем виновато физическое свойство конденсатора. В самые первые доли секунд, конденсатор ведет себя как проводник с очень малым сопротивлением, поэтому сила тока в этот момент будет максимальна. В этом можно легко убедиться, если резко подать на конденсатор напряжение и в начальный момент времени посмотреть, что происходит с силой тока
Красная осциллограмма — это напряжение, которое мы подаем на конденсатор, а желтая — это сила тока в цепи конденсатора. По мере заряда конденсатора сила тока падает и достигает нуля при полном заряде конденсатора.
К чему приведет дальнейшее увеличение частоты? Давайте посмотрим:
50 Герц.
100 Герц
200 Герц
Как вы видите, с увеличением частоты, у нас сила тока в цепи с конденсатором возрастает.
Индуктивное сопротивление проводов, кабелей и линий
Индуктивное R на один км с пятьюдесятью герцами определяем по специальной формуле:
- x=0,144*lg(2*a(cp))/d+0,016*μ=х0’+х»0,
- а(ср) – ср. длина между осью нескольких проводов, более подробно
- a(cp)=3 корень(а1*а2*а3),
- а1, а2 и а3 — длина между осью в различных фазах. d — наружный диаметр. μ— относительная магнитная проницаемость. х’0 — внешнее вне линии. x»0 — внутреннее внутри линии.
Сопротивление изоляции кабеля
Для нахождения R изоляции кабеля нужно исходить из его вида. Есть следующие разновидности:
- 1000 В и больше — высоковольтные.
- Ниже 1000 В — низковольтные.
- Контрольные электрокабели — защитные цепи, вторичные цепи РУ (реле указательных), цепи питания электроприводов и так далее.
Для измерения R изоляции необходимо специализированное устройство. Высоковольтные и низковольтные определяются при напряжении 2500 В, когда контрольные — от 500 до 2500 В. Если используется высоковольтный со значением больше 1000 В, то его R изоляции должно быть не меньше 10 МОм. Если используется низковольтный со значением меньше 1000 В, то его R изоляции должно быть не меньше 0,5 Мом. У контрольных кабелей R изоляции должно быть не меньше 1 МОм.
Высоковольтные провода нулевого сопротивления
Высоковольтные провода с нулевым R лучше и надежнее обычных, из-за использования в них силикона они не становятся твердыми на морозе, не становятся сухими с течением времени и от температуры.
«Нулевые» высоковольтные провода имеют разницу по сравнению с обычными высоковольтными проводами с полимерными жилами: R в них измеряется в Омах и десятых Ом, тогда как в обычных – в тысячах.
Помимо этого, у него есть и другие преимущества, в первую очередь больший срок эксплуатации.
Биметаллический кабель
Биметаллические кабели состоят из обычной проволоки из стали, покрытой медью и имеют малое удельное R. Биметаллические электрокабели производят из малого количество меди, что значительно удешевляет их. При этом они способны выдержать в 5 раз большую нагрузку, чем чисто стальные, и в 6 раз большую, чем медные. В связи с этим их активно используют в линиях электропередачи, а также шинах распределяющих устройств и разных частей электроприборов.
При выборе проводников необходимо учитывать условия их эксплуатации и выбирать в соответствии с ними кабель с подходящими свойствами, в первую очередь – сопротивлением.
В любых электрических сетях имеет место потеря напряжения под влиянием различных факторов. В основном это такие параметры, как проводимость и сопротивление, которые следует учитывать при выполнении расчетов. Для цепей постоянного тока можно обойтись обычными характеристиками. Однако, при использовании переменного тока потребуется вычислить активное и индуктивное сопротивление кабелей. Для того чтобы правильно ориентироваться в этих параметрах, необходимо хорошо представлять себе особенности каждого из них.
Особенности активного сопротивления
Сопротивление в электротехнике является важнейшим параметром, с помощью которого какая-то часть электрической цепи оказывает противодействие проходящему по ней току. Образованию данной величины способствуют изменения электроэнергии и ее переход в другие виды энергетических состояний.
Подобное явление характерно лишь для переменного тока, под действием которого образуются активные и реактивные сопротивления кабелей. Этот процесс представляет собой необратимые изменения энергии или передачу и распределение ее между отдельными элементами цепи. Если изменения электроэнергии принимают необратимый характер, то такое сопротивление будет активным, а если имеют место обменные процессы, оно становится реактивным. Например, электрическая плита выделяет тепло, которое обратно в электрическую энергию уже не превращается.
Данное явление в полной мере затрагивает любые виды провода и кабеля. При одинаковых условиях, они будут по-разному сопротивляться прохождению постоянного и переменного тока. Подобная ситуация возникает из-за неравномерного распределения переменного тока по сечению проводника, в результате чего образуется так называемый поверхностный эффект.
Таблица и расчет по формуле
Как показывает таблица, поверхностный эффект не критично влияет на проводники, состоящие из цветных металлов и работающие при переменном напряжении с частотой 50 Гц. Поэтому для выполнения расчетов, сопротивления таких кабелей под действием постоянного и переменного тока принимаются условно равными.
Кроме таблицы, для расчетов проводников из алюминия и меди используется специальная формула r = (l * 103)/ γ3 * S = r * l, в которой l – длина (км), γ – удельное значение проводимости конкретного материала (м/ом * мм2), r – активное сопротивление 1 км кабеля (Ом/км), S – поперечное сечение (мм2).
Значение активного сопротивления кабелей зависит также от температуры окружающей среды. Для того чтобы вычислить r при точной температуре Θ, необходимо воспользоваться еще одной формулой r = r20 * [l + α * (Θ — 20)] = (l * 103)/ γ20 * S * [l + α * (Θ — 20)]. Здесь α является температурным коэффициентом сопротивления, r20 – активное сопротивление при t 20C, γ20 – удельная проводимость при этой же температуре. Эти расчеты необходимы, когда определяется точное активное и индуктивное сопротивление какого-либо проводника.
Активное сопротивление стальных проводов существенно превышает аналогичный показатель проводников из цветных металлов. Это связано с более низкой удельной проводимостью и наличием поверхностного эффекта, выраженного намного ярче по сравнению с медными и алюминиевыми проводами. Кроме того, в линиях со стальными проводами активная энергия значительно теряется на перемагничивание и вихревые токи, поэтому такие потери становятся дополнительным компонентом активного сопротивления.
У стальных проводников существует зависимость активного сопротивления от величины протекающего тока, поэтому в расчетах неприемлемо использование постоянного значения удельной проводимости.
Действие индуктивного сопротивления кабельных линий
Полное сопротивление электрической цепи разделяется на активное и индуктивное сопротивление. Из них последнее является составной частью реактивного сопротивления, возникающего во время прохождения переменного тока через элементы, относящиеся к реактивным. Индуктивность считается основной характеристикой катушек, не учитывая активное сопротивление их обмоток. Как правило, реактивное сопротивление возникает под влиянием ЭДС самоиндукции. При ее росте, в зависимости от частоты тока, происходит одновременное увеличение сопротивления.
Таким образом, активное и реактивное сопротивление кабелей образуют полное сопротивление, которое есть ни что иное, как сумма квадратов каждой составляющей. Графически это отображается в виде прямоугольного треугольника, в котором гипотенуза является полным сопротивлением, а катеты – его составными элементами.
Очень быстро вычислить активное и индуктивное сопротивление кабелей помогает таблица, в которой отражаются основные характеристики наиболее распространенных проводников. Однако довольно часто требуется определить индуктивное сопротивление Х кабельной линии с определенной протяженностью. Для этого применяется простая первоначальная формула Х = Хl, где Х является индуктивным сопротивлением 1 км проводника, а l – длина этого проводника. Полученный результат измеряется в единицах Ом/км.
В свою очередь Х определяется по другой формуле X = 0,145lg * (2Dср/d) + 0,0157 μт, в которой 2Dср является средним расстоянием между проводниками или центрами кабельных жил, d – диаметр этих проводников или жил, μт – отражает относительную магнитную проницаемость металла проводника. Таким образом, при увеличении сечения проводника реактивное сопротивление Х будет незначительно уменьшаться.