Как найти реактивное сопротивление катушки индуктивности

Реактивное сопротивление XL и XC

Реактивное сопротивление – электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах.

Элементы, обладающие реактивным сопротивлением, называют реактивными.

Реактивное сопротивление катушки индуктивности.

При протекании переменного тока I в катушке, магнитное поле создаёт в её витках ЭДС, которая препятствует изменению тока.
При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении – положительна и препятствует его убыванию,
оказывая таким образом сопротивление изменению тока на протяжении всего периода.

В результате созданного противодействия, на выводах катушки индуктивности в противофазе формируется напряжение U, подавляющее ЭДС,
равное ей по амплитуде и противоположное по знаку.

При прохождении тока через нуль, амплитуда ЭДС достигает максимального значения,
что образует расхождение во времени тока и напряжения в 1/4 периода.

Если приложить к выводам катушки индуктивности напряжение U, ток не может начаться мгновенно по причине противодействия ЭДС,
равного -U, поэтому ток в индуктивности всегда будет отставать от напряжения на угол 90°. Сдвиг при отстающем токе называют положительным.

Запишем выражение мгновенного значения напряжения u исходя из ЭДС (ε), которая
пропорциональна индуктивности L и скорости изменения тока: u = -ε = L(di/dt).
Отсюда выразим синусоидальный ток .

Интегралом функции sin(t) будет -соs(t), либо равная ей функция sin(t-π/2).
Дифференциал dt функции sin(ωt) выйдет из под знака интеграла множителем 1.
В результате получим выражение мгновенного значения тока со
сдвигом от функции напряжения на угол π/2 (90°).

Для среднеквадратичных значений U и I в таком случае можно записать .

В итоге имеем зависимость синусоидального тока от напряжения согласно Закону Ома,
где в знаменателе вместо R выражение ωL, которое и является реактивным сопротивлением:

Реактивное сопротивлениие индуктивностей называют индуктивным.

Реактивное сопротивление конденсатора.

Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда –
накопления и отдачи энергии электрическим полем между его обкладками.

В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное.
Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю.
Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.

В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току,
обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.

Если приложить к конденсатору напряжение U, мгновенно начнётся ток от максимального значения, далее
уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума.
Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.

Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt).
Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2).
Тогда для синусоидального напряжения u = Uampsin(ωt)
запишем выражение мгновенного значения тока следующим образом:

i = UampωCsin(ωt+π/2).

Отсюда выразим соотношение среднеквадратичных значений .

Закон Ома подсказывает, что 1/ωC есть не что иное, как реактивное сопротивление для синусоидального тока:

Реактивное сопротивление конденсатора в технической литературе часто называют ёмкостным. Может применяться, например, в организации ёмкостных делителей в цепях переменного тока.


Калькулятор расчёта реактивного сопротивления

Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Расчитать реактивное сопротивление ёмкости или индуктивности:

Реактивное сопротивление ёмкости
XC = 1 /(2πƒC)


Реактивное сопротивление индуктивности
XL = 2πƒL


Расчитать ёмкость и индуктивность от сопротивления:

Расчёт ёмкости: C = 1 /(2πƒXC)


Расчёт индуктивности: L = XL /(2πƒ)



Похожие страницы с расчётами:

Расcчитать импеданс.

Расcчитать частоту резонанса колебательного контура LC.

Расcчитать реактивную мощность и компенсацию.

Прежде, чем мы приступим к расчётам разнообразных пассивных и активных фильтров, не плохо было бы сориентироваться в пространстве и
задуматься – а за счёт чего происходит процесс частотной фильтрации сигналов, какой неведомый зверь должен выбежать на свист царевича
после преобразования частотно-зависимыми цепями, и что это за цепи такие – частотно-зависимые?

Большая Энциклопедия Нефти и Газа учит нас, что частотно-зависимыми цепями называются электрические цепи с использованием емкостных и
резистивных элементов. Спасибо, господа нефтяники и газовики – будем знать. От себя добавлю, что индуктивные элементы в
частотно-зависимом хозяйстве также иногда пригождаются.

Для постоянного тока ни конденсаторы, ни катушки индуктивности никакого интереса не представляют. Сопротивление идеального конденсатора –
бесконечность, индуктивности – ноль. Другое дело – переменный ток, тут наши частотно-зависимые элементы, начинают приобретать
определённые значения сопротивлений, называемые реактивными сопротивлениями. Ясен пень, значения этих сопротивлений зависят от
частоты протекающего тока.
Для особо продвинутых, вымучаю из себя умную фразу – “Реактивное сопротивление – электрическое сопротивление переменному току,
обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах”.

Графики, фазовые сдвиги, интегралы и прочие атрибуты студенческих знаний, как правило, мало кого интересуют. Если я не прав,
пусть первыми бросят в меня камень и с лёгкостью найдут необходимую информацию на других сайтах. А мы ребята весёлые, поэтому
сразу перейдём к делу и напишем всего пару формул:

Xс = 1 / 2πƒС,   Xl = 2πƒL, где
Xc – сопротивление конденсатора переменному току, а Xl – сопротивление индуктивности переменному току.

РИСУЕМ ТАБЛИЧКУ ДЛЯ РАСЧЁТА РЕАКТИВНОГО СОПРОТИВЛЕНИЯ КОНДЕНСАТОРА

   Ёмкость конденсатора С   

     

   Подаваемая частота f   

     

  

  Реактивное сопротивление Xc (Ом)  
     

  Реактивное сопротивление Xc (кОм)  
     

ТО ЖЕ САМОЕ ДЛЯ РАСЧЁТА РЕАКТИВНОГО СОПРОТИВЛЕНИЯ ИНДУКТИВНОСТИ

   Индуктивность катушки L   

     

   Подаваемая частота f   

     

  

  Реактивное сопротивление Xl (Ом)  
     

  Реактивное сопротивление Xl (кОм)  
     

В реальной жизни конденсаторы, помимо ёмкости, обладают также собственными последовательным и параллельным сопротивлениями и
индуктивностью, а катушки индуктивности – омическим сопротивлением провода обмотки и межвитковой паразитной ёмкостью.

Нужно Вам вооружаться этими знаниями, или нет, судить не возьмусь, а вот то, что электролитические конденсаторы имеют обыкновение
иногда взрываться при превышении допустимых уровней напряжений, либо перегреве, вызванным утечками вследствие старения –
знать надо обязательно.

Делают они это, ни кем не посоветовавшись, эффектно, громко, с выделение токсичных паров электролита в виде облака из дыма,
и с лёкгостью могут выбить глаз пытливому радиолюбителю.
Так что, если не хотите превратиться в одноглазого шахматиста из Васюков, соблюдайте технику безопасности, покупайте электролиты
приличных производителей.

В этой статье мы поведем речь о таких параметрах, как активное и реактивное сопротивление.

Активное сопротивление

И начнем мы статью не с реактивного сопротивления, как ни странно, а с простого и всеми нами любимого радиоэлемента  — резистора, который, как говорят, обладает активным сопротивлением. Еще иногда его называют омическим.  Как нам говорит вики-словарь, «активный  — это деятельный, энергичный, проявляющий инициативу». Активист готов всегда рвать и метать даже ночью. Он готов ПОЛНОСТЬЮ выложиться и потратить всю энергию во благо общества.

Активное и реактивное сопротивление

То же самое можно сказать и про другие нагрузки, обладающие активным сопротивлением. Это могут быть различные нагревательные элементы, типа тэнов, а также лампы накаливания.

Как смотреть силу тока в цепи через осциллограф

Чем же резистор отличается от катушки индуктивности и конденсатора? Понятное дело, что выполняемыми функциями, но этим все не ограничивается. Итак, давайте рассмотрим самую простую схемку во всей электронике:

Активное и реактивное сопротивление

На схеме мы видим генератор частоты и резистор.

Давайте визуально посмотрим, что у нас творится в этой схеме. Для этого, как я уже сказал, нам понадобится генератор частоты

генератор частоты

А также цифровой осциллограф:

цифровой осциллограф

С помощью него мы будем смотреть напряжение и силу тока. 

Что?

Силу тока?

Но ведь осциллограф предназначен для того, чтобы рассматривать форму сигнала напряжения? Как же мы будем рассматривать форму сигнала силы тока? А все оказывается просто). Для этого достаточно вспомнить правило шунта.

Кто не помнит —  напомню. Имеем обыкновенный резистор:

Активное и реактивное сопротивление

Что будет, если через него прогнать электрический ток?

Активное и реактивное сопротивление

На концах резистора у нас будет падение напряжения. То есть, если замерить с помощью мультиметра напряжение на его концах, мультиметр покажет какое-то значение в Вольтах

принцип работы шунта

И теперь главный вопрос: от чего зависит падение напряжения на резисторе? В дело опять же вступает закон Ома для участка цепи: I=U/R. Отсюда U=IR. Мы видим зависимость от номинала самого резистора и от силы тока, текущей в данный момент в цепи. Слышите? От СИЛЫ ТОКА! Так почему бы нам не воспользоваться таким замечательным свойством и не глянуть силу тока через падение напряжения на  самом резисторе? Ведь номинал резистора у нас постоянный и почти не изменяется с изменением силы тока 😉

Осциллограмма силы тока на активном сопротивлении

В данном опыте нам не обязательно знать номинал силы тока в цепи. Мы будем просто смотреть, от чего зависит сила тока и изменяется ли вообще?

Поэтому,  наша схема примет вот такой вид:

как измерить форму силы тока в цепи

В этом случае шунтом будет являться резистор сопротивлением в 0,5 Ом. Почему именно 0,5 Ом? Да потому что он не будет сильно греться, так как обладает маленьким сопротивлением, а также  его номинал вполне достаточен, чтобы снять с него напряжение.

Осталось снять напряжение с генератора, а также со шунта с помощью осциллографа. Если вы не забыли, со шунта мы снимаем осциллограмму силы тока в цепи. Красная осциллограмма — это напряжение с генератора Uген , а желтая осциллограмма  — это напряжение с шунта Uш , в нашем случае  — сила тока.  Смотрим, что у нас получилось:

Частота 28 Герц:

осциллограмма активного сопротивления

Частота 285 Герц:

Активное и реактивное сопротивление

Частота 30 Килогерц:

Активное и реактивное сопротивление

Как вы видите, с ростом частоты сила тока у нас осталась такой же.

Давайте побалуемся формой сигнала:

Активное и реактивное сопротивление

Активное и реактивное сопротивление

Как мы видим, сила тока  полностью повторяет форму сигнала напряжения.

Итак, какие можно сделать выводы?

1) Сила тока через активное (омическое) сопротивление имеет такую же форму, как и форма напряжения.

2) Сила тока и напряжение на активном сопротивлении совпадают по фазе, то есть куда напряжение, туда и ток. Они двигаются синфазно, то есть одновременно.

3) С ростом частоты ничего не меняется (если только на очень высоких частотах).

Конденсатор в цепи переменного тока

Ну а теперь давайте вместо резистора поставим конденсатор.

Активное и реактивное сопротивление

Смотрим осциллограммы:

конденсатор в цепи переменного тока

Как вы видите, конденсатор обладает сопротивлением, так  как сила тока в цепи значительно уменьшилась. Но обратите внимание, что произошел сдвиг желтой осциллограммы, то бишь осциллограммы силы тока.

Вспоминаем алгебру старшие классы. Итак, полный период T — это

Активное и реактивное сопротивление

Теперь давайте прикинем, какой сдвиг фаз у нас получился на графике:

Активное и реактивное сопротивление

Где-то примерно П/2 или 90 градусов.

Почему так произошло? Во всем виновато физическое свойство конденсатора. В самые первые доли секунд, конденсатор ведет себя как проводник с очень малым сопротивлением, поэтому сила тока в этот момент будет максимальна. В этом можно легко убедиться, если резко подать на конденсатор напряжение и в начальный момент времени посмотреть, что происходит с силой тока

заряд конденсатора

Красная осциллограмма — это напряжение, которое мы подаем на конденсатор, а желтая — это сила тока в цепи конденсатора. По мере заряда конденсатора сила тока падает и достигает нуля при полном заряде конденсатора.

К чему приведет дальнейшее увеличение частоты? Давайте посмотрим:

50 Герц.

Активное и реактивное сопротивление

100 Герц

Активное и реактивное сопротивление

200 Герц

Активное и реактивное сопротивление

Как вы видите, с увеличением частоты, у нас сила тока в цепи с конденсатором возрастает.

Реактивное сопротивление конденсатора

Как мы увидели с прошлого опыта, с увеличением частоты растет сила тока! Кстати, у резистора не росла. То есть получается в данном случае из закона Ома, что сопротивление конденсатора зависит от частоты! Да, все так оно и есть. Но называется оно не просто сопротивлением, а реактивным сопротивлением и вычисляется по формуле:

формула реактивного сопротивления

где

Хс — реактивное сопротивление конденсатора, Ом

П — постоянная и приблизительно равна 3,14

F — частота, Гц

С — емкость конденсатора, Фарад

Катушка индуктивности в цепи переменного тока

Ну а теперь давайте возьмем катушку индуктивности вместо конденсатора:

Активное и реактивное сопротивление

Проводим все аналогичные операции, как и с конденсатором. Смотрим на осциллограммы в цепи с катушкой индуктивности:

Активное и реактивное сопротивление

Если помните, вот такую осциллограмму мы получили в схеме с конденсатором:

Активное и реактивное сопротивление

Видите разницу? На катушке индуктивности ток отстает от напряжения на  90 градусов, на П/2, или, как еще говорят, на четверть периода (весь период у нас или 360 градусов).

Так-так-так…. Давайте соберемся с мыслями. То есть в цепи с переменным синусоидальным током,  ток на конденсаторе опережает напряжение на 90 градусов, а на катушке индуктивности ток отстает от напряжения тоже на 90 градусов? Да, все верно.

Почему на катушке ток отстает от напряжения?

Не будем углубляться в различные физические процессы и формулы, просто сочтем за данность, что сила тока не может резко возрастать на катушке индуктивности. Для этого проведем простой опыт. Так же как и на конденсатор, мы резко подадим напряжение на катушку индуктивности, и посмотрим, что случилось с силой тока.

напряжение и ток на катушке индуктивности

Как вы видите, при резкой подаче напряжения на катушку, сила тока не стремится также резко возрастать, а возрастает постепенно, если быть точнее, по экспоненте.

Давайте вспомним, как это было у конденсатора:

Активное и реактивное сопротивление

Все с точностью наоборот! Можно даже сказать, что катушка — это полная противоположность конденсатору 😉

Ну и напоследок давайте еще побалуемся частотой:

240 Килогерц

Активное и реактивное сопротивление

34 Килогерца

катушка в цепи переменного тока

17 Килогерц

Активное и реактивное сопротивление

10 Килогерц

Активное и реактивное сопротивление

Вывод?

С уменьшением частоты сила тока через катушку увеличивается.

Реактивное сопротивление катушки индуктивности

Из опыта выше мы можем сделать вывод, что сопротивление катушки зависит от частоты и вычисляется по формуле

реактивное сопротивление катушки

где

ХL —  реактивное сопротивление катушки, Ом

П — постоянная и приблизительно равна 3,14

F — частота, Гц

L — индуктивность, Генри

Мощность в цепи с реактивными радиоэлементами

Для дальнейшего объяснения этого явления нам потребуется наша осциллограмма с катушки индуктивности:

Активное и реактивное сопротивление

Итак, давайте выделим на ней один период и разделим его на 4 части, то есть по 90 градусов каждая или π/2.

Активное и реактивное сопротивление

Давайте начнем с такого понятия, как мощность. Если не забыли, мощность — это сила тока помноженное на напряжение, то есть P=IU. Итак, в первую четвертинку периода t1 у нас напряжение принимает положительные значения и сила тока тоже положительное. Плюс на плюс дает плюс. В эту четверть периода энергия поступает из источника в реактивное сопротивление.

Теперь давайте рассмотрим отрезок времени t2. Здесь ток со знаком «плюс», а напряжение со знаком «минус». В итоге плюс на минус дает минус. Получается мощность со знаком «минус». А разве так бывает? Еще как бывает! В этот промежуток времени реактивный радиоэлемент отдает запасенную энергию обратно в источник напряжения. Для лучшего понимания давайте рассмотрим простой житейский пример.

Представим себе кузнеца за работой:

Активное и реактивное сопротивление

Не знаю, какое было у вас детство, но я когда был пацаном, брал свинец с аккумуляторов и плющил его в металлические пластинки. И что думаете? Свинец нагревался. Не так, чтобы прям обжигал, а был тепленький на ощупь. То есть моя энергия удара превращалась в тепло, можно даже сказать, в полезную энергию.

А что если взять пружину от стоек ВАЗа и ударять по ней?

Активное и реактивное сопротивление

С пружиной не станет НИ-ЧЕ-ГО! Она ведь не свинец. Но… заметьте вот такую вещь: как только мы начинаем «плющить» пружину кувалдой, у нас она начинает сжиматься. И вот она сжалась до упора и… выстрелила вверх, подхватив с собой тяжелую кувалду, которая только что пыталась ее расплющить. То есть в данном случае энергия вернулась обратно в источник энергии, то есть обратно  к кузнецу. Он вроде как и пытался расплющить пружину, но пружина вернула энергию обратно своим разжатием. То есть кузнецу не надо уже было подымать тяжелый молот, так как за него это уже сделала пружина.

Разжатие пружины и возврат ею энергии обратно — это и есть отрицательная мощность. В этом случае энергия возвращается обратно в источник. Хорошо ли это или плохо — это уже другая история.

В третий промежуток времени  t3 и ток и напряжение у нас со знаком «минус». Минус на минус — это плюс. То есть реактивный элемент снова поглощает энергию, ну а на t4, снова ее отдает, так как плюс на минус дает минус.

Активное и реактивное сопротивление

В результате за весь период у нас суммарное потребление энергии равно чему?

Активное и реактивное сопротивление

Правильно, нулю!

Так что же это получается тогда? На катушке и конденсаторе не будет выделяться никакой энергии? Получается так. Поэтому в схемах они чаще всего холодные, хотя могут быть и слегка теплыми, так как реальные параметры катушки и конденсатора выглядят совсем по другому.

Эквивалентная схема реальной катушки индуктивности выглядит вот так:

Активное и реактивное сопротивление

где

R— это сопротивление потерь. Это могут быть потери в проводах, так как любой провод обладает сопротивлением. Это могут быть потери в диэлектрике, потери в сердечнике и потери на вихревые токи.  Как видите, раз есть сопротивление, значит на нем может выделяться мощность, то есть тепло.

L — собственно сама индуктивность катушки

С — межвитковая емкость.

А вот и эквивалентная схема реального конденсатора:

Активное и реактивное сопротивление

где

r — сопротивление диэлектрика и корпуса между обкладками

С — собственно сама емкость конденсатора

ESR — эквивалентное последовательное сопротивление

ESI (ESL) — эквивалентная последовательная индуктивность

Здесь мы тоже видим такие параметры, как r  и ESR, которые на высоких частотах будут еще лучше себя проявлять, благодаря скин-эффекту. Ну и, соответственно, на них будет выделяться мощность, что приведет к небольшому малозаметному нагреву.

Резюме

Резистор обладает активным (омическим) сопротивлением. Катушка индуктивности и конденсатор обладают реактивным сопротивлением.

В цепи переменного тока на конденсаторе ток опережает напряжение на 90 градусов, а на катушке ток отстает от напряжения на 90 градусов.

Сопротивление катушки вычисляется по формуле

Активное и реактивное сопротивление

Сопротивление конденсатора вычисляется по формуле:

Активное и реактивное сопротивление

В цепи переменного тока на идеальном реактивном сопротивлении не выделяется мощность.

Реальные катушка и конденсатор имеют в своем составе паразитные параметры, которые имеют некоторое сопротивление. Поэтому реальные катушка и конденсатор не обладают чисто реактивным сопротивлением.

В электрических и электронных системах реактивное сопротивление (также реактанс) — это сопротивление элемента схемы, вызванное изменением тока или напряжения из-за индуктивности или ёмкости этого элемента. Понятие реактивного сопротивления аналогично электрическому сопротивлению, но оно несколько отличается в деталях.

В векторном анализе реактивное сопротивление используется для вычисления амплитудных и фазовых изменений синусоидального переменного тока, проходящего через элемент цепи. Обозначается символом {displaystyle scriptstyle {X}}. Идеальный резистор имеет нулевое реактивное сопротивление, тогда как идеальные катушки индуктивности и конденсаторы имеют, соответственно нулевое и бесконечно большое сопротивление — то есть, реагируют на ток только по наличию реактивного сопротивления. Величина реактивного сопротивления катушки индуктивности увеличивается пропорционально увеличению частоты, в то время как величина реактивного сопротивления конденсатора уменьшается пропорционально увеличению частоты.

Ёмкостное сопротивление[править | править код]

Конденсатор состоит из двух проводников, разделённых изолятором, также известным как диэлектрик.

Ёмкостное сопротивление — это сопротивление изменению напряжения на элементе. Ёмкостное сопротивление {displaystyle scriptstyle {X_{C}}} обратно пропорционально частоте сигнала {displaystyle scriptstyle {f}} (или угловой частоте ω) и ёмкости {displaystyle scriptstyle {C}}[1].

В литературе существует два варианта определения реактивного сопротивления для конденсатора. Одним из них является использование единого понятия реактивного сопротивления в качестве мнимой части полного сопротивления, и, в этом случае, реактивное сопротивление конденсатора является отрицательным числом[1][2][3]:

{displaystyle X_{C}=-{frac {1}{omega C}}=-{frac {1}{2pi fC}}}.

Другой выбор состоит в том, чтобы определить ёмкостное сопротивление как положительное число[4][5][6],

{displaystyle X_{C}={frac {1}{omega C}}={frac {1}{2pi fC}}}.

В этом случае нужно помнить о добавлении отрицательного знака к импедансу то есть {displaystyle Z_{c}=-jX_{c}}.

На низких частотах конденсатор эквивалентен разомкнутой цепи, если в диэлектрике ток не течёт.

Постоянное напряжение, приложенное к конденсатору, вызывает накопление положительного заряда на одной обкладке и накопление отрицательного заряда на другой обкладке; электрическое поле за счёт накопленного заряда является источником, который противодействует току. Когда потенциал, связанный с зарядом, точно уравновешивает приложенное напряжение, ток падает до нуля.

Приводимый в действие источником переменного тока (идеальный источник переменного тока), конденсатор будет накапливать только ограниченное количество заряда, прежде чем разность потенциалов изменит полярность и заряд вернётся к источнику. Чем выше частота, тем меньше накапливается заряд и тем меньше противодействие току.

Индуктивное сопротивление[править | править код]

Индуктивное реактивное сопротивление — это свойство, проявляемое индуктивностью, и индуктивное реактивное сопротивление существует благодаря тому, что электрический ток создаёт вокруг него магнитное поле. В контексте цепи переменного тока (хотя эта концепция применяется при любом изменении тока), это магнитное поле постоянно изменяется в результате изменения тока, который меняется во времени. Именно это изменение магнитного поля создаёт другой электрический ток в том же проводе (противо-ЭДС), в направлении, противоположном потоку тока, изначально ответственного за создание магнитного поля. Это явление известно как закон Ленца. Следовательно, индуктивное сопротивление — это противодействие изменению тока через элемент.

Для идеальной катушки индуктивности в цепи переменного тока сдерживающее влияние на изменение протекания тока приводит к задержке или сдвигу фаз переменного тока относительно переменного напряжения. В частности, идеальная индуктивность (без сопротивления) вызовет отставание тока от напряжения на четверть цикла или на 90°.

В электроэнергетических системах индуктивное реактивное сопротивление (и ёмкостное реактивное сопротивление, однако индуктивное реактивное сопротивление более распространено) может ограничивать пропускную способность линии электропередач переменного тока, поскольку мощность не передаётся полностью, когда напряжение и ток находятся в противофазе (подробно описано выше). То есть ток будет течь для противофазной системы, однако реальная мощность в определённые моменты времени не будет передаваться, потому что будут моменты, в течение которых мгновенный ток будет положительным, а мгновенное напряжение отрицательным, или наоборот, подразумевая отрицательную мощность передачи. Следовательно, реальная работа не выполняется, когда передача энергии является «отрицательной». Однако ток всё ещё течёт, даже когда система находится в противофазе, что приводит к нагреву линий электропередачи из-за протекания тока. Следовательно, линии электропередачи могут только сильно нагреваться (иначе они физически сильно прогибаются из-за тепла, расширяющего металлические линии электропередачи), поэтому операторы линий электропередачи имеют «потолок» в отношении величины тока, который может протекать через данную линию, и чрезмерное индуктивное сопротивление ограничивает мощность линии. Поставщики электроэнергии используют конденсаторы для сдвига фазы и минимизации потерь в зависимости от схемы использования.

Индуктивное реактивное сопротивление {displaystyle scriptstyle {X_{L}}} пропорционально частоте синусоидального сигнала {displaystyle scriptstyle {f}} и индуктивности scriptstyle {L}, которая зависит от геометрических размеров и формы индуктивности.

{displaystyle X_{L}=omega L=2pi fL}

Средний ток, протекающий через индуктивность scriptstyle {L} последовательно с синусоидальным источником переменного напряжения среднеквадратичной амплитуды {displaystyle scriptstyle {A}} и частоты {displaystyle scriptstyle {f}} равен:

{displaystyle I_{L}={A over omega L}={A over 2pi fL}}.

Поскольку прямоугольная волна (источник прямоугольного сигнала) имеет несколько амплитуд на синусоидальных гармониках (согласно теореме Фурье), средний ток, протекающий через индуктивность scriptstyle {L}, включенную последовательно с прямоугольным источником переменного напряжения среднеквадратичной амплитуды {displaystyle scriptstyle {A}} и частоты {displaystyle scriptstyle {f}}, равен:

{displaystyle I_{L}={Api ^{2} over 8omega L}={Api  over 16fL}}

создавая иллюзию как если бы реактивное сопротивление прямоугольной волны на 19 % меньше {displaystyle X_{L}={16 over pi }fL} , чем реактивное сопротивление синусоидального сигнала с той же частотой:

Любой проводник конечных размеров имеет индуктивность; индуктивность обычно делается из электромагнитных катушек, состоящих из множества витков провода. Согласно закону электромагнитной индукции Фарадея возникает противо-ЭДС {displaystyle scriptstyle {mathcal {E}}} (ток, противоположный напряжению) в проводнике из-за скорости изменения плотности магнитного потока {displaystyle scriptstyle {B}} через токовую петлю.

{displaystyle {mathcal {E}}=-{{dPhi _{B}} over dt}}

А для индуктивности состоящей из {displaystyle scriptstyle N} витков соответственно

{displaystyle {mathcal {E}}=-N{dPhi _{B} over dt}}

Противо-ЭДС — это источник противодействия току. Постоянный ток имеет нулевую скорость изменения и рассматривает катушку индуктивности как обычный проводник (так как она сделано из материала с низким удельным сопротивлением). Переменный ток имеет усреднённую по времени скорость изменения, которая пропорциональна частоте, что вызывает увеличение индуктивного сопротивления с частотой.

Полное сопротивление[править | править код]

Как реактивное сопротивление {displaystyle scriptstyle {X}} так и обычное сопротивление scriptstyle {R} компоненты импеданса {displaystyle scriptstyle {Z}}.

{displaystyle Z=R+jX}

где:

Когда и конденсатор и индуктор соединены последовательно в цепь, их вклады к полному импедансу цепи противоположны. Ёмкостное сопротивление {displaystyle scriptstyle {X_{C}}}, и индуктивное сопротивление {displaystyle scriptstyle {X_{L}}},

вносят свой вклад в общее реактивное сопротивление {displaystyle scriptstyle {X}} в виде суммы

{displaystyle {X=X_{L}+X_{C}=omega L-{frac {1}{omega C}}}}

где:

Отсюда:[3]

  • если {displaystyle scriptstyle X>0}, то реактанс имеет вид индуктивности;
  • если {displaystyle scriptstyle X=0}, импеданс чисто реальный;
  • если {displaystyle scriptstyle X<0}, то реактанс имеет вид ёмкости.

Замечание, в случае определения {displaystyle scriptstyle {X_{L}}} и {displaystyle scriptstyle {X_{C}}} как положительных величин, то формула меняет знак на отрицательный:[5]

{displaystyle {X=X_{L}-X_{C}=omega L-{frac {1}{omega C}}}},

но конечное значение одинаково.

Фазовые отношения[править | править код]

Фаза напряжения на чисто реактивном устройстве (конденсатор с бесконечным сопротивлением или индуктивности с нулевым сопротивлением) отстаёт от тока на {displaystyle scriptstyle {pi /2}} радиан для ёмкостного сопротивления и опережает ток на {displaystyle scriptstyle {pi /2}} радиан для индуктивного сопротивления. Без знания сопротивления и реактивного сопротивления невозможно определить соотношение между напряжением и током.

{displaystyle {begin{aligned}{tilde {Z}}_{C}&={1 over omega C}e^{j(-{pi  over 2})}=jleft({-{frac {1}{omega C}}}right)=jX_{C}\{tilde {Z}}_{L}&=omega Le^{j{pi  over 2}}=jomega L=jX_{L}quad end{aligned}}}

Для реактивной компоненты синусоидальное напряжение на компоненте находится в квадратуре (разность фаз {displaystyle scriptstyle {pi /2}}) с синусоидальным током через компонент. Компонент попеременно поглощает энергию из контура и затем возвращает энергию в контур, таким образом, чистое реактивное сопротивление не рассеивает мощность.

Примечания[править | править код]

  1. Shamieh C. и McComb G., Electronics for Dummies, John Wiley & Sons, 2011.
  2. Мид Р., Основы электроники, Cengage Learning, 2002.
  3. Young, Hugh D.; Roger A. Freedman; A. Lewis Ford (2004) [1949]. Сирс и Земанский университет физики (11-е изд.). Сан-Франциско : Эддисон Уэсли . ISBN Young, Hugh D.; Roger A. Freedman; A. Lewis Ford (2004) [1949]. Young, Hugh D.; Roger A. Freedman; A. Lewis Ford (2004) [1949].
  1. 1 2 Irwin, D. (2002). Basic Engineering Circuit Analysis, page 274. New York: John Wiley & Sons, Inc.
  2. Hayt, W.H., Kimmerly J.E. (2007). Engineering Circuit Analysis, 7th ed., McGraw-Hill, p. 388
  3. 1 2 Glisson, T.H. (2011). Introduction to Circuit Analysis and Design, Springer, p. 408
  4. Horowitz P., Hill W. (2015). The Art of Electronics, 3rd ed., p. 42
  5. 1 2 Hughes E., Hiley J., Brown K., Smith I.McK., (2012). Hughes Electrical and Electronic Technology, 11th edition, Pearson, pp. 237—241
  6. Robbins, A.H., Miller W. (2012). Circuit Analysis: Theory and Practice, 5th ed., Cengage Learning, pp. 554—558

Сопротивлением в электротехнике называют физическую величину, характеризующую свойства проводника препятствовать прохождению электрического тока и равную отношению напряжения на концах проводника к силе тока, протекающего по нему.

Но сопротивление бывает активным и реактивным. В чем разница и где используется каждое из понятий и пойдет речь в этой статье.

Активное сопротивление

Активное сопротивление – это сопротивление элемента или участка цепи электрическому току, обусловленное необратимыми превращениями электрической энергии в другие формы, например, механическую в электродвигателях или тепловую, когда речь идёт о нагреве чего-либо или просто потерях или другие виды энергии. Выражается в Омах и в формулах обозначается буквой R.

Активное сопротивление характерно для проводников, а его величина зависит от свойств этих самых проводников:

  • Материал — обычно проводники выполняются из металла (или из графита, как щетки электрических машин) и у каждого проводника есть удельное сопротивление, оно измеряется в Ом·мм²/м.
  • Длина и площадь поперечного сечения. Следует из предыдущего. Чем больше площадь поперечного сечения (мм²) – тем меньше сопротивление, или чем длиннее проводник – тем оно больше.
  • Температура. Чем больше температура – тем больше сопротивление проводника.

Согласно закону Ома, сопротивление участка электрической цепи можно рассчитать, если известны ток и напряжение по формуле: R=U/I.

Таблица 1. Удельные электрические сопротивления некоторых веществ
Таблица 1. Удельные электрические сопротивления некоторых веществ

Сопротивление проводника, определенной длины и сечения определяется по формуле: R=p*l/S,

где p (ро) – удельное сопротивление, l – длина, S – площадь поперечного сечения.

При протекании тока через активное сопротивление в любом случае происходят потери в виде тепла. По этой причине греются провода и кабельные линии под нагрузкой, трансформаторы, электродвигатели и так далее… Величина этих потерь определяется по формуле: P=U²/R. Кроме потерь в виде тепла на линии, а вернее сказать, на активном сопротивлении линии происходит падение напряжения (просадки), величина которых также рассчитывается по закону Ома: Uпад=I*Rл,

где Uпад – падение напряжение на линии, – сопротивление линии.

Рисунок 1 — ток и напряжение в активном сопротивлении: а) схема условного с идеальным резистором, б) Синусоиды тока и напряжения, в) векторная диаграмма.
Рисунок 1 — ток и напряжение в активном сопротивлении: а) схема условного с идеальным резистором, б) Синусоиды тока и напряжения, в) векторная диаграмма.

Напряжение и ток в активном сопротивлении совпадают по фазе, соответственно коэффициент мощности у активной нагрузки в идеальном случае равен 1. Это можно пронаблюдать на иллюстрации выше, как и то, что векторы U и I также совпадают по направлению, и между ними нет угла.

Под «идеальным случаем» понимается используемое в физике понятие «идеальный», то есть, когда объекту характерен какой-то единый набор свойств. Например, когда говорят «идеальный резистор» — это значит, такой резистор в котором есть только активное сопротивление, а реактивные составляющие отсутствуют. А «идеальная индуктивность» — это такая индуктивность, у которой нет активного сопротивления проводника, которым она намотана, а также паразитной ёмкости. То есть идеальная катушка, обладает только индуктивностью.

Подведем итоги — активное сопротивление характерно для нагрузки ток и напряжение в которой совпадают по фазе, это могут быть: провода, резисторы, ТЭНы и другие нагревательные элементы, лампы накаливания…

Реактивное сопротивление

Согласно энциклопедическому определению, реактивное сопротивление — это сопротивление элемента схемы, вызванное изменением тока или напряжения из-за индуктивности или ёмкости этого элемента. Отсюда следует, что реактивное сопротивление присуще только индуктивной или емкостной нагрузке. Измеряется оно также в Омах, но обозначается буквой X.

Также следует вспомнить законы коммутации:

  • Ток на индуктивности не может изменяться скачком.
  • Напряжение на ёмкости не может измениться мгновенно.

Другими словами, в индуктивности ток отстаёт от напряжения по фазе, а в ёмкости наоборот — ток опережает напряжение.

Реактивное сопротивление индуктивности

В цепи постоянного тока это вносит влияние в работу системы преимущественно при её коммутации (включении или отключении), а также при резком изменении режима работы и потребления тока и такого понятия как реактивное сопротивление для постоянного тока нет.

Но в цепи переменного тока реактивное сопротивление оказывает значительное влияние. При протекании переменного тока I в катушке, возникает магнитное поле. Оно создаёт в витках катушки ЭДС, которое в свою очередь препятствует изменению тока.

При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении – положительна и препятствует его убыванию, оказывая таким образом сопротивление изменению тока на протяжении всего периода.

Выше мы рассматривали график тока и напряжения в активном сопротивлении, и они совпадали по фазе, ниже приведен график тока и напряжения для катушки индуктивности.

Рисунок 2 — ток и напряжение в индуктивности: а) схема условного участка цепи с идеальной индуктивностью, б) синусоиды тока и напряжения, в) векторная диаграмма.
Рисунок 2 — ток и напряжение в индуктивности: а) схема условного участка цепи с идеальной индуктивностью, б) синусоиды тока и напряжения, в) векторная диаграмма.

На рисунке 2.б видно, что ток и напряжение в индуктивности не совпадают по фазе. В идеальной индуктивности ток отстаёт от напряжения на 90 градусов, что более наглядно иллюстрирует векторная диаграмма на рисунке 2.в.

Сопротивление, которое индуктивность оказывает переменному току вычисляется по формуле: X­L=ω*L=2*pi*f*L,

где ω — угловая частота (рад/с), L — индуктивность (Гн), pi – число пи (3.14), f — частота (Гц).

То есть чем больше частота переменного тока, тем большее сопротивление ему оказывает индуктивность.

Реактивное сопротивление ёмкости

В ёмкостной нагрузке дело обстоит также, но наоборот. На рисунке 3.б видно, что ток опережает напряжение, а на 3.в видно, что опережает на угол в 90˚.

Рисунок 3 — ток и напряжение в ёмкости: а) схема условного участка цепи с идеальным конденсатором (ёмкостью), б) синусоиды тока и напряжения, в) векторная диаграмма.
Рисунок 3 — ток и напряжение в ёмкости: а) схема условного участка цепи с идеальным конденсатором (ёмкостью), б) синусоиды тока и напряжения, в) векторная диаграмма.

При протекании переменного тока в конденсаторе циклически происходят процессы заряда и разряда, или накопления и отдачи энергии электрическим полем между его обкладками. Конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное.

В момент когда напряжение достигнет амплитудного значения, ток будет равен нулю. Таким образом, напряжение на идеальном конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.

То есть емкостное сопротивление — это сопротивление изменению напряжения. Оно определяется по формуле: Xс=1/(ω*C)=1/(2*pi*f*c),

где ω — угловая частота (рад/с), C — ёмкость (Ф), pi – число пи (3.14), f — частота (Гц).

То есть чем меньше частота переменного тока, тем большее сопротивление оказывает ему ёмкость.

Но отклонение напряжения от тока по фазе на 90 градусов только в цепях с идеальной индуктивностью, на практике же такого нет.

Полное сопротивление

Так как и активное сопротивление, и индуктивность, и ёмкость влияют на токи и напряжения в электрической цепи по-своему, то при их соединении их сопротивления также складываются. Так, например полное реактивное сопротивление равно: X=XL-Xс

Таким образом реактивные сопротивления ёмкости и индуктивности приводятся к общему значению, то есть какое из них больше, такой характер и будет у цепи (индуктивный или емкостной).

В любой реальной цепи присутствуют все три составляющие: активная, емкостная и индуктивная. Тогда говорят о полном сопротивление цепи. Оно обозначается буквой Z и вычисляется по формуле:

Активное и реактивное сопротивление

где Z – полное сопротивление, r – активное, XL – индуктивное, Xc – емкостное.

Эта формула должна была вам напомнить теорему Пифагора, где квадрат гипотенузы равен сумме квадратов катетов. И это неспроста. Дело в том, что если на векторной диаграмме изобразить активное и полное реактивное сопротивление, то мы получим т.н. треугольник сопротивлений, где гипотенузой будет полное сопротивление цепи.

Активное и реактивное сопротивление

Угол Фи — это и есть угол, на который ток отстаёт от напряжения, а косинус этого угла (cosФ) называют коэффициентом мощности. Это опережение или отставание тока и напряжение приводит к тому, что этот ток возвращается обратно к источнику питания, а не выполняет какую-то работу в потребителе. Это приводит к излишней нагрузке на электросеть, то есть ток протекает полный, а работу выполняет только активная его часть.

Большая часть электрооборудования (электродвигатели, электромагниты и прочее) носит индуктивный характер, что приводит к значительному повышению нагрузки на электросеть и потребления реактивной мощности.

Чтобы бороться с этим явлением используются компенсаторы реактивной мощности — конденсаторные установки, синхронные двигатели, синхронные компенсаторы. То есть подключают какую-то нагрузку с емкостным характером, она нужна, чтобы уменьшить угол между током и напряжением и в итоге повысить коэффициент мощности.

Ну и напоследок ознакомьтесь с подборкой советских плакатов, которые иллюстрируют параметры электрических цепей со смешанной нагрузкой, а также их векторные диаграммы (треугольники сопротивлений, напряжения и мощности).

Последовательное соединение активного и индуктивного сопротивлений
Последовательное соединение активного и индуктивного сопротивлений
Последовательное соединение активного и емкостного сопротивлений
Последовательное соединение активного и емкостного сопротивлений
Последовательное соединение индуктивности и ёмкости
Последовательное соединение индуктивности и ёмкости

Добавить комментарий