Как найти ребро параллелепипеда если известна поверхность

Четырехугольная призма, в основании которой находится параллелограмм, является параллелепипедом. В параллелепипеде 6 граней: 4 — боковые и 2 — его основание. Грани, как правило, представляют собой параллелограмм. Противолежащие грани параллельны и равны. Параллелепипеды бывают прямыми и наклонными. У прямого параллелепипеда боковые грани являются прямоугольниками. Прямой параллелепипед, в основании которого лежит прямоугольник, называется прямоугольным. У него все шесть граней — прямоугольники, противоположные стороны которых параллельны и равны, а все углы — прямые. Прямоугольный параллелепипед строится на трех ребрах, расположенных друг к другу под прямым углом. Длины этих ребер, обладающих общим концом, называются его измерениями.

Боковое ребро прямоугольного параллелепипеда можно рассчитать несколькими способами, в зависимости от исходных данных.
Если известны объем (V) и два ребра (b, c) правильного параллелепипеда, третье ребро (а) будет равно частному от деления объема на произведение двух ребер (b×c):

a = V / bc

Если известна площадь боковой поверхности и два ребра (b, c), находим неизвестное ребро (а) путем деления площади боковой поверхности (S) на удвоенную сумму двух известных ребер 2 (b+c).

a = Sб.п. / 2 (a+c)

Если известны два ребра (b, c) и полная площадь поверхности (S п.п.), неизвестное ребро (а) находим по формуле:

a = (Sп.п. — 2bc) / 2 (b+c)

Проведенный внутри параллелепипеда отрезок, соединяющий противоположные вершины двух его оснований, является диагональю параллелепипеда (D). Отрезок, соединяющий противоположные вершины одного из оснований, является диагональю основания (d). Внутри прямоугольного параллелепипеда можно построить прямоугольный треугольник, у которого гипотенузой будет диагональ параллелепипеда D, одним из катетов — диагональ основания d, другим — боковое ребро параллелепипеда (а). Используя теорему Пифагора, выразим квадрат диагонали основания d (гипотенузу) как сумму квадратов его сторон (катетов) b, с. Отсюда, квадрат длины диагонали прямоугольного параллелепипеда (D) равен сумме квадратов трёх его измерений (а,b,с). Зная ребра и диагональ параллелепипеда, находим боковое ребро по формуле:

a = √D2 + d2 = √D2 + b2 + c2

Боковое ребро параллелепипеда
где b, c — ребра параллелепипеда, a — боковое ребро параллелепипеда, D — диагональ параллелепипеда, d — диагональ основания.

Калькулятор расчета длины бокового ребра правильного параллелепипеда

Прямоугольный параллелепипед является прямой призмой, в основании которой лежит квадрат или прямоугольник, таким образом, совокупность ребер прямоугольного параллелепипеда может представлять собой два или три разных параметра. Если же они все равны между собой, то можно с уверенностью сказать, что такой параллелепипед является кубом, и его ребро можно найти по формулам, приведенным в разделе «Ребро куба».
Ребро прямоугольного параллелепипеда можно найти, зная объем тела и другие ребра:


Также можно рассчитать ребро прямоугольного параллелепипеда через площадь боковой или полной поверхности, тоже зная остальные два ребра:

   


Как и в случае с кубом, внутри прямоугольного параллелепипеда можно провести диагональ, которая соединит противоположные вершины оснований. В прямоугольном треугольнике диагональ параллелепипеда D будет гипотенузой, а диагональ основания d и ребро a – катетами. Тогда боковое ребро параллелепипеда можно будет найти через теорему Пифагора.

Если дана диагональ параллелепипеда, но нужно найти ребро, не входящее во внутренний прямоугольный треугольник, а являющееся стороной основания, то формула придет к точно такому же виду.

Mira Park



Ученик

(240),
на голосовании



5 лет назад

В основании прямоугольного параллелепипеда лежит квадрат. Найти нужно сторону основания и высоту, а для этого, как я понимаю, нужно искать стороны

Дополнен 5 лет назад

Ок, не ребра, стороны

Голосование за лучший ответ

dima ushakov

Просветленный

(27762)


5 лет назад

скорее всего это площадь бок пов-ти
ибо это не может быть площадью бок грани)) иначе бок пов-ть будет больше полной пов-ти
1) из полной вычти боковую – это площадь ДВУХ оснований. отсюда найдешь сторону основания.
2) периметр основания*высота – это площ бок пов-ти. отсюда найдешь высоту

опасения подтвердились)) это площ бок стороны)) вот теперь я хз

Прямоугольный параллелепипед. Что это такое?

О чем эта статья:

10 класс, ЕГЭ/ОГЭ

Определение параллелепипеда

Начнем с того, что узнаем, что такое параллелепипед.

Параллелепипедом называется призма, основаниями которой являются параллелограммы. Другими словами, параллелепипед — это многогранник с шестью гранями. Каждая грань — параллелограмм.

На рисунке два параллелограмма АВСD и A1B1C1D1. Основания параллелепипеда, расположены параллельно друг другу в плоскостях. А боковые ребра АA1, ВB1, CC1, DD1 параллельны друг другу. Образовавшаяся фигура — параллелепипед.

Внимательно рассмотрите, как выглядит параллелепипед и каковы его составляющие.

Когда пересекаются три пары параллельных плоскостей, образовывается параллелепипед.

Основанием параллелепипеда является, в зависимости от его типа: параллелограмм, прямоугольник, квадрат.

Параллелепипед — это:

Свойства параллелепипеда

Быть параллелепипедом ー значит неотступно следовать законам геометрии. Иначе можно скатиться до простого параллелограмма.

Вот 4 свойства параллелепипеда, которые необходимо запомнить:

  1. Противолежащие грани параллелепипеда равны и параллельны друг другу.
  2. Все 4 диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.
  3. Параллелепипед симметричен относительно середины его диагонали.
  4. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.

Подготовка к ЕГЭ по математике онлайн в школе Skysmart — отличный способ освежить знания и снять стресс перед экзаменом.

Прямой параллелепипед

Прямой параллелепипед — это параллелепипед, у которого боковые ребра перпендикулярны основанию.

Основание прямого параллелепипеда — параллелограмм. В прямом параллелепипеде боковые грани — прямоугольники.

Свойства прямого параллелепипеда:

  1. Основания прямого параллелепипеда — одинаковые параллелограммы, лежащие в параллельных плоскостях.
  2. Боковые ребра прямого параллелепипеда равны, параллельны и перпендикулярны плоскостям оснований.
  3. Высота прямого параллелепипеда равна длине бокового ребра.
  4. Противолежащие боковые грани прямого параллелепипеда — равные прямоугольники.
  5. Диагонали прямого параллелепипеда точкой пересечения делятся пополам.

На слух все достаточно занудно и сложно, но на деле все свойства просто описывают фигуру. Внимательно прочтите вслух каждое свойство, разглядывая рисунок параллелепипеда после каждого пункта. Все сразу встанет на места.

Формулы прямого параллелепипеда:

  • Площадь боковой поверхности прямого параллелепипеда
    Sб = Ро*h
    Ро — периметр основания
    h — высота
  • Площадь полной поверхности прямого параллелепипеда
    Sп = Sб+2Sо
    Sо — площадь основания
  • Объем прямого параллелепипеда
    V = Sо*h

Прямоугольный параллелепипед

Определение прямоугольного параллелепипеда:

Прямоугольным параллелепипедом называется параллелепипед, у которого основание — прямоугольник, а боковые ребра перпендикулярны основанию.

Внимательно рассмотрите, как выглядит прямоугольный параллелепипед. Отметьте разницу с прямым параллелепипедом.

Свойства прямоугольного параллелепипеда

Прямоугольный параллелепипед обладает всеми свойствами произвольного параллелепипеда.

  1. Прямоугольный параллелепипед содержит 6 граней. Все грани прямоугольного параллелепипеда — прямоугольники.
  2. Противолежащие грани параллелепипеда попарно параллельны и равны.
  3. Все углы прямоугольного параллелепипеда, состоящие из двух граней — 90°.
  4. Диагонали прямоугольного параллелепипеда равны.
  5. В прямоугольный параллелепипеде четыре диагонали, которые пересекаются в одной точке и делятся этой точкой пополам.
  6. Любая грань прямоугольного параллелепипеда может быть принята за основание.
  7. Если все ребра прямоугольного параллелепипеда равны, то такой параллелепипед является кубом.
  8. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).

Формулы прямоугольного параллелепипеда:

  • Объем прямоугольного параллелепипеда
    V = a · b · h
    a — длина, b — ширина, h — высота
  • Площадь боковой поверхности
    Sбок = Pосн·c=2(a+b)·c
    Pосн — периметр основания, с — боковое ребро
  • Площадь поверхности
    Sп.п = 2(ab+bc+ac)

Диагонали прямоугольного параллелепипеда: теорема

Не достаточно просто знать свойства прямоугольного параллелепипеда, нужно уметь их доказывать.

Если есть теорема, нужно ее доказать. (с) Пифагор

Теорема: Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

В данном случае, три измерения — это длина, ширина, высота. Длина, ширина и высота — это длины трех ребер, исходящих из одной вершины прямоугольного параллелепипеда.

Дан прямоугольный параллелепипед ABCDA1B1C1D1. Доказать теорему.

Доказательство теоремы:

Чтобы найти диагональ прямоугольного параллелепипеда, помните, что диагональ — это отрезок, соединяющий противоположные вершины.

Все грани прямоугольного параллелепипеда — прямоугольники.

ΔABD: ∠BAD = 90°, по теореме Пифагора

ΔB₁BD: ∠B₁BD = 90°, по теореме Пифагора

d² = d₁² + c² = a² + b² + c²

d² = a² + b² + c²

Доказанная теорема — пространственная теорема Пифагора.

Куб: определение, свойства и формулы

Кубом называется прямоугольный параллелепипед, все три измерения которого равны.

Каждая грань куба — это квадрат.

Свойства куба:

  1. В кубе 6 граней, каждая грань куба — квадрат.
  2. Противолежащие грани параллельны друг другу.
  3. Все углы куба, образованные двумя гранями, равны 90°.
  4. У куба четыре диагонали, которые пересекаются в центре куба и делятся пополам.
  5. Диагонали куба равны.
  6. Диагональ куба в √3 раз больше его ребра.
  7. Диагональ грани куба в √2 раза больше длины ребра.

Помимо основных свойств, куб характеризуется умением вписывать в себя тетраэдр и правильный шестиугольник.

Формулы куба:

  • Объем куба через длину ребра a
    V = a3
  • Площадь поверхности куба
    S = 6a2
  • Периметр куба
    P = 12a

Решение задач

Чтобы считать тему прямоугольного параллелепипеда раскрытой, стоит потренироваться в решении задач. 10 класс — время настоящей геометрии для взрослых. Поэтому, чем больше практики, тем лучше. Разберем несколько примеров.

Задачка 1. Дан прямоугольный параллелепипед. Нужно найти сумму длин всех ребер параллелепипеда и площадь его поверхности.

Для наглядного решения обозначим измерения прямоугольного параллелепипеда: a – длина, b – ширина, c – высота. Тогда a = 10, b = 5, c = 8.

Так как в прямоугольном параллелепипеде всего по 4 — высота, ширина и длина, и все измерения равны между собой, то:
1) 4 * 10 = 40 (см) – сумма длин параллелепипеда;
2) 4 * 5 = 20 (см) – суммарное значение ширины параллелепипеда;
3) 4 * 8 = 32 (см) – сумма высот параллелепипеда;
4) 40 + 20 + 32 = 92 (см) – сумма длин всех ребер прямоугольного параллелепипеда.

Отсюда можно вывести формулу по нахождению суммы длин всех сторон ПП:
X = 4a + 4b + 4c (где X – сумма длин ребер).

Формула нахождения площади поверхности параллелепипеда Sп.п = 2(ab+bc+ac).
Тогда: S = (5*8 + 8*10 + 5*10) * 2 = 340 см2.

Задачка 2. Дан прямоугольный параллелепипед АВСDA1B1C1D1.

Нужно найти длину ребра A1B1.

В фокусе внимания треугольник BDD1.
Угол D = 90°.

По теореме Пифагора:
BD1 2 = DD1 2 + BD 2
BD 2 = BD1 2 – DD1 2
BD 2 = 26 – 9 = 17
BD = √17
В треугольнике ADB угол А = 90°.
BD 2 = AD 2 + AB 2
AB 2 = BD 2 – AD 2 = (√17)2 — 4 2 = 1
A1B1 = AB = 1.

Задачка 3. Дан прямоугольный параллелепипед АВСDA1B1C1D1.

AB = 4
AD = 6
AA1= 5
Нужно найти отрезок BD1.

В треугольнике ADB угол A = 90°.

По теореме Пифагора:
BD 2 = AB 2 +AD 2
BD 2 = 4 2 + 6 2 = 16 + 36 = 52
В треугольнике BDD1 угол D = 90°.
BD1 2 = 52 + 25 = 77
BD1 = √77.

Самопроверка

Теперь потренируйтесь самостоятельно — мы верим, что все получится!

Задачка 1. Дан прямоугольный параллелепипед. Измерения (длина, ширина, высота) = 8, 10, 20. Найдите диагональ параллелепипеда.

Подсказка: если нужно выяснить, чему равна диагональ прямоугольного параллелепипеда, вспоминайте теорему.

Задачка 2. Дан прямоугольный параллелепипед АВСDA1B1C1D1.

Вычислите длину ребра AA1.

Как видите, самое страшное в параллелепипеде — 14 букв в названии. Чтобы не перепутать прямой параллелепипед с прямоугольным, а ребро параллелепипеда с длиной диагонали параллелепипеда, вот список основных понятий:

  • прямой параллелепипед — это параллелепипед, у которого боковые ребра перпендикулярны основанию;
  • параллелепипед называется прямоугольным, когда его боковые ребра перпендикулярны к основанию;
  • основание прямоугольного параллелепипеда — прямоугольник;
  • три измерения прямоугольного параллелепипеда: длина, ширина, высота;
  • диагональ параллелепипеда равна сумме квадратов его измерений.

Ребра параллелепипеда

Свойства

Прямоугольный параллелепипед строится на ребрах трех длин, расположенных под прямым углом друг к другу. Зная ребра параллелепипеда, можно найти все возможные параметры, характеризующие его. В первую очередь, каждая грань параллелепипеда представляет собой прямоугольник с двумя одинаковыми сторонами, периметр же всего объемного тела ищется как умноженная на четыре сумма всех сторон-ребер параллелепипеда. P=4(a+b+c)

Площадь прямоугольного параллелепипеда складывается из площадей всех его граней, то есть шести прямоугольников, попарно конгруэнтных. Площадь каждого прямоугольника равна произведению его сторон, поэтому чтобы найти площадь параллелепипеда, необходимо сложить эти произведения. S=2ab+2bc+2ac=2(ab+bc+ac)

Чтобы вычислить объем прямоугольного параллелепипеда, зная его ребро, нужно перемножить их между собой, так как объем любого прямого тела с двумя основаниями равен произведению площади основания на высоту тела, а в основании параллелепипеда находится прямоугольник, площадь которого также равна произведению – его сторон. V=abc

У прямоугольного параллелепипеда есть четыре диагонали – диагонали его боковых граней и основания, и диагональ самого параллелепипеда, проходящая через его внутреннее пространство. Все диагонали рассчитывается через прямоугольные треугольники по теореме Пифагора, где они являются гипотенузами. Для диагоналей боковых граней и основания катетами являются ребра параллелепипеда, а для четвертой диагонали, катеты представляют собой боковое ребро и диагональ основания. (рис. 22.1,22.2,22.3,22.4) d_1=√(a^2+c^2 ) d_2=√(a^2+b^2 ) d_3=√(b^2+c^2 ) d_4=√(a^2+〖d_3〗^2 )=√(a^2+b^2+c^2 )

Угол α, образованный внутренней диагональю прямоугольного параллелепипеда и диагональю основания, можно вычислить через отношение тангенса – бокового ребра а и диагонали основания d3.(рис.22.5) tan⁡α=a/d_3 =a/√(b^2+c^2 )

Прямоугольный параллелепипед

Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию, а основания представляют собой прямоугольники.

На рисунке изображен прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Его основаниями являются прямоугольники $ABCD$ и $A_1B_1C_1D_1$, а боковые ребра $AA_1, BB_1, CC_1$ и $DD_1$ перпендикулярны к основаниям.

Свойства прямоугольного параллелепипеда:

  1. В прямоугольном параллелепипеде $6$ граней и все они являются прямоугольниками.
  2. Противоположные грани попарно равны и параллельны.
  3. Все двугранные углы прямоугольного параллелепипеда – прямые.
  4. Диагонали прямоугольного параллелепипеда равны.
  5. Прямоугольный параллелепипед имеет $4$ диагонали, которые пересекаются в одной точке и делятся в ней пополам.
  6. Любая грань прямоугольного параллелепипеда может быть принята за основание.
  7. Прямоугольный параллелепипед, у которого все ребра равны, называется кубом.
  8. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).

Формулы вычисления объема и площади поверхности прямоугольного параллелепипеда.

Чтобы были понятны формулы, введем обозначения:

$с$ – высота(она же боковое ребро);

$P_<осн>$ – периметр основания;

$S_<осн>$ – площадь основания;

$S_<бок>$ – площадь боковой поверхности;

$S_<п.п>$ – площадь полной поверхности;

$V=a·b·c$ – объем равен произведению трех измерений прямоугольного параллелепипеда.

$S_<бок>=P_<осн>·c=2(a+b)·c$ – площадь боковой поверхности равна произведению периметра основания на боковое ребро.

Дополнительные сведения, которые пригодятся для решения задач:

$а$ – длина стороны.

$d=a√3$ – диагональ равна длине стороны, умноженной на $√3$.

Пирамида

Пирамидой называется многогранник, одна грань которого (основание) – многоугольник, а остальные грани (боковые) – треугольники, имеющие общую вершину.

Высотой ($h$) пирамиды является перпендикуляр, опущенный из ее вершины на плоскость основания.

Объем любой пирамиды равен трети произведения основания и высоты.

В основании у произвольной пирамиды могут лежать различные многоугольники, рассмотрим площади некоторых из них.

В основании лежит треугольник.

  • $S=/<2>$, где $h_a$ – высота, проведенная к стороне $а$.
  • $S=/<2>$, где $a,b$ – соседние стороны, $α$ – угол между этими соседними сторонами.
  • Формула Герона $S=√$, где $р$ – это полупериметр $p=/<2>$.
  • $S=p·r$, где $r$ – радиус вписанной окружности.
  • $S=/<4R>$, где $R$ – радиус описанной окружности.
  • Для прямоугольного треугольника $S=/<2>$, где $а$ и $b$ – катеты прямоугольного треугольника.
  • Для равностороннего треугольника $S=/<4>$, где $а$ – длина стороны.

В основании лежит четырехугольник.

  1. Прямоугольник.
    $S=a·b$, где $а$ и $b$ – смежные стороны.
  2. Ромб.
    $S=/<2>$, где $d_1$ и $d_2$ – диагонали ромба.
    $S=a^2·sin⁡α$, где $а$ – длина стороны ромба, а $α$ – угол между соседними сторонами.
  3. Трапеция.
    $S=<(a+b)·h>/<2>$, где $а$ и $b$ – основания трапеции, $h$ – высота трапеции.
  4. Квадрат.
    $S=a^2$, где $а$ – сторона квадрата.

Найдите объём многогранника, вершинами которого являются точки $C, A_1, B_1, C_1, D_1$ параллелепипеда $ABCDA_1B_1C_1D_1$, у которого $AB=8, AD=12, AA_1=4$.

Изобразим прямоугольный параллелепипед и на нем отметим вершины многогранника $C, A_1, B_1, C_1, D_1$, получим в итоге четырехугольную пирамиду. В основании пирамиды лежит прямоугольник, так основание пирамиды и прямоугольного параллелепипеда совпадают.

Объем пирамиды, в основании которой лежит прямоугольник

Для нашего рисунка стороны прямоугольника – это $А_1В_1$ и $A_1D_1$.

В прямоугольном параллелепипеде противоположные ребра равны и параллельны, следовательно, $AB=А_1В_1=8; AD=A_1D_1=12$.

Высотой в пирамиде $CA_1B_1C_1D_1$ будет являться ребро $СС_1$, так как оно перпендикулярно основанию (из прямоугольного параллелепипеда).

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

[spoiler title=”источники:”]

http://geleot.ru/education/math/geometry/calc/parallelepiped/edge

http://examer.ru/ege_po_matematike/teoriya/pryamiugolnyi_parallelepiped

[/spoiler]

Представленные ниже задачи просты, большинство из них решаются в 1 действие. В данной статье мы будем рассматривать прямоугольный параллелепипед (все грани прямоугольники). Что необходимо знать и понимать? Сначала посмотрите формулы  объёма и площади поверхности куба и прямоугольного параллелепипеда, также формулу диагонали, можно заглянуть сюдаКратко перечислим формулы:

Прямоугольный параллелепипед

Параллелепипед. Задачи!

Пусть рёбра будут равны а, b, с.

Площадь поверхности:

Объём:

Объём параллелепипеда

Диагональ:

Куб

Пусть ребро куба равно а.

Площадь поверхности:

Объём:

Диагональ:

*Понятно, что формулы куба являются следствием из соответствующих формул прямоугольного параллелепипеда. Куб – это параллелепипед, у которого все рёбра равны, грани являются квадратами.

Рассмотрим задачи:

Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 5 и 8. Площадь поверхности этого параллелепипеда равна 210. Найдите третье ребро, выходящее из той же вершины.

Два ребра прямоугольного параллелепипеда

Обозначим известные ребра за а и b, а неизвестное за c.

Тогда формула площади поверхности параллелепипеда выражается как:

Остаётся подставить данные и решить уравнение:

Ответ: 5

Площадь поверхности куба равна 200. Найдите его диагональ.

Построим диагональ куба:

Площадь поверхности куба выражается через его ребро а как S = 6а 2, значит можем найти ребро а:

Диагональ грани куба  по теореме Пифагора равна:

Диагональ куба по теореме Пифагора равна:

Тогда

*Можно было сразу воспользоваться формулой диагонали куба:

Ответ: 10

Объем куба равен 343. Найдите площадь его поверхности.

Площадь поверхности куба выражается через его ребро  а как S = 6а 2, а объем равен V = а 3. Значит можем найти ребро куба и затем вычислить площадь поверхности:

Таким образом, площадь поверхности куба равна:

Ответ: 294

27060. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1 и 2. Площадь поверхности параллелепипеда равна 16. Найдите его диагональ.

Диагональ параллелепипеда вычисляется по формуле:

где а, b и с  рёбра.

Найдём третье ребро. Мы можем это сделать воспользовавшись формулой площади поверхности параллелепипеда:

Подставляем данные и решаем уравнение:

Таким образом, диагональ будет равна:

Ответ: 3

27063. Найдите боковое ребро правильной четырехугольной призмы, если сторона ее основания равна 20, а площадь поверхности равна 1760.

В основании  правильной четырёхугольной призмы лежит квадрат. Понятно, что она является параллелепипедом. Формулы применяются те же. Пусть боковое ребро будет равно х. Его мы можем найти используя формулу площади поверхности:

Ответ: 12

Из единичного куба вырезана правильная четырехугольная призма со стороной основания 0,8 и боковым ребром 1. Найдите площадь поверхности оставшейся части куба. 

Единичный куб это куб с ребром равным 1.

Площадь поверхности получившегося многогранника можно вычислить следующим образом: от площади поверхности куба нужно вычесть две площади основания вырезанной призмы и прибавить четыре площади боковой  грани вырезанной призмы со сторонами 1 и 0,8:

Ответ: 7,92

Площадь грани прямоугольного параллелепипеда равна 48. Ребро, перпендикулярное этой грани, равно 8. Найдите объем параллелепипеда.

Достаточно применить формулу объёма………………………

Объем прямоугольного параллелепипеда равен произведению трёх его ребер, или произведению площади основания на высоту. В данном случае роль основания играет грань, роль высоты ребро, которое ей перпендикулярно. Получим:

Ответ: 384

Следующие задачи вы решите без труда.

27077. Объем прямоугольного параллелепипеда равен 64. Одно из его ребер равно 4. Найдите площадь грани параллелепипеда, перпендикулярной этому ребру. Ответ: 16.

27078. Объем прямоугольного параллелепипеда равен 60. Площадь одной его грани равна 12. Найдите ребро параллелепипеда, перпендикулярное этой грани. Ответ: 5.

27079. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 8 и 6. Объем параллелепипеда равен 240. Найдите третье ребро параллелепипеда, выходящее из той же вершины. Ответ: 4.

Ещё для самостоятельного решения:

27054. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3 и 4. Площадь поверхности этого параллелепипеда равна 94. Найдите третье ребро, выходящее из той же вершины.

Посмотреть решение

27055. Площадь поверхности куба равна 18. Найдите его диагональ.

Посмотреть решение

27056. Объем куба равен 8. Найдите площадь его поверхности.

Посмотреть решение

27075. Из единичного куба вырезана правильная четырехугольная призма со стороной основания 0,5 и боковым ребром 1. Найдите площадь поверхности получившегося многогранника.

Посмотреть решение

27076. Площадь грани прямоугольного параллелепипеда равна 12. Ребро, перпендикулярное этой грани, равно 4. Найдите объем параллелепипеда.

Посмотреть решение

В следующих статьях продолжим рассматривать задания с кубами и параллелепипедами в условии, не пропустите! На этом всё! Успеха вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Добавить комментарий