Как найти решение на отрезке тригонометрия

Цель урока:

а) закрепить умения решать
простейшие тригонометрические уравнения
;

б) научить выбирать корни
тригонометрических уравнений из заданного
промежутка

Ход урока.

1. Актуализация знаний.

а)Проверка домашнего задания: классу
дано опережающее домашнее задание – решить
уравнение и найти способ выбора корней из
данного промежутка.

1)cos x = -0,5, где хI [- ]. Ответ: .

2) sin x = , где хI [0;2?]. Ответ: ; .


3)cos 2x = –, где хI [0;]. Ответ:


Ученики записывают решение на доске
кто-то с помощью графика, кто-то методом подбора.

В это время класс работает устно.


Найдите значение выражения:

а) tg
sin + cos + sin . Ответ: 1.


б) 2arccos 0 + 3 arccos 1. Ответ: ?


в) arcsin + arcsin . Ответ:
.

г) 5 arctg (-) – arccos (-). Ответ:– .

– Проверим домашнее задание, откройте
свои тетради с домашними работами.

Некоторые из вас нашли решение методом
подбора, а некоторые с помощью графика.

См. приложение 1

Приложение 2

Приложение 3

2. Вывод о способах решения данных
заданий и постановка проблемы, т. е. сообщение
темы и цели урока.

– а) С помощью подбора решать сложно,
если задан большой промежуток.

– б) Графический способ не даёт точных
результатов, требует проверку, и занимает много
времени.

– Поэтому должен быть ещё как минимум
один способ, наиболее универсальный -попробуем
его найти. Итак, чем мы будем заниматься сегодня
на уроке? (Учиться выбирать корни
тригонометрического уравнения на заданном
промежутке.)

– Пример 1. (Ученик выходит к доске)

cos x = -0,5, где хI [- ].

Вопрос: Отчего зависит ответ на данное
задание? (От общего решения уравнения. Запишем
решение в общем виде). Решение записывается на
доске

х = + 2?k, где k wpe345.jpg (691 bytes) R.

– Запишем это решение в виде
совокупности:

– Как вы считаете, при какой записи
решения удобно выбирать корни на промежутке? (из
второй записи). Но это ведь опять способ подбора.
Что нам необходимо знать, чтобы получить верный
ответ? (Надо знать значения k).

(Составим математическую модель для
нахождения k).

Ответ: .

Вывод: Чтобы выбрать корни
из заданного промежутка при решении
тригонометрического уравнения надо:

  1. для решения уравнения вида sin x = a, cos x = a
    удобнее записать корни уравнения, как две серии
    корней.
  2. для решения уравнений вида tg x = a, ctg x = a
    записать общую формулу корней.
  3. составить математическую модель для каждого
    решения в виде двойного неравенства и найти
    целое значение параметра k или n.
  4. подставить эти значения в формулу корней и
    вычислить их.

3. Закрепление.

Пример №2 и №3 из домашнего задания
решить, используя полученный алгоритм.
Одновременно у доски работают два ученика, с
последующей проверкой работ.

4. Самостоятельная работа.

Самопроверка с выбором ответа. Выбрать №
правильного ответа, получив закодированное
число (312).

1) sin x = –, x

2) 3 tg x = –, x I [0; 2]

3) 2 cos ,
х [ ]

Приложение. Ответы
к примерам

5. Домашнее задание:

1 уровень: № 295 (а,б), № 317 (а,б)

2 уровень: № 307 (в), № 308 (б), № 326(б), № 327(б).

6. Итог урока.

Как решать задание 13

О чем задача?

Задачи на решение тригонометрических уравнений, более сложных, чем в задании 5. В большинстве задач требуется не только решить уравнение, но и отобрать корни, принадлежащие определенному отрезку.

Как решать?

Шаг 1. Найдите область определения

Шаг 2. Приведите уравнение к виду простейших тригонометрических уравнений

Для того чтобы привести уравнение к виду простейших тригонометрических уравнений, применяйте следующие стандартные приемы:

Мы свели исходное уравнение к совокупности простейших тригонометрических уравнений [ cos x = − 1 , cos x = − 1 2 . left[begin cos x = -1 <,>\cos x = -frac<1> <2><.>endright. [ cos x = − 1 , cos x = − 2 1 ​ . ​

Шаг 3. Решите простейшие тригонометрические уравнения

О решении простейших тригонометрических уравнений читайте в отдельной статье .

Убедитесь, что найденные вами корни принадлежат области определения уравнения.

Остается решить уравнение cos x = − 1 2 cos x =-frac<1> <2>cos x = − 2 1 ​ .

Шаг 4. Выберите корни, принадлежащие отрезку, данному в условии

Корни, принадлежащие данному в условии отрезку, можно найти либо методом перебора, либо путем решения неравенства относительно k k k .

Найдем подходящие корни методом перебора. Для этого рассмотрим две серии корней по отдельности.

Задание №12. Уравнения — профильный ЕГЭ по математике

Задание 12 Профильного ЕГЭ по математике – это решение уравнений. Чаще всего, конечно, это тригонометрические уравнения. Но встречаются и другие типы – показательные, логарифмические, комбинированные.

Сейчас задание 12 Профильного ЕГЭ на решение уравнения состоят из двух пунктов: собственно решения и отбора корней на определенном отрезке.

Что нужно знать, чтобы справиться с этой задачей на ЕГЭ? Вот необходимые темы для повторения.

Что необходимо помнить при решении уравнений?

1) Помним про область допустимых значений уравнения! Если в уравнении есть дроби, корни, логарифмы или арксинусы с арккосинусами — сразу записываем ОДЗ. А найдя корни, проверяем, входят они в эту область или нет. Есть в уравнении есть — помним, что он существует, только если

2) Стараемся записывать решение в виде цепочки равносильных переходов.

3) Если есть возможность сделать замену переменной — делаем замену переменной! Уравнение сразу станет проще.

4) Если еще не выучили формулы тригонометрии — пора это сделать! Много формул не нужно. Самое главное — тригонометрический круг, формулы синусов и косинусов двойных углов, синусов и косинусов суммы (разности), понижения степени. Формулы приведения не надо зубрить наизусть! Надо знать, как они получаются.

5) Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка . От нее и будем отсчитывать. Получим:

6) Получив ответ, проверьте его правильность. Просто подставьте найденные решения в исходное уравнение!

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие промежутку

Упростим левую часть по формуле приведения.

Вынесем за скобки. Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

б) Отметим на тригонометрическом круге найденные серии решений и отрезок

Видим, что указанному отрезку принадлежат решения

Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка От нее и отсчитываем.

2. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Это уравнение — комбинированное. Кроме тригонометрии, применяем свойства степеней.

Степени равны, их основания равны. Значит, равны и показатели.

Это ответ в пункте (а).

б) Отберем корни, принадлежащие отрезку

Отметим на тригонометрическом круге отрезок и найденные серии решений.

Видим, что указанному отрезку принадлежат точки и из серии

Точки серии не входят в указанный отрезок.

А из серии в указанный отрезок входит точка

Ответ в пункте (б):

3. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Применим формулу косинуса двойного угла:

Перенесем всё в левую часть уравнения и разложим по формуле разности квадратов.

Обратите внимание: мы отметили серии решений на тригонометрическом круге. Это помогло нам увидеть, как их записать одной формулой.

б) Для разнообразия отберем корни на отрезке с помощью двойного неравенства.

Какой способ отбора корней лучше — с помощью тригонометрического круга или с помощью двойного неравенства? У каждого из них есть «плюсы» и «минусы».

Пользуясь тригонометрическим кругом, вы не ошибетесь. Вы видите и интервал, и сами серии решений. Это наглядный способ.

Зато, если интервал больше, чем один круг, удобнее отбирать корни с помощью двойного неравенства. Например, надо найти корни из серии на отрезке Это больше 10 кругов! Конечно, в таком случае лучше решить двойное неравенство.

4. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Самое сложное здесь — область допустимых значений (ОДЗ). Условие заметно сразу. А условие появляется, поскольку в уравнении есть

Уравнение равносильно системе:

Отберем решения с помощью тригонометрического круга. Нам нужны те серии решений, для которых , то есть те, что соответствуют точкам справа от оси .

Ответ в пункте а)

б) Отметим на тригонометрическом круге найденные серии решений и отрезок

Как обычно, ориентируемся на начало круга. Видим, что указанному промежутку принадлежат точки

5. а) Решите уравнение

б) Найдите корни, принадлежащие отрезку

Выражение под корнем должно быть неотрицательно, а произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

Это значит, что уравнение равносильно системе:

Решим эту систему с помощью тригонометрического круга. Отметим на нем углы, для которых или . Заметим, что среди них находятся и углы, для которых

Числа серии не могут быть корнями исходного уравнения, т.к. для этих чисел не выполнено условие . Остальные серии решений нас устраивают.

Тогда в ответ в пункте (а) войдут серии решений:

б) Отберем корни, принадлежащие отрезку любым способом — с помощью тригонометрического круга или с помощью двойного неравенства.

Как решать тригонометрические уравнения принадлежащие отрезку

Методы решения тригонометрических уравнений.

1. Алгебраический метод.

( метод замены переменной и подстановки ).

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = – 1, y 2 = – 3, отсюда

1) tan x = –1, 2) tan x = –3,

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь – так называемый вспомогательный угол ), и наше уравнение прини мает вид:

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:

[spoiler title=”источники:”]

http://ege-study.ru/ru/ege/materialy/matematika/zadanie-12-profilnogo-ege-po-matematike-uravneniya/

http://www.sites.google.com/site/trigonometriavneskoly/metody-resenia-trigonometriceskih-uravnenij

[/spoiler]

Тригонометрические уравнения

  • Замена переменной и сведение к квадратному уравнению

  • Разложение на множители

  • Однородные уравнения

  • Введение дополнительного угла

  • Универсальная подстановка

  • Учет ОДЗ уравнения

  • Метод оценки

  • Тригонометрические уравнения повышенной сложности.
    Приемы решения

В данной статье мы расскажем об основных типах тригонометрических уравнений и методах их решения. Тригонометрические уравнения чаще всего встречаются в задаче 12 ЕГЭ.

В вариантах ЕГЭ задача, где нужно решить уравнение, состоит из двух пунктов. Первый пункт – решение самого уравнения. Второй – нахождение его корней на некотором отрезке.

Некоторые из методов (например, замена переменной или разложение на множители) являются универсальными, то есть применяются и в других разделах математики. Другие являются специфическими именно для тригонометрии.

Необходимых формул по тригонометрии не так уж и много. Учите наизусть!
Тригонометрические формулы.

Любой метод решения тригонометрических уравнений состоит в том, чтобы привести их к простейшим, то есть к уравнениям вида sin x = a, cos x = a, tg x = a, ctg x = a.

Если вы не помните, как решать простейшие тригонометрические уравнения, — читайте материал на нашем сайте: Простейшие тригонометрические уравнения, часть 1.

О том, что такое арксинус, арккосинус, арктангенс и арккотангенс, — еще одна статья на нашем сайте: Простейшие тригонометрические уравнения,часть 2.

Теперь — сами методы. Теория и примеры решения задач.

к оглавлению ▴

Замена переменной и сведение к квадратному уравнению

Это универсальный способ. Применяется в любых уравнениях — степенных, показательных, тригонометрических,  логарифмических, каких угодно. Замена не всегда видна сразу, и уравнение нужно сначала преобразовать.

1. а) Решите уравнение: 2cos^{2}x+5sinx=5.
б) Найдите корни уравнения, принадлежащие отрезку displaystyle left [ -frac{pi }{2}; 2pi right ].

Решение:

а) Рассмотрим уравнение 2cos^{2}x+5sinx=5.

Преобразуем его, применив основное тригонометрическое тождество:

2left ( 1-sin^{2} xright )+5sinx=5;

2sin^{2}x-5sinx+3=0.

Заменяя sin x на t, приходим к квадратному уравнению:

2t^{2}-5t+3=0.

Решая его, получим:

displaystyle t_{1}=frac{3}{2}, t_{2}=1.

Теперь вспоминаем, что мы обозначили за t. Первый корень приводит нас к уравнению displaystyle sinx=frac{3}{2}.
Оно не имеет решений, поскольку -1leq sinxleq 1.

Второй корень даёт простейшее уравнение sinx=1.

Решаем его: displaystyle x=frac{pi }{2}+2pi n, nin Z.

б) Найдем корни уравнения на отрезке displaystyle left [ -frac{pi }{2}; 2pi right ] с помощью двойного неравенства.

displaystyle -frac{pi }{2}leq frac{pi }{2}+2pi nleq 2pi .

Разделим обе части неравенства на pi :

displaystyle -frac{1}{2}leq frac{1}{2}+2nleq 2.

Вычтем displaystyle frac{1}{2} из обеих частей неравенства:

-1leq 2nleq 1,5.

Разделим на 2 обе части неравенства:

-0,5leq nleq 0,75.

Единственное целое решение – это n=0. Тогда displaystyle x=frac{pi }{2} — это единственный корень, который принадлежит отрезку displaystyle left [ -frac{pi }{2}; 2pi right ].

Ответ: displaystyle frac{pi }{2}.

2. а) Решите уравнение: cos2x-5sqrt{2}cosx-5=0.
б) Укажите корни этого уравнения, принадлежащие отрезку displaystyle left [ -3pi ; -frac{3pi }{2} right ].

Решение:

а) cos2x-5sqrt{2}cosx-5=0.

Выразим косинус двойного угла по формуле cos2x=2cos^{2}x-1.

Получим:

2cos^{2}x-1-5sqrt{2}cosx-5=0;

2cos^{2}x-5sqrt{2}cosx-6 =0.

Заменяя cos⁡x на t, приходим к квадратному уравнению:

2t^{2}-5sqrt{2}t-6=0;

D=50+48=98.

displaystyle t_{1}=-frac{sqrt{2}}{2}; t_{2}=3sqrt{2}.

1) displaystyle cosx=-frac{sqrt{2}}{2}; x=pm frac{3pi }{4}+2pi n, nin Z;

2) cosx=3sqrt{2}; нет решений, т. к. 3sqrt{2}textgreater 1.

Получим: displaystyle x=pm frac{3pi }{4}+2pi n, nin Z.

б) Отметим отрезок displaystyle left [ -3pi ; -frac{3pi }{2} right ] и найденные серии решений на единичной окружности.

Видим, что данному отрезку принадлежит только точка displaystyle x=-2pi -frac{3pi }{4}=-frac{11pi }{4}.

Ответ: а) displaystyle x=pm frac{3pi }{4}+2pi n, nin Z.
б) displaystyle -frac{11pi }{4}.

3. а) Решите уравнение: displaystyle 8sin^{2}x-2sqrt{3}cosleft ( frac{pi }{2}-x right )-9=0.
б) Найдите все корни этого уравнения, принадлежащие отрезку displaystyle left [ -frac{5pi }{2}; -pi right ].

Решение:

а)  Чтобы упростить уравнение displaystyle 8sin^{2}x-2sqrt{3}cosleft ( frac{pi }{2}-x right )-9=0, применяем формулу приведения.

Так как displaystyle cosleft ( frac{pi }{2}-x right )=sinx, получим:

displaystyle 8sin^{2}x-2sqrt{3}sinx-9=0.

Сделаем замену:  sinx=t.  Получим квадратное уравнение:

8t^{2}-2sqrt{3}t-9=0;

displaystyle frac{D}{4}=3+72=75.

displaystyle t_1={frac{3sqrt{3}}{4}}; t_{2}=-frac{sqrt{3}}{2}.

Сделаем обратную замену.

1) displaystyle sinx={frac{3sqrt{3}}{4}} — нет решений, т. к.  displaystyle {frac{3sqrt{3}}{4}}textgreater 1.

2) displaystyle sinx=-frac{sqrt{3}}{2}Leftrightarrow left[begin{array}{c}displaystyle x=-frac{pi }{3}+2pi k, kin Z\displaystyle x=-frac{2pi }{3}+2pi k\end{array}right. .

б) Найдем корни уравнения, принадлежащие отрезку displaystyle left [ -frac{5pi }{2}; -pi right ], с помощью двойного неравенства.

Для серии решений displaystyle x=-frac{pi }{3}+2pi k, kin Z получим:

displaystyle -frac{5pi }{2}leq -frac{pi }{3}+2pi kleq -pi;

displaystyle -frac{13}{12}leq kleq -frac{2}{6}.

Так как kin Z, то displaystyle k=-1; x=-frac{7pi }{3}.

Для серии решений displaystyle x=-frac{2pi }{3}+2pi k получим:

displaystyle -frac{5pi }{2}leq -frac{2pi }{3}+2pi kleq -pi; отсюда

displaystyle -frac{11}{12}leq kleq -frac{1}{6}.

У этого неравенства нет целых решенией, и значит, из второй серии ни одна точка в указанный отрезок не входит.

Ответ: а) displaystyle -frac{pi }{3}+2pi k; -frac{2pi }{3}+2pi k, kin Z.
б) displaystyle -frac{7pi }{3}.

к оглавлению ▴

Разложение на множители

Во многих случаях уравнение удаётся представить в таком виде, что в левой части стоит произведение двух или нескольких множителей, а в правой части — ноль. Произведение двух или нескольких множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю. Сложное уравнение, таким образом, распадается в совокупность более простых.

4. а) Решите уравнение: sin2x=cosx.
б) Найдите все корни уравнения на отрезке [-pi; pi ].

Решение:

а) Применяем формулу синуса двойного угла:

2sinxcosx=cosx.

Ни в коем случае не сокращайте на косинус! Ведь может случиться, что cos x обратится в нуль, и мы потеряем целую серию решений. Переносим всё в одну часть, и общий множитель выносим за скобки:

2sinxcosx-cosx=0;

cosxleft ( 2sinx-1 right )=0.

Полученное уравнение равносильно совокупности двух уравнений: cosx = 0 и 2sinx – 1 = 0.

Получим:

left[begin{array}{c}cosx=0\displaystyle sinx=frac{1}{2}\end{array}right. Leftrightarrow left[begin{array}{c}displaystyle x=frac{pi }{2}+2pi n, nin Z\\displaystyle x=frac{pi }{6}+2pi n\\displaystyle x=frac{5pi }{6}+2pi n\end{array}right. .

Все эти три серии решений являются ответом в части (а).

б) Отметим отрезок [-pi; pi ]. и найденные серии решений на единичной окружности.

Видим, что данному отрезку принадлежат точки displaystyle x_{1}=frac{pi }{6}; x_{2}=frac{5pi }{6}.

Ответ: а) displaystyle frac{pi }{6}+2pi n; frac{pi }{2}+2pi n; frac{5pi }{6}+2pi n, nin Z.
б) displaystyle frac{pi }{6}; frac{5pi }{6}.

5. а) Решите уравнение: sin3x+sin7x=2sin5x.
б) Найдите все корни уравнения на отрезке displaystyle left [ -frac{pi }{2}; pi right ].

Решение:

Применим формулу суммы синусов:

2sin5xcos2x=2sin5x.

Дальше действуем так же, как и в предыдущей задаче:

2sin5xcos2x-2sin5x=0;

2sin5xleft (cos2x-1 right )=0.

Решаем уравнение sin5x=0:

displaystyle x=frac{pi n}{5}, nin Z. (1)

Решаем уравнение cos2x-1=0:

x=pi n, nin Z (2)

Ну что, перечисляем обе серии (1) и (2) в ответе через запятую? Нет! Серия (2) является в данном случае частью серии (1). Действительно, если в формуле (1) число n кратно 5, то мы получаем все решения серии (2).

Поэтому ответ в пункте (а): displaystyle x=frac{pi n}{5}, nin Z.

б) Найдем корни уравнения, принадлежащие отрезку displaystyle left [ -frac{pi }{2}; pi right ], с помощью двойного неравенства:

displaystyle -frac{pi }{2}leq frac{pi n}{5}leq pi;

displaystyle -frac{5}{2}leq {n}leq 5.

Этот промежуток содержит 8 целых чисел: -2; -1; 0; 1; 2; 3; 4; 5.

Для каждого из этих n найдем x. Получим 8 решений на данном промежутке:

displaystyle -frac{2pi }{5}; -frac{pi }{5}; 0; frac{pi }{5}; frac{2pi }{5}; frac{3pi }{5}; frac{4pi }{5}; pi .

Ответ: а) displaystyle frac{pi n}{5}, nin Z.
б) displaystyle -frac{2pi }{5}; -frac{pi }{5}; 0; frac{pi }{5}; frac{2pi }{5}; frac{3pi }{5}; frac{4pi }{5}; pi .

6. В следующей задаче также применяется метод разложения на множители. Но это заметно не сразу.

а) Решите уравнение:sin^{2}2x+sin^{2}3x=1.
б) Найдите все корни уравнения на отрезке displaystyle left [ 0; frac{pi }{2} right ].

Решение:

Используем формулу понижения степени: displaystyle sin^{2}alpha =frac{1-cos2alpha }{2}.

Получаем:

displaystyle frac{1-cos4x}{2}+frac{1-cos6x}{2}=1;

cos4x+cos6x=0.

Применяем формулу суммы косинусов: displaystyle cosalpha +cosbeta =2cosfrac{alpha +beta }{2}cdot cosfrac{alpha -beta }{2}.

Получаем: 2cos5xcdot cosx=0.

Произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом имеет смысл. Уравнение равносильно совокупности:

left[begin{array}{c}cos5x=0\cosx=0\end{array}right.Leftrightarrow left[begin{array}{c}displaystyle 5x=frac{pi }{2}+pi n, nin Z\\displaystyle x=frac{pi }{2}+pi k, kin Z\end{array}right. Leftrightarrow left[begin{array}{c}displaystyle x=frac{pi }{10}+frac{pi n}{5}, nin Z\\displaystyle x=frac{pi }{2}+pi k, kin Z\end{array}right. .

б) Найдем корни уравнения, принадлежащие отрезку displaystyle left [ 0; frac{pi }{2} right ], с помощью двойного неравенства:

1) displaystyle 0leq frac{pi }{10}+frac{pi n}{5}leq frac{pi }{2}.

Решив неравенство, получим: -0,5leq nleq 2,5.

Так как n ∈ Z, получим для n целые значения: 0, 1, 2.

Им соответствуют решения: displaystyle frac{pi }{10}; frac{3pi }{10}; frac{pi }{2}.

2) Из серии решений displaystyle frac{pi }{2}+pi k, kin Z на указанном отрезке лежит только корень displaystyle x=frac{pi }{2}. Но он уже входит в первую серию решений.

Можно также заметить, что вся вторая серия решений является подмножеством первой.

Ответ: а) displaystyle frac{pi }{10}+frac{pi n}{5}, nin Z.
б) displaystyle frac{pi }{10}; frac{3pi }{10}; frac{pi }{2}.

к оглавлению ▴

Однородные уравнения

7. а) Решите уравнение: sin^{2}x+2sinxcosx-3cos^{2}x=0.
б) Найдите все корни уравнения на отрезке displaystyle left [ -frac{3pi }{2}; frac{pi }{2} right ].

Решение:

Такое уравнение называется однородным.

Степень каждого слагаемого в левой части равна двум. Точно так же, как в обычном многочлене a^{2}+2ab-3b^{2}, степень каждого слагаемого равна двум. Мы помним, что степень одночлена — это сумма степеней входящих в него сомножителей.

Для однородных уравнений существует стандартный приём решения — деление обеих его частей на cos^{2}x.

Возможность этого деления, однако, должна быть обоснована: а что, если косинус равен нулю?

Следующий абзац предлагаем выучить наизусть и всегда прописывать его при решении однородных уравнений.

Предположим, что cosx = 0. Тогда в силу уравнения и sinx = 0, что противоречит основному тригонометрическому тождеству. Следовательно, любое решение данного уравнения удовлетворяет условию cosx neq 0, и мы можем поделить обе его части на cos^{2}x.

В результате деления приходим к равносильному квадратному уравнению относительно тангенса: tg^{2}x+2tgx-3=0.

Сделаем замену: tgx=t, получим:

left[begin{array}{c}tgx=-3 \tgx=1\end{array}right. Leftrightarrow left[begin{array}{c}x=-arctg3+pi k, kin Z \displaystyle x=frac{pi }{4}+pi k, kin Z\end{array}right..

б) Отметим отрезок displaystyle left [ -frac{3pi }{2}; frac{pi }{2} right ] и найденные серии решений на единичной окружности.

О том, как отметить на единичной окружности точки из первой серии решений, то есть арктангенс минус трех, читайте здесь: Простейшие тригонометрические уравнения, часть 2.

Видим, что данному отрезку принадлежат  точки:

x_{1}=-pi -arctg3;

displaystyle x_{2}=-pi +frac{pi }{4}=-frac{3pi }{4};

x_{3}= -arctg3;

displaystyle x_{4}=frac{pi }{4}.

Ответ: а) displaystyle -arctg3+pi k; frac{pi }{4}+pi k, kin Z.
б) -pi -arctg3; displaystyle -frac{3pi }{4}; -arctg3; frac{pi }{4}.

8. а) Решите уравнение: 10sin^{2}x+5sinxcosx+cos^{2}x=3.
б) Найдите все корни уравнения на отрезке displaystyle left [ 0; frac{pi }{2} right ].

Если бы в правой части стоял нуль, уравнение было бы однородным. Мы поправим ситуацию изящным приёмом: заменим число 3 на выражение 3(sin^{2}x+cos^{2}x):

10sin^{2}x+5sinxcosx+cos^{2}x=3(sin^{2}x+cos^{2}x);

7sin^{2}x+5sinxcosx-2cos^{2}x=0.

Получили однородное уравнение второй степени.

Так как не существует такой точки на единичной окружности, в которой одновременно синус и косинус равнялись бы нулю, мы разделим обе части уравнения на cos^{2}xneq 0.

Получим: 7tg^{2}x+5tgx-2=0.

Выполним замену: tgx = y, получим:

7y^{2}x+5y-2=0.

D=25+56=81;

displaystyle y_{1,2}=frac{-5pm 9}{14};left[begin{array}{c}y=-1\displaystyle y=frac{2}{7}\end{array}right. .

Обратная замена: left[begin{array}{c}tgx=-1\displaystyle tgx=frac{2}{7}\end{array}right. Leftrightarrow left[begin{array}{c}displaystyle x=-frac{pi }{4}+pi k, kin Z\displaystyle x=arctgfrac{2}{7}+pi k, kin Z\end{array}right. .

Ответом в пункте (а) являются  две серии решений.

б) Найдем корни уравнения, принадлежащие отрезку displaystyle left [ 0; frac{pi }{2} right ], с помощью единичной окружности. Для этого отметим на ней данный отрезок и  найденные серии решений.

Видим, что данному отрезку принадлежит только точка displaystyle x_1=arctgfrac{2}{7}.

Ответ: а) displaystyle  -frac{pi }{4}+pi k; arctgfrac{2}{7}+pi k, kin Z.
б) displaystyle arctgfrac{2}{7}.

к оглавлению ▴

Введение дополнительного угла

Этот метод применяется для уравнений вида acosx + bsinx=c. Он присутствует в школьных учебниках. Правда, в них рассматриваются только частные случаи — когда числа a и b являются значениями синуса и косинуса углов в 30°, 45° или 60°.

9. а) Решим уравнение: sqrt{3}sinx+cosx=2.
б) Найдите все корни уравнения на отрезке [0; 3pi ].

Решение:

Делим обе части на 2:

displaystyle frac{sqrt{3}}{2}sinx+frac{1}{2}cosx=1.

Замечаем, что displaystyle frac{sqrt{3}}{2}=cosfrac{pi }{6}; frac{1}{2}=sinfrac{pi }{6}:

displaystyle cosfrac{pi }{6}sinx+sinfrac{pi }{6}cosx=1.

В левой части получили синус суммы:

displaystyle sinleft ( x+frac{pi }{6} right )=1, отсюда displaystyle x+frac{pi }{6}=frac{pi }{2}; x=frac{pi }{3}+2pi n, nin Z.

б) Отметим на единичной окружности отрезок [0; 3pi ]. и найденные серии решений.

Обратите внимание, что в этой задаче отрезок больше, чем полный круг. Как нам поступить? Один из способов – нарисовать рядом две окружности.


Видим, что данному отрезку принадлежат точки: displaystyle x_{1}=frac{pi }{3}; x_{2}=2pi +frac{pi }{3}=frac{7pi }{3}.

Ответ: а) displaystyle frac{pi }{3}+2pi n, nin Z.
б) displaystyle frac{pi }{3}; frac{7pi }{3}.

Другой пример.

10. а) Решите уравнение: cosx+sinx=1.
б) Найдите все корни уравнения на отрезке [0; pi ].

Решение:

Делим обе части на sqrt{2}:

displaystyle frac{1}{sqrt{2}}cosx+frac{1}{sqrt{2}}sinx=frac{1}{sqrt{2}}.

Сделаем теперь для разнообразия в левой части косинус разности:

displaystyle cosfrac{pi }{4}cosx+sinfrac{pi }{4}sinx=frac{1}{sqrt{2}};

displaystyle cosleft ( x-frac{pi }{4} right )=frac{1}{sqrt{2}};

displaystyle x-frac{pi }{4}=pm frac{pi }{4}+2pi n;

displaystyle x_{1}=frac{pi }{2}+2pi n; x_{2}=2pi n, nin Z.

б) Найдем корни уравнения, принадлежащие отрезку [0; pi ] с помощью единичной окружности. Отметим на ней данный отрезок и найденные серии решений.

Видим, что данному отрезку принадлежат  точки 0 и displaystyle frac{pi }{2}.

Ответ: а) displaystyle frac{pi }{2}+2pi n; 2pi n, nin Z.
б) 0; displaystyle frac{pi }{2}.

Покажем, как применяется метод введения дополнительного угла в общем случае.

Рассмотрим  уравнение acosx+bsinx=c.

Делим обе части на sqrt{a^{2}+b^{2}}:

displaystyle frac{a}{sqrt{a^{2}+b^{2}}}cosx+frac{b}{sqrt{a^{2}+b^{2}}}sinx=frac{c}{sqrt{a^{2}+b^{2}}}. (4)

Для чего мы выполнили это деление? Всё дело в получившихся коэффициентах при косинусе и синусе. Легко видеть, что сумма их квадратов равна единице:

displaystyle left ( frac{a}{sqrt{a^{2}+b^{2}}} right )^{2}+left ( frac{b}{sqrt{a^{2}+b^{2}}} right )^{2}=1.

Это означает, что данные коэффициенты сами являются косинусом и синусом некоторого угла :

displaystyle frac{a}{sqrt{a^{2}+b^{2}}}=cosalpha , frac{b}{sqrt{a^{2}+b^{2}}}=sinalpha.

Соотношение (4) тогда приобретает вид:

displaystyle cosalpha cosx+sinalpha sinx=frac{c}{sqrt{a^{2}+b^{2}}}

или

displaystyle cos(x-alpha )=frac{c}{sqrt{a^{2}+b^{2}}}.

Исходное уравнение сведено к простейшему. Теперь понятно, почему рассматриваемый метод называется введением дополнительного угла. Этим дополнительным углом как раз и является угол alpha .

к оглавлению ▴

Универсальная подстановка

Запомним две важные формулы:

Их ценность в том, что они позволяют выразить синус и косинус через одну и ту же функцию — тангенс половинного угла. Именно поэтому они получили название универсальной тригонометрической подстановки. 

Единственная неприятность, о которой не надо забывать: правые части этих формул не определены при . Поэтому если применение универсальной подстановки приводит к сужению ОДЗ, то данную серию нужно проверить непосредственно.

11. а) Решите уравнение: 
б) Найдите все корни уравнения на отрезке [0; pi ].

Решение:

Выражаем , используя универсальную тригонометрическую подстановку:

Делаем замену  :

Получаем кубическое уравнение:

Оно имеет единственный корень .

Стало быть, , откуда .

Сужения ОДЗ в данном случае не было, так как уравнение с самого начала содержало .

б) Найдем корни уравнения, принадлежащие отрезку [0; pi ],   с помощью двойного неравенства:

displaystyle 0leq frac{pi }{4}+pi nleq pi , nin Z;

displaystyle -frac{1}{4}leq nleq frac{3}{4}.

Получим, что displaystyle n=0; x=frac{pi }{4}.

Ответ: а) displaystyle frac{pi }{4}+pi n, nin Z.
б) displaystyle frac{pi }{4}.

Универсальная тригонометрическая подстановка может также пригодиться при решении задач по планиметрии из второй части ЕГЭ. Поэтому формулы лучше выучить.

к оглавлению ▴

Учет ОДЗ уравнения

12. а) Рассмотрим уравнение: 
б) Найдите все корни уравнения на отрезке displaystyle left [ -frac{pi }{2}; frac{3pi }{2} right ].

Решение:

Перепишем уравнение в виде, пригодном для возведения в квадрат:

Тогда наше уравнение равносильно системе:

Решаем уравнение системы:

,

,

Второе уравнение данной совокупности не имеет решений, а первое даёт две серии:

Теперь нужно произвести отбор решений в соответствии с неравенством . Серия  не удовлетворяет этому неравенству, а серия удовлетворяет ему. Следовательно, решением исходного уравнения служит только серия .

Ответ в пункте (а):  .

б) Найдем корни уравнения, принадлежащие отрезку displaystyle left [ -frac{pi }{2}; frac{3pi }{2} right ], с помощью двойного неравенства:

displaystyle frac{-pi }{2}leq -frac{pi }{3}+2pi nleq frac{3pi }{2};

displaystyle -frac{1}{12}leq nleq frac{11}{12}.

Неравенство имеет единственное целое решение n=0.

Тогда displaystyle x=-frac{pi }{3}.

Ответ: а) displaystyle -frac{pi }{3}+2pi n, nin Z.
б) displaystyle -frac{pi }{3}.

Мы рассмотрели основные методы решения тригонометрических уравнений, которые применяются в задаче 12 ЕГЭ.

Где же еще нам могут встретиться тригонометрические уравнения? Конечно, в задачах с параметрами. Или на олимпиадах по математике. Сейчас мы увидим еще несколько полезных приемов решения.

к оглавлению ▴

Метод оценки

В некоторых уравнениях на помощь приходят оценки .

13. Рассмотрим уравнение: 

Так как оба синуса не превосходят единицы, данное равенство может быть выполнено лишь в том случае, когда они равны единице одновременно:

Таким образом, должны одновременно выполняться следующие равенства:

Обратите внимание, что сейчас речь идёт о пересечении множества решений (а не об их объединении, как это было в случае разложения на множители). Нам ещё предстоит понять, какие значения x удовлетворяют обоим равенствам. Имеем:

Умножаем обе части на 90 и сокращаем на π:

;

;

Правая часть, как видим, должна делиться на 5. Число n при делении на 5 может давать остатки от 0 до 4; иначе говоря, число n может иметь один из следующих пяти видов: 5n, 5m + 1, 5m + 2, 5m + 3 и 5m + 4, где. Для того, чтобы 9n+ 1 делилось на 5, годится лишь n = 5m + 1.

Искать k, в принципе, уже не нужно. Сразу находим x:

Ответ:

14. Рассмотрим уравнение: 

Ясно, что данное равенство может выполняться лишь в двух случаях: когда оба синуса одновременно равны 1 или −1. Действуя так, мы должны были бы поочерёдно рассмотреть две системы уравнений.

Лучше поступить по-другому: умножим обе части на 2 и преобразуем левую часть в разность косинусов:

;

Тем самым мы сокращаем работу вдвое, получая лишь одну систему:

Имеем:

Ищем пересечение:

Умножаем на 21 и сокращаем на π:

Данное равенство невозможно, так как в левой части стоит чётное число, а в правой — нечётное.

Ответ: решений нет.

Это был тренировочный пример. А в задачах ЕГЭ решения есть всегда.

Посмотрите, как применяется метод оценки в задачах с параметрами.

15. Страшное с виду уравнение  также решается методом оценок.

В самом деле, из неравенства  следует, что .

Следовательно, , причём равенство возможно в том и только в том случае, когда

left{begin{matrix}sin^{5}x=sin^{2}x\cos^{8}x=cos^{2}x\end{matrix}right. .

Остаётся решить полученную систему. Это не сложно.

Перенесем в левую часть и вынесем общий множитель за скобки ,  получим:

left{begin{matrix}sin^{2}x(sin^{3}x-1)=0 \cos^{2}x(cos^{6}x-1)=0 \end{matrix}right. .

Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом имеет смысл.

Каждое уравнение равносильно совокупности:

left{begin{matrix}left[begin{array}{c}sinx=0\sinx=1\end{array}right. \left[begin{array}{c}cosx=0\cosx=1\cosx=-1\end{array}right. \end{matrix}right. .

Это значит, что синус угла х равен нулю, а его косинус равен 0, 1 или -1.

Или синус угла х равен 1, а косинус этого угла равен 0, 1 или -1.

Такие углы легко найти на тригонометрическом круге. Найденные серии решений запишем в ответ.

Ответ: displaystyle 2pi n; frac{pi }{2}+2pi n; pi +2pi n, nin Z.

к оглавлению ▴

Тригонометрические уравнения повышенной сложности.
Приемы решения

16. Рассмотрим такое уравнение: 

Сделаем замену .

Как выразить  через t? Имеем:

,

откуда . Получаем:

t^{2}-1=t+1;

t^{2}-t-2=0;

t_{1}=-1; t_{2}=2.

left[begin{array}{c}cosx+sinx=-1\cosx+sinx=2\end{array}right. .

Начнем со второго уравнения.

Так как -1leq sinxleq 1 и  -1leq cosxleq 1, то их сумма может быть равна 2, только оба слагаемых равны 1. Но на единичной окружности не существует точки, в которой одновременно синус и косинус равен единице. Значит, второе уравнение корней не имеет.

Решим первое уравнение методом введения дополнительного угла.

Для этого разделим обе части уравнения на sqrt{2} и получим:

displaystyle cosx+sinx=-1Leftrightarrow frac{1}{sqrt{2}}cosx+frac{1}{sqrt{2}}sinx=-frac{1}{sqrt{2}}Leftrightarrow

displaystyle Leftrightarrow cosxcdot cosfrac{pi }{4}+sinxcdot sinfrac{pi }{4}=-frac{1}{sqrt{2}}Leftrightarrow cosleft ( x+frac{pi }{4} right )=-frac{1}{sqrt{2}}Leftrightarrow

displaystyle Leftrightarrow x+frac{pi }{4}=pm frac{3pi }{4}+2pi k, kin Z;

left[begin{array}{c}displaystyle x=frac{pi }{2}+2pi k, kin Z\x=-pi +2pi k, kin Z\end{array}right. .

Ответ: displaystyle frac{pi }{2}+2pi k; -pi +2pi k, kin Z.

17. Помним формулы косинуса и синуса тройного угла:

,

Вот, например, уравнение:

Оно сводится к уравнению относительно :

,

,

Произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом имеет смысл. Уравнение равносильно совокупности:

left[begin{array}{c}sinx=0\4sin^{2}x+4sinx-3=0\end{array}right. .

Решим второе уравнение с помощью замены sinx = t.

Получим: displaystyle 4t^{2}+4t-3=0; D=16+48=64; t=-frac{3}{2} или  displaystyle t=frac{1}{2}.

Обратная замена:

left[begin{array}{c}displaystyle sinx=-frac{3}{2}\\displaystyle sinx=frac{1}{2}\end{array}right. Leftrightarrow left[begin{array}{c}xin O \\displaystyle x=frac{pi }{6}+2pi n, nin Z\\displaystyle x=frac{5pi }{6}+2pi n, nin Z\end{array}right. .

А решением первого уравнения sinx = 0 являются числа вида x=pi k, kin Z.

Ответ: displaystyle pi k, kin Z; frac{pi }{6}+2pi n; frac{5pi }{6}+2pi n, nin Z.

Интересно, что формулы синуса и косинуса тройного угла также могут пригодиться вам в решении задач по планиметрии из второй части ЕГЭ.

18. Как бороться с суммой четвёртых степеней синуса и косинуса?

Рассмотрим уравнение: 

Выделяем полный квадрат!

;

;

;

;

;

;

19. А как быть с суммой шестых степеней?

Рассмотрим такое уравнение: 

Раскладываем левую часть на множители как сумму кубов: .

Получим:

;

С суммой четвёртых степеней вы уже умеете обращаться.

Мы рассмотрели основные методы решения тригонометрических уравнений. Знать их нужно обязательно, это — необходимая база.

В более сложных и нестандартных задачах нужно ещё догадаться, как использовать те или иные методы. Это приходит только с опытом. Именно этому мы и учим на наших занятиях.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Тригонометрические уравнения» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Содержание:

При изучении физических процессов, связанных с гармоническими колебаниями, рассматривают функцию Тригонометрические уравнения - формулы и примеры с решением

Например. Тригонометрические уравнения - формулы и примеры с решением

Одна из задач, которую решают при изучении процесса колебания, заключается в том, чтобы найти моменты времени Тригонометрические уравнения - формулы и примеры с решением в которые амплитуда колебания достигает некоторого значения, например равного 2. Для решения этой задачи нужно решить уравнение: Тригонометрические уравнения - формулы и примеры с решением Это уравнение относится к тригонометрическим.

Рассмотрим методы решения тригонометрических уравнений.

Что такое тригонометрические уравнения

Тригонометрические уравнения — это уравнения вида Тригонометрические уравнения - формулы и примеры с решением

Например, уравнения Тригонометрические уравнения - формулы и примеры с решением являются простейшими тригонометрическими уравнениями.

Уравнение sin x=a

  1. При Тригонометрические уравнения - формулы и примеры с решением или Тригонометрические уравнения - формулы и примеры с решением уравнение Тригонометрические уравнения - формулы и примеры с решением не имеет корней, так как множеством значений функции Тригонометрические уравнения - формулы и примеры с решением является промежуток Тригонометрические уравнения - формулы и примеры с решениемНапример, уравнения Тригонометрические уравнения - формулы и примеры с решением не имеют корней.
  2. Рассмотрим частные случаи решения уравнения Тригонометрические уравнения - формулы и примеры с решением

а) Решим уравнение Тригонометрические уравнения - формулы и примеры с решением Синус числа равен нулю (т. е. ордината соответствующей числу точки равна нулю) только в двух точках единичной окружности (рис. 104). Эти точки получены из точки Тригонометрические уравнения - формулы и примеры с решением в результате поворотов на углы Тригонометрические уравнения - формулы и примеры с решением или Тригонометрические уравнения - формулы и примеры с решением

Таким образом, получим, что Тригонометрические уравнения - формулы и примеры с решением при Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

б) Решим уравнение Тригонометрические уравнения - формулы и примеры с решением Синус числа равен 1 для Тригонометрические уравнения - формулы и примеры с решением поскольку ордината точки Тригонометрические уравнения - формулы и примеры с решением равна 1 (рис. 105). Учитывая периодичность функции Тригонометрические уравнения - формулы и примеры с решением получим, что Тригонометрические уравнения - формулы и примеры с решением

в) Решим уравнение Тригонометрические уравнения - формулы и примеры с решением Синус числа равен -1 для Тригонометрические уравнения - формулы и примеры с решением поскольку ордината точки Тригонометрические уравнения - формулы и примеры с решением равна -1 (рис. 106). В соответствии со свойством периодичности функции синус получим, что все решения уравнения Тригонометрические уравнения - формулы и примеры с решением это числа вида Тригонометрические уравнения - формулы и примеры с решением

3. Решим уравнение Тригонометрические уравнения - формулы и примеры с решениемили Тригонометрические уравнения - формулы и примеры с решением

Рассмотрим решение уравнения Тригонометрические уравнения - формулы и примеры с решением на промежутке Тригонометрические уравнения - формулы и примеры с решением равном периоду функции Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

На промежутке возрастания функции Тригонометрические уравнения - формулы и примеры с решением принадлежащем этому периоду, существует единственное значение аргумента, при котором значение функции равно Тригонометрические уравнения - формулы и примеры с решением это Тригонометрические уравнения - формулы и примеры с решением (рис. 107). На промежутке убывания функции Тригонометрические уравнения - формулы и примеры с решением из этого периода существует единственное значение аргумента, Рис. 107 при котором значение функции равно Тригонометрические уравнения - формулы и примеры с решением это Тригонометрические уравнения - формулы и примеры с решением (см. рис. 107). Учитывая периодичность функции Тригонометрические уравнения - формулы и примеры с решением получим все решения этого уравнения:

Тригонометрические уравнения - формулы и примеры с решением

Запишем полученные решения в виде

Тригонометрические уравнения - формулы и примеры с решением

и объединим эти две формулы в одну: Тригонометрические уравнения - формулы и примеры с решением Из нее при четном Тригонометрические уравнения - формулы и примеры с решением получаем формулу (1), а при нечетном — формулу (2).

Тригонометрические уравнения - формулы и примеры с решением

Таким образом, получены все решения уравнения Тригонометрические уравнения - формулы и примеры с решением при любых значениях Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Пример №1

Решите уравнение:

Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением

Решение:

а) Так как Тригонометрические уравнения - формулы и примеры с решением то уравнение Тригонометрические уравнения - формулы и примеры с решением не имеет корней.

Ответ: нет корней.

Тригонометрические уравнения - формулы и примеры с решением Умножим обе части этого уравнения на 5 и получим: Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением Разделим обе части этого уравнения на 3 и получим: Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

г) Так как Тригонометрические уравнения - формулы и примеры с решением то для решения уравнения Тригонометрические уравнения - формулы и примеры с решением воспользуемся формулой корней тригонометрического уравнения Тригонометрические уравнения - формулы и примеры с решением Тогда Тригонометрические уравнения - формулы и примеры с решением Разделим обе части этого уравнения на 2 и получим: Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

д) Так как Тригонометрические уравнения - формулы и примеры с решением то по формуле корней тригонометрического уравнения Тригонометрические уравнения - формулы и примеры с решением получим: Тригонометрические уравнения - формулы и примеры с решением

Ответ. Тригонометрические уравнения - формулы и примеры с решением

Уравнение cos x=a

1. При Тригонометрические уравнения - формулы и примеры с решением уравнение Тригонометрические уравнения - формулы и примеры с решением не имеет корней, так как множеством значений функции Тригонометрические уравнения - формулы и примеры с решением является промежуток Тригонометрические уравнения - формулы и примеры с решением

Например, уравнения Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением не имеют корней.

2. Частные случаи решения уравнения Тригонометрические уравнения - формулы и примеры с решением отмечены на единичной окружности (рис. 108) и приведены в таблице.

Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

3. Решим уравнение Тригонометрические уравнения - формулы и примеры с решением т. е. для Тригонометрические уравнения - формулы и примеры с решением или Тригонометрические уравнения - формулы и примеры с решением

Рассмотрим решение уравнения Тригонометрические уравнения - формулы и примеры с решением на промежутке Тригонометрические уравнения - формулы и примеры с решением

Для Тригонометрические уравнения - формулы и примеры с решением существует единственное значение аргумента, при котором значение функции Тригонометрические уравнения - формулы и примеры с решением равно Тригонометрические уравнения - формулы и примеры с решением это Тригонометрические уравнения - формулы и примеры с решением оно является единственным решением уравнения Тригонометрические уравнения - формулы и примеры с решением на этом промежутке (рис. 109).

Тригонометрические уравнения - формулы и примеры с решением

Так как функция Тригонометрические уравнения - формулы и примеры с решением четная, то Тригонометрические уравнения - формулы и примеры с решением также является решением этого уравнения.

Учитывая периодичность функции Тригонометрические уравнения - формулы и примеры с решением получим все решения этого уравнения: Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Таким образом, получены все решения уравнения Тригонометрические уравнения - формулы и примеры с решением при любых значениях Тригонометрические уравнения - формулы и примеры с решением

Представим их в виде таблицы. Тригонометрические уравнения - формулы и примеры с решением

Пример №2

Решите уравнение:

Тригонометрические уравнения - формулы и примеры с решением

Решение:

а) Так как Тригонометрические уравнения - формулы и примеры с решением то уравнение Тригонометрические уравнения - формулы и примеры с решением не имеет корней.

Ответ: нет корней.

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Ответ:Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

г) Для решения уравнения Тригонометрические уравнения - формулы и примеры с решением воспользуемся четностью функции косинус и получим уравнение Тригонометрические уравнения - формулы и примеры с решением

Так как Тригонометрические уравнения - формулы и примеры с решением то для решения уравнения Тригонометрические уравнения - формулы и примеры с решениемприменим фор-мулу корней тригонометрического уравнения Тригонометрические уравнения - формулы и примеры с решением и получимТригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

д) Так как Тригонометрические уравнения - формулы и примеры с решением то по формуле корней тригонометрического уравнения Тригонометрические уравнения - формулы и примеры с решением получим:Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Уравнение tg x=a

Множеством значений функции Тригонометрические уравнения - формулы и примеры с решением является промежуток Тригонометрические уравнения - формулы и примеры с решением

Рассмотрим решение уравнения Тригонометрические уравнения - формулы и примеры с решением на промежутке Тригонометрические уравнения - формулы и примеры с решением При любом Тригонометрические уравнения - формулы и примеры с решением на промежутке Тригонометрические уравнения - формулы и примеры с решением существует единственное значение аргумента, при котором значение функции Тригонометрические уравнения - формулы и примеры с решением равно Тригонометрические уравнения - формулы и примеры с решением это Тригонометрические уравнения - формулы и примеры с решением оно является единственным решением уравнения Тригонометрические уравнения - формулы и примеры с решением на этом промежутке (рис. 110). Учитывая периодичность функции Тригонометрические уравнения - формулы и примеры с решением получим все решения этого уравнения: Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Пример №3

Решите уравнение:

Тригонометрические уравнения - формулы и примеры с решением

Решение:

а) По формуле Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением получим: Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решениемОтвет: Тригонометрические уравнения - формулы и примеры с решением

в) Для решения уравнения Тригонометрические уравнения - формулы и примеры с решением воспользуемся нечетностью функции тангенс и получим: Тригонометрические уравнения - формулы и примеры с решением Тогда Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Уравнение ctg x=a

Множеством значений функции Тригонометрические уравнения - формулы и примеры с решением является промежуток Тригонометрические уравнения - формулы и примеры с решением

Все решения уравнения Тригонометрические уравнения - формулы и примеры с решением можно найти по формуле Тригонометрические уравнения - формулы и примеры с решением (рис. 111).

Тригонометрические уравнения - формулы и примеры с решением

Пример №4

Решите уравнение:

Тригонометрические уравнения - формулы и примеры с решением

Решение:

а) По формуле Тригонометрические уравнения - формулы и примеры с решением получим: Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения при решении, как правило, сводятся к простейшим.

Виды тригонометрических уравнений

Уравнения, в которых можно выполнить замену переменной

Рассмотрим уравнения вида

Тригонометрические уравнения - формулы и примеры с решением где Тригонометрические уравнения - формулы и примеры с решением — некоторые действительные числа, Тригонометрические уравнения - формулы и примеры с решением — одна из тригонометрических функций.

Например, решим уравнение Тригонометрические уравнения - формулы и примеры с решением Введем новую переменную Тригонометрические уравнения - формулы и примеры с решением тогда данное уравнение можно записать в виде Тригонометрические уравнения - формулы и примеры с решениемРешим полученное квадратное уравнение:

Тригонометрические уравнения - формулы и примеры с решением

Подставим найденные значения Тригонометрические уравнения - формулы и примеры с решением в равенство Тригонометрические уравнения - формулы и примеры с решением и получим простейшие тригонометрические уравнения: Тригонометрические уравнения - формулы и примеры с решением

Решения первого уравнения совокупности: Тригонометрические уравнения - формулы и примеры с решением

Решения второго уравнения: Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Однородные тригонометрические уравнения

Однородные тригонометрические уравнения второй степени — это уравнения, которые можно привести к виду Тригонометрические уравнения - формулы и примеры с решением где Тригонометрические уравнения - формулы и примеры с решением – некоторые действительные числа, Тригонометрические уравнения - формулы и примеры с решением

Заметим, что в однородном уравнении Тригонометрические уравнения - формулы и примеры с решением В противном случае, если Тригонометрические уравнения - формулы и примеры с решением то уравнение принимает вид Тригонометрические уравнения - формулы и примеры с решением а значит, Тригонометрические уравнения - формулы и примеры с решением но равенства Тригонометрические уравнения - формулы и примеры с решением одновременно выполняться не могут.

Решим уравнение Тригонометрические уравнения - формулы и примеры с решением

Разделим обе части уравнения на Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением и получим уравнение Тригонометрические уравнения - формулы и примеры с решением

Выполнив замену переменной Тригонометрические уравнения - формулы и примеры с решением получим квадратное уравнение Тригонометрические уравнения - формулы и примеры с решением корнями которого являются числа Тригонометрические уравнения - формулы и примеры с решением

Значит, Тригонометрические уравнения - формулы и примеры с решением

Решим уравнение Тригонометрические уравнения - формулы и примеры с решением и получим Тригонометрические уравнения - формулы и примеры с решением

Корнями уравнения Тригонометрические уравнения - формулы и примеры с решением являются числа Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Примеры заданий и их решения

Пример №5

Решите уравнение:

Тригонометрические уравнения - формулы и примеры с решением

Решение:

а) Поскольку Тригонометрические уравнения - формулы и примеры с решением то по формуле Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением имеем: Тригонометрические уравнения - формулы и примеры с решением Разделим обе части этого уравнения на 4 и получим: Тригонометрические уравнения - формулы и примеры с решением

б) Так как функция синус является нечетной функцией, то данное уравнение равносильно уравнению Тригонометрические уравнения - формулы и примеры с решением Умножим обе части этого уравнения на Тригонометрические уравнения - формулы и примеры с решением и получим уравнение Тригонометрические уравнения - формулы и примеры с решением

Тогда Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением

в) Поскольку Тригонометрические уравнения - формулы и примеры с решением то для решения данного уравнения воспользуемся формулой Тригонометрические уравнения - формулы и примеры с решением и получим:

Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением Умножим обе части этого уравнения на 2 и получим: Тригонометрические уравнения - формулы и примеры с решением

г) Воспользуемся четностью функции косинус и получим уравнение Тригонометрические уравнения - формулы и примеры с решением равносильное данному. Тогда Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением Разделим обе части уравнения на 10 и получим: Тригонометрические уравнения - формулы и примеры с решением

д) Запишем уравнение Тригонометрические уравнения - формулы и примеры с решением и по формуле Тригонометрические уравнения - формулы и примеры с решением получим: Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

е) Воспользуемся нечетностью функции котангенс и получим уравнение Тригонометрические уравнения - формулы и примеры с решением По формуле Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Пример №6

Решите уравнение:

Тригонометрические уравнения - формулы и примеры с решением

Решение:

а) Используем основное тригонометрическое тождество и заменим Тригонометрические уравнения - формулы и примеры с решением Тогда уравнение примет вид: Тригонометрические уравнения - формулы и примеры с решением Пусть Тригонометрические уравнения - формулы и примеры с решением тогда Тригонометрические уравнения - формулы и примеры с решением

Подставим найденные значения Тригонометрические уравнения - формулы и примеры с решением в равенство Тригонометрические уравнения - формулы и примеры с решением получим и решим простейшие тригонометрические уравнения:

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

б) Так как Тригонометрические уравнения - формулы и примеры с решением то уравнение можно записать в виде Тригонометрические уравнения - формулы и примеры с решением

Пусть Тригонометрические уравнения - формулы и примеры с решением тогда

Тригонометрические уравнения - формулы и примеры с решением

Подставим найденные значения Тригонометрические уравнения - формулы и примеры с решением в равенство Тригонометрические уравнения - формулы и примеры с решением получим и решим совокупность простейших тригонометрических уравнений:

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Пример №7

Решите уравнение:

Тригонометрические уравнения - формулы и примеры с решением

Решение:

Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Второе уравнение совокупности не имеет корней, поскольку Тригонометрические уравнения - формулы и примеры с решением Тогда sin х Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Пример №8

Решите уравнение:

Тригонометрические уравнения - формулы и примеры с решением

Решение:

а) Уравнение Тригонометрические уравнения - формулы и примеры с решением является однородным уравнением первой степени. Так как значения переменной, при которых Тригонометрические уравнения - формулы и примеры с решением не являются корнями данного уравнения, то разделим обе части уравнения на Тригонометрические уравнения - формулы и примеры с решением и получим:

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

б) Воспользуемся основным тригонометрическим тождеством и получим: Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением Разделим обе части уравнения на Тригонометрические уравнения - формулы и примеры с решением Тогда Тригонометрические уравнения - формулы и примеры с решением Пусть Тригонометрические уравнения - формулы и примеры с решением тогда Тригонометрические уравнения - формулы и примеры с решением Таким образом, Тригонометрические уравнения - формулы и примеры с решением Ответ: Тригонометрические уравнения - формулы и примеры с решением

Пример №9

Найдите (в градусах) наименьший положительный корень уравнения Тригонометрические уравнения - формулы и примеры с решением

Решение:

Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением Наименьший положительный корень уравнения равен Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Простейшие тригонометрические уравнения

Уравнения вида Тригонометрические уравнения - формулы и примеры с решением являются простейшими тригонометрическими уравнениями.

Уравнение sin х = а

Область изменения синуса отрезок [-1; 1]. Поэтому, при |а| > 1 уравнение sin х = а не имеет решений. Рассмотрим случай Тригонометрические уравнения - формулы и примеры с решением. В одной системе координат построим графики функций у = sin х и у = а. Тригонометрические уравнения - формулы и примеры с решением

Как видно, существует бесконечно много точек, в которых прямая

у = а пересекает синусоиду. Это говорит о том, что при Тригонометрические уравнения - формулы и примеры с решением уравнение sin х = а имеет бесконечно много корней. Так как синус является периодической функцией, то достаточно найти корни на промежутке длиной в один период, т.е. на Тригонометрические уравнения - формулы и примеры с решением. По графику видно, что при Тригонометрические уравнения - формулы и примеры с решением уравнение sin х = а на отрезке Тригонометрические уравнения - формулы и примеры с решением имеет два корня. К тому же выводу можно придти и при движении точки но окружности. На целом периоде, для одного и того же значения синуса, можно найти два угла.

Тригонометрические уравнения - формулы и примеры с решением

Если один из углов поворота равен а , тогда другой будет Тригонометрические уравнения - формулы и примеры с решением . Остальные решения уравнения Тригонометрические уравнения - формулы и примеры с решением можно получить добавив к ним целое число оборотов. Значит, если а решение уравнения sin х = а, тогда все решения данного уравнения записываются в виде Тригонометрические уравнения - формулы и примеры с решением. Эти два семейства решений иногда задаются одной формулой вида Тригонометрические уравнения - формулы и примеры с решением и при Тригонометрические уравнения - формулы и примеры с решением (чётном) получаем решения I семейства, при Тригонометрические уравнения - формулы и примеры с решением (нечётном ) получаем решения II семейства. При Тригонометрические уравнения - формулы и примеры с решением уравнение sin х = а на отрезке Тригонометрические уравнения - формулы и примеры с решением имеет корень Тригонометрические уравнения - формулы и примеры с решением, тогда все решения данного уравнения можно найти по формулам: Тригонометрические уравнения - формулы и примеры с решением и Тригонометрические уравнения - формулы и примеры с решением. Эти формулы можно объединить и записать в виде Тригонометрические уравнения - формулы и примеры с решением.

Пример №10

Сколько корней имеет уравнение Тригонометрические уравнения - формулы и примеры с решением на отрезке Тригонометрические уравнения - формулы и примеры с решением?

Решение. Запишем решение уравнения Тригонометрические уравнения - формулы и примеры с решением и найдём корни при Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

При других значениях параметра Тригонометрические уравнения - формулы и примеры с решением не принадлежат заданному отрезку.

Пример №11

Решим уравнение Тригонометрические уравнения - формулы и примеры с решением .

Решение.

т.к. Тригонометрические уравнения - формулы и примеры с решением

Ещё проще можно найти решения уравнения

sin х = а при а = 0, а = 1, а = -1.

Тригонометрические уравнения - формулы и примеры с решением

Это можно увидеть и на единичной окружности.

Тригонометрические уравнения - формулы и примеры с решением

Пример №12

Решим уравнение Тригонометрические уравнения - формулы и примеры с решением

Решение. Выполним следующую замену: Тригонометрические уравнения - формулы и примеры с решением

Получаем уравнение Тригонометрические уравнения - формулы и примеры с решением. Решением будет Тригонометрические уравнения - формулы и примеры с решением. Принимая во внимание замену, имеем: Тригонометрические уравнения - формулы и примеры с решением

Отсюда: Тригонометрические уравнения - формулы и примеры с решением, Тригонометрические уравнения - формулы и примеры с решением

Пример №13

Решим уравнение Тригонометрические уравнения - формулы и примеры с решением.

Решение. Здесь х угол выражен в градусах. Тогда решения уравнения можно записать так: Тригонометрические уравнения - формулы и примеры с решением.

Уравнение cos х = а

Аналогичным образом, при |а| > 1 уравнение cosx = а не имеет корней. При Тригонометрические уравнения - формулы и примеры с решением уравнение имеет бесконечное множество корней. Как по графику, так и по единичной окружности видно, что на отрезке, длиной в один период (т.е. Тригонометрические уравнения - формулы и примеры с решением) уравнение Тригонометрические уравнения - формулы и примеры с решением имеет два корня.

Тригонометрические уравнения - формулы и примеры с решением

Если Тригонометрические уравнения - формулы и примеры с решением является корнем уравнения Тригонометрические уравнения - формулы и примеры с решением, тогда Тригонометрические уравнения - формулы и примеры с решением также является корнем, так как Тригонометрические уравнения - формулы и примеры с решением. Таким образом, если известно,что Тригонометрические уравнения - формулы и примеры с решением является одним из корней уравнения Тригонометрические уравнения - формулы и примеры с решением, то решения этого уравнения можно найти по формулам Тригонометрические уравнения - формулы и примеры с решением и Тригонометрические уравнения - формулы и примеры с решением. Иногда эти две формулы объединяют и записывают в виде Тригонометрические уравнения - формулы и примеры с решением. При Тригонометрические уравнения - формулы и примеры с решением корень уравнения Тригонометрические уравнения - формулы и примеры с решением на отрезке Тригонометрические уравнения - формулы и примеры с решением равен Тригонометрические уравнения - формулы и примеры с решением. Тогда все корни можно найти по формуле: Тригонометрические уравнения - формулы и примеры с решением

Пример №14

Решим уравнение Тригонометрические уравнения - формулы и примеры с решением.

Решение: Один из корней уравнения Тригонометрические уравнения - формулы и примеры с решением .

Тогда все корни будут Тригонометрические уравнения - формулы и примеры с решением.

Решения можно записать так: Тригонометрические уравнения - формулы и примеры с решением.

Пример №15

Решим уравнение Тригонометрические уравнения - формулы и примеры с решением.

Решение: Тригонометрические уравнения - формулы и примеры с решением

Так как Тригонометрические уравнения - формулы и примеры с решением, получаем:Тригонометрические уравнения - формулы и примеры с решением Еще проще можно найти решение уравнения Тригонометрические уравнения - формулы и примеры с решением

при Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Это можно увидеть по изображению на единичной окружности.

Тригонометрические уравнения - формулы и примеры с решением

Пример №16

Решим уравнение Тригонометрические уравнения - формулы и примеры с решением.

Выполним замену Тригонометрические уравнения - формулы и примеры с решением: Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

Принимая во внимание замену, имеем: Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

1) Запишите решения уравнений, принадлежащих промежутку Тригонометрические уравнения - формулы и примеры с решением. Тригонометрические уравнения - формулы и примеры с решением Рассмотрим общие решения каждого из двух уравнений вида Тригонометрические уравнения - формулы и примеры с решением. На единичной окружности существуют две точки с ординатами Тригонометрические уравнения - формулы и примеры с решением . Этим точкам соответствуют углы Тригонометрические уравнения - формулы и примеры с решением и Тригонометрические уравнения - формулы и примеры с решением.

Тригонометрические уравнения - формулы и примеры с решением

Решение уравнения:

Тригонометрические уравнения - формулы и примеры с решением а)В случае, если Тригонометрические уравнения - формулы и примеры с решением, данному интервалу

удовлетворяют только значения х равные Тригонометрические уравнения - формулы и примеры с решением и Тригонометрические уравнения - формулы и примеры с решением :

Тригонометрические уравнения - формулы и примеры с решением б)В случае, если Тригонометрические уравнения - формулы и примеры с решением, если х удовлетворяет условию Тригонометрические уравнения - формулы и примеры с решением, то

Тригонометрические уравнения - формулы и примеры с решением и на данном интервале существуют следующие решения: Тригонометрические уравнения - формулы и примеры с решением

Уравнения tg x = a и ctg x=a

Уравнения Тригонометрические уравнения - формулы и примеры с решением

На промежутке Тригонометрические уравнения - формулы и примеры с решением решением уравнения Тригонометрические уравнения - формулы и примеры с решением является Тригонометрические уравнения - формулы и примеры с решением. Так как основной период функции Тригонометрические уравнения - формулы и примеры с решением равен Тригонометрические уравнения - формулы и примеры с решением то, все решения уравнения Тригонометрические уравнения - формулы и примеры с решением можно задать формулой: Тригонометрические уравнения - формулы и примеры с решением.

То, что решение верно показано на рисунке, при помощи точек пересечения графиков функций Тригонометрические уравнения - формулы и примеры с решением. Тригонометрические уравнения - формулы и примеры с решением

Аналогично можно показать, что все решения уравнения Тригонометрические уравнения - формулы и примеры с решением имеют вид Тригонометрические уравнения - формулы и примеры с решением

Пример №17

Решим уравнение Тригонометрические уравнения - формулы и примеры с решением.

Решение: Выполним замену Тригонометрические уравнения - формулы и примеры с решением

Получим уравнение Тригонометрические уравнения - формулы и примеры с решением . Решение этого уравнения будет Тригонометрические уравнения - формулы и примеры с решением

Принимая во внимание замену получим:

Тригонометрические уравнения - формулы и примеры с решением

Пример №18

Решим уравнение Тригонометрические уравнения - формулы и примеры с решением.

Решение: Выполнив замену Тригонометрические уравнения - формулы и примеры с решением, получим: Тригонометрические уравнения - формулы и примеры с решением

Так как Тригонометрические уравнения - формулы и примеры с решением, то Тригонометрические уравнения - формулы и примеры с решением.

Из замены следует, что Тригонометрические уравнения - формулы и примеры с решением. Разделив обе части на

3 получим все решения уравнения Тригонометрические уравнения - формулы и примеры с решением в виде

Тригонометрические уравнения - формулы и примеры с решением.

Пример №19

Решим уравнение Тригонометрические уравнения - формулы и примеры с решением .

Для решения уравнения такого типа используйте калькулятор.

Если после нажатия кнопки Тригонометрические уравнения - формулы и примеры с решением ввести число 0,75, то при нажатой кнопке Degree получим значение 36,87°. Так как тангенс является периодической функцией, то значения 36,87° + 180°, 36,87° – 180°, 36,87° + 360°, 36,87° – 360°, 36,87° + 540°, 36,87° – 540° также соответствуют значениям тангенса равным 0,75. Таким образом, решение уравнения в общем виде записывается так:Тригонометрические уравнения - формулы и примеры с решением.

Решение уравнения при помощи кнопки Radian будет иметь вид:

Тригонометрические уравнения - формулы и примеры с решением.

Решения уравнений вида Тригонометрические уравнения - формулы и примеры с решением можно получить при помощи равенств:

Тригонометрические уравнения - формулы и примеры с решением

Пример №20

Решим уравнение Тригонометрические уравнения - формулы и примеры с решением.

Решение. Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решениемОбщее решения уравнения Тригонометрические уравнения - формулы и примеры с решением.

Тригонометрические уравнения - формулы и примеры с решением – решения уравнения Тригонометрические уравнения - формулы и примеры с решением на промежутке Тригонометрические уравнения - формулы и примеры с решением.

Пример №21

Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Решение: На единичной окружности точкам Тригонометрические уравнения - формулы и примеры с решением соответствуют два угла поворота: Тригонометрические уравнения - формулы и примеры с решением . Так как период равен Тригонометрические уравнения - формулы и примеры с решением, то значения Тригонометрические уравнения - формулы и примеры с решением тангенс принимает в точках равноудаленных друг от друга на расстояние Тригонометрические уравнения - формулы и примеры с решением, то есть Тригонометрические уравнения - формулы и примеры с решением.

Значит решения уравнения Тригонометрические уравнения - формулы и примеры с решением на интервале Тригонометрические уравнения - формулы и примеры с решением , можно найти по правилу.

Тригонометрические уравнения - формулы и примеры с решением

Пример №22

Тригонометрические уравнения - формулы и примеры с решением

Решение: Запишем уравнение в виде Тригонометрические уравнения - формулы и примеры с решением.

Общее решение уравнения Тригонометрические уравнения - формулы и примеры с решением имеет вид: Тригонометрические уравнения - формулы и примеры с решением.

Отсюда получаем: Тригонометрические уравнения - формулы и примеры с решением

Если Тригонометрические уравнения - формулы и примеры с решением по условию , тогда Тригонометрические уравнения - формулы и примеры с решением .

Разделим каждую сторону на Тригонометрические уравнения - формулы и примеры с решением.

Подставим полученные значения Тригонометрические уравнения - формулы и примеры с решением= 1; 2;3 в формулу Тригонометрические уравнения - формулы и примеры с решением

получим корни заданного уравнения: Тригонометрические уравнения - формулы и примеры с решением; 2Тригонометрические уравнения - формулы и примеры с решением; ЗТригонометрические уравнения - формулы и примеры с решением.

Методы решения тригонометрических уравнений

Решение любого тригонометрического уравнения сводится к решению простейших тригонометрических уравнений. Рассмотрим основные методы решения тригонометрических уравнений на следующих примерах.

Метод разложения на множители

Пример №23

Решим уравнение Тригонометрические уравнения - формулы и примеры с решением.

Решение:

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Обратите внимание, что в различных семействах решений параметры Тригонометрические уравнения - формулы и примеры с решением отмечаются разными буквами.

Пример №24

Решим уравнение Тригонометрические уравнения - формулы и примеры с решением и найдём корни, расположенные на промежутке Тригонометрические уравнения - формулы и примеры с решением.

Решение:

Тригонометрические уравнения - формулы и примеры с решением

Каждый множитель приравниваем к нулю и находим х (если это возможно).Тригонометрические уравнения - формулы и примеры с решением

Решение уравнении в общем виде: Тригонометрические уравнения - формулы и примеры с решением.

Корни уравнении, расположенные на отрезке Тригонометрические уравнения - формулы и примеры с решением.

Метод введении новой переменной

Пример №25

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением.

Решение однородных уравнений

Если Тригонометрические уравнения - формулы и примеры с решением и все члены входящие в уравнению являются одночленами одинаковой степени относительно а и b, то такие уравнения называются однородными.

Пример №26

Тригонометрические уравнения - формулы и примеры с решением

Если нет общего множителя, то обе части однородного уравнения можно разделить на большую степень cos х.

Пример №27

Тригонометрические уравнения - формулы и примеры с решением

Здесь Тригонометрические уравнения - формулы и примеры с решением, так как если Тригонометрические уравнения - формулы и примеры с решением , то Тригонометрические уравнения - формулы и примеры с решением, а это противоречит тождеству Тригонометрические уравнения - формулы и примеры с решением. Значит Тригонометрические уравнения - формулы и примеры с решением . Обе стороны уравнения можно разделить на cos х: Тригонометрические уравнения - формулы и примеры с решением

Здесь Тригонометрические уравнения - формулы и примеры с решением

Применение формулы понижения степени

Пример №28

Решим уравнение Тригонометрические уравнения - формулы и примеры с решением

Решение:

Здесь удобно применить формулу понижения степени Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Метод введении вспомогательного угла

Уравнения вида Тригонометрические уравнения - формулы и примеры с решением (при Тригонометрические уравнения - формулы и примеры с решением) удобно решить введя вспомогательный угол разделив обе части уравнения на число Тригонометрические уравнения - формулы и примеры с решением.

Пример №29

Тригонометрические уравнения - формулы и примеры с решением

Здесь Тригонометрические уравнения - формулы и примеры с решением.

Разделим обе части уравнения на 2:

Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Пример №30

Сколько корней имеет уравнение Тригонометрические уравнения - формулы и примеры с решением на отрезке Тригонометрические уравнения - формулы и примеры с решением?

Решение: Тригонометрические уравнения - формулы и примеры с решением

Для параметра Тригонометрические уравнения - формулы и примеры с решением ни одно из значений найденных корней не содержится в заданном отрезке.

Тригонометрические уравнения - формулы и примеры с решением и Тригонометрические уравнения - формулы и примеры с решением корни уравнения на отрезке Тригонометрические уравнения - формулы и примеры с решением при Тригонометрические уравнения - формулы и примеры с решением = 0. Для заданного параметра Тригонометрические уравнения - формулы и примеры с решением на заданном отрезке не существует других корней.

Ответ: два корня.

Убедится в правильности решения можно построив графики функций Тригонометрические уравнения - формулы и примеры с решением и Тригонометрические уравнения - формулы и примеры с решением при помощи граф калькулятора. Точки пересечения графиков будут являться решением.

Тригонометрические уравнения - формулы и примеры с решением

Система тригонометрических уравнений

Рассмотрим решение системы уравнений, одно из которых алгебраическое, а другое уравнение – тригонометрическое.

Пример №31

Решите систему уравнений Тригонометрические уравнения - формулы и примеры с решением

Решение: выполнив замену Тригонометрические уравнения - формулы и примеры с решением второе уравнение системы перепишем в виде: Тригонометрические уравнения - формулы и примеры с решением

По формулам приведения Тригонометрические уравнения - формулы и примеры с решением Тогда получим однородное уравнение: Тригонометрические уравнения - формулы и примеры с решением

Разделим каждый член на Тригонометрические уравнения - формулы и примеры с решением Получим Тригонометрические уравнения - формулы и примеры с решением

Решением уравнения Тригонометрические уравнения - формулы и примеры с решением является Тригонометрические уравнения - формулы и примеры с решением

Выполним замену Тригонометрические уравнения - формулы и примеры с решением т. е. Тригонометрические уравнения - формулы и примеры с решением

Таким образом, решением данной системы будет

Тригонометрические уравнения - формулы и примеры с решением

Как видно, множество целых значений данной системы зависит только от одного параметра Тригонометрические уравнения - формулы и примеры с решением

Обычно решение систем тригонометрических уравнений с двумя переменными зависит от двух параметров.

Пример №32

Решите систему уравнений Тригонометрические уравнения - формулы и примеры с решением

Решение: разложим левую часть второго уравнения на множители и, учитывая первое уравнение, получим следующую систему

Тригонометрические уравнения - формулы и примеры с решением

Здесь Тригонометрические уравнения - формулы и примеры с решением

Решениями данных уравнений являются

Тригонометрические уравнения - формулы и примеры с решением

Тогда решение системы будет

Тригонометрические уравнения - формулы и примеры с решением

Понятие тригонометрического уравнения

Понятие обратной функции:

Если функция Тригонометрические уравнения - формулы и примеры с решениемпринимает каждое свое значение в единственной точке ее области определения, то можно задать функцию Тригонометрические уравнения - формулы и примеры с решением которая называется обратной к функции Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Функции Тригонометрические уравнения - формулы и примеры с решением взаимно обратные.

Тригонометрические уравнения - формулы и примеры с решением

Свойства обратной функции:

  1. Графики прямой и обратной функций симметричны относительно прямой Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением
  2. Если функция Тригонометрические уравнения - формулы и примеры с решением возрастает (убывает) на некотором промежутке, то она имеет обратную функцию на этом промежутке, которая возрастает, если Тригонометрические уравнения - формулы и примеры с решением возрастает, и убывает, если Тригонометрические уравнения - формулы и примеры с решением убывает.Тригонометрические уравнения - формулы и примеры с решением

Объяснение и обоснование:

Понятие обратной функции

Известно, что зависимость пути от времени движения тела, которое движется равномерно с постоянной скоростью Тригонометрические уравнения - формулы и примеры с решением выражается формулой Тригонометрические уравнения - формулы и примеры с решением Из этой формулы можно найти обратную зависимость — времени от пройденного пути Тригонометрические уравнения - формулы и примеры с решением Функцию Тригонометрические уравнения - формулы и примеры с решением называют обратной к функции Тригонометрические уравнения - формулы и примеры с решением Отметим, что в рассмотренном примере каждому значению Тригонометрические уравнения - формулы и примеры с решением соответствует единственное значение Тригонометрические уравнения - формулы и примеры с решением и, наоборот, каждому значению Тригонометрические уравнения - формулы и примеры с решением соответствует единственное значение Тригонометрические уравнения - формулы и примеры с решением

Рассмотрим процедуру получения обратной функции в общем виде.

Пусть функция Тригонометрические уравнения - формулы и примеры с решением принимает каждое свое значение в единственной точке ее области определения (такая функция называется обратимой). Тогда для каждого числа Тригонометрические уравнения - формулы и примеры с решением (из области значений функции Тригонометрические уравнения - формулы и примеры с решением существует единственное значение Тригонометрические уравнения - формулы и примеры с решением такое, что Тригонометрические уравнения - формулы и примеры с решением Рассмотрим новую функцию Тригонометрические уравнения - формулы и примеры с решением которая каждому числу Тригонометрические уравнения - формулы и примеры с решением из области значений функции Тригонометрические уравнения - формулы и примеры с решением ставит в соответствие число Тригонометрические уравнения - формулы и примеры с решением то есть Тригонометрические уравнения - формулы и примеры с решением для каждого числа Тригонометрические уравнения - формулы и примеры с решением из области значений функции Тригонометрические уравнения - формулы и примеры с решением В этом случае функция Тригонометрические уравнения - формулы и примеры с решением называется обратной к функции Тригонометрические уравнения - формулы и примеры с решением а функция Тригонометрические уравнения - формулы и примеры с решением — обратной к функции Тригонометрические уравнения - формулы и примеры с решением Поэтому говорят, что функции Тригонометрические уравнения - формулы и примеры с решением взаимно обратные.

Из определения обратной функции вытекает, что область значений прямой функции Тригонометрические уравнения - формулы и примеры с решением является областью определения обратной функции Тригонометрические уравнения - формулы и примеры с решением а область определения прямой функции Тригонометрические уравнения - формулы и примеры с решением является областью значений обратной функции Тригонометрические уравнения - формулы и примеры с решением

То есть:

Тригонометрические уравнения - формулы и примеры с решением

Свойства обратной функции

Свойство 1. Графики прямой и обратной функций симметричны относительно прямой Тригонометрические уравнения - формулы и примеры с решением

Учитывая приведенную выше процедуру построения функции, обратной к функции Тригонометрические уравнения - формулы и примеры с решением имеем: если Тригонометрические уравнения - формулы и примеры с решением то по определению графика функции точка Тригонометрические уравнения - формулы и примеры с решением с координатами Тригонометрические уравнения - формулы и примеры с решением принадлежит графику функции Тригонометрические уравнения - формулы и примеры с решением Аналогично, поскольку Тригонометрические уравнения - формулы и примеры с решением то точка Тригонометрические уравнения - формулы и примеры с решением с координатами Тригонометрические уравнения - формулы и примеры с решением принадлежит графику функции Тригонометрические уравнения - формулы и примеры с решением Точки Тригонометрические уравнения - формулы и примеры с решением расположены на координатной плоскости симметрично относительно прямой Тригонометрические уравнения - формулы и примеры с решением (рис. 84).

Действительно, прямая Тригонометрические уравнения - формулы и примеры с решением является осью симметрии системы координат.

Таким образом, при симметрии относительно этой прямой ось Тригонометрические уравнения - формулы и примеры с решением отображается на ось Тригонометрические уравнения - формулы и примеры с решением а ось Тригонометрические уравнения - формулы и примеры с решением — на ось Тригонометрические уравнения - формулы и примеры с решением Тогда (например, при Тригонометрические уравнения - формулы и примеры с решением и Тригонометрические уравнения - формулы и примеры с решением прямоугольник Тригонометрические уравнения - формулы и примеры с решением со сторонами Тригонометрические уравнения - формулы и примеры с решением на осях координат отображается на прямоугольник Тригонометрические уравнения - формулы и примеры с решением со сторонами на осях координат Тригонометрические уравнения - формулы и примеры с решением

Следовательно, при симметрии относительно прямой Тригонометрические уравнения - формулы и примеры с решением точка Тригонометрические уравнения - формулы и примеры с решением отображается в точку Тригонометрические уравнения - формулы и примеры с решением (а точка Тригонометрические уравнения - формулы и примеры с решением — в точку Тригонометрические уравнения - формулы и примеры с решением

Таким образом, при симметрии относительно прямой Тригонометрические уравнения - формулы и примеры с решением любая точка Тригонометрические уравнения - формулы и примеры с решением принадлежащая графику функции Тригонометрические уравнения - формулы и примеры с решением имеет соответствующую точку Тригонометрические уравнения - формулы и примеры с решением принадлежащую графику функции Тригонометрические уравнения - формулы и примеры с решением а любая точка Тригонометрические уравнения - формулы и примеры с решением которая принадлежит графику функции Тригонометрические уравнения - формулы и примеры с решением имеет соответствующую точку Тригонометрические уравнения - формулы и примеры с решением принадлежащую графику функции Тригонометрические уравнения - формулы и примеры с решением То есть графики взаимно обратных функций симметричны относительно прямой Тригонометрические уравнения - формулы и примеры с решением

Свойство 2. Если функция Тригонометрические уравнения - формулы и примеры с решением возрастает (убывает) на некотором промежутке, то она имеет обратную функцию на этом промежутке, которая возрастает, если Тригонометрические уравнения - формулы и примеры с решением возрастает, и убывает, если Тригонометрические уравнения - формулы и примеры с решением убывает.

Действительно, если функция Тригонометрические уравнения - формулы и примеры с решением возрастает (убывает) на некотором промежутке, то по свойству возрастающей (убывающей) функции каждое свое значение она принимает в единственной точке из этого промежутка (с. 14), таким образом, она имеет обратную функцию Тригонометрические уравнения - формулы и примеры с решением на этом промежутке.

Обосновать, что функция Тригонометрические уравнения - формулы и примеры с решением возрастает, если Тригонометрические уравнения - формулы и примеры с решением возрастает, можно методом от противного.

Пусть числа Тригонометрические уравнения - формулы и примеры с решением входят в область определения функции Тригонометрические уравнения - формулы и примеры с решением и Тригонометрические уравнения - формулы и примеры с решением

Обозначим Тригонометрические уравнения - формулы и примеры с решением Если функция Тригонометрические уравнения - формулы и примеры с решением возрастает, то Тригонометрические уравнения - формулы и примеры с решением то есть Тригонометрические уравнения - формулы и примеры с решением По определению обратной функции Тригонометрические уравнения - формулы и примеры с решением числа Тригонометрические уравнения - формулы и примеры с решением входят в ее область определения иТригонометрические уравнения - формулы и примеры с решением

Если допустить, что функция Тригонометрические уравнения - формулы и примеры с решением не является возрастающей, то из неравенства Тригонометрические уравнения - формулы и примеры с решением не может вытекать неравенство Тригонометрические уравнения - формулы и примеры с решением (иначе функция Тригонометрические уравнения - формулы и примеры с решением будет возрастающей), таким образом, может выполняться только неравенство Тригонометрические уравнения - формулы и примеры с решением Но тогда по формулам (2) получаем Тригонометрические уравнения - формулы и примеры с решением что противоречит условию (1).

Таким образом, наше предположение неверно, и функция Тригонометрические уравнения - формулы и примеры с решением возрастает, если функция Тригонометрические уравнения - формулы и примеры с решением возрастает. Аналогично обосновывается, что в случае, когда функция Тригонометрические уравнения - формулы и примеры с решением убывает, обратная к ней функция Тригонометрические уравнения - формулы и примеры с решением тоже убывает.

Практический прием нахождения формулы функции, обратной к функции y=f(x)

Из определения обратной функции следует, что для получения обратной зависимости необходимо знать, как значение Тригонометрические уравнения - формулы и примеры с решением выражается через значение Тригонометрические уравнения - формулы и примеры с решением Это можно сделать, решив уравнение Тригонометрические уравнения - формулы и примеры с решением относительно переменной Тригонометрические уравнения - формулы и примеры с решением Если заданная функция обратима, то уравнение будет иметь единственное решение для всех Тригонометрические уравнения - формулы и примеры с решением из области значений функции Тригонометрические уравнения - формулы и примеры с решением и мы получим формулу Тригонометрические уравнения - формулы и примеры с решениемкоторая задает обратную функцию. Но в этой формуле аргумент обозначен через Тригонометрические уравнения - формулы и примеры с решением а функция — через Тригонометрические уравнения - формулы и примеры с решением Если поменять обозначения на традиционные, то получим запись функции, обратной к функции Тригонометрические уравнения - формулы и примеры с решением

Эти рассуждения вместе с соответствующим алгоритмом приведены в таблице 25 и реализованы в решении следующих задач.

Практический прием нахождения формулы функции, обратной функции Тригонометрические уравнения - формулы и примеры с решением:

Алгоритм нахождения функции Тригонометрические уравнения - формулы и примеры с решением

  1. Выяснить, будет ли функция Тригонометрические уравнения - формулы и примеры с решением обратимой на всей области определения: для этого достаточно выяснить, имеет ли уравнение Тригонометрические уравнения - формулы и примеры с решением единственный корень относительно переменной Тригонометрические уравнения - формулы и примеры с решением Если нет, то попытаться выделить промежуток, где существует обратная функция (например, это может быть промежуток, где функция Тригонометрические уравнения - формулы и примеры с решением возрастает или убывает).
  2. Из равенства Тригонометрические уравнения - формулы и примеры с решением выразить Тригонометрические уравнения - формулы и примеры с решением через Тригонометрические уравнения - формулы и примеры с решением
  3. В полученной формуле ввести традиционные обозначения: аргумент обозначить через Тригонометрические уравнения - формулы и примеры с решением а функцию — через Тригонометрические уравнения - формулы и примеры с решением

Пример №33

Найдите функцию, обратную к функции Тригонометрические уравнения - формулы и примеры с решением

Решение:

Из равенства Тригонометрические уравнения - формулы и примеры с решением можно однозначно выразить Тригонометрические уравнения - формулы и примеры с решением через Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Эта формула задает обратную функцию, но в ней аргумент обозначен через Тригонометрические уравнения - формулы и примеры с решением а функция — через Тригонометрические уравнения - формулы и примеры с решением

Обозначим в полученной формуле аргумент через Тригонометрические уравнения - формулы и примеры с решением а функцию — через Тригонометрические уравнения - формулы и примеры с решением

Получаем функцию Тригонометрические уравнения - формулы и примеры с решением обратную к функции Тригонометрические уравнения - формулы и примеры с решением

Пример №34

Найдите функцию, обратную к функции Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

На всей области определения Тригонометрические уравнения - формулы и примеры с решением заданная функция обратима, поскольку из уравнения Тригонометрические уравнения - формулы и примеры с решением можно однозначно выразить Тригонометрические уравнения - формулы и примеры с решением через Тригонометрические уравнения - формулы и примеры с решением в области значений заданной функции). Полученная формула Тригонометрические уравнения - формулы и примеры с решением задает обратную функцию, но в ней аргумент обозначен через Тригонометрические уравнения - формулы и примеры с решением а функция — через Тригонометрические уравнения - формулы и примеры с решением

Изменяя обозначения на традиционные, получаем конечный результат.

Решение:

Область определения: Тригонометрические уравнения - формулы и примеры с решением Тогда из равенства Тригонометрические уравнения - формулы и примеры с решением имеем

Тригонометрические уравнения - формулы и примеры с решением

Обозначим аргумент через Тригонометрические уравнения - формулы и примеры с решением а функцию — через Тригонометрические уравнения - формулы и примеры с решением и получим функцию Тригонометрические уравнения - формулы и примеры с решением обратную к заданной.

Пример №35

Найдите функцию, обратную к функции Тригонометрические уравнения - формулы и примеры с решением

Решение:

Из равенства Тригонометрические уравнения - формулы и примеры с решением при Тригонометрические уравнения - формулы и примеры с решением получаем Тригонометрические уравнения - формулы и примеры с решением Тогда при Тригонометрические уравнения - формулы и примеры с решением одному значению Тригонометрические уравнения - формулы и примеры с решением соответствуют два значения Тригонометрические уравнения - формулы и примеры с решением Таким образом, на всей области определения Тригонометрические уравнения - формулы и примеры с решением функция Тригонометрические уравнения - формулы и примеры с решением не является обратимой, и для нее нельзя найти обратную функцию.

Комментарий:

Область значений заданной функции: Тригонометрические уравнения - формулы и примеры с решением Но при Тригонометрические уравнения - формулы и примеры с решением из равенства Тригонометрические уравнения - формулы и примеры с решением нельзя однозначно выразить Тригонометрические уравнения - формулы и примеры с решением через Тригонометрические уравнения - формулы и примеры с решением Например, при Тригонометрические уравнения - формулы и примеры с решением получаем Тригонометрические уравнения - формулы и примеры с решением Вследствие этого мы не можем значению Тригонометрические уравнения - формулы и примеры с решением поставить в соответствие единственное число, чтобы построить обратную функцию.

Пример №36

Найдите функцию, обратную к функции Тригонометрические уравнения - формулы и примеры с решением

Решение:

Из равенства Тригонометрические уравнения - формулы и примеры с решением получаем Тригонометрические уравнения - формулы и примеры с решением Учитывая, что по условию Тригонометрические уравнения - формулы и примеры с решением имеем Тригонометрические уравнения - формулы и примеры с решением

Обозначим аргумент через Тригонометрические уравнения - формулы и примеры с решением а функцию — через Тригонометрические уравнения - формулы и примеры с решением и получим, что функцией, обратной к функции Тригонометрические уравнения - формулы и примеры с решением которая задана только при Тригонометрические уравнения - формулы и примеры с решением будет функция Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Множество значений заданной функции: Тригонометрические уравнения - формулы и примеры с решением При Тригонометрические уравнения - формулы и примеры с решением заданная функция Тригонометрические уравнения - формулы и примеры с решением возрастает, таким образом, на промежутке Тригонометрические уравнения - формулы и примеры с решением она имеет обратную функцию, а значит, на этом промежутке уравнение Тригонометрические уравнения - формулы и примеры с решением мы сможем решить однозначно: при Тригонометрические уравнения - формулы и примеры с решением имеем Тригонометрические уравнения - формулы и примеры с решением

Эта формула задает обратную функцию, но в ней аргумент обозначен через Тригонометрические уравнения - формулы и примеры с решением а функция — через Тригонометрические уравнения - формулы и примеры с решением Изменяя обозначения на традиционные, получаем конечный результат.

Замечание. В примерах 2 и 3 мы фактически рассматриваем различные функции (они имеют разные области определения), хотя в обоих случаях эти функции задаются одной и той же формулой. Как известно, графиком функции Тригонометрические уравнения - формулы и примеры с решением (пример 2) является парабола, а графиком функции Тригонометрические уравнения - формулы и примеры с решением при Тригонометрические уравнения - формулы и примеры с решением (пример 3) является только правая ветвь этой параболы (рис. 85).

Тригонометрические уравнения - формулы и примеры с решением

Обратные тригонометрические функции

Для получения обратных тригонометрических функций для каждой тригонометрической функции выделяется промежуток, на котором она возрастает (или убывает). Для обозначения обратных тригонометрических функций перед соответствующей функцией ставится буквосочетание «агс» (читается: «арк»).

Функция y=arcsin x

График Тригонометрические уравнения - формулы и примеры с решением:

Тригонометрические уравнения - формулы и примеры с решением

На промежутке Тригонометрические уравнения - формулы и примеры с решением возрастает.

ГрафикТригонометрические уравнения - формулы и примеры с решением:

Тригонометрические уравнения - формулы и примеры с решением

Значение Тригонометрические уравнения - формулы и примеры с решением

Ориентир:

Тригонометрические уравнения - формулы и примеры с решениемэто такое число из промежутка Тригонометрические уравнения - формулы и примеры с решением синус которого равен Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Пример:

Тригонометрические уравнения - формулы и примеры с решением так как Тригонометрические уравнения - формулы и примеры с решением

Нечетность функции y=arcsin x:

Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

Объяснение и обоснование:

График функции y=arcsin x

Функция Тригонометрические уравнения - формулы и примеры с решением возрастает на промежутке Тригонометрические уравнения - формулы и примеры с решением и принимает все значения от Тригонометрические уравнения - формулы и примеры с решением Следовательно, на этом промежутке функция Тригонометрические уравнения - формулы и примеры с решением имеет обратную функцию, которая обозначается

Тригонометрические уравнения - формулы и примеры с решением с областью определения Тригонометрические уравнения - формулы и примеры с решением и областью значений Тригонометрические уравнения - формулы и примеры с решением

Функция Тригонометрические уравнения - формулы и примеры с решением также возрастает, и ее график можно получить из графика функции Тригонометрические уравнения - формулы и примеры с решением (на заданном промежутке) с помощью симметричного отображения относительно прямой Тригонометрические уравнения - формулы и примеры с решением (рис. 86).

Значение arcsin a

По определению обратной функции (на выбранном промежутке), если Тригонометрические уравнения - формулы и примеры с решением причем Тригонометрические уравнения - формулы и примеры с решением Таким

образом, запись Тригонометрические уравнения - формулы и примеры с решением означает, что Тригонометрические уравнения - формулы и примеры с решением то есть

Тригонометрические уравнения - формулы и примеры с решением это такое число из промежутка Тригонометрические уравнения - формулы и примеры с решением синус которого равен Тригонометрические уравнения - формулы и примеры с решением

Например, Тригонометрические уравнения - формулы и примеры с решением поскольку Тригонометрические уравнения - формулы и примеры с решением

Аналогично Тригонометрические уравнения - формулы и примеры с решением поскольку Тригонометрические уравнения - формулы и примеры с решением

Нечетность функции y=arcsin x

Для нахождения арксинусов отрицательных чисел можно также пользоваться нечетностью функции Тригонометрические уравнения - формулы и примеры с решением то есть формулой: Тригонометрические уравнения - формулы и примеры с решением

Это следует из того, что график функции Тригонометрические уравнения - формулы и примеры с решением (рис. 86) симметричен относительно начала координат, а также из того, что точки Тригонометрические уравнения - формулы и примеры с решением на оси Тригонометрические уравнения - формулы и примеры с решением (рис. 87) симметричны относительно оси Тригонометрические уравнения - формулы и примеры с решением Тогда и соответствующие точки Тригонометрические уравнения - формулы и примеры с решением на единичной окружности (на промежутке Тригонометрические уравнения - формулы и примеры с решением так же будут симметричными относительно оси Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

Таким образом, Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением (рисунок 87 приведен для случая Тригонометрические уравнения - формулы и примеры с решением Получаем

Тригонометрические уравнения - формулы и примеры с решением

Например, Тригонометрические уравнения - формулы и примеры с решением

Пример №37

Найдите: Тригонометрические уравнения - формулы и примеры с решением

Решение:

Пусть Тригонометрические уравнения - формулы и примеры с решением тогда по определению арксинуса получаем, что Тригонометрические уравнения - формулы и примеры с решением Таким образом Тригонометрические уравнения - формулы и примеры с решением

Пусть Тригонометрические уравнения - формулы и примеры с решением По определению арксинуса получаем, что Тригонометрические уравнения - формулы и примеры с решением Учитывая, что Тригонометрические уравнения - формулы и примеры с решением имеем:

Тригонометрические уравнения - формулы и примеры с решением

Таким образом,

Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Так как запись Тригонометрические уравнения - формулы и примеры с решением означает,что Тригонометрические уравнения - формулы и примеры с решением то всегда выполняется равенство

Тригонометрические уравнения - формулы и примеры с решением Эту формулу можно не запоминать: достаточно обозначить выражение в скобках через Тригонометрические уравнения - формулы и примеры с решением и применить определение арксинуса.

Если обозначить выражение в скобках через Тригонометрические уравнения - формулы и примеры с решением то по требованию задачи необходимо найти cos Тригонометрические уравнения - формулы и примеры с решением. Использовав определение арксинуса, получаем стандартную задачу зная синус угла, найти его косинус, если угол находится на промежутке Тригонометрические уравнения - формулы и примеры с решением

Тогда Тригонометрические уравнения - формулы и примеры с решением Так как Тригонометрические уравнения - формулы и примеры с решением то на этом промежутке Тригонометрические уравнения - формулы и примеры с решением таким образом, Тригонометрические уравнения - формулы и примеры с решением

Функция y=arccos x

График Тригонометрические уравнения - формулы и примеры с решением:

Тригонометрические уравнения - формулы и примеры с решением

На промежутке Тригонометрические уравнения - формулы и примеры с решением убывает.

График Тригонометрические уравнения - формулы и примеры с решением:

Тригонометрические уравнения - формулы и примеры с решением

Значение Тригонометрические уравнения - формулы и примеры с решением:

Ориентир:

Тригонометрические уравнения - формулы и примеры с решением — это такое число из промежутка Тригонометрические уравнения - формулы и примеры с решением косинус которого равен Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Пример №38

Тригонометрические уравнения - формулы и примеры с решением так как Тригонометрические уравнения - формулы и примеры с решением

Формула для Тригонометрические уравнения - формулы и примеры с решением:

Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

Объяснение и обоснование:

График функции y=arccos x

Функция Тригонометрические уравнения - формулы и примеры с решением убывает на промежутке Тригонометрические уравнения - формулы и примеры с решением и принимает все значения от Тригонометрические уравнения - формулы и примеры с решением Таким образом, на этом промежутке функция Тригонометрические уравнения - формулы и примеры с решением имеет обратную функцию, которая обозначается

Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением с областью определения [-1; 1] и областью значений Тригонометрические уравнения - формулы и примеры с решением Функция Тригонометрические уравнения - формулы и примеры с решением также убывает, и ее график можно получить из графика функции Тригонометрические уравнения - формулы и примеры с решением (на заданном промежутке) с помощью симметричного отображения его относительно прямой Тригонометрические уравнения - формулы и примеры с решением (рис. 88).

Значение arccos a

По определению обратной функции (на выбранном промежутке), если Тригонометрические уравнения - формулы и примеры с решением причем Тригонометрические уравнения - формулы и примеры с решением Таким образом, запись Тригонометрические уравнения - формулы и примеры с решением означает, что Тригонометрические уравнения - формулы и примеры с решением то есть

Тригонометрические уравнения - формулы и примеры с решением — это такое число из промежутка Тригонометрические уравнения - формулы и примеры с решением косинус которого равен Тригонометрические уравнения - формулы и примеры с решением

Например, Тригонометрические уравнения - формулы и примеры с решением

Аналогично Тригонометрические уравнения - формулы и примеры с решением

Формула для arccos (-a)

Для нахождения арккосинусов отрицательных чисел можно также пользоваться формулой Тригонометрические уравнения - формулы и примеры с решением Это следует из того, что точки Тригонометрические уравнения - формулы и примеры с решением (рис. 89) являются симметричными относительно оси Тригонометрические уравнения - формулы и примеры с решением Тогда и соответствующие точки Тригонометрические уравнения - формулы и примеры с решением на единичной окружности (на промежутке Тригонометрические уравнения - формулы и примеры с решением также будут симметричными относительно оси Тригонометрические уравнения - формулы и примеры с решением Таким образом, Тригонометрические уравнения - формулы и примеры с решением значит, Тригонометрические уравнения - формулы и примеры с решением а Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением Получаем

Тригонометрические уравнения - формулы и примеры с решением

Например, Тригонометрические уравнения - формулы и примеры с решением

Отметим, что равенство Тригонометрические уравнения - формулы и примеры с решением означает, что функция

Тригонометрические уравнения - формулы и примеры с решением не является ни четной, ни нечетной.

Пример №39

Найдите Тригонометрические уравнения - формулы и примеры с решением

Решение:

Пусть Тригонометрические уравнения - формулы и примеры с решением тогда по определению арккосинуса получаем, что Тригонометрические уравнения - формулы и примеры с решениемТаким образом,

Тригонометрические уравнения - формулы и примеры с решением Комментарий

Поскольку запись Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением означает, что Тригонометрические уравнения - формулы и примеры с решением и Тригонометрические уравнения - формулы и примеры с решением то всегда выполняется равенство

Тригонометрические уравнения - формулы и примеры с решением Эту формулу можно не запоминать: достаточно обозначить выражение в скобках через Тригонометрические уравнения - формулы и примеры с решением и применить определение арккосинуса.

Функция y=arctg x

График Тригонометрические уравнения - формулы и примеры с решением:

Тригонометрические уравнения - формулы и примеры с решением

На промежутке Тригонометрические уравнения - формулы и примеры с решением возрастает.

График Тригонометрические уравнения - формулы и примеры с решением:

Тригонометрические уравнения - формулы и примеры с решением

Значение arctg a:

Ориентир:

Тригонометрические уравнения - формулы и примеры с решением — это такое число из промежутка Тригонометрические уравнения - формулы и примеры с решением тангенс которого равен Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Пример:

Тригонометрические уравнения - формулы и примеры с решением так как Тригонометрические уравнения - формулы и примеры с решением

Нечетность функции y=arctg x

Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Объяснение и обоснование:

График функции y=arctg x

Функция Тригонометрические уравнения - формулы и примеры с решением возрастает на промежутке Тригонометрические уравнения - формулы и примеры с решением и принимает все значения от Тригонометрические уравнения - формулы и примеры с решением Таким образом, на этом промежутке функция Тригонометрические уравнения - формулы и примеры с решением имеет обратную функцию, которая обозначается

Тригонометрические уравнения - формулы и примеры с решением с областью определения Тригонометрические уравнения - формулы и примеры с решением и множеством значений Тригонометрические уравнения - формулы и примеры с решением

Функция Тригонометрические уравнения - формулы и примеры с решением также возрастает, и ее график можно получить из графика функции Тригонометрические уравнения - формулы и примеры с решением (на заданном промежутке) с помощью симметричного отображения относительно прямой Тригонометрические уравнения - формулы и примеры с решением (рис. 90).

Значение arctg a

По определению обратной функции (на выбранном промежутке), если Тригонометрические уравнения - формулы и примеры с решением причем Тригонометрические уравнения - формулы и примеры с решением Таким образом,

запись Тригонометрические уравнения - формулы и примеры с решением означает, что Тригонометрические уравнения - формулы и примеры с решением То есть

Тригонометрические уравнения - формулы и примеры с решением это такое число из промежутка Тригонометрические уравнения - формулы и примеры с решением тангенс которого равен Тригонометрические уравнения - формулы и примеры с решением

Например, Тригонометрические уравнения - формулы и примеры с решением поскольку Тригонометрические уравнения - формулы и примеры с решением

Аналогично Тригонометрические уравнения - формулы и примеры с решением поскольку Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Нечетность функции y=arctg x

Для нахождения арктангенсов отрицательных чисел можно также пользоваться нечетностью функции Тригонометрические уравнения - формулы и примеры с решением то есть формулой Тригонометрические уравнения - формулы и примеры с решением

Это следует из того, что график функции Тригонометрические уравнения - формулы и примеры с решением (рис. 90) симметричен относительно начала координат, а также из того, что точки Тригонометрические уравнения - формулы и примеры с решением на линии тангенсов являются симметричными относительно оси Тригонометрические уравнения - формулы и примеры с решением (рис. 91).

Тогда и соответствующие точки Тригонометрические уравнения - формулы и примеры с решением на единичной окружности (на промежутке Тригонометрические уравнения - формулы и примеры с решением также будут симметричными относительно оси Тригонометрические уравнения - формулы и примеры с решением Таким образом, Тригонометрические уравнения - формулы и примеры с решением Получаем

Тригонометрические уравнения - формулы и примеры с решением

Например, Тригонометрические уравнения - формулы и примеры с решением

Пример №40

Найдите Тригонометрические уравнения - формулы и примеры с решением

Решение:

Пусть Тригонометрические уравнения - формулы и примеры с решением тогда по определению арктангенса получаем, что

Тригонометрические уравнения - формулы и примеры с решением

Таким образом,

Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Поскольку запись Тригонометрические уравнения - формулы и примеры с решением означает, что Тригонометрические уравнения - формулы и примеры с решением то всегда выполняется равенство Тригонометрические уравнения - формулы и примеры с решением

Эту формулу можно не запоминать: достаточно обозначить выражение в скобках через Тригонометрические уравнения - формулы и примеры с решением и применить определение арктангенса.

Функция y=arcctg x

ГрафикТригонометрические уравнения - формулы и примеры с решением:

Тригонометрические уравнения - формулы и примеры с решением

На промежутке Тригонометрические уравнения - формулы и примеры с решением убывает.

График Тригонометрические уравнения - формулы и примеры с решением:

Тригонометрические уравнения - формулы и примеры с решением

Значение arcctg a:

Ориентир:

Тригонометрические уравнения - формулы и примеры с решением это такое число из промежутка Тригонометрические уравнения - формулы и примеры с решением котангенс которого равен Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Пример:

Тригонометрические уравнения - формулы и примеры с решением так как Тригонометрические уравнения - формулы и примеры с решением

Формула для arcctg (-a)

Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

Объяснение и обоснование:

График функции y=arcсtg x

Функция Тригонометрические уравнения - формулы и примеры с решением убывает на промежутке Тригонометрические уравнения - формулы и примеры с решением и принимает все значения от Тригонометрические уравнения - формулы и примеры с решением Таким образом, на этом промежутке функция Тригонометрические уравнения - формулы и примеры с решением имеет обратную функцию, которая обозначается Тригонометрические уравнения - формулы и примеры с решением с областью определения Тригонометрические уравнения - формулы и примеры с решением и областью значений Тригонометрические уравнения - формулы и примеры с решением Функция Тригонометрические уравнения - формулы и примеры с решением так же убывает, и ее график можно получить из графика

Тригонометрические уравнения - формулы и примеры с решением

функции Тригонометрические уравнения - формулы и примеры с решением (на заданном промежутке) с помощью симметричного отображения его относительно прямой Тригонометрические уравнения - формулы и примеры с решением (рис. 92).

Значение arcctg a

По определению обратной функции (на выбранном промежутке), если Тригонометрические уравнения - формулы и примеры с решением причем Тригонометрические уравнения - формулы и примеры с решением Таким образом, запись Тригонометрические уравнения - формулы и примеры с решением означает, что Тригонометрические уравнения - формулы и примеры с решением То есть

Тригонометрические уравнения - формулы и примеры с решением — это такое число из промежутка Тригонометрические уравнения - формулы и примеры с решением котангенс которого равен Тригонометрические уравнения - формулы и примеры с решением

Например, Тригонометрические уравнения - формулы и примеры с решением поскольку Тригонометрические уравнения - формулы и примеры с решением

Аналогично Тригонометрические уравнения - формулы и примеры с решением поскольку Тригонометрические уравнения - формулы и примеры с решением

Формула для arcctg (-a)

Для нахождения арккотангенсов отрицательных чисел можно также пользоваться формулой Тригонометрические уравнения - формулы и примеры с решением

Это следует из того, что точки Тригонометрические уравнения - формулы и примеры с решением на линии котангенсов (рис. 93) являются симметричными относительно оси Тригонометрические уравнения - формулы и примеры с решением Тогда и соответствующие точки Тригонометрические уравнения - формулы и примеры с решением на единичной окружности (на промежутке Тригонометрические уравнения - формулы и примеры с решением также будут симметричными относительно оси Тригонометрические уравнения - формулы и примеры с решением Таким образом, Тригонометрические уравнения - формулы и примеры с решением значит, Тригонометрические уравнения - формулы и примеры с решением Но Тригонометрические уравнения - формулы и примеры с решением

Получаем:

Тригонометрические уравнения - формулы и примеры с решением

Например, Тригонометрические уравнения - формулы и примеры с решением

Отметим, что равенство Тригонометрические уравнения - формулы и примеры с решением означает, что функция Тригонометрические уравнения - формулы и примеры с решением не является ни четной, ни нечетной.

Пример №41

Найдите Тригонометрические уравнения - формулы и примеры с решением

Решение:

Пусть Тригонометрические уравнения - формулы и примеры с решением тогда по определению арккотангенса получаем, что Тригонометрические уравнения - формулы и примеры с решением Таким образом,

Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Поскольку запись Тригонометрические уравнения - формулы и примеры с решением означает, что Тригонометрические уравнения - формулы и примеры с решением то всегда выполняется равенство

Тригонометрические уравнения - формулы и примеры с решением

Эту формулу можно не запоминать: достаточно обозначить выражение в скобках через Тригонометрические уравнения - формулы и примеры с решением и применить определение арккотангенса.

Пример №42

Докажите, что Тригонометрические уравнения - формулы и примеры с решением

Решение:

Пусть Тригонометрические уравнения - формулы и примеры с решением

  1. Поскольку Тригонометрические уравнения - формулы и примеры с решением тоТригонометрические уравнения - формулы и примеры с решением
  2. Если Тригонометрические уравнения - формулы и примеры с решением то Тригонометрические уравнения - формулы и примеры с решением Тогда Тригонометрические уравнения - формулы и примеры с решением По определению арктангенса получаем Тригонометрические уравнения - формулы и примеры с решением Таким образом, Тригонометрические уравнения - формулы и примеры с решением а это и означает, что Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Запишем заданное равенство в виде Тригонометрические уравнения - формулы и примеры с решением Если обозначить Тригонометрические уравнения - формулы и примеры с решением то для доказательства равенства Тригонометрические уравнения - формулы и примеры с решением по определению арктангенса достаточно доказать, что:

Тригонометрические уравнения - формулы и примеры с решением

При доказательстве следует также учесть определение арккотангенса: если

Тригонометрические уравнения - формулы и примеры с решением

Решение простейших тригонометрических уравнений

Простейшими тригонометрическими уравнениями называют уравнения

Тригонометрические уравнения - формулы и примеры с решением

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

Уравнение cos x=a

1. Графическая иллюстрация и решение уравнения Тригонометрические уравнения - формулы и примеры с решением

Графическая иллюстрация

Тригонометрические уравнения - формулы и примеры с решением

Решение:

Тригонометрические уравнения - формулы и примеры с решением

Примеры:

Тригонометрические уравнения - формулы и примеры с решением

Корней нет, поскольку Тригонометрические уравнения - формулы и примеры с решением

2. Частные случаи решения уравнения Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

Объяснение и обоснование:

Корни уравнения cos x=a

При Тригонометрические уравнения - формулы и примеры с решением уравнение не имеет корней, поскольку Тригонометрические уравнения - формулы и примеры с решением для любого Тригонометрические уравнения - формулы и примеры с решением (прямая Тригонометрические уравнения - формулы и примеры с решением на рисунке из пункта 1 таблицы 30 при Тригонометрические уравнения - формулы и примеры с решением или при Тригонометрические уравнения - формулы и примеры с решением не пересекает график функции Тригонометрические уравнения - формулы и примеры с решением

Пусть Тригонометрические уравнения - формулы и примеры с решением Тогда прямая Тригонометрические уравнения - формулы и примеры с решением пересекает график функции Тригонометрические уравнения - формулы и примеры с решением На промежутке Тригонометрические уравнения - формулы и примеры с решением функция Тригонометрические уравнения - формулы и примеры с решением убывает от 1 до -1, поэтому уравнение Тригонометрические уравнения - формулы и примеры с решением имеет только один корень Тригонометрические уравнения - формулы и примеры с решением на этом промежутке (рис. из пункта 1 табл. 30).

Косинус — четная функция, поэтому на промежутке Тригонометрические уравнения - формулы и примеры с решением уравнение Тригонометрические уравнения - формулы и примеры с решением также имеет только один корень — число, противоположное Тригонометрические уравнения - формулы и примеры с решением то есть Тригонометрические уравнения - формулы и примеры с решением

Таким образом, на промежутке Тригонометрические уравнения - формулы и примеры с решением (длиной Тригонометрические уравнения - формулы и примеры с решением уравнение Тригонометрические уравнения - формулы и примеры с решением при Тригонометрические уравнения - формулы и примеры с решением имеет только корни Тригонометрические уравнения - формулы и примеры с решением

Функция Тригонометрические уравнения - формулы и примеры с решением периодическая с периодом Тригонометрические уравнения - формулы и примеры с решением поэтому все остальные корни отличаются от найденных на Тригонометрические уравнения - формулы и примеры с решением Получаем следующую формулу корней уравнения Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Частные случаи решения уравнения cos x=a

Полезно помнить специальные записи корней уравнения Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением которые можно легко получить, используя как ориентир единичную окружность.

Поскольку косинус равен абсциссе соответствующей точки единичной окружности, получаем, что Тригонометрические уравнения - формулы и примеры с решением если соответствующей точкой единичной окружности является точка Тригонометрические уравнения - формулы и примеры с решением или точка Тригонометрические уравнения - формулы и примеры с решением (рис. из пункта 2 табл. 30). Тогда

Тригонометрические уравнения - формулы и примеры с решением

Аналогично Тригонометрические уравнения - формулы и примеры с решением тогда и только тогда, когда соответствующей точкой единичной окружности является точка Тригонометрические уравнения - формулы и примеры с решением следовательно, Тригонометрические уравнения - формулы и примеры с решением Также Тригонометрические уравнения - формулы и примеры с решением тогда и только тогда, когда соответствующей точкой единичной окружности является точка Тригонометрические уравнения - формулы и примеры с решением таким образом, Тригонометрические уравнения - формулы и примеры с решением

Примеры решения задач:

Пример №43

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Решение:

Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Поскольку Тригонометрические уравнения - формулы и примеры с решением то данное уравнение вида Тригонометрические уравнения - формулы и примеры с решением имеет корни, которые можно найти по формуле (1). Для вычисления Тригонометрические уравнения - формулы и примеры с решением можно воспользоваться формулой:

Тригонометрические уравнения - формулы и примеры с решением

Тогда

Тригонометрические уравнения - формулы и примеры с решением

Пример №44

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Решение:

Поскольку Тригонометрические уравнения - формулы и примеры с решением то корней нет.

Ответ: корней нет.

Комментарий:

Поскольку Тригонометрические уравнения - формулы и примеры с решением то данное уравнение не имеет корней (то есть формулу (1) нельзя применить).

Пример №45

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Решение:

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Поскольку Тригонометрические уравнения - формулы и примеры с решением то можно пользоваться формулой (1). Учитывая, что Тригонометрические уравнения - формулы и примеры с решением не является табличным значением, для полученния ответа достаточно после нахождения Тригонометрические уравнения - формулы и примеры с решением по формуле (1) обе части последнего уравнения разделить на 4.

Замечание. Если по условию задания необходимо найти приближенное значение корней данного уравнения на каком-то промежутке, то с помощью калькулятора находим Тригонометрические уравнения - формулы и примеры с решением записываем приближенное значение корней в виде Тригонометрические уравнения - формулы и примеры с решением находим приближенное значение корней при Тригонометрические уравнения - формулы и примеры с решением и выбираем корни, входящие в данный промежуток.

Пример №46

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Решение:

Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Поскольку Тригонометрические уравнения - формулы и примеры с решением пользоваться то можно воспользоваться формулой (1) для нахождения значения выражения стоящего под знаком косинуса. После этого из полученного линейного уравнения находим Тригонометрические уравнения - формулы и примеры с решением

Уравнение sin x=a

Графическая иллюстрация и решения уравнения Тригонометрические уравнения - формулы и примеры с решением

Графическая иллюстрация

Тригонометрические уравнения - формулы и примеры с решением

Решение:

Тригонометрические уравнения - формулы и примеры с решением

Примеры:

Тригонометрические уравнения - формулы и примеры с решением

Корней нет, так как Тригонометрические уравнения - формулы и примеры с решением

Частные случаи решения уравнения sin x=a

Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

Объяснение и обоснование:

Корни уравнения sin x=a

При Тригонометрические уравнения - формулы и примеры с решением уравнение не имеет корней, поскольку Тригонометрические уравнения - формулы и примеры с решением для любого Тригонометрические уравнения - формулы и примеры с решением (прямая Тригонометрические уравнения - формулы и примеры с решением на рисунке 94 при Тригонометрические уравнения - формулы и примеры с решением или при Тригонометрические уравнения - формулы и примеры с решением не пересекает график функции Тригонометрические уравнения - формулы и примеры с решением

Пусть Тригонометрические уравнения - формулы и примеры с решением Тогда прямая Тригонометрические уравнения - формулы и примеры с решением пересекает график функции Тригонометрические уравнения - формулы и примеры с решением На промежутке Тригонометрические уравнения - формулы и примеры с решением функция Тригонометрические уравнения - формулы и примеры с решением возрастает от -1 до 1, поэтому уравнение Тригонометрические уравнения - формулы и примеры с решением имеет только один корень Тригонометрические уравнения - формулы и примеры с решением на этом промежутке (рис. 94) (и для этого корня Тригонометрические уравнения - формулы и примеры с решением

На промежутке Тригонометрические уравнения - формулы и примеры с решением функция Тригонометрические уравнения - формулы и примеры с решением убывает от 1 до -1, поэтому уравнение Тригонометрические уравнения - формулы и примеры с решением имеет на этом промежутке также только один корень Тригонометрические уравнения - формулы и примеры с решением (рис. 94). Для проверки правильности записи значения второго корня Тригонометрические уравнения - формулы и примеры с решением заметим, что Тригонометрические уравнения - формулы и примеры с решениемТо есть Тригонометрические уравнения - формулы и примеры с решением — корень уравнения Тригонометрические уравнения - формулы и примеры с решением

Таким образом, на промежутке Тригонометрические уравнения - формулы и примеры с решением (длиной Тригонометрические уравнения - формулы и примеры с решением уравнение Тригонометрические уравнения - формулы и примеры с решением при Тригонометрические уравнения - формулы и примеры с решением имеет только корни Тригонометрические уравнения - формулы и примеры с решением

Функция Тригонометрические уравнения - формулы и примеры с решением периодическая с периодом Тригонометрические уравнения - формулы и примеры с решением поэтому все остальные корни отличаются от найденных на Тригонометрические уравнения - формулы и примеры с решением Получаем следующие формулы корней уравнения Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Все значения корней уравнения Тригонометрические уравнения - формулы и примеры с решением которые дают формулы (1) и (2), можно записать с помощью одной формулы

Тригонометрические уравнения - формулы и примеры с решением

Действительно, из формулы (3) при четном Тригонометрические уравнения - формулы и примеры с решением получаем Тригонометрические уравнения - формулы и примеры с решением — формулу (1), а при нечетном Тригонометрические уравнения - формулы и примеры с решением— формулу Тригонометрические уравнения - формулы и примеры с решением то есть формулу (2). Тригонометрические уравнения - формулы и примеры с решением

Частные случаи решения уравнения sin x=a

Полезно помнить специальные записи корней при Тригонометрические уравнения - формулы и примеры с решением которые можно легко получить, используя как ориентир единичную окружность (рис. 95).

Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что Тригонометрические уравнения - формулы и примеры с решением если соответствующей точкой единичной окружности является точка Тригонометрические уравнения - формулы и примеры с решением или точка Тригонометрические уравнения - формулы и примеры с решением ТогдаТригонометрические уравнения - формулы и примеры с решением

Аналогично Тригонометрические уравнения - формулы и примеры с решением тогда и только тогда, когда соответствующей точкой единичной окружности является точка А, следовательно, Тригонометрические уравнения - формулы и примеры с решением

Также Тригонометрические уравнения - формулы и примеры с решением тогда и только тогда, когда соответствующей точкой единичной окружности является точка Тригонометрические уравнения - формулы и примеры с решением таким образом,Тригонометрические уравнения - формулы и примеры с решением

Примеры решения задач:

Пример №47

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Решение:

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Поскольку Тригонометрические уравнения - формулы и примеры с решением то данное уравнение вида Тригонометрические уравнения - формулы и примеры с решением имеет корни, которые можно найти по формуле (3).

Для вычисления Тригонометрические уравнения - формулы и примеры с решением можно воспользоваться формулой: Тригонометрические уравнения - формулы и примеры с решением

Тогда

Тригонометрические уравнения - формулы и примеры с решением

Замечание. Ответ к задаче 1 часто записывают в виде Тригонометрические уравнения - формулы и примеры с решением но такая запись не является обязательной.

Пример №48

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Решение:

Поскольку Тригонометрические уравнения - формулы и примеры с решением то корней нет.

Ответ: корней нет

Комментарий:

Поскольку Тригонометрические уравнения - формулы и примеры с решением то данное уравнение не имеет корней ( то есть формулой (3) нельзя воспользоваться).

Пример №49

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Решение:

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Поскольку Тригонометрические уравнения - формулы и примеры с решением то можно воспользоваться формулой (3)для нахождения значения выражения Тригонометрические уравнения - формулы и примеры с решением а потом из полученного линейного уравнения найти переменную Тригонометрические уравнения - формулы и примеры с решением

Уравнения tg x = a и ctg x=a

Графическая иллюстрация и решения уравнения Тригонометрические уравнения - формулы и примеры с решением:

Тригонометрические уравнения - формулы и примеры с решением

Формула:

Тригонометрические уравнения - формулы и примеры с решением

Частный случай:

Тригонометрические уравнения - формулы и примеры с решением

Пример:

Тригонометрические уравнения - формулы и примеры с решением

Графическая иллюстрация и решения уравнения Тригонометрические уравнения - формулы и примеры с решением:

Тригонометрические уравнения - формулы и примеры с решением

Формула:

Тригонометрические уравнения - формулы и примеры с решением

Частный случай:

Тригонометрические уравнения - формулы и примеры с решением

Пример:

Тригонометрические уравнения - формулы и примеры с решением

Объяснение и обоснование:

Корни уравнений tg x = a и ctg x=a

Рассмотрим уравнение Тригонометрические уравнения - формулы и примеры с решением На промежутке Тригонометрические уравнения - формулы и примеры с решением функция Тригонометрические уравнения - формулы и примеры с решениемвозрастает Тригонометрические уравнения - формулы и примеры с решением поэтому уравнение Тригонометрические уравнения - формулы и примеры с решением при любом значении Тригонометрические уравнения - формулы и примеры с решением имеет только один корень Тригонометрические уравнения - формулы и примеры с решением на этом промежутке (рис. из пункта 1 табл. 32).

Функция Тригонометрические уравнения - формулы и примеры с решением периодическая с периодом Тригонометрические уравнения - формулы и примеры с решением поэтому все остальные корни отличаются от найденного на Тригонометрические уравнения - формулы и примеры с решением Получаем следующую формулу корней уравнения Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

При Тригонометрические уравнения - формулы и примеры с решением таким образом, уравнение

Тригонометрические уравнения - формулы и примеры с решением

Рассмотрим уравнение Тригонометрические уравнения - формулы и примеры с решением На промежутке Тригонометрические уравнения - формулы и примеры с решением функция Тригонометрические уравнения - формулы и примеры с решением убывает Тригонометрические уравнения - формулы и примеры с решением поэтому уравнение Тригонометрические уравнения - формулы и примеры с решением при любом значении Тригонометрические уравнения - формулы и примеры с решением имеет только один корень Тригонометрические уравнения - формулы и примеры с решением на этом промежутке (рис. из пункта 2 табл. 32). Функция Тригонометрические уравнения - формулы и примеры с решением периодическая с периодом Тригонометрические уравнения - формулы и примеры с решением поэтому все остальные корни отличаются от найденного на Тригонометрические уравнения - формулы и примеры с решением Получаем такую формулу корней уравнения Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

При Тригонометрические уравнения - формулы и примеры с решением таким образом, уравнение

Тригонометрические уравнения - формулы и примеры с решением

Примеры решения задач:

Пример №50

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Решение:

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Уравнение Тригонометрические уравнения - формулы и примеры с решением имеет корни при любом значении Тригонометрические уравнения - формулы и примеры с решением поэтому всегда можно воспользоваться формулой (1): Тригонометрические уравнения - формулы и примеры с решением Для нахождения Тригонометрические уравнения - формулы и примеры с решением можно применить формулу Тригонометрические уравнения - формулы и примеры с решением Тогда Тригонометрические уравнения - формулы и примеры с решением

Пример №51

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Решение:

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Сначала по формуле (1) найдем значение выражения Тригонометрические уравнения - формулы и примеры с решением а потом из полученного линейного уравнения найдем значение переменной Тригонометрические уравнения - формулы и примеры с решением

Пример №52

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Решение:

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Уравнение Тригонометрические уравнения - формулы и примеры с решением имеет корни при любом значении Тригонометрические уравнения - формулы и примеры с решением поэтому всегда можно воспользоваться формулой (2):

Тригонометрические уравнения - формулы и примеры с решением

Учитывая, что Тригонометрические уравнения - формулы и примеры с решением не является табличным значением (см. табл. 8, приведенную на с. 47), полученная формула дает окончательный ответ.

Пример №53

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Решение:

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Сначала по формуле (2) найдем значение выражения Тригонометрические уравнения - формулы и примеры с решением а потом из полученного линейного уравнения найдем значение переменной Тригонометрические уравнения - формулы и примеры с решением

Для нахождения Тригонометрические уравнения - формулы и примеры с решением можно воспользоваться формулой Тригонометрические уравнения - формулы и примеры с решением Тогда

Тригонометрические уравнения - формулы и примеры с решением

Решение тригонометрических уравнений, отличающихся от простейших

Как правило, решение тригонометрических уравнений сводится к решению простейших уравнений с помощью преобразований тригонометрических выражений, разложения на множители и замены переменных.

Замена переменных при решении тригонометрических уравнений

Следует помнить общий ориентир, когда замена переменных может выполняться без преобразования данных тригонометрических выражений.

Если в уравнение, неравенство или тождество переменная входит в одном и том же виде, то удобно соответствующее выражение с переменной обозначить одной буквой (новой переменной).

Пример №54

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Решение:

Пусть Тригонометрические уравнения - формулы и примеры с решением тогда получаем: Тригонометрические уравнения - формулы и примеры с решением

Отсюда Тригонометрические уравнения - формулы и примеры с решением

1. При Тригонометрические уравнения - формулы и примеры с решением имеем Тригонометрические уравнения - формулы и примеры с решением — уравнение не имеет корней, поскольку Тригонометрические уравнения - формулы и примеры с решением

2. При Тригонометрические уравнения - формулы и примеры с решением имеем Тригонометрические уравнения - формулы и примеры с решением тогда

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Анализируя вид этого уравнения, замечаем, что в его запись входит только одна тригонометрическая функция Тригонометрические уравнения - формулы и примеры с решением Поэтому удобно ввести новую переменную Тригонометрические уравнения - формулы и примеры с решением

После решения квадратного уравнения необходимо выполнить обратную замену и решить полученные простейшие тригонометрические уравнения.

Замечание. Записывая решения задачи 1, можно при введении замены Тригонометрические уравнения - формулы и примеры с решением учесть, что Тригонометрические уравнения - формулы и примеры с решением и записать ограничения Тригонометрические уравнения - формулы и примеры с решением а далее заметить, что один из корней Тригонометрические уравнения - формулы и примеры с решением не удовлетворяет условию Тригонометрические уравнения - формулы и примеры с решением и после этого обратную замену выполнять только для Тригонометрические уравнения - формулы и примеры с решением

Пример №55

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

В заданное уравнение переменная входит только в виде Тригонометрические уравнения - формулы и примеры с решением Поэтому удобно ввести новую переменную Тригонометрические уравнения - формулы и примеры с решением После выполнения обратной замены и решения полученных простейших тригонометрических уравнений следует в ответ записать все полученные корни.

Решение:

Пусть Тригонометрические уравнения - формулы и примеры с решением Тогда получаем Тригонометрические уравнения - формулы и примеры с решением Отсюда Тригонометрические уравнения - формулы и примеры с решением то есть Тригонометрические уравнения - формулы и примеры с решением или Тригонометрические уравнения - формулы и примеры с решением Из последнего уравнения имеем Тригонометрические уравнения - формулы и примеры с решением Выполняем обратную замену:

1. При Тригонометрические уравнения - формулы и примеры с решением Таким образом, Тригонометрические уравнения - формулы и примеры с решением

2.При Тригонометрические уравнения - формулы и примеры с решением Следовательно,

Тригонометрические уравнения - формулы и примеры с решением

3. При Тригонометрические уравнения - формулы и примеры с решением имеем Тригонометрические уравнения - формулы и примеры с решением тогда Тригонометрические уравнения - формулы и примеры с решением Отсюда

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

При поиске плана решения более сложных тригонометрических уравнений можно воспользоваться таким ориентиром.

  1. Пробуем привести все тригонометрические функции к одному аргументу.
  2. Если удалось привести к одному аргументу, то пробуем все тригонометрические выражения привести к одной функции.
  3. Если к одному аргументу удалось привести, а к одной функции — нет, тогда пробуем привести уравнение к однородному.
  4. В других случаях переносим все члены в одну сторону и пробуем получить произведение или используем специальные приемы решения.

Решение тригонометрических уравнений приведением к одной функции (с одинаковым аргументом)

Пример №56

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Решение:

Используя формулу косинуса двойного аргумента и основное тригонометрическое тождество, получаем: Тригонометрические уравнения - формулы и примеры с решением

Замена Тригонометрические уравнения - формулы и примеры с решением дает уравнение Тригонометрические уравнения - формулы и примеры с решением

Тогда Тригонометрические уравнения - формулы и примеры с решением Выполняем обратную замену.

  1. При Тригонометрические уравнения - формулы и примеры с решением имеем Тригонометрические уравнения - формулы и примеры с решением — корней нет, поскольку Тригонометрические уравнения - формулы и примеры с решением
  2. При Тригонометрические уравнения - формулы и примеры с решением имеем Тригонометрические уравнения - формулы и примеры с решением

Тогда

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Все тригонометрические функции приводим к одному аргументу Тригонометрические уравнения - формулы и примеры с решением используя формулу

Тригонометрические уравнения - формулы и примеры с решением

Потом все тригонометрические выражения приводим к одной функции Тригонометрические уравнения - формулы и примеры с решением (учитываем, что Тригонометрические уравнения - формулы и примеры с решением

В полученное уравнение переменная входит в одном и том же виде Тригонометрические уравнения - формулы и примеры с решением поэтому удобно выполнить замену Тригонометрические уравнения - формулы и примеры с решением

Замечание. При желании ответ можно записать в видеТригонометрические уравнения - формулы и примеры с решением

Пример №57

Решите уравнение: Тригонометрические уравнения - формулы и примеры с решением

Решение:

Тригонометрические уравнения - формулы и примеры с решением Замена Тригонометрические уравнения - формулы и примеры с решением дает уравнение Тригонометрические уравнения - формулы и примеры с решением

При Тригонометрические уравнения - формулы и примеры с решением получаем равносильное уравнение Тригонометрические уравнения - формулы и примеры с решением Отсюда Тригонометрические уравнения - формулы и примеры с решением Выполняем обратную замену:

  1. При Тригонометрические уравнения - формулы и примеры с решением имеем Тригонометрические уравнения - формулы и примеры с решением тогдаТригонометрические уравнения - формулы и примеры с решением
  2. При Тригонометрические уравнения - формулы и примеры с решением имеем Тригонометрические уравнения - формулы и примеры с решением тогдаТригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Все аргументы уже одинаковые Тригонометрические уравнения - формулы и примеры с решением поэтому приводим все тригонометрические выражения к одной функции Тригонометрические уравнения - формулы и примеры с решением (учитываем, что

Тригонометрические уравнения - формулы и примеры с решением

В полученное уравнение переменная входит в одном и том же виде Тригонометрические уравнения - формулы и примеры с решениемпоэтому удобно выполнить замену Тригонометрические уравнения - формулы и примеры с решением

Решение однородных тригонометрических уравнении и приведение тригонометрического уравнения к однородному

Рассмотрим уравнение Тригонометрические уравнения - формулы и примеры с решением

Для поиска плана решения этого уравнения (но не для его решения) выполним замены: Тригонометрические уравнения - формулы и примеры с решением Тогда уравнение (1) будет иметь вид

Тригонометрические уравнения - формулы и примеры с решением

Все одночлены, стоящие в левой части этого уравнения, имеют степень 2 (напомним, что степень одночлена Тригонометрические уравнения - формулы и примеры с решением также равна 2). В этом случае уравнение (2) (и соответственно уравнение (1)) называется однородным, и для распознавания таких уравнений и их решения можно применять такой ориентир.

Если все члены уравнения, в левой и правой частях которого стоят многочлены от двух переменных (или от двух функций одной переменной), имеют одинаковую суммарную степень, то уравнение называется однородным. Решается однородное уравнение делением на наибольшую степень одной из переменных.

Замечание. Придерживаясь этого ориентира, приходится делить обе части уравнения на выражение с переменной. При этом можно потерять корни (если корнями являются те числа, при которых делитель равен нулю). Чтобы избежать этого, необходимо отдельно рассмотреть случай, когда выражение, на которое мы собираемся делить обе части уравнения, равно нулю, и только после этого выполнять деление на выражение, не равное нулю.

Пример №58

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Решение:

При Тригонометрические уравнения - формулы и примеры с решением уравнение не имеет корней, поэтому разделим обе его части на Тригонометрические уравнения - формулы и примеры с решением Получаем

Тригонометрические уравнения - формулы и примеры с решением

то есть Тригонометрические уравнения - формулы и примеры с решением

Тогда Тригонометрические уравнения - формулы и примеры с решением

Замена: Тригонометрические уравнения - формулы и примеры с решением Получаем уравнение Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением

Выполняем обратную замену:

  1. При Тригонометрические уравнения - формулы и примеры с решением тогдаТригонометрические уравнения - формулы и примеры с решением
  2. При Тригонометрические уравнения - формулы и примеры с решением имеем Тригонометрические уравнения - формулы и примеры с решением тогда Тригонометрические уравнения - формулы и примеры с решением

Ответ:

Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Данное уравнение однородное, поскольку все его члены имеют одинаковую суммарную степень 2. Его можно решить делением обеих частей на Тригонометрические уравнения - формулы и примеры с решением или на Тригонометрические уравнения - формулы и примеры с решением

Если мы будем делить на Тригонометрические уравнения - формулы и примеры с решением то, чтобы не потерять корни, случай Тригонометрические уравнения - формулы и примеры с решением рассмотрим отдельно.

Подставляя Тригонометрические уравнения - формулы и примеры с решением в данное уравнение, получаем Тригонометрические уравнения - формулы и примеры с решением Но одновременно Тригонометрические уравнения - формулы и примеры с решением не могут равняться нулю (поскольку Тригонометрические уравнения - формулы и примеры с решением Таким образом, те значения переменной Тригонометрические уравнения - формулы и примеры с решением для которых Тригонометрические уравнения - формулы и примеры с решением не являются корнями данного уравнения. А при Тригонометрические уравнения - формулы и примеры с решением можно разделить обе части данного уравнение на Тригонометрические уравнения - формулы и примеры с решением и получить уравнение, равносильное заданному (при этом учесть, что Тригонометрические уравнения - формулы и примеры с решением

В полученное уравнение переменная входит в одном и том же виде Тригонометрические уравнения - формулы и примеры с решением поэтому удобно выполнить замену Тригонометрические уравнения - формулы и примеры с решением

Пример №59

Решите уравнение: Тригонометрические уравнения - формулы и примеры с решением

Решение:

При Тригонометрические уравнения - формулы и примеры с решением уравнение не имеет корней, поэтому разделим обе его части на Тригонометрические уравнения - формулы и примеры с решением

Получаем

Тригонометрические уравнения - формулы и примеры с решением Тогда Зх = arctg 5 + кт,

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Данное уравнение однородное, поскольку все его члены имеют одинаковую степень 1. Его можно решить делением обеих частей на Тригонометрические уравнения - формулы и примеры с решением или на Тригонометрические уравнения - формулы и примеры с решением

Если мы будем делить на Тригонометрические уравнения - формулы и примеры с решением то, чтобы не потерять корни, случай Тригонометрические уравнения - формулы и примеры с решением рассмотрим отдельно.

Подставляя Тригонометрические уравнения - формулы и примеры с решением в данное уравнение, получаем Тригонометрические уравнения - формулы и примеры с решением Но одновременно Тригонометрические уравнения - формулы и примеры с решением не могут равняться нулю. Таким образом, при Тригонометрические уравнения - формулы и примеры с решением уравнение не имеет корней. А при Тригонометрические уравнения - формулы и примеры с решением можно разделить обе части данного уравнения на Тригонометрические уравнения - формулы и примеры с решением и получить уравнение, равносильное заданному (при этом учесть, что Тригонометрические уравнения - формулы и примеры с решением

Пример №60

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Решение:

Используя формулу синуса двойного аргумента, имеем

Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением и учтем, что Тригонометрические уравнения - формулы и примеры с решением Тогда Тригонометрические уравнения - формулы и примеры с решением

Отсюда

Тригонометрические уравнения - формулы и примеры с решением При Тригонометрические уравнения - формулы и примеры с решением уравнение не имеет корней, поэтому разделим обе его части на Тригонометрические уравнения - формулы и примеры с решением Получаем

Тригонометрические уравнения - формулы и примеры с решением

Замена: Тригонометрические уравнения - формулы и примеры с решением Получаем уравнение Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Выполняем обратную замену:

  1. При Тригонометрические уравнения - формулы и примеры с решением имеем Тригонометрические уравнения - формулы и примеры с решением тогдаТригонометрические уравнения - формулы и примеры с решением
  2. При Тригонометрические уравнения - формулы и примеры с решением имеем Тригонометрические уравнения - формулы и примеры с решением тогдаТригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Сначала приведем все тригонометрические функции к одному аргументу Тригонометрические уравнения - формулы и примеры с решением используя формулуТригонометрические уравнения - формулы и примеры с решением

Теперь в левой части уравнения (1) стоит однородное выражение второй степени, а в правой части — число 2.Если домножить 2 на 1, а единицу расписать по основному тригонометрическому тождеству Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением то в левой и правой частях полученного уравнения все выражения будут второй степени, то есть получим однородное уравнение (2), которое можно решить делением обеих частей или на Тригонометрические уравнения - формулы и примеры с решением или на Тригонометрические уравнения - формулы и примеры с решением

Если мы будем делить на Тригонометрические уравнения - формулы и примеры с решением то, чтобы не потерять корни, случай Тригонометрические уравнения - формулы и примеры с решением рассмотрим отдельно.

Подставляя Тригонометрические уравнения - формулы и примеры с решением уравнение (2), получаем Тригонометрические уравнения - формулы и примеры с решением Но одновременно Тригонометрические уравнения - формулы и примеры с решением не могут равняться нулю (поскольку Тригонометрические уравнения - формулы и примеры с решением Таким образом, при Тригонометрические уравнения - формулы и примеры с решением уравнение (2) не имеет корней. А при Тригонометрические уравнения - формулы и примеры с решением можно разделить обе части этого уравнения на Тригонометрические уравнения - формулы и примеры с решением (и учесть при этом, что Тригонометрические уравнения - формулы и примеры с решением

В полученное уравнение(3) переменная входит в одном и том же виде Тригонометрические уравнения - формулы и примеры с решением поэтому удобно выполнить замену Тригонометрические уравнения - формулы и примеры с решением

Решение тригонометрических уравнении вида f(x)=0 с помощью разложения на множители

Пример №61

Решение Тригонометрические уравнения - формулы и примеры с решением тогда

Решение:

Тригонометрические уравнения - формулы и примеры с решением

Получаем:

Тригонометрические уравнения - формулы и примеры с решением

последние простейшие тригонометрические уравнения, имеем:

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Достаточно трудно все тригонометрические функции в этом уравнении привести к одному аргументу.

В таком случае приходится пользоваться четвертым пунктом ориентира, приведенного на с. 170: переносим все члены уравнения в одну сторону и пробуем получить произведение, равное нулю.

Для этого воспользуемся формулой преобразования разности синусов в произведение:

Тригонометрические уравнения - формулы и примеры с решением

Если произведение равно нулю, то хотя бы один из сомножителей равен нулю, а остальные сомножители имеют смысл. В данном случае все данные и полученные выражения имеют смысл на всем множестве действительных чисел. В конце учитываем, что данное уравнение равносильно совокупности уравнений Тригонометрические уравнения - формулы и примеры с решением или Тригонометрические уравнения - формулы и примеры с решением и поэтому в ответе должны быть записаны все корни каждого из этих уравнений.

Пример №62

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Решение:

Тригонометрические уравнения - формулы и примеры с решением

Из первого из этих уравнений:

Тригонометрические уравнения - формулы и примеры с решением

Второе уравнение преобразуем так:

Тригонометрические уравнения - формулы и примеры с решением

Отсюда Тригонометрические уравнения - формулы и примеры с решением

Из этих уравнений получаем:

Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Сразу воспользуемся четвертым пунктом ориентира, приведенного на с. 170: переносим все члены уравнения в одну сторону и пробуем получить произведение, которое равно нулю.

Для этого применим формулу преобразования суммы синусов, стоящей в левой части уравнения, в произведение:

Тригонометрические уравнения - формулы и примеры с решением ( и учтем что Тригонометрические уравнения - формулы и примеры с решением

Для того чтобы вынести какое-то выражение за скобки и получить произведение, достаточно записать Тригонометрические уравнения - формулы и примеры с решением как синус двойного аргумента (тогда за скобки выносится Тригонометрические уравнения - формулы и примеры с решением

Если произведение равно нулю, то хотя бы один из сомножителей равен нулю.

Во втором из полученных уравнений преобразуем разность косинусов в произведение. В конце учитываем, что все данные и полученные выражения существуют на всем множестве действительных чисел. Таким образом, данное уравнение на этом множестве равносильно совокупности уравнений:

Тригонометрические уравнения - формулы и примеры с решением

и поэтому в ответ необходимо записать все корни каждого из этих уравнений.

Замечание. Запись ответа можно сократить. Так, если изобразить все найденные решения на единичной окружности, то можно увидеть, что решение Тригонометрические уравнения - формулы и примеры с решением дает те же точки, что и формула Тригонометрические уравнения - формулы и примеры с решением кратном Тригонометрические уравнения - формулы и примеры с решением или формула Тригонометрические уравнения - формулы и примеры с решением кратном Тригонометрические уравнения - формулы и примеры с решением Таким образом, формула

Тригонометрические уравнения - формулы и примеры с решением не дает новых корней в сравнении с формулами Тригонометрические уравнения - формулы и примеры с решением и поэтому ответ может быть записан в виде только двух последних формул. Но такое сокращение ответа не является обязательным.

Отбор корней тригонометрических уравнений

Если при решении тригонометрических уравнений необходимо выполнять отбор корней, то чаще всего это делается так:

  • находят (желательно наименьший) общий период всех тригонометрических функций, входящих в запись уравнения (конечно, если этот общий период существует); потом на этом периоде отбирают корни (отбрасывают посторонние), а те, которые остаются, периодически продолжают.

Пример №63

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

1 способ решения

Решение:

Тригонометрические уравнения - формулы и примеры с решением

Тогда: Тригонометрические уравнения - формулы и примеры с решением

Функция Тригонометрические уравнения - формулы и примеры с решением имеет период Тригонометрические уравнения - формулы и примеры с решением а функция Тригонометрические уравнения - формулы и примеры с решением период Тригонометрические уравнения - формулы и примеры с решением Тогда Тригонометрические уравнения - формулы и примеры с решениемявляется общим периодом для обеих функций. Обозначим все полученные корни на одном периоде, например на промежутке Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

При Тригонометрические уравнения - формулы и примеры с решением значение Тригонометрические уравнения - формулы и примеры с решением не существует, таким образом, Тригонометрические уравнения - формулы и примеры с решением не является корнем данного уравнения.

При значениях Тригонометрические уравнения - формулы и примеры с решением получаем равенство Тригонометрические уравнения - формулы и примеры с решением Следовательно, эти значения являются корнями уравнения (1).

Тогда решениями данного уравнения будут:

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Если число Тригонометрические уравнения - формулы и примеры с решением является корнем уравнения (1), то при этом значении Тригонометрические уравнения - формулы и примеры с решением равенство (1) обращается в верное числовое равенство. Произведение двух чисел может равняться нулю тогда и только тогда, когда хотя бы один из множителей равен нулю. Таким образом, каждый корень уравнения (1) будет корнем совокупности уравнений Тригонометрические уравнения - формулы и примеры с решением

Заменив уравнение (1) на эту совокупность, мы не потеряем корни данного уравнения, но можем получить посторонние для него корни. Например, такие, при которых первый множитель равен нулю, а второй не существует.

Чтобы отбросить такие значения, выполним проверку полученных корней подстановкой в исходное уравнение на одном периоде — промежутке длиной Тригонометрические уравнения - формулы и примеры с решением

На этом периоде отбираем корни (отбрасываем посторонние), а те, которые остаются, периодически повторяем (то есть добавляем к полученным корням Тригонометрические уравнения - формулы и примеры с решением

Замечание. При решении уравнения (1) мы не следили за равносильностью выполненных преобразований, но выполняли преобразования, не приводящие к потере корней. Тогда говорят, что мы пользовались уравнениями-следствиями (если все корни первого уравнения являются корнями второго уравнения, то второе уравнение называется следствием первого). В этом случае мы могли получить посторонние для данного уравнения корни (то есть те корни последнего уравнения, которые не являются корнями данного). Чтобы этого не случилось, можно пользоваться следующим ориентиром.

Если при решении уравнения мы пользовались уравнениями-следствиями, то проверка полученных корней подстановкой в исходное уравнения является обязательной составной частью решения.

Если для решения этого же уравнения (1) мы будем использовать равносильные преобразования, то отбор корней будет организован немного иначе. А именно, нам придется учесть ОДЗ уравнения, то есть общую область определения для всех функций, входящих в запись уравнения.

2 способ решения уравнения Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Все равносильные преобразования уравнений выполняются на их области допустимых значений (ОДЗ), поэтому необходимо учесть ОДЗ.

Произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а второй множитель имеет смысл. На ОДЗ оба множителя имеют смысл, поэтому на ОДЗ данное уравнение равносильно совокупности уравнений Тригонометрические уравнения - формулы и примеры с решением

Те корни совокупности, которые входят в ОДЗ, достаточно отобрать на одном периоде — промежутке длиной Тригонометрические уравнения - формулы и примеры с решением а потом полученные решения периодически повторить.

Значение Тригонометрические уравнения - формулы и примеры с решением не принадлежит ОДЗ, поэтому оно не является корнем данного уравнения.

Значения Тригонометрические уравнения - формулы и примеры с решением входят в ОДЗ, следовательно, эти значения являются корнями данного уравнения.

Решение:

Тригонометрические уравнения - формулы и примеры с решением

Тогда

Тригонометрические уравнения - формулы и примеры с решением

Функция Тригонометрические уравнения - формулы и примеры с решением имеет период Тригонометрические уравнения - формулы и примеры с решением а функция Тригонометрические уравнения - формулы и примеры с решением период Тригонометрические уравнения - формулы и примеры с решением Тогда Тригонометрические уравнения - формулы и примеры с решением является общим периодом для обеих функций. Обозначим все полученные корни на одном периоде, например на промежутке Тригонометрические уравнения - формулы и примеры с решением и на этом же промежутке обозначим ограничения ОДЗ:

Тригонометрические уравнения - формулы и примеры с решением Ответ: Тригонометрические уравнения - формулы и примеры с решением

Решение систем тригонометрических уравнений

Системы тригонометрических уравнений решаются с помощью тех же методов, что и алгебраические системы, в частности это исключение неизвестных и замена переменных. Исключить неизвестные можно с помощью одного из двух приемов: из одного уравнения выразить какое-то неизвестное (или функцию от него) и подставить его в другие или преобразовать данные уравнения и потом составить из них комбинации, в которых число неизвестных уменьшается.

Пример №64

Решите систему уравнений Тригонометрические уравнения - формулы и примеры с решением

Решение:

Из первого уравнения находим Тригонометрические уравнения - формулы и примеры с решениеми подставляем во второе. Получаем Тригонометрические уравнения - формулы и примеры с решением то есть Тригонометрические уравнения - формулы и примеры с решением Отсюда

Тригонометрические уравнения - формулы и примеры с решением

  1. Если Тригонометрические уравнения - формулы и примеры с решением
  2. Если Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Замечание. Если бы мы для нахождения значения Тригонометрические уравнения - формулы и примеры с решением не рассмотрели отдельно формулу (1) со знаком « + » и знаком «-», то вместе с верными решениями мы бы получили и посторонние решения заданной системы.

Действительно, в таком случае имеем Тригонометрические уравнения - формулы и примеры с решением

Тогда, например, при Тригонометрические уравнения - формулы и примеры с решением получаем Тригонометрические уравнения - формулы и примеры с решением

Таким образом, кроме решений, которые вошли в ответ, мы имеем еще две возможности:

Тригонометрические уравнения - формулы и примеры с решением

Но эти пары значений Тригонометрические уравнения - формулы и примеры с решением не являются решениями заданной системы, поскольку они не удовлетворяют первому уравнению. Поэтому следует запомнить:

Когда решение уравнения Тригонометрические уравнения - формулы и примеры с решением приходится применять для дальнейших преобразований, то удобно записывать его в виде двух формул: отдельно со знаком « + » и отдельно со знаком « —».

Пример №65

Решите систему уравнений

Тригонометрические уравнения - формулы и примеры с решением

Решение:

Почленно сложим и вычтем эти уравнения. Получим равносильную систему: Тригонометрические уравнения - формулы и примеры с решением

Представим последнюю систему в виде совокупности двух систем, записывая решения второго уравнения отдельно со знаком “+” и отдельно со знаком « – »:

Тригонометрические уравнения - формулы и примеры с решением Почленно складывая и вычитая уравнения этих систем, находим Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Замечание. В запись ответа вошли два параметра Тригонометрические уравнения - формулы и примеры с решением которые независимо друг от друга «пробегают» множество целых чисел.

Если попробовать при решении заданной системы воспользоваться только одним параметром, например Тригонометрические уравнения - формулы и примеры с решением то это приведет к потере решений. Таким образом, в каждом случае, когда система тригонометрических уравнений приводится к системе, состоящей из элементарных тригонометрических уравнений (то есть из уравнений вида Тригонометрические уравнения - формулы и примеры с решением при решении каждого из этих уравнений необходимо использовать свой целочисленный параметр.

Уравнения-следствия и равносильные преобразования уравнений

Понятие уравнения и его корней:

Определение:

Равенство с переменной называется уравнением. В общем виде уравнение с одной переменной Тригонометрические уравнения - формулы и примеры с решением записывают так: Тригонометрические уравнения - формулы и примеры с решением Под этой краткой записью понимают математическую запись задачи о нахождении значений аргумента, при которых значения двух данных функций равны.

Пример:

Тригонометрические уравнения - формулы и примеры с решением— линейное уравнение;

Тригонометрические уравнения - формулы и примеры с решением — квадратное уравнение;

Тригонометрические уравнения - формулы и примеры с решением — иррациональное уравнение (содержит переменную под знаком корня).

Корнем (или решением) уравнения с одной переменной называется значение переменной, при подстановке которого в уравнение получается верное равенство. Решить уравнение — значит найти все его корни или доказать, что их нет.

Пример:

Тригонометрические уравнения - формулы и примеры с решением — корень уравнения Тригонометрические уравнения - формулы и примеры с решением так как при Тригонометрические уравнения - формулы и примеры с решением получаем верное равенство: Тригонометрические уравнения - формулы и примеры с решением то есть Тригонометрические уравнения - формулы и примеры с решением

Область допустимых значений (ОДЗ):

Областью допустимых значений (или областью определения) уравнения называется общая область определения для функций Тригонометрические уравнения - формулы и примеры с решением стоящих в левой и правой частях уравнения.

Для уравнения Тригонометрические уравнения - формулы и примеры с решением ОДЗ: Тригонометрические уравнения - формулы и примеры с решением то есть Тригонометрические уравнения - формулы и примеры с решением так как область определения функции Тригонометрические уравнения - формулы и примеры с решением определяется условием: Тригонометрические уравнения - формулы и примеры с решением а область определения функции Тригонометрические уравнения - формулы и примеры с решением — множество всех действительных чисел.

Уравнения-следствия:

Если каждый корень первого уравнения является корнем второго, то второе уравнение называется следствием первого уравнения. Если из правильности первого равенства следует правильность каждого последующего, то получаем уравнения-следствия.

При использовании уравнений-следствий не происходит потери корней исходного уравнения, но возможно появление посторонних корней. Поэтому при использовании уравнений-следствий проверка полученных корней подстановкой их в исходное уравнение является составной частью решения (см. пункт 5 этой таблицы).

Тригонометрические уравнения - формулы и примеры с решением

Возведем обе части уравнения в квадрат:

Тригонометрические уравнения - формулы и примеры с решением

Проверка. Тригонометрические уравнения - формулы и примеры с решением — корень (см. выше); Тригонометрические уравнения - формулы и примеры с решением— посторонний корень(при Тригонометрические уравнения - формулы и примеры с решением получаем неверное равенство 1 = -1).

Ответ: 2.

Равносильные уравнения:

Определение:

Два уравнения называются равносильными на некотором множестве, если на этом множестве они имеют одни и те же корни.

То есть каждый корень первого уравнения является корнем второго уравнения и, наоборот, каждый корень второго уравнения является корнем первого. (Схема решения уравнений с помощью равносильных преобразований приведена в пункте 5 этой таблицы.)

Простейшие теоремы:

  1. Если из одной части уравнения перенести в другую слагаемые с противоположным знаком, то получим уравнение, равносильное заданному (на любом множестве).
  2. Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю (или на одну и ту же функцию, которая определена и не равна нулю на ОДЗ заданного уравнения), то получим уравнение, равносильное заданному (на ОДЗ заданного уравнения).

Схема поиска плана решений уравнений

Тригонометрические уравнения - формулы и примеры с решением

Объяснение и обоснование:

Понятие уравнения и его корней

Уравнение в математике чаще всего понимают как аналитическую запись задачи о нахождении значений аргумента, при которых значения двух данных функций равны. Поэтому в общем виде уравнения с одной переменной Тригонометрические уравнения - формулы и примеры с решением записывают так: Тригонометрические уравнения - формулы и примеры с решением

Часто уравнения определяют короче — как равенство с переменной. Напомним, что корнем (или решением) уравнения с одной переменной называется значение переменной, при подстановке которого в уравнение получается верное равенство. Решить уравнение — значит найти все его корни или доказать, что их нет.

Например, уравнение Тригонометрические уравнения - формулы и примеры с решением имеет единственный корень Тригонометрические уравнения - формулы и примеры с решением уравнение Тригонометрические уравнения - формулы и примеры с решением не имеет корней, поскольку значение Тригонометрические уравнения - формулы и примеры с решением не может быть отрицательным числом.

Область допустимых значений (ОДЗ) уравнения

Если задано уравнение Тригонометрические уравнения - формулы и примеры с решением то общая область определения для функций Тригонометрические уравнения - формулы и примеры с решением называется областью допустимых значений этого уравнения. (Иногда используются также термины «область определения уравнения» или «множество допустимых значений уравнения».) Например, для уравнения Тригонометрические уравнения - формулы и примеры с решением областью допустимых значений являются все действительные числа. Это можно записать, например, так. ОДЗ: Тригонометрические уравнения - формулы и примеры с решением поскольку функции Тригонометрические уравнения - формулы и примеры с решением имеют области определения Тригонометрические уравнения - формулы и примеры с решением

Понятно, что каждый корень данного уравнения принадлежит как области определения функции Тригонометрические уравнения - формулы и примеры с решением так и области определения функции Тригонометрические уравнения - формулы и примеры с решением (иначе мы не сможем получить верное числовое равенство). Поэтому каждый корень уравнения обязательно принадлежит ОДЗ этого уравнения. Это позволяет в некоторых случаях применить анализ ОДЗ уравнения при его решении.

Например, в уравнении Тригонометрические уравнения - формулы и примеры с решением функция Тригонометрические уравнения - формулы и примеры с решением определена при всех действительных значениях Тригонометрические уравнения - формулы и примеры с решением а функция Тригонометрические уравнения - формулы и примеры с решением только при условии, что под знаком квадратного корня будут стоять неотрицательные выражения. Следовательно, ОДЗ этого уравнения задается системой Тригонометрические уравнения - формулы и примеры с решением из которой получаем систему Тригонометрические уравнения - формулы и примеры с решением не имеющую решений. Таким образом, ОДЗ данного уравнения не содержит ни одного числа, и поэтому это уравнение не имеет корней.

Нахождение ОДЗ данного уравнения может быть полезным для его решения, но не всегда является обязательным элементом решения уравнения.

Методы решения уравнений

Для решения уравнений используют методы точного и приближенного решений. А именно, для точного решения уравнений в курсе математики 5-6 классов использовались зависимости между компонентами и результатами действий и свойства числовых равенств; в курсе алгебры 7-9 классов — равносильные преобразования уравнений, а для приближенного решения уравнений — графический метод.

Графический метод решения уравнений не дает высокой точности нахождения корней уравнения, и с его помощью чаще всего можно получить только грубые приближения корней. Иногда удобно графически определить количество корней уравнения или найти границы, в которых находятся эти корни. В некоторых случаях можно графически доказать, что уравнение не имеет корней. По указанным причинам в школьном курсе алгебры и начал анализа под требованием «решить уравнение» понимается требование «используя методы точного решения, найти корни данного уравнения». Приближенными методами решения уравнений можно пользоваться только тогда, когда об этом говорится в условии задачи (например, если ставится задача решить уравнение графически).

В основном при решении уравнений разных видов нам придется применять один из двух методов решения. Первый из них состоит в том, что данное уравнение заменяется более простым уравнением, имеющим те же корни,— равносильным уравнением. В свою очередь, полученное уравнение заменяется еще более простым, равносильным ему, и т. д. В результате получаем простейшее уравнение, которое равносильно заданному и корни которого легко находятся. Эти корни и только они являются корнями данного уравнения.

Второй метод решения уравнений состоит в том, что данное уравнение заменяется более простым уравнением, среди корней которого находятся все корни данного, то есть так называемым уравнением-следствием. В свою очередь, полученное уравнение заменяется еще более простым уравнением-следствием, и так далее до тех пор, пока не получим простейшее уравнение, корни которого легко находятся. Тогда все корни данного уравнения находятся среди корней последнего уравнения. Поэтому, чтобы найти корни данного уравнения, достаточно корни последнего уравнения подставить в данное и с помощью такой проверки получить корни данного уравнения (и исключить так называемые посторонние корни — те корни последнего уравнения, которые не удовлетворяют заданному).

В следующем параграфе будет также показано применение свойств функций к решению уравнений определенного вида.

  • Заказать решение задач по высшей математике

Уравнения-следствия

Рассмотрим более детально, как можно решать уравнения с помощью уравнений-следствий. При решении уравнений главное — не потерять корни данного уравнения, и поэтому в первую очередь мы должны следить за тем, чтобы каждый корень исходного уравнения оставался корнем следующего. Фактически это и является определением уравнения-следствия:

  • в том случае, когда каждый корень первого уравнения является корнем второго, второе уравнение называется следствием первого.

Это определение позволяет обосновать такой ориентир: для получения уравнения-следствия достаточно рассмотреть данное уравнение как верное числовое равенство и гарантировать (то есть иметь возможность обосновать), что каждое следующее уравнение мы можем получить как верное числовое равенство.

Действительно, если придерживаться этого ориентира, то каждый корень первого уравнения обращает это уравнение в верное числовое равенство, но тогда и второе уравнение будет верным числовым равенством, то есть рассматриваемое значение переменной является корнем и второго уравнения, а это и означает, что второе уравнение является следствием первого.

Применим приведенный ориентир к уравнению Тригонометрические уравнения - формулы и примеры с решением (пока что не используя известное условие равенства дроби нулю).

Если правильно то, что дробь равна нулю, то обязательно ее числитель равен нулю. Таким образом, из заданного уравнения получаем уравнение-следствие Тригонометрические уравнения - формулы и примеры с решением Но тогда верно, что Тригонометрические уравнения - формулы и примеры с решением Последнее уравнение имеет два корня: Тригонометрические уравнения - формулы и примеры с решением Подставляя их в заданное уравнение, видим, что только корень Тригонометрические уравнения - формулы и примеры с решением удовлетворяет исходному уравнению. Почему это случилось?

Это происходит поэтому, что, используя уравнения-следствия, мы гарантируем только то, что корни заданного уравнения не теряются (каждый корень первого уравнения является корнем второго). Но второе уравнение, кроме корней первого уравнения, имеет еще и другой корень, который не является корнем первого уравнения. Для первого уравнения этот корень является посторонним, и, чтобы его отсеять, выполняется проверка подстановкой корней в исходное уравнение.

Таким образом, чтобы правильно применять уравнения-следствия для решения уравнений, необходимо помнить еще один ориентир: при использовании уравнений-следствий возможно появление посторонних корней, и поэтому проверка подстановкой корней в исходное уравнение является составной частью решения.

Схема применения этих ориентиров дана в таблице 33. В пункте 3 этой таблицы приведено решение уравнения

Тригонометрические уравнения - формулы и примеры с решением

Для решения этого уравнения с помощью уравнений-следствий достаточно данное уравнение рассмотреть как верное числовое равенство и учесть, что в случае, когда два числа равны, то и их квадраты также будут равны: Тригонометрические уравнения - формулы и примеры с решением

То есть мы гарантируем, что если равенство (1) верно, то и равенство (2) также будет верным, а это и означает (как было показано выше), что уравнение (2) является следствием уравнения (1). Если мы хотя бы один раз использовали уравнения-следствия (а не равносильные преобразования), то можем получить посторонние корни, и тогда в решение обязательно входит проверка полученных корней подстановкой их в заданное уравнение.

Замечание. Переход от данного уравнения к уравнению-следствию можно обозначить специальным значком Тригонометрические уравнения - формулы и примеры с решением но его использование для записи решения не является обязательным. Вместе с тем, если этот значок записан, то это свидетельствует о том, что мы воспользовались уравнениями-следствиями, и поэтому обязательно в запись решения необходимо включить проверку полученных корней.

Равносильные уравнения

С понятием равносильности вы знакомы еще из курса алгебры 7 класса, где равносильными назывались те уравнения, которые имели одни и те же корни. Заметим, что равносильными считались и такие два уравнения, которые не имели корней. Формально будем считать, что и в этом случае уравнения имеют одни и те же корни, поскольку ответы к таким уравнениям одинаковы: «уравнения не имеют корней» (точнее: одинаковыми являются множества корней таких уравнений — они оба пустые, что обозначается символом Тригонометрические уравнения - формулы и примеры с решением

В курсе алгебры и начал анализа мы будем рассматривать более общее понятие равносильности, а именно — равносильность на определенном множестве.

Два уравнения называются равносильными на некотором множестве, если на этом множестве они имеют одни и те же корни, то есть каждый корень первого уравнения является корнем второго и, наоборот, каждый корень второго уравнения является корнем первого.

Для уравнений, заданных на множестве всех действительных чисел (например, для линейных), мы можем однозначно дать ответ на вопрос: «Равносильны ли данные уравнения? » Например, уравнения Тригонометрические уравнения - формулы и примеры с решением — равносильные, поскольку оба имеют одинаковый корень Тригонометрические уравнения - формулы и примеры с решением и других корней не имеют, таким образом, каждое из них имеет те же решения, что и второе.

При рассмотрении равносильности уравнений на множестве, которое отличается от множества всех действительных чисел, ответ на вопрос «Равносильны ли данные уравнения? » может существенно зависеть от того, на каком множестве мы рассматриваем эти уравнения. Например, если рассмотреть уравнения: Тригонометрические уравнения - формулы и примеры с решением то, как было показано выше, уравнение (3) имеет единственный корень Тригонометрические уравнения - формулы и примеры с решением а уравнение (4) — два корня: Тригонометрические уравнения - формулы и примеры с решением Таким образом, на множестве всех действительных чисел эти уравнения не являются равносильными, поскольку у уравнения (4) есть корень Тригонометрические уравнения - формулы и примеры с решением которого нет у уравнения (3). Но на множестве положительных действительных чисел эти уравнения равносильны, поскольку на этом множестве уравнение (3) имеет единственный положительный корень Тригонометрические уравнения - формулы и примеры с решением и уравнение (4) также имеет единственный положительный корень Тригонометрические уравнения - формулы и примеры с решением Следовательно, на множестве положительных чисел каждое из этих уравнений имеет те же решения, что и второе.

Укажем, что множество, на котором рассматривается равносильность уравнений, как правило, не задается искусственно (как в последнем случае), а чаще всего таким множеством является ОДЗ исходного уравнения.

Договоримся, что далее все равносильные преобразования уравнений (а также неравенств и систем уравнений и неравенств) мы будем выполнять на ОДЗ исходного уравнения (неравенства или системы). Отметим, что в том случае, когда ОДЗ заданного уравнения является множество всех действительных чисел, мы не всегда будем ее записывать (как не записывали ОДЗ при решении линейных или квадратных уравнений). И в других случаях главное — не записать ОДЗ в решение уравнения, а реально учесть ее при выполнении равносильных преобразований данного уравнения.

Например, для уравнения Тригонометрические уравнения - формулы и примеры с решением задается неравенством Тригонометрические уравнения - формулы и примеры с решением Когда мы переходим к уравнению Тригонометрические уравнения - формулы и примеры с решением то для всех его корней это уравнение является верным равенством. Тогда выражение Тригонометрические уравнения - формулы и примеры с решением стоящее в правой части этого равенства, всегда неотрицательно Тригонометрические уравнения - формулы и примеры с решением таким образом, и равное ему выражение Тригонометрические уравнения - формулы и примеры с решением также будет неотрицательным: Тригонометрические уравнения - формулы и примеры с решением Но это и означает, что ОДЗ данного уравнения Тригонометрические уравнения - формулы и примеры с решением учтено автоматически для всех корней второго уравнения и поэтому при переходе от уравнения Тригонометрические уравнения - формулы и примеры с решением к уравнению Тригонометрические уравнения - формулы и примеры с решением ОДЗ данного уравнения можно не записывать в решение.

Для выполнения равносильных преобразований попробуем выделить общие ориентиры, аналогичные соответствующим ориентирам получения уравнений-следствий.

Как указывалось выше, выполняя равносильные преобразования уравнений, необходимо учесть ОДЗ данного уравнения — это и есть первый ориентир для выполнения равносильных преобразований уравнений.

По определению равносильности уравнений необходимо гарантировать, чтобы каждый корень первого уравнения был корнем второго и наоборот — каждый корень второго уравнения был корнем первого. Для первой части этого требования мы уже выделили общий ориентир: достаточно гарантировать сохранение правильности равенства при переходе от первого уравнения ко второму (с. 187).

Но тогда, чтобы выполнить вторую часть этого требования, достаточно второе уравнение рассмотреть как верное равенство (то есть взять такое значение переменной, которое является корнем второго уравнения) и гарантировать, что при переходе к первому верное равенство сохраняется (этот корень остается и корнем первого уравнения). Фактически из определения равносильности уравнений получаем, что каждое из равносильных уравнений является следствием другого уравнения).

Таким образом, при выполнении равносильных преобразований мы должны гарантировать сохранение правильности равенства на каждом шаге решения не только при прямых, а и при обратных преобразованиях — это и является вторым ориентиром для решения уравнений с помощью равносильных преобразований. (Соответствующие ориентиры схематически представлены в пункте 5 табл. 33.)

Например, чтобы решить с помощью равносильных преобразований уравнение Тригонометрические уравнения - формулы и примеры с решением достаточно учесть его ОДЗ: Тригонометрические уравнения - формулы и примеры с решением и условие равенства дроби нулю (дробь равна нулю тогда и только тогда, когда числитель дроби равен нулю, а знаменатель не равен нулю). Также следует обратить внимание на то, что на ОДЗ все необходимые преобразования можно выполнить как в прямом, так и в обратном направлениях с сохранением правильности равенства.

Запись решения в этом случае может быть такой:

Тригонометрические уравнения - формулы и примеры с решением ОДЗ: Тригонометрические уравнения - формулы и примеры с решением Тогда Тригонометрические уравнения - формулы и примеры с решением Отсюда Тригонометрические уравнения - формулы и примеры с решением (удовлетворяет условию ОДЗ) или Тригонометрические уравнения - формулы и примеры с решением (не удовлетворяет условию ОДЗ). Ответ: 1.

Для выполнения равносильных преобразований уравнений можно также пользоваться специальными теоремами о равносильности. В связи с уточнением определения равносильности уравнений обобщим также формулировки простейших теорем о равносильности, известных из курса алгебры 7 класса.

  • Теорема 1. Если из одной части уравнения перенести в другую часть слагаемые с противоположным знаком, то получим уравнение, равносильное заданному (на любом множестве).
  • Теорема 2. Если обе части уравнения у множить или разделить на одно и то же число, не равное нулю (или на одну и ту же функцию, которая определена и не равна нулю на ОДЗ заданного уравнения), то получаем уравнение, равносильное заданному (на ОДЗ исходного).

Обоснование этих теорем полностью аналогично обоснованию ориентиров для равносильных преобразований данного уравнения.

Замечание. Для обозначения перехода от данного уравнения к равносильному ему уравнению можно применять специальный значок Тригонометрические уравнения - формулы и примеры с решением но его использование при записи решений не является обязательным. (Хотя иногда мы будем им пользоваться, чтобы подчеркнуть, что были выполнены именно равносильные преобразования.)

Пример №66

Решите уравнение: Тригонометрические уравнения - формулы и примеры с решением

Решение:

ОДЗ: Тригонометрические уравнения - формулы и примеры с решением На этой ОДЗ данное уравнение равносильно уравнениям:

Тригонометрические уравнения - формулы и примеры с решением

то есть Тригонометрические уравнения - формулы и примеры с решением

Учтем ОДЗ. При Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением Таким образом, Тригонометрические уравнения - формулы и примеры с решением —корень.

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Используем равносильные преобразования для решения данного уравнения. Для этого необходимо учесть ОДЗ, поэтому зафиксируем ее ограничения в начале решения.

Укажем, что в уравнениях ограничения ОДЗ можно только зафиксировать, но не решать, а в конце проверить, выполняются ли эти ограничения для найденных корней.

При переносе члена данного уравнения из одной части уравнения в другую с противоположным знаком получаем уравнение (1), равносильное заданному.

Приводя к общему знаменателю, раскрывая скобки и приводя подобные члены, снова получаем верное равенство и можем обосновать, что при выполнении обратных действий равенство также не нарушается, таким образом, полученные уравнения (1)—(3) равносильны заданному (на его ОДЗ).

Дробь равна нулю тогда и только тогда, когда числитель дроби равен нулю, а знаменатель не равен нулю. Но второе условие уже учтено в ограничениях ОДЗ, таким образом, получаем уравнение (4), равносильное заданному уравнению на его ОДЗ. Поскольку все преобразования были равносильными только с учетом ОДЗ, то мы должны проверить, удовлетворяет ли полученное число ограничениям ОДЗ.

Причины появления посторонних корней и потери корней при решении уравнений

Наиболее типичные случаи появления посторонних корней и потери корней приведены в таблице 34. Там же указано, как в каждом из этих случаев получить правильное (или полное) решение.

Получение уравнений следствий:

1. Приведение подобных членов.

Тригонометрические уравнения - формулы и примеры с решением Перенесем из правой части уравнения в левую слагаемое Тригонометрические уравнения - формулы и примеры с решением противоположным знаком и приведем подобные члены. Получим Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением

а) переход к уравнению, ОДЗ которого шире, чем ОДЗ заданного уравнения;

2. Приведение обеих частей уравнения к общему знаменателю (при сокращении знаменателя).

Тригонометрические уравнения - формулы и примеры с решениемУмножим обе части уравнения на общий знаменатель всех дробей Тригонометрические уравнения - формулы и примеры с решением Получим

Тригонометрические уравнения - формулы и примеры с решением

3. Возведение обеих частей иррационального уравнения в квадрат.

Тригонометрические уравнения - формулы и примеры с решением

б) выполнение преобразований, при которых происходит неявное умножение на нуль;

Умножение обеих частей уравнения на выражение с переменной.

Тригонометрические уравнения - формулы и примеры с решениемУмножим обе части уравнения на Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением Получим Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением не является корнем заданного уравнения.

Тригонометрические уравнения - формулы и примеры с решением Проверка показывает, что Тригонометрические уравнения - формулы и примеры с решением — посторонний корень, Тригонометрические уравнения - формулы и примеры с решением— корень.

Тригонометрические уравнения - формулы и примеры с решением не является корнем заданного уравнения.

Тригонометрические уравнения - формулы и примеры с решением Проверка показывает, что Тригонометрические уравнения - формулы и примеры с решением — посторонний корень.

Ответ: корней нет.

Тригонометрические уравнения - формулы и примеры с решением не является корнем заданного уравнения.

Тригонометрические уравнения - формулы и примеры с решением Проверка показывает, что Тригонометрические уравнения - формулы и примеры с решением — посторонний корень. Ответ: корней нет

Тригонометрические уравнения - формулы и примеры с решением не является корнем заданного уравнения.

В данном уравнении не было необходимости умножить на Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением Ответ: корней нет. Если применить умножение обеих частей уравнения на Тригонометрические уравнения - формулы и примеры с решением то проверка показывает, что Тригонометрические уравнения - формулы и примеры с решением — посторонний корень, то есть уравнение не имеет корней.

в) применение к обеим частям уравнения функции, которая не является возрастающей или убывающей.

Возведение обеих частей уравнения в четную степень или применение к обеим частям уравнения тригонометрических функций.

Тригонометрические уравнения - формулы и примеры с решением

Возведем обе части уравнения в квадрат: Тригонометрические уравнения - формулы и примеры с решением Получим Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением

Явное или неявное сужение ОДЗ заданного уравнения, в частности выполнение преобразований, в ходе которых происходит неявное деление на нуль.

1. Деление обеих частей уравнения на выражение с переменной.

Тригонометрические уравнения - формулы и примеры с решением Поделив обе части уравнения на Тригонометрические уравнения - формулы и примеры с решением получим Тригонометрические уравнения - формулы и примеры с решением

2. Сложение, вычитание, умножение или деление обеих частей уравнения на выражение, ОДЗ которого уже, чем ОДЗ заданного уравнения.

Тригонометрические уравнения - формулы и примеры с решением Если к обеим частям уравнения прибавить Тригонометрические уравнения - формулы и примеры с решением то получим уравнение Тригонометрические уравнения - формулы и примеры с решением у которого только один корень Тригонометрические уравнения - формулы и примеры с решением

Где ошибка при решении уравнения

1. Тригонометрические уравнения - формулы и примеры с решением не является корнем заданного уравнения. Выполнить проверку подстановкой корней в заданное уравнение.

В данном уравнении не было необходимости возводить в квадрат.

Тригонометрические уравнения - формулы и примеры с решением

Ответ: –2.

Если применить возведение в квадрат, то проверка показывает, что Тригонометрические уравнения - формулы и примеры с решением — корень, a Тригонометрические уравнения - формулы и примеры с решением — посторонний корень.

Потеряли корень Тригонометрические уравнения - формулы и примеры с решением поскольку после деления на Тригонометрические уравнения - формулы и примеры с решением фактически получили уравнение Тригонометрические уравнения - формулы и примеры с решением ОДЗ которого: Тригонометрические уравнения - формулы и примеры с решением то есть сузили ОДЗ заданного уравнения.

Те значения, на которые сузилась ОДЗ, необходимо рассмотреть отдельно.

Тригонометрические уравнения - формулы и примеры с решением

  1. При Тригонометрические уравнения - формулы и примеры с решением получаем Тригонометрические уравнения - формулы и примеры с решением — верное равенство, таким образом, Тригонометрические уравнения - формулы и примеры с решением — корень.
  2. При Тригонометрические уравнения - формулы и примеры с решением получаем Тригонометрические уравнения - формулы и примеры с решением

Ответ. 0; 1. (Конечно, удобнее решать так: Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением

Потеряли корень Тригонометрические уравнения - формулы и примеры с решением поскольку ОДЗ данного уравнения: Тригонометрические уравнения - формулы и примеры с решением — любое число, а Тригонометрические уравнения - формулы и примеры с решением существует только при Тригонометрические уравнения - формулы и примеры с решением

В данном уравнении не было необходимости прибавлять к обеим частям Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением (Если бы пришлось прибавить к обеим частям Тригонометрические уравнения - формулы и примеры с решением то при Тригонометрические уравнения - формулы и примеры с решением данное уравнение необходимо рассмотреть отдельно, и тогда получим еще и корень Тригонометрические уравнения - формулы и примеры с решением

Применение свойств функций к решению уравнений:

Конечная ОДЗ:

Если область допустимых значений (ОДЗ) уравнения (неравенства или системы) состоит из конечного числа значений, то для решения достаточно проверить все эти значения.

ОДЗ: Тригонометрические уравнения - формулы и примеры с решением

Проверка: Тригонометрические уравнения - формулы и примеры с решением корень , Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением – не корень Тригонометрические уравнения - формулы и примеры с решением

Ответ: 1

Оценка левой и правой частей уравнения:

Тригонометрические уравнения - формулы и примеры с решением

Если надо решить уравнение вида Тригонометрические уравнения - формулы и примеры с решением и выяснилось, что Тригонометрические уравнения - формулы и примеры с решением то равенство между левой и правой частями возможно тогда и только тогда, когда Тригонометрические уравнения - формулы и примеры с решением и Тригонометрические уравнения - формулы и примеры с решением одновременно равны Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Итак, заданное уравнение равносильно системе

Тригонометрические уравнения - формулы и примеры с решением

Ответ: 0

Тригонометрические уравнения - формулы и примеры с решением

Сумма нескольких неотрицательных функций равна нулю тогда и только тогда, когда все функции одновременно равны нулю.

Тригонометрические уравнения - формулы и примеры с решением

Итак, заданное уравнение равносильно системе Тригонометрические уравнения - формулы и примеры с решением Из первого уравнения получаем Тригонометрические уравнения - формулы и примеры с решением что удовлетворяет всей системе.

Ответ: 2.

Использование возрастания и убывания функций:

  1. Подбираем один или несколько корней уравнения.
  2. Доказываем, что других корней это уравнение не имеет (используя теоремы о корнях уравнения или оценку левой и правой частей уравнения)

Тригонометрические уравнения - формулы и примеры с решением

1. Если в уравнении Тригонометрические уравнения - формулы и примеры с решением функция Тригонометрические уравнения - формулы и примеры с решением возрастает (убывает) на некотором промежутке, то это уравнение может иметь не более чем один корень на этом промежутке.

Пример:

Уравнение Тригонометрические уравнения - формулы и примеры с решением имеет единственный корень Тригонометрические уравнения - формулы и примеры с решением то есть Тригонометрические уравнения - формулы и примеры с решением поскольку функция Тригонометрические уравнения - формулы и примеры с решением возрастает на всей области определения Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

2. Если в уравнении Тригонометрические уравнения - формулы и примеры с решением функция Тригонометрические уравнения - формулы и примеры с решениемвозрастает на некотором промежутке, а функция Тригонометрические уравнения - формулы и примеры с решением убывает на этом же промежутке (или наоборот), то это уравнение может иметь не более чем один корень на этом промежутке.

Пример:

Уравнение Тригонометрические уравнения - формулы и примеры с решением имеет единственный корень Тригонометрические уравнения - формулы и примеры с решением − то есть Тригонометрические уравнения - формулы и примеры с решением поскольку Тригонометрические уравнения - формулы и примеры с решением возрастает на всей области определения Тригонометрические уравнения - формулы и примеры с решением убывает (на множестве Тригонометрические уравнения - формулы и примеры с решением а следовательно, и при Тригонометрические уравнения - формулы и примеры с решением

Объяснение и обоснование:

Конечная ОДЗ

Напомним, что в случае, когда дано уравнение Тригонометрические уравнения - формулы и примеры с решением общая область определения для функций Тригонометрические уравнения - формулы и примеры с решением называется областью допустимых значений этого уравнения. Понятно, что каждый корень заданного уравнения принадлежит как области определения функции Тригонометрические уравнения - формулы и примеры с решением так и области определения функции Тригонометрические уравнения - формулы и примеры с решением Таким образом, каждый корень уравнения обязательно принадлежит ОДЗ этого уравнения. Это позволяет в некоторых случаях за счет анализа ОДЗ получить решение уравнения.

Например, если дано уравнение Тригонометрические уравнения - формулы и примеры с решением то его ОДЗ можно задать с помощью системы Тригонометрические уравнения - формулы и примеры с решением Решая эту систему, получаем Тригонометрические уравнения - формулы и примеры с решением то есть Тригонометрические уравнения - формулы и примеры с решением Таким образом, ОДЗ данного уравнения состоит только из одного значения Тригонометрические уравнения - формулы и примеры с решением Но если только для одного числа необходимо выяснить, является ли оно корнем данного уравнения, то для этого достаточно подставить это значение в уравнение. В результате получаем верное числовое равенство Тригонометрические уравнения - формулы и примеры с решением Следовательно, Тригонометрические уравнения - формулы и примеры с решением — корень данного уравнения. Других корней у этого уравнения быть не может, поскольку все корни уравнения находятся в его ОДЗ, а там нет других значений, кроме Тригонометрические уравнения - формулы и примеры с решением

Рассмотренный пример позволяет выделить ориентир для решения аналогичных уравнений:

  • если ОДЗ уравнения (а также неравенства или системы) состоит из конечного числа значений, то для решения достаточно проверить все эти значения.

Замечание. В том случае, когда ОДЗ — пустое множество (не содержит ни одного числа), мы можем сразу дать ответ, что данное уравнение не имеет корней.

Например, если необходимо решить уравнение Тригонометрические уравнения - формулы и примеры с решением то его ОДЗ задается системой Тригонометрические уравнения - формулы и примеры с решением то есть системой Тригонометрические уравнения - формулы и примеры с решением которая не имеет решений. Таким образом, ОДЗ данного уравнения не содержит ни одного числа, и поэтому это уравнение не имеет корней.

Оценка левой и правой частей уравнения

Некоторые уравнения можно решить с помощью оценки левой и правой частей уравнения.

Пусть дано уравнение Тригонометрические уравнения - формулы и примеры с решением и нам удалось выяснить, что для всех допустимых значений Тригонометрические уравнения - формулы и примеры с решением значение Тригонометрические уравнения - формулы и примеры с решением а значение Тригонометрические уравнения - формулы и примеры с решением

Рассмотрим два случая: Тригонометрические уравнения - формулы и примеры с решением

Если Тригонометрические уравнения - формулы и примеры с решением то равенство Тригонометрические уравнения - формулы и примеры с решением не может выполняться, потому что Тригонометрические уравнения - формулы и примеры с решением то есть при Тригонометрические уравнения - формулы и примеры с решением данное уравнение корней не имеет. Остается только случай Тригонометрические уравнения - формулы и примеры с решением но, учитывая необходимость выполнения равенства Тригонометрические уравнения - формулы и примеры с решением имеем, что тогда и Тригонометрические уравнения - формулы и примеры с решением Таким образом, мы обосновали, что выполнение равенства Тригонометрические уравнения - формулы и примеры с решением (при условии Тригонометрические уравнения - формулы и примеры с решением гарантирует одновременное выполнение равенств Тригонометрические уравнения - формулы и примеры с решением (и, наоборот, если одновременно выполняются равенства Тригонометрические уравнения - формулы и примеры с решением то выполняется и равенство Тригонометрические уравнения - формулы и примеры с решением Означает, что уравнение Тригонометрические уравнения - формулы и примеры с решением равносильно системе Тригонометрические уравнения - формулы и примеры с решением Коротко это можно записать так: Тригонометрические уравнения - формулы и примеры с решением

Пример использования такого приема решения уравнений приведен в пункте 2 таблицы 35.

Аналогично предыдущим рассуждениям обосновывается и ориентир по решению уравнения Тригонометрические уравнения - формулы и примеры с решением в котором все функции-слагаемые неотрицательны Тригонометрические уравнения - формулы и примеры с решением

Если предположить, что Тригонометрические уравнения - формулы и примеры с решением то сумма всех функций, стоящих в левой части этого уравнения, может равняться нулю только тогда, когда сумма Тригонометрические уравнения - формулы и примеры с решением будет отрицательной. Но это невозможно, поскольку по условию все функции неотрицательные. Таким образом, при Тригонометрические уравнения - формулы и примеры с решением данное уравнение не имеет корней. Эти же рассуждения можно повторить для любой другой функции-слагаемого. Остается единственная возможность — все функции-слагаемые равны нулю (очевидно, что в этом случае равенство Тригонометрические уравнения - формулы и примеры с решением обязательно будет выполняться).

Таким образом, сумма нескольких неотрицательных функций равна нулю тогда и только тогда, когда все функции одновременно равны нулю. О Например, чтобы решить уравнение Тригонометрические уравнения - формулы и примеры с решением достаточно перенести все члены в одну сторону, записать уравнение в виде Тригонометрические уравнения - формулы и примеры с решением и учесть, что функции Тригонометрические уравнения - формулы и примеры с решением неотрицательные. Таким образом, данное уравнение равносильно системе Тригонометрические уравнения - формулы и примеры с решением

Из второго уравнения получаем Тригонометрические уравнения - формулы и примеры с решением что удовлетворяет и всей системе. Следовательно, данное уравнение имеет единственный корень Тригонометрические уравнения - формулы и примеры с решением

Использование возрастания и убывания функций

Использование возрастания и убывания функций к решению уравнений опирается на такое свойство: возрастающая или убывающая функция принимает каждое свое значение только в одной точке ее области определения. Полезно помнить специальные теоремы о корнях уравнения.

Теорема 1. Если в уравнении Тригонометрические уравнения - формулы и примеры с решением функция Тригонометрические уравнения - формулы и примеры с решением возрастает (убывает) на некотором промежутке, то это уравнение может иметь не более чем один корень на этом промежутке.

Тригонометрические уравнения - формулы и примеры с решением

Графически утверждение теоремы проиллюстрировано на рисунке 96. Прямая Тригонометрические уравнения - формулы и примеры с решением пересекает график возрастающей на промежутке Тригонометрические уравнения - формулы и примеры с решением функции Тригонометрические уравнения - формулы и примеры с решением только в одной точке. Это и означает, что уравнение Тригонометрические уравнения - формулы и примеры с решением не может иметь больше одного корня на промежутке Тригонометрические уравнения - формулы и примеры с решением Докажем это утверждение аналитически.

Если на промежутке Тригонометрические уравнения - формулы и примеры с решением уравнение имеет корень Тригонометрические уравнения - формулы и примеры с решением Других корней быть не может, поскольку для возрастающей функции Тригонометрические уравнения - формулы и примеры с решением при Тригонометрические уравнения - формулы и примеры с решением получаем неравенство Тригонометрические уравнения - формулы и примеры с решением а при Тригонометрические уравнения - формулы и примеры с решением — неравенство Тригонометрические уравнения - формулы и примеры с решением Таким образом, при Тригонометрические уравнения - формулы и примеры с решением Аналогично и для убывающей функции при Тригонометрические уравнения - формулы и примеры с решением получаем Тригонометрические уравнения - формулы и примеры с решением

Теорема 2. Если в уравнении Тригонометрические уравнения - формулы и примеры с решением функция Тригонометрические уравнения - формулы и примеры с решением возрастает на некотором промежутке, а функция Тригонометрические уравнения - формулы и примеры с решением убывает на этом же промежутке (или наоборот), то это уравнение может иметь не более чем один корень на этом промежутке.

Графически утверждение теоремы проиллюстрировано на рисунке 97.

Если на промежутке Тригонометрические уравнения - формулы и примеры с решением уравнение имеет корень Тригонометрические уравнения - формулы и примеры с решением Других корней быть не может, поскольку, например, для возрастающей функции Тригонометрические уравнения - формулы и примеры с решением и убывающей функции Тригонометрические уравнения - формулы и примеры с решением имеем Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением таким образом, Тригонометрические уравнения - формулы и примеры с решением Аналогично и при Тригонометрические уравнения - формулы и примеры с решением

Каждая из этих теорем утверждает, что в рассмотренном промежутке данное уравнение может иметь не более чем один корень, то есть или это уравнение совсем не имеет корней, или оно имеет единственный корень. Если нам удалось подобрать один корень такого уравнения, то других корней в заданном промежутке уравнение не имеет.

Например, чтобы решить уравнение Тригонометрические уравнения - формулы и примеры с решением достаточно заметить, что функция Тригонометрические уравнения - формулы и примеры с решением является возрастающей на всей числовой прямой (как сумма двух возрастающих функций) и что Тригонометрические уравнения - формулы и примеры с решением — корень этого уравнения Тригонометрические уравнения - формулы и примеры с решением Таким образом, данное уравнение Тригонометрические уравнения - формулы и примеры с решением имеет единственный корень Тригонометрические уравнения - формулы и примеры с решением

Заметим, что каждая из этих теорем гарантирует единственность корня уравнения (если он есть) только на промежутке возрастания (или убывания) соответствующей функции. Если функция имеет несколько промежутков возрастания и убывания, то приходится рассматривать каждый из них отдельно.

Пример №67

Решим с помощью теоремы 2 уравнение Тригонометрические уравнения - формулы и примеры с решением

Сначала следует учесть его ОДЗ: Тригонометрические уравнения - формулы и примеры с решением и вспомнить, что функция Тригонометрические уравнения - формулы и примеры с решением на всей области определения не является ни убывающей, ни возрастающей (с. 22), но она убывает на каждом из промежутков Тригонометрические уравнения - формулы и примеры с решением Поэтому рассмотрим каждый из этих промежутков отдельно.

  1. При Тригонометрические уравнения - формулы и примеры с решением данное уравнения имеет корень Тригонометрические уравнения - формулы и примеры с решением Функция Тригонометрические уравнения - формулы и примеры с решением возрастает при Тригонометрические уравнения - формулы и примеры с решением (как было показано выше, она возрастает на множестве Тригонометрические уравнения - формулы и примеры с решением а функция Тригонометрические уравнения - формулы и примеры с решением убывает на промежутке Тригонометрические уравнения - формулы и примеры с решением Таким образом, данное уравнение Тригонометрические уравнения - формулы и примеры с решением имеет единственный корень Тригонометрические уравнения - формулы и примеры с решением
  2. При Тригонометрические уравнения - формулы и примеры с решением данное уравнение имеет корень Тригонометрические уравнения - формулы и примеры с решением Функция Тригонометрические уравнения - формулы и примеры с решением возрастает при Тригонометрические уравнения - формулы и примеры с решением а функция Тригонометрические уравнения - формулы и примеры с решением убывает на этом промежутке. Поэтому данное уравнение Тригонометрические уравнения - формулы и примеры с решением при Тригонометрические уравнения - формулы и примеры с решением имеет единственный корень Тригонометрические уравнения - формулы и примеры с решением

В ответ следует записать все найденные корни (хотя на каждом из промежутков корень единственный, но всего корней — два). Итак, данное уравнение имеет только два корня: Тригонометрические уравнения - формулы и примеры с решением

Примеры решения задач:

Пример №68

Решение Тригонометрические уравнения - формулы и примеры с решением

Решение:

ОДЗ: Тригонометрические уравнения - формулы и примеры с решением Тогда функция Тригонометрические уравнения - формулы и примеры с решением (как сумма двух взаимно обратных положительных чисел), а функция Тригонометрические уравнения - формулы и примеры с решением Таким образом, данное уравнение равносильно системе

Тригонометрические уравнения - формулы и примеры с решением

Из второго уравнения системы получаем Тригонометрические уравнения - формулы и примеры с решением что удовлетворяет и первому уравнению. Таким образом, система (а значит, и данное уравнение) имеет единственное решение Тригонометрические уравнения - формулы и примеры с решением

Ответ: 1.

Комментарий:

Если раскрыть скобки и привести обе части уравнения к общему знаменателю, то для нахождения корней полученного уравнения придется решать полное уравнение восьмой степени, все корни которого мы не сможем найти.

Попытаемся оценить области значений функций, стоящих в левой и правой частях уравнения. Поскольку на ОДЗ Тригонометрические уравнения - формулы и примеры с решением то в левой части уравнения стоит сумма двух взаимно обратных положительных чисел, которая всегда больше или равна 2. В правой части из 2 вычитается неотрицательное число Тригонометрические уравнения - формулы и примеры с решением Таким образом, при всех значениях Тригонометрические уравнения - формулы и примеры с решением получаем значение, меньшее или равное 2. Равенство между левой и правой частями возможно тогда и только тогда, когда обе части равны 2.

Пример №69

Решите систему уравнении Тригонометрические уравнения - формулы и примеры с решением

Решение:

ОДЗ: Тригонометрические уравнения - формулы и примеры с решением Рассмотрим функцию Тригонометрические уравнения - формулы и примеры с решением На своей области определения Тригонометрические уравнения - формулы и примеры с решением эта функция является возрастающей (как сумма двух возрастающих функций). Тогда первое уравнение заданной системы, которое имеет вид Тригонометрические уравнения - формулы и примеры с решением равносильно уравнению Тригонометрические уравнения - формулы и примеры с решением Таким образом, на ОДЗ заданная система равносильна системе

Тригонометрические уравнения - формулы и примеры с решением

Подставляя Тригонометрические уравнения - формулы и примеры с решением во второе уравнение системы, имеем Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением Учитывая, что на ОДЗ Тригонометрические уравнения - формулы и примеры с решением получаем Тригонометрические уравнения - формулы и примеры с решением Тогда Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Замечание. Утверждение, обоснованное в комментарии к задаче 2, может быть использовано при решении аналогичных задач. Коротко его можно сформулировать так: если функция Тригонометрические уравнения - формулы и примеры с решением является возрастающей (или убывающей) на определенном множестве, то на этом множестве

Тригонометрические уравнения - формулы и примеры с решением

Примеры решения более сложных тригонометрических уравнений и их систем

Иногда приходится решать тригонометрические уравнения, в которые входят только сумма или разность синуса и косинуса одного и того же аргумента и их произведение. В таком случае целесообразно эту сумму (или разность) обозначить новой переменной.

Пример №70

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Если в заданном уравнении привести все тригонометрические функции к одному аргументу Тригонометрические уравнения - формулы и примеры с решением то получим уравнение (1) (см. решение), в которое входят только сумма синуса и косинуса одного и того же аргумента Тригонометрические уравнения - формулы и примеры с решением и их произведение. Для решения этого уравнения введем новую переменную Тригонометрические уравнения - формулы и примеры с решением Чтобы получить произведение Тригонометрические уравнения - формулы и примеры с решением достаточно возвести в квадрат обе части равенства замены и учесть, что Тригонометрические уравнения - формулы и примеры с решением Выполняя обратную замену, удобно также учесть, что Тригонометрические уравнения - формулы и примеры с решением

Решение:

Данное уравнение равносильно уравнению

Тригонометрические уравнения - формулы и примеры с решением

Если обозначить Тригонометрические уравнения - формулы и примеры с решением Тогда

Тригонометрические уравнения - формулы и примеры с решением Подставляя эти значения в уравнение (1), получаем

Тригонометрические уравнения - формулы и примеры с решением

Таким образом, Тригонометрические уравнения - формулы и примеры с решением

Тогда Тригонометрические уравнения - формулы и примеры с решением Получаем Тригонометрические уравнения - формулы и примеры с решением (корней нет, поскольку Тригонометрические уравнения - формулы и примеры с решением или Тригонометрические уравнения - формулы и примеры с решением Отсюда

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Замечание. При возведении обеих частей уравнения в квадрат можно получить посторонние корни (см. таблицу 34). Но возведение обеих частей равенства замены в квадрат является равносильным преобразованием.

Действительно, в этом случае левая и правая части равенства имеют одинаковые знаки, и тогда Тригонометрические уравнения - формулы и примеры с решением Если обе части равенства Тригонометрические уравнения - формулы и примеры с решением положительны, то для положительных значений Тригонометрические уравнения - формулы и примеры с решением функция Тригонометрические уравнения - формулы и примеры с решением возрастает и поэтому каждое свое значение принимает только при одном значении аргумента. Таким образом, при Тригонометрические уравнения - формулы и примеры с решением из равенства Тригонометрические уравнения - формулы и примеры с решением следует равенство Тригонометрические уравнения - формулы и примеры с решением и, наоборот, из равенства Тригонометрические уравнения - формулы и примеры с решением следует равенство Тригонометрические уравнения - формулы и примеры с решением что и гарантирует равносильность выполненного преобразования для положительных Тригонометрические уравнения - формулы и примеры с решением Аналогично для Тригонометрические уравнения - формулы и примеры с решением используем то, что для отрицательных значений Тригонометрические уравнения - формулы и примеры с решением функция Тригонометрические уравнения - формулы и примеры с решением убывает и поэтому каждое свое значение принимает только при одном значении аргумента.

Для решения некоторых тригонометрических уравнений могут применяться свойства функций, в частности, оценка левой и правой частей уравнения.

Пример №71

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Решение:

Оценим область значений функции Тригонометрические уравнения - формулы и примеры с решением Поскольку Тригонометрические уравнения - формулы и примеры с решением Выясним, существуют ли такие значения Тригонометрические уравнения - формулы и примеры с решением при которых функция Тригонометрические уравнения - формулы и примеры с решением может принимать наибольшее значение.

Если Тригонометрические уравнения - формулы и примеры с решением будет меньше чем 1, то для того чтобы сумма Тригонометрические уравнения - формулы и примеры с решением равнялась 2, необходимо, чтобы значение Тригонометрические уравнения - формулы и примеры с решением было больше чем 1, что невозможно.

Аналогично, если допустить, что Тригонометрические уравнения - формулы и примеры с решением меньше чем 1, то для того чтобы сумма Тригонометрические уравнения - формулы и примеры с решением равнялась 2, необходимо, чтобы значение Тригонометрические уравнения - формулы и примеры с решением было больше чем 1, что невозможно. Таким образом, равенство в данном уравнении возможно тогда и только тогда, когда Тригонометрические уравнения - формулы и примеры с решением равны 1. Поэтому данное уравнение равносильно системе

Тригонометрические уравнения - формулы и примеры с решением

Приравнивая правые части этих равенств, получаем

Тригонометрические уравнения - формулы и примеры с решением

Поскольку Тригонометрические уравнения - формулы и примеры с решением — целые числа, то попробуем подставить в правую часть последнего равенства вместо Тригонометрические уравнения - формулы и примеры с решением целые числа и найти, для каких значений Тригонометрические уравнения - формулы и примеры с решением по этой формуле Тригонометрические уравнения - формулы и примеры с решением также будет целым числом. При Тригонометрические уравнения - формулы и примеры с решением получаем Тригонометрические уравнения - формулы и примеры с решением В случае, когда коэффициент 12 при переменной Тригонометрические уравнения - формулы и примеры с решением в числителе дроби и знаменатель 5 — взаимно простые числа, повторение делимости нацело будет только через знаменатель, то есть через 5.

Поэтому последнее уравнение имеет решения в целых числах значениях вида Тригонометрические уравнения - формулы и примеры с решением Подставляя значение Тригонометрические уравнения - формулы и примеры с решением в одно из решений системы, получаем Тригонометрические уравнения - формулы и примеры с решением Эти значения и являются решениями последней системы, а следовательно, и решениями данного уравнения. Ответ: Тригонометрические уравнения - формулы и примеры с решением

Пример №72

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Преобразуем левую часть по формуле Тригонометрические уравнения - формулы и примеры с решением и оценим область значений функций, стоящих в левой и правой частях уравнения. Решая полученную систему двух уравнений с одним неизвестным, можно несколько упростить выкладки и решить только одно уравнение системы, а для другого проверить, удовлетворяют ли ему полученные решения.

Решение:

Данное уравнение равносильно уравнению Тригонометрические уравнения - формулы и примеры с решением Обозначим: Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением поэтому Тригонометрические уравнения - формулы и примеры с решением Левая часть уравнения (1) меньше или равна 2, а правая часть больше или равна 2. Равенство между ними возможно тогда и только тогда, когда левая и правая части уравнения равны 2, то есть данное уравнение равносильно системе

Тригонометрические уравнения - формулы и примеры с решением Из первого уравнения системы имеем

Тригонометрические уравнения - формулы и примеры с решением откуда Тригонометрические уравнения - формулы и примеры с решением где Тригонометрические уравнения - формулы и примеры с решением Тогда Тригонометрические уравнения - формулы и примеры с решением

Проверим, удовлетворяют ли найденные значения второму уравнению системы. Если Тригонометрические уравнения - формулы и примеры с решением тогда Тригонометрические уравнения - формулы и примеры с решением и поэтому Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Иногда для решения тригонометрических уравнений приходится применять тригонометрические формулы, которые приводят к сужению ОДЗ данного уравнения. Такие преобразования могут приводить к потере корней уравнения. Чтобы этого не случилось, можно пользоваться таким ориентиром:

  • если для решения уравнений (или неравенств) приходится выполнять преобразования, сужающие ОДЗ исходного уравнения (или неравенства ), то те значения, на которые сужается ОДЗ, необходимо рассматривать отдельно.

В таблице 36 указаны тригонометрические формулы, которые могут приводить к сужению ОДЗ, и соответствующие значения переменной, которые приходится проверять при использовании этих формул.

Формула (используется слева направо)

Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

Чтобы убедиться, что приведенные формулы приводят к сужению ОДЗ, достаточно сравнить области допустимых значений их левых и правых частей.

Например, рассмотрим формулу Тригонометрические уравнения - формулы и примеры с решением

ОДЗ левой части: Тригонометрические уравнения - формулы и примеры с решением. Для нахождения ОДЗ правой части формулы учитываем, что знаменатель дроби не равен нулю: Тригонометрические уравнения - формулы и примеры с решением таким образом, Тригонометрические уравнения - формулы и примеры с решением и также условие существования тангенса: Тригонометрические уравнения - формулы и примеры с решением То ОДЗ правой части содержит дополнительное ограничение Тригонометрические уравнения - формулы и примеры с решением

Сравнивая ОДЗ левой и правой частей рассмотренной формулы, видим, что ОДЗ правой части содержит дополнительные ограничение Тригонометрические уравнения - формулы и примеры с решением Таким образом, при переходе по этой формуле от ее левой части к правой происходит сужение ОДЗ (отбрасываются именно те значения, которые указаны в таблице: Тригонометрические уравнения - формулы и примеры с решением Чтобы не потерять корни данного уравнения, при использовании формулы Тригонометрические уравнения - формулы и примеры с решением значение Тригонометрические уравнения - формулы и примеры с решением необходимо рассмотреть отдельно (конечно, только в том случае, когда оно входит в ОДЗ данного уравнения).

Приведем пример использования указанного ориентира:

Пример №73

Решите уравнение

Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Если воспользоваться первыми двумя формулами таблицы 36, то мы приведем все тригонометрические выражения в этом уравнении и к одному аргументу, и к одной функции Тригонометрические уравнения - формулы и примеры с решением Но при использовании указанных формул

происходит сужение ОДЗ на значение Тригонометрические уравнения - формулы и примеры с решением и вследствие этого можно потерять корни уравнения, если числа такого вида входят в ОДЗ исходного уравнения и являются его корнями. Чтобы этого не случилось, разобьем решение на две части.

  1. Подставляем те значения переменной, на которые сужается ОДЗ, в уравнении (1). При вычислениях учитываем периодичность функций и формулы приведения.
  2. При Тригонометрические уравнения - формулы и примеры с решением (на ОДЗ уравнения (1)) использование формул Тригонометрические уравнения - формулы и примеры с решением и Тригонометрические уравнения - формулы и примеры с решением

Приводит к уравнению(2)(см. решение), которое равносильно заданному (на той части ОДЗ, где Тригонометрические уравнения - формулы и примеры с решением потому что эти формулы сохраняют верное равенство как при переходе от равенства (1) к равенству (2), так и при обратном переходе от равенства (2) к равенству (1). Замена переменной (и обратная замена) также приводит к уравнению, равносильному заданному (на указанной части ОДЗ исходного уравнения).

Заметим, что ОДЗ уравнения (2) отличается от ОДЗ уравнения (1) только тем, что в нее не входят значения Тригонометрические уравнения - формулы и примеры с решением, которые входят в ОДЗ уравнения (1). Поскольку эти «плохие» значения мы учли в процессе решения, то ОДЗ уравнения (1) можно в явном виде не фиксировать (как в приведенном решении). В ответе записываем все корни, которые были получены в первой и второй частях решения.

Решение:

1. Если Тригонометрические уравнения - формулы и примеры с решениемто из данного уравнения получаем

Тригонометрические уравнения - формулы и примеры с решением — верное равенство.

Таким образом, Тригонометрические уравнения - формулы и примеры с решением— корни уравнения (1).

2. Если Тригонометрические уравнения - формулы и примеры с решением получаем

Тригонометрические уравнения - формулы и примеры с решением

Замена Тригонометрические уравнения - формулы и примеры с решением приводит к уравнению Тригонометрические уравнения - формулы и примеры с решением которое при Тригонометрические уравнения - формулы и примеры с решением равносильно уравнению Тригонометрические уравнения - формулы и примеры с решением Тогда Тригонометрические уравнения - формулы и примеры с решением Обратная замена дает: Тригонометрические уравнения - формулы и примеры с решением то есть

Тригонометрические уравнения - формулы и примеры с решением

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Некоторые тригонометрические уравнения удается решить, используя такой ориентир, который условно можно назвать «ищи квадратный трехчлен» , то есть:

  • попробуйте рассмотреть данное уравнение как квадратное относительно некоторой переменной (или относительно некоторой функции).

Пример №74

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Есть несколько подходов к решению данного уравнения.

  1. Рассмотреть данное уравнение как квадратное относительно переменной х и учесть, что оно может иметь корни тогда и только тогда, когда его дискриминант будет неотрицательным.
  2. Если в левой части уравнения выделить полный квадрат Тригонометрические уравнения - формулы и примеры с решением то получим уравнение Тригонометрические уравнения - формулы и примеры с решением

Учтем, что всегда Тригонометрические уравнения - формулы и примеры с решением и Тригонометрические уравнения - формулы и примеры с решением

А сумма нескольких неотрицательных функций равна нулю тогда и только тогда, когда все функции одновременно равны нулю.

Также можно последнее уравнение записать в таком виде:

Тригонометрические уравнения - формулы и примеры с решением

и оценить левую и правую части этого уравнения.

Решение:

Рассмотрим уравнение как квадратное относительно Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением Это уравнение может иметь корни тогда и только тогда, когда его дискриминант будет неотрицательный: Тригонометрические уравнения - формулы и примеры с решением Тогда Тригонометрические уравнения - формулы и примеры с решениемНо Тригонометрические уравнения - формулы и примеры с решением не может быть больше чем 1. Таким образом, Тригонометрические уравнения - формулы и примеры с решением или Тригонометрические уравнения - формулы и примеры с решениемПодставляя эти значения в данное уравнение, получаем, что оно равносильно совокупности систем: Тригонометрические уравнения - формулы и примеры с решением

Из второго уравнения первой системы имеем Тригонометрические уравнения - формулы и примеры с решением что удовлетворяет и первому уравнению системы. Таким образом, Тригонометрические уравнения - формулы и примеры с решением — решение первой системы, а значит и решение данного уравнения. Аналогично получаем Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением — решение второй системы, а значит и решение данного уравнения.

Ответ: Тригонометрические уравнения - формулы и примеры с решением

При решении систем тригонометрических уравнений не всегда удается выполнять только равносильные преобразования уравнений системы, иногда приходится пользоваться уравнениями-следствиями. В таких случаях могут возникать посторонние решения, поэтому полученные решения необходимо проверять. Причем проверять можно как значения переменных, полученные в конце решения, так и значения тригонометрических функций, полученные в ходе решения. Если все тригонометрические функции, которые входят в запись системы, по каждой из переменных имеют общий период, то достаточно выполнить проверку для всех значений переменных из одного периода (для каждой переменной).

Пример №75

Решите систему уравнений Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Если из первого уравнения системы выразить Тригонометрические уравнения - формулы и примеры с решением а из второго — Тригонометрические уравнения - формулы и примеры с решением то можно возвести обе части каждого уравнения в квадрат и после почленного сложения полученных уравнений использовать тождество Тригонометрические уравнения - формулы и примеры с решением В результате получим уравнение с одной переменной Тригонометрические уравнения - формулы и примеры с решением которое легко приводится к одной тригонометрической функции.

Но при возведении обеих частей уравнения в квадрат получаем уравнение-следствие. Таким образом, среди полученных решений могут быть и посторонние решения для данной системы, которые придется отсеивать проверкой.

Для проверки учитываем, что все функции относительно переменной Тригонометрические уравнения - формулы и примеры с решением которые входят в запись системы (то есть Тригонометрические уравнения - формулы и примеры с решением имеют общий период Тригонометрические уравнения - формулы и примеры с решением Аналогично все функции относительно переменной Тригонометрические уравнения - формулы и примеры с решением тоже имеют общий период Тригонометрические уравнения - формулы и примеры с решением

Следовательно, проверку решений достаточно выполнить для всех пар чисел Тригонометрические уравнения - формулы и примеры с решением (можно взять и другие промежутки длиной Тригонометрические уравнения - формулы и примеры с решением Полезно также учесть, что все решения, полученные вследствие подстановки в одно из уравнений системы, автоматически удовлетворяют этому уравнению, а значит проверку этих решений достаточно выполнить только для второго уравнения системы.

Для каждой переменной все полученные решения необходимо повторить через период.

Решение:

Тригонометрические уравнения - формулы и примеры с решением

Возведем обе части каждого уравнения системы в квадрат и почленно сложим полученные уравнения. Получаем уравнение-следствие

Тригонометрические уравнения - формулы и примеры с решением Тогда Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением Таким образом,

Тригонометрические уравнения - формулы и примеры с решением

Подставляя полученные значения в уравнение (2), получаем Тригонометрические уравнения - формулы и примеры с решением

Тогда Тригонометрические уравнения - формулы и примеры с решением Относительно каждой из переменных Тригонометрические уравнения - формулы и примеры с решением все функции, которые входят в запись данной системы, имеют период Тригонометрические уравнения - формулы и примеры с решением поэтому проверку достаточно выполнить для всех пар чисел Тригонометрические уравнения - формулы и примеры с решением

Для системы (3) это пары чисел: Тригонометрические уравнения - формулы и примеры с решением а для системы (4) это пары чисел: Тригонометрические уравнения - формулы и примеры с решением

Решениями заданной системы являются только пары чисел:

Тригонометрические уравнения - формулы и примеры с решением

Ответ получим, повторяя приведенные решения через период (для каждой переменной).

Ответ:

Тригонометрические уравнения - формулы и примеры с решением При решении уравнений с обратными тригонометрическими функциями полезно помнить, что при Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением и для любых значений Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Также при решении уравнений с обратными тригонометрическими функциями часто бывает удобно от обеих частей уравнения взять какую-нибудь тригонометрическую функцию и воспользоваться определением соответствующих обратных тригонометрических функций.

Пример №76

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Если взять от обеих частей данного уравнения функцию синус, то получим уравнение-следствие: если числа равны, то и синусы будут равны, но если синусы двух чисел равны, то это еще не значит, что числа обязательно будут равны. То есть верное равенство будет сохраняться при прямых преобразованиях, но не обязательно будет сохраняться при обратных преобразованиях. Таким образом, в конце решения необходимо выполнить проверку полученных корней.

Если обозначить Тригонометрические уравнения - формулы и примеры с решением то по определению арксинуса Тригонометрические уравнения - формулы и примеры с решением и Тригонометрические уравнения - формулы и примеры с решением Для нахождения Тригонометрические уравнения - формулы и примеры с решением учитываем, что при Тригонометрические уравнения - формулы и примеры с решением значениеТригонометрические уравнения - формулы и примеры с решением таким образом, Тригонометрические уравнения - формулы и примеры с решением

Проверяя полученные решения, в тех случаях, когда найденные числа не являются корнями данного уравнения, иногда удобно сравнить полученные

решения с табличными значениями. Например, Тригонометрические уравнения - формулы и примеры с решением больше, чем Тригонометрические уравнения - формулы и примеры с решением

Учитывая возрастание функции Тригонометрические уравнения - формулы и примеры с решением получаем, что

Тригонометрические уравнения - формулы и примеры с решением

Решение:

Если обозначить Тригонометрические уравнения - формулы и примеры с решением где Тригонометрические уравнения - формулы и примеры с решением то данное уравнение будет иметь вид Тригонометрические уравнения - формулы и примеры с решением

Возьмем от обеих частей уравнения (1) функцию синус и получим

Тригонометрические уравнения - формулы и примеры с решением

По определению арксинуса Тригонометрические уравнения - формулы и примеры с решением Учитывая, что Тригонометрические уравнения - формулы и примеры с решениемполучаем Тригонометрические уравнения - формулы и примеры с решением Тогда уравнение (2) будет иметь вид

Тригонометрические уравнения - формулы и примеры с решением

Таким образом, Тригонометрические уравнения - формулы и примеры с решениемПроверка.

Тригонометрические уравнения - формулы и примеры с решением

2) Тригонометрические уравнения - формулы и примеры с решением —посторонние корни.

Действительно, при Тригонометрические уравнения - формулы и примеры с решением (поскольку Тригонометрические уравнения - формулы и примеры с решением

Аналогично при Тригонометрические уравнения - формулы и примеры с решением и равенство также не выполняется.

Ответ: 0.

Замечание. Для решения уравнения Тригонометрические уравнения - формулы и примеры с решением можно было применить не только уравнения-следствия, но и равносильные преобразования уравнений.

В этом случае необходимо учесть ОДЗ данного уравнения:

Тригонометрические уравнения - формулы и примеры с решениема также то, что для всех корней уравнения его правая часть Тригонометрические уравнения - формулы и примеры с решением находится в промежутке Тригонометрические уравнения - формулы и примеры с решением (по определению арксинуса). Таким образом, и левая часть уравнения должна находиться в этом же промежутке. Значит, для всех корней данного уравнения выполняется условие: Тригонометрические уравнения - формулы и примеры с решением то естьТригонометрические уравнения - формулы и примеры с решением

На промежутке Тригонометрические уравнения - формулы и примеры с решением функция Тригонометрические уравнения - формулы и примеры с решением является возрастающей, тогда при выполнении условия (4) (и, конечно, на ОДЗ (3)), если от обеих частей данного уравнения взять синус, то получим равносильное ему уравнение (то есть данное уравнение равносильно уравнению (2) при условиях (3) и (4)). Выполняя рассуждения и преобразования, приведенные выше в решении задачи 7, получаем Тригонометрические уравнения - формулы и примеры с решением

Все найденные решения принадлежат ОДЗ (удовлетворяют условиям (3)), но условию (4) удовлетворяет только Тригонометрические уравнения - формулы и примеры с решением Таким образом, корнем данного уравнения является только Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения с параметрами

Если в запись тригонометрического уравнения кроме переменной и числовых коэффициентов входят также буквенные коэффициенты — параметры, то при решении таких уравнений можно пользоваться следующим ориентиром.

Любое уравнение или неравенство с параметрами можно решать как обычное уравнение или неравенство до тех пор, пока все преобразования или рассуждения, необходимые для решения, можно выполнить однозначно. Если какое-то преобразование нельзя выполнить однозначно, то решение необходимо разбить на несколько случаев, чтобы в каждом из них ответ через параметры записывался однозначно.

Решение уравнений с параметрами

На этапе поиска плана решения уравнения или неравенства с параметрами или в ходе рассуждений, связанных с самим решением как таковым, часто удобно сопровождать соответствующие рассуждения схемами, по которым легко проследить, в какой момент мы не смогли однозначно выполнить необходимые преобразования, на сколько случаев пришлось разбить решение и чем отличается один случай от другого. Чтобы на таких схемах (или в записях громоздких решений) не потерять какой-нибудь ответ, целесобразно помещать окончательные ответы в прямоугольные рамки.

Пример №77

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Решение:

Тригонометрические уравнения - формулы и примеры с решением

Ответ:

Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Наличие параметра Тригонометрические уравнения - формулы и примеры с решением не мешает нам однозначно выразить Тригонометрические уравнения - формулы и примеры с решением из данного уравнения.

Уравнение Тригонометрические уравнения - формулы и примеры с решением не имеет корней, а при Тригонометрические уравнения - формулы и примеры с решением корни уравнения можно записать по известной формуле (см. с. 158). Таким образом, для уравнения Тригонометрические уравнения - формулы и примеры с решением нельзя однозначно записать решения, и поэтому, начиная с этого момента, решения необходимо развести на два случая. Окончательный ответ можно записать с использованием знака модуля, а можно дать ограничения для параметра Тригонометрические уравнения - формулы и примеры с решением без модуля и записать ответ так:

1) если Тригонометрические уравнения - формулы и примеры с решением то корней нет; 2) если Тригонометрические уравнения - формулы и примеры с решением то Тригонометрические уравнения - формулы и примеры с решением

Пример №78

Решите уравнение Тригонометрические уравнения - формулы и примеры с решением

Решение:

Тригонометрические уравнения - формулы и примеры с решением

Тогда Тригонометрические уравнения - формулы и примеры с решением

Откуда Тригонометрические уравнения - формулы и примеры с решением или Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Ответ: ( см. в конце замечания)

Комментарий:

Сначала приведем все тригонометрические функции к одному аргументу Тригонометрические уравнения - формулы и примеры с решением используя формулу Тригонометрические уравнения - формулы и примеры с решением Если перенести все члены уравнения в левую часть, то можно вынести за скобки общий множитель Тригонометрические уравнения - формулы и примеры с решением

Поскольку оба множителя имеют смысл при любых значениях переменной Тригонометрические уравнения - формулы и примеры с решением то уравнение (1) равносильно совокупности Тригонометрические уравнения - формулы и примеры с решением то есть совокупности Тригонометрические уравнения - формулы и примеры с решением

Для уравнения Тригонометрические уравнения - формулы и примеры с решением мы можем записать корни при любых значениях Тригонометрические уравнения - формулы и примеры с решением (в этом уравнении параметра Тригонометрические уравнения - формулы и примеры с решением нет). Решение уравнения Тригонометрические уравнения - формулы и примеры с решением зависит от значения правой части: если Тригонометрические уравнения - формулы и примеры с решением то корней нет, а если Тригонометрические уравнения - формулы и примеры с решением то корни есть. Таким образом, приходится разбивать решение этого уравнения на два случая.

Замечание. Для записи полученных ответов (они на схемах расположены в прямоугольных рамках) целесообразно уточнить, при каких значениях а выполняются ограничения Тригонометрические уравнения - формулы и примеры с решением

Для этого решаем соответствующие неравенства:

Тригонометрические уравнения - формулы и примеры с решением

Чтобы облегчить запись ответа в случаях сложных или громоздких решений, изобразим ось параметра (а) и отметим на ней все особые значения параметра, которые появились в процессе решения. Под осью параметра (левее от нее ) выпишем все полученные решения ( кроме «решений нет» ) и напротив каждого ответа отметим, при каких значениях параметра этот ответ можно использовать (см. схему ниже). После этого ответ записывается для каждого из особых значений параметра и для каждого из полученных промежутков оси параметра.

Тригонометрические уравнения - формулы и примеры с решением

Из этой схемы хорошо видно, что при Тригонометрические уравнения - формулы и примеры с решением в ответ необходимо записать только одну формулу, а при Тригонометрические уравнения - формулы и примеры с решением две формулы.

Ответ: 1)если Тригонометрические уравнения - формулы и примеры с решением

2)если Тригонометрические уравнения - формулы и примеры с решением

Пример №79

Решите уравнение

Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Для решения уравнения (1) используем равносильные преобразования. Тогда мы обязательно должны учесть ОДЗ данного уравнения. Для этого записываем условия существования тангенса и котангенса и решаем соответствующие ограничения. Мы можем привести все тригонометрические функции к одному аргументу Тригонометрические уравнения - формулы и примеры с решением используя формулу тангенса двойного аргумента, а потом привести все выражения к одной функции Тригонометрические уравнения - формулы и примеры с решением используя формулу Тригонометрические уравнения - формулы и примеры с решениемНо использование указанных формул приводит к сужению ОДЗ (табл. 36) и, чтобы не потерять корни данного уравнения, те значения, на которые сужается ОДЗ Тригонометрические уравнения - формулы и примеры с решением необходимо рассмотреть отдельно.

При Тригонометрические уравнения - формулы и примеры с решением приводим все тригонометрические выражения к одной функции и выполняем равносильные преобразования полученного уравнения

Тригонометрические уравнения - формулы и примеры с решением

На ОДЗ уравнения (1) знаменатели дробей в уравнении (2) не равны нулю. Таким образом, после умножения обеих частей уравнения (2) на выражения, которые стоят в знаменателях, получаем уравнение Тригонометрические уравнения - формулы и примеры с решением равносильное уравнению (2) на ОДЗ уравнения (1).

  1. Если Тригонометрические уравнения - формулы и примеры с решением то есть Тригонометрические уравнения - формулы и примеры с решением то получаем уравнение Тригонометрические уравнения - формулы и примеры с решением которое не имеет корней.
  2. Если Тригонометрические уравнения - формулы и примеры с решением то есть Тригонометрические уравнения - формулы и примеры с решением то получаем Тригонометрические уравнения - формулы и примеры с решением

Чтобы решить это уравнение, необходимо знать знак выражения, которое стоит в правой части, поскольку Тригонометрические уравнения - формулы и примеры с решением не может быть отрицательным. Рассмотрим для правой части три случая: она меньше нуля, равна нулю, больше нуля. То есть дальнейшие рассуждения проведем по следующей схеме.

Конечно, для каждого случая необходимо уточнить, при каких значениях Тригонометрические уравнения - формулы и примеры с решением выполняются соответствующие ограничения, и для каждого полученного решения необходимо – > 0 проверить, входит оно в ОДЗ данного уравнения или нет.

Тригонометрические уравнения - формулы и примеры с решением

Решение:

Тригонометрические уравнения - формулы и примеры с решением

1. При Тригонометрические уравнения - формулы и примеры с решением из уравнения (1) получаем Тригонометрические уравнения - формулы и примеры с решением то есть Тригонометрические уравнения - формулы и примеры с решением — равенство, верное при любых значениях Тригонометрические уравнения - формулы и примеры с решением Таким образом, при всех значениях параметра а данное уравнение имеет корни

Тригонометрические уравнения - формулы и примеры с решением

2. При Тригонометрические уравнения - формулы и примеры с решением получаем уравнение (2): Тригонометрические уравнения - формулы и примеры с решением которое на ОДЗ равносильно уравнению Тригонометрические уравнения - формулы и примеры с решением Отсюда Тригонометрические уравнения - формулы и примеры с решением

1) Если Тригонометрические уравнения - формулы и примеры с решением то корней нет.

2) Если Тригонометрические уравнения - формулы и примеры с решением то уравнение (3) равносильно уравнению

Тригонометрические уравнения - формулы и примеры с решением

Выясним, при каких значениях а полученные корни уравнения (4) не входят в ОДЗ. Для этого достаточно в уравнении (4) вместо аргумента Тригонометрические уравнения - формулы и примеры с решением подставить «запрещенные» значения.

Учитывая, что функции, которые входят в запись данного уравнения (1), имеют общий период Тригонометрические уравнения - формулы и примеры с решением имеет период Тригонометрические уравнения - формулы и примеры с решением имеет период Тригонометрические уравнения - формулы и примеры с решением достаточно подставить эти значения только на одном периоде, например на промежутке Тригонометрические уравнения - формулы и примеры с решением В этом промежутке в ОДЗ не входят такие значения: Тригонометрические уравнения - формулы и примеры с решением При Тригонометрические уравнения - формулы и примеры с решением из уравнения (4) получаем равенство Тригонометрические уравнения - формулы и примеры с решением то есть Тригонометрические уравнения - формулы и примеры с решением Случай Тригонометрические уравнения - формулы и примеры с решением мы уже исследовали (корней нет). При Тригонометрические уравнения - формулы и примеры с решением или Тригонометрические уравнения - формулы и примеры с решением из уравнения (4) получаем Тригонометрические уравнения - формулы и примеры с решением

Но ни при одном значении Тригонометрические уравнения - формулы и примеры с решением это равенство не может выполняться. Таким образом, при всех значениях Тригонометрические уравнения - формулы и примеры с решением полученные решенияТригонометрические уравнения - формулы и примеры с решением входят в ОДЗ исходного уравнения.

Изобразим полученные ответы:

Тригонометрические уравнения - формулы и примеры с решением

Ответ: 1)если Тригонометрические уравнения - формулы и примеры с решением

2) если Тригонометрические уравнения - формулы и примеры с решением

Исследовательские задачи с параметрами

Кроме задач с параметрами, в которых требуется «решить уравнение или неравенство», часто предлагаются исследовательские задания с параметрами. Такие задания иногда удается решить с помощью непосредственных вычислений: решить данное уравнение или неравенство и после этого дать ответ на вопрос задачи. Но достаточно часто исследовательские задания не удается решить непосредственными вычислениями (или такие вычисления являются очень громоздкими), и поэтому приходится сначала обосновать какое-то свойство данного уравнения или неравенства, а потом, пользуясь этим свойством, уже давать ответ на вопрос задачи.

Рассмотрим некоторые из таких свойств. Например, принимая во внимание четность функций, которые входят в запись данного уравнения, используется такой ориентир.

Если в уравнении Тригонометрические уравнения - формулы и примеры с решением функция Тригонометрические уравнения - формулы и примеры с решением является четной или нечетной, то вместе с любым корнем Тригонометрические уравнения - формулы и примеры с решением мы можем указать еще один корень этого уравнения Тригонометрические уравнения - формулы и примеры с решением

Пример №80

Найдите все значения параметра Тригонометрические уравнения - формулы и примеры с решением при которых уравнение Тригонометрические уравнения - формулы и примеры с решениемимеет единственный корень.

Решение:

Функция Тригонометрические уравнения - формулы и примеры с решением является четной Тригонометрические уравнения - формулы и примеры с решением Если Тригонометрические уравнения - формулы и примеры с решением — корень уравнения (1), то Тригонометрические уравнения - формулы и примеры с решением тоже является корнем этого уравнения. Поэтому единственный корень у данного уравнения может быть только тогда, когда Тригонометрические уравнения - формулы и примеры с решением то есть Тригонометрические уравнения - формулы и примеры с решением Таким образом, единственным корнем данного уравнения может быть только Тригонометрические уравнения - формулы и примеры с решением

Если Тригонометрические уравнения - формулы и примеры с решением то из уравнения (1) получаем Тригонометрические уравнения - формулы и примеры с решением то есть Тригонометрические уравнения - формулы и примеры с решением Отсюда Тригонометрические уравнения - формулы и примеры с решением При Тригонометрические уравнения - формулы и примеры с решением уравнения (1) превращается в уравнение Тригонометрические уравнения - формулы и примеры с решением имеющее единственный корень Тригонометрические уравнения - формулы и примеры с решением Таким образом, Тригонометрические уравнения - формулы и примеры с решением удовлетворяет условию задачи. При Тригонометрические уравнения - формулы и примеры с решением имеем уравнение Тригонометрические уравнения - формулы и примеры с решением то есть

Тригонометрические уравнения - формулы и примеры с решением

Поскольку Тригонометрические уравнения - формулы и примеры с решением то уравнение (2) равносильно системе:

Тригонометрические уравнения - формулы и примеры с решением

Из второго уравнения системы получаем Тригонометрические уравнения - формулы и примеры с решением что удовлетворяет и первому уравнению. Таким образом, эта система, а значит и уравнение(2) имеет единственное решение Тригонометрические уравнения - формулы и примеры с решением Следовательно, Тригонометрические уравнения - формулы и примеры с решением также удовлетворяет условию задачи.

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Отмечаем, что в левой части данного уравнения стоит четная функция, и используем ориентир, приведенный выше. Действительно, если Тригонометрические уравнения - формулы и примеры с решением корень уравнения Тригонометрические уравнения - формулы и примеры с решением то Тригонометрические уравнения - формулы и примеры с решением — верное числовое равенство. Учитывая четность функции Тригонометрические уравнения - формулы и примеры с решением имеем Тригонометрические уравнения - формулы и примеры с решением Таким образом, Тригонометрические уравнения - формулы и примеры с решением тоже корень уравнения Тригонометрические уравнения - формулы и примеры с решением Единственный корень у этого уравнения может быть только тогда, когда корни Тригонометрические уравнения - формулы и примеры с решением совпадают. Тогда Тригонометрические уравнения - формулы и примеры с решением

Выясним, существуют ли такие значения параметра Тригонометрические уравнения - формулы и примеры с решением при которых Тригонометрические уравнения - формулы и примеры с решением является корнем уравнения (1). (Это Тригонометрические уравнения - формулы и примеры с решением

Поскольку значение Тригонометрические уравнения - формулы и примеры с решением мы получили из условия, что Тригонометрические уравнения - формулы и примеры с решением — корень уравнения (1), то необходимо проверить, действительно ли при этих значениях Тригонометрические уравнения - формулы и примеры с решением данное уравнение будет иметь единственный корень.

Для решения уравнения (2) оценим его левую и правую части:

Тригонометрические уравнения - формулы и примеры с решением

При решении некоторых исследовательстких задач с параметрами помогает использование следующего ориентира.

Если в условии задачи с параметрами говорится о том, что решениями данного уравнения или неравенства являются все значения переменной из некоторого множества, то иногда полезно подставить конкретные значения переменной из заданного множества и получить некоторые ограничения на параметр.

Пример №81

Найдите все пары чисел Тригонометрические уравнения - формулы и примеры с решением для которых корнями уравнения Тригонометрические уравнения - формулы и примеры с решениембудут все действительные числа.

Решение:

Если корнями данного уравнения являются все действительные числа, то корнем будет и число ноль.

При Тригонометрические уравнения - формулы и примеры с решением получаем Тригонометрические уравнения - формулы и примеры с решением тогда Тригонометрические уравнения - формулы и примеры с решением Учитывая, что Тригонометрические уравнения - формулы и примеры с решением а Тригонометрические уравнения - формулы и примеры с решением получаем,что уравнение(2) равносильно системе Тригонометрические уравнения - формулы и примеры с решением

Из первого уравнения системы получаем Тригонометрические уравнения - формулы и примеры с решением что удовлетворяет и второму уравнению. Таким образом, эта система, а значит, и уравнение (2) имеют единственное решение Тригонометрические уравнения - формулы и примеры с решением

Следовательно, условие задачи может выполняться только при Тригонометрические уравнения - формулы и примеры с решением

При Тригонометрические уравнения - формулы и примеры с решением уравнение (1) обращается в уравнение

Тригонометрические уравнения - формулы и примеры с решением

Но по условию корнями уравнения (1), а значит и уравнения (3) должны быть все действительные числа, таким образом, корнем будет и число Тригонометрические уравнения - формулы и примеры с решением При Тригонометрические уравнения - формулы и примеры с решением получаем Тригонометрические уравнения - формулы и примеры с решением тогда Тригонометрические уравнения - формулы и примеры с решением то есть Тригонометрические уравнения - формулы и примеры с решением Следовательно, Тригонометрические уравнения - формулы и примеры с решением (то есть Тригонометрические уравнения - формулы и примеры с решением — целое число).

Если корнями уравнения (3) являются все действительные числа, то корнем будет и число Тригонометрические уравнения - формулы и примеры с решением

При Тригонометрические уравнения - формулы и примеры с решением получаем Тригонометрические уравнения - формулы и примеры с решением Поскольку Тригонометрические уравнения - формулы и примеры с решением при целых значениях Тригонометрические уравнения - формулы и примеры с решением принимает только значения Тригонометрические уравнения - формулы и примеры с решением может принимать только значения 0; 1; 2.

Если Тригонометрические уравнения - формулы и примеры с решением то уравнение (1) имеет вид Тригонометрические уравнения - формулы и примеры с решением то есть Тригонометрические уравнения - формулы и примеры с решением и его корнями являются все действительные числа. Таким образом, пара чисел Тригонометрические уравнения - формулы и примеры с решением удовлетворяет условию задачи.

Если Тригонометрические уравнения - формулы и примеры с решением то уравнение (1) имеет вид Тригонометрические уравнения - формулы и примеры с решением и его корнями являются все действительные числа. Таким образом, пара чисел Тригонометрические уравнения - формулы и примеры с решением )удовлетворяет условию задачи.

Если Тригонометрические уравнения - формулы и примеры с решением то уравнение (1) имеет вид Тригонометрические уравнения - формулы и примеры с решением Корнями этого уравнения не могут быть все действительные числа, поскольку корнем не является Тригонометрические уравнения - формулы и примеры с решением (при подстановке получаем неверное равенство Тригонометрические уравнения - формулы и примеры с решением Таким образом, пара чисел Тригонометрические уравнения - формулы и примеры с решением не удовлетворяет условию задачи.

Ответ: Тригонометрические уравнения - формулы и примеры с решением

Комментарий:

Мы не в состоянии решить данное уравнение (но его и не требуют решить), поэтому воспользуемся тем, что по условию его корнями будут все действительные числа, и подставим вместо переменной Тригонометрические уравнения - формулы и примеры с решением какие-то конкретные значения.

Для подстановки чаще всего выбирают такие значения переменной, которые обращают какие-то выражения в нуль. Так, при Тригонометрические уравнения - формулы и примеры с решением выражение в первых скобках равно нулю. Решая полученное уравнение (2) относительно Тригонометрические уравнения - формулы и примеры с решением получаем единственное решение Тригонометрические уравнения - формулы и примеры с решением

Если Тригонометрические уравнения - формулы и примеры с решением то равенство (1) не может быть верным при Тригонометрические уравнения - формулы и примеры с решением то есть Тригонометрические уравнения - формулы и примеры с решением не будет корнем данного уравнения, а значит при этих значениях Тригонометрические уравнения - формулы и примеры с решением уравнение (1) не может иметь корнями все действительные числа.

Попытаемся еще раз превратить выражение в первых скобках в нуль, используя то, что число Тригонометрические уравнения - формулы и примеры с решением является периодом функции Тригонометрические уравнения - формулы и примеры с решением таким образом, через Тригонометрические уравнения - формулы и примеры с решением значение в первых скобках будет повторяться(подставляем Тригонометрические уравнения - формулы и примеры с решением

Потом попробуем превратить в нуль Тригонометрические уравнения - формулы и примеры с решением (подставляем Тригонометрические уравнения - формулы и примеры с решением

При целом Тригонометрические уравнения - формулы и примеры с решением значение Тригонометрические уравнения - формулы и примеры с решением на единичной окружности изображается на концах горизонтального и вертикального диаметров, таким образом, значениями Тригонометрические уравнения - формулы и примеры с решением могут быть только: Тригонометрические уравнения - формулы и примеры с решением

Поскольку значения Тригонометрические уравнения - формулы и примеры с решением мы получили при подстановке в данное уравнение только трех значений Тригонометрические уравнения - формулы и примеры с решением то необходимо проверить, будут ли все действительные числа при этих значениях Тригонометрические уравнения - формулы и примеры с решением корнями данного уравнения, то есть проверить, будет ли уравнение (1) обращаться в верное равенство при всех действительных значениях Тригонометрические уравнения - формулы и примеры с решением

В случае, когда Тригонометрические уравнения - формулы и примеры с решением получаем, что Тригонометрические уравнения - формулы и примеры с решением Если бы это равенство было верным при всех значениях Тригонометрические уравнения - формулы и примеры с решением то это была бы еще одна формула косинуса двойного аргумента. Но такой формулы нет, таким образом, можно указать какое-то значение Тригонометрические уравнения - формулы и примеры с решением при котором это равенство не выполняется.

Использование условий расположения корней квадратного трехчлена f(x)=ax2+bx+c (a≠0) Относительно заданных чисел A и B

При решении некоторых исследовательских задач с параметрами можно использовать необходимые и достаточные условия расположения корней квадратного трехчлена. Основные из этих условий приведены в таблице 37 (использованы традиционные обозначения Тригонометрические уравнения - формулы и примеры с решением

Расположение корней:

Тригонометрические уравнения - формулы и примеры с решением

при Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

при Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

В общем случае Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

при Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

при Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

В общем случае Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

при Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

при Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

В общем случае Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

при Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

при Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

В общем случае Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

при Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

при Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

В общем случае Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

при Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

при Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

В общем случае Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

Тригонометрические уравнения - формулы и примеры с решением

при Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

при Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

В общем случае Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением

Объяснение и обоснование:

Для обоснования указанных условий достаточно воспользоваться тем, что график функции Тригонометрические уравнения - формулы и примеры с решением сплошная (неразрывная) линия. Если такая функция на концах какого-то промежутка принимает значения с разными знаками (то есть соответствующие точки графика находятся в разных полуплоскостях относительно оси Тригонометрические уравнения - формулы и примеры с решением то внутри этого промежутка есть хотя бы одна точка, в которой функция равна нулю (рис. 98).

Например, для того чтобы два разных корня квадратного трехчлена Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением при Тригонометрические уравнения - формулы и примеры с решением были расположены по разные стороны от данного числа А, достаточно зафиксировать только одно условие Тригонометрические уравнения - формулы и примеры с решением (рис. 99). Действительно, график квадратичной функции Тригонометрические уравнения - формулы и примеры с решением при Тригонометрические уравнения - формулы и примеры с решением — парабола, ветви которой направлены вверх. Тогда в случае, когда аргумент Тригонометрические уравнения - формулы и примеры с решением стремится к Тригонометрические уравнения - формулы и примеры с решением (это обозначается обычно так: Тригонометрические уравнения - формулы и примеры с решением или Тригонометрические уравнения - формулы и примеры с решением функция Тригонометрические уравнения - формулы и примеры с решением стремится к Тригонометрические уравнения - формулы и примеры с решением таким образом, Тригонометрические уравнения - формулы и примеры с решением Если выполняется условие Тригонометрические уравнения - формулы и примеры с решением то при изменении значения аргумента Тригонометрические уравнения - формулы и примеры с решением квадратичная функция Тригонометрические уравнения - формулы и примеры с решением меняет свой знак с Тригонометрические уравнения - формулы и примеры с решением таким образом, Тригонометрические уравнения - формулы и примеры с решением имеет хотя бы один корень Тригонометрические уравнения - формулы и примеры с решением

Так же при изменении значения аргумента Тригонометрические уравнения - формулы и примеры с решением А квадратичная функция Тригонометрические уравнения - формулы и примеры с решением меняет свой знак с Тригонометрические уравнения - формулы и примеры с решением таким образом, Тригонометрические уравнения - формулы и примеры с решением имеет хотя бы один корень Тригонометрические уравнения - формулы и примеры с решением Но квадратный трехчлен Тригонометрические уравнения - формулы и примеры с решением не может иметь больше двух корней, таким образом, при Тригонометрические уравнения - формулы и примеры с решением условие Тригонометрические уравнения - формулы и примеры с решением необходимое и достаточное для того, чтобы два разных корня квадратного трехчлена находились по разные стороны от данного числа Тригонометрические уравнения - формулы и примеры с решением

Аналогичные рассуждения при Тригонометрические уравнения - формулы и примеры с решением показывают, что для выполнения этого же требования необходимо и достаточно, чтобы Тригонометрические уравнения - формулы и примеры с решением Эти два условия можно объединить в одно: Тригонометрические уравнения - формулы и примеры с решением

Действительно Тригонометрические уравнения - формулы и примеры с решением Таким образом квадратный трехчлен Тригонометрические уравнения - формулы и примеры с решением имеет два различных корня, расположенных по разные стороны от данного числа Тригонометрические уравнения - формулы и примеры с решением тогда и только тогда, когда выполняется условие Тригонометрические уравнения - формулы и примеры с решением Тригонометрические уравнения - формулы и примеры с решением

Аналогично обосновываются и другие условия, приведенные в таблице 37.

Заметим, что эти условия можно не запоминать, а для их записи пользоваться графиком квадратичной функции (изображенным для необходимого расположения корней) и таким ориентиром.

Для того чтобы корни квадратного трехчлена Тригонометрические уравнения - формулы и примеры с решением были расположены заданным образом относительно данных чисел Тригонометрические уравнения - формулы и примеры с решением необходимо и достаточно выполнения системы условий, которая включает:

  1. знак коэффициента при старшем члене;
  2. знаки значений Тригонометрические уравнения - формулы и примеры с решением
  3. знак дискриминанта Тригонометрические уравнения - формулы и примеры с решением
  4. положение абсциссы вершины параболы Тригонометрические уравнения - формулы и примеры с решением относительно данных чисел Тригонометрические уравнения - формулы и примеры с решением

Отметим, что для случаев, в которых хотя бы одно из данных чисел находится между корнями квадратного трехчлена (см. вторую, пятую, шестую и седьмую строки табл. 37), достаточно выполнения первых двух условий этого ориентира, а для других случаев приходится рассматривать все четыре условия. Также заметим, что, записывая каждое из указанных условий, следует смотреть, будет ли выполняться требование задачи в том случае, если в этом условии записать знак нестрогого неравенства.

Пример №82

Найдите все значения параметраТригонометрические уравнения - формулы и примеры с решением для которых уравнениеТригонометрические уравнения - формулы и примеры с решением имеет корни.

Комментарий:

Сначала выполним равносильные преобразования данного уравнения: приведем к одному аргументу и к одной функции, а потом выполним замену Тригонометрические уравнения - формулы и примеры с решением Следует учитывать, что после замены переменной иногда изменяется требование задачи, а именно, для уравнения (2) оно будет таким: найти все значения параметра Тригонометрические уравнения - формулы и примеры с решением для которых это уравнение имеет хотя бы один корень на промежутке Тригонометрические уравнения - формулы и примеры с решением (тогда после обратной замены мы найдем корни уравнения Тригонометрические уравнения - формулы и примеры с решением а значит и корни уравнения (1)). Это возможно в одном из трех случаев: или оба корня уравнения (2) находятся в этом промежутке, или только один из корней уравнения (2) находится в промежутке Тригонометрические уравнения - формулы и примеры с решением а второй — справа или слева от этого промежутка. Изобразив соответствующие эскизы графиков функции Тригонометрические уравнения - формулы и примеры с решением (см. рисунки), по приведенному ориентиру (или по таблице 37) записываем соответствующие условия расположения корней (3)-(5). При этом учитываем, что в случаях, когда Тригонометрические уравнения - формулы и примеры с решением или Тригонометрические уравнения - формулы и примеры с решением то условие задачи тоже выполняется.

Тригонометрические уравнения - формулы и примеры с решением

В конце необходимо объединить все полученные результаты. Заметим, что для получения ответа можно решить уравнение (2):

Тригонометрические уравнения - формулы и примеры с решением потом решить совокупность неравенств: Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением но неравенства с корнями (иррациональные) будут рассмотрены в следующем разделе, и решать их достаточно сложно.

Решение:

Данное уравнение равносильно уравнению: Тригонометрические уравнения - формулы и примеры с решениемТригонометрические уравнения - формулы и примеры с решением Замена Тригонометрические уравнения - формулы и примеры с решением дает уравнение Тригонометрические уравнения - формулы и примеры с решением

Уравнение (1) будет иметь корни тогда и только тогда, когда уравнение (2) будет иметь хотя бы один корень на промежутке Тригонометрические уравнения - формулы и примеры с решением

  1. Для того чтобы оба корня квадратного трехчлена Тригонометрические уравнения - формулы и примеры с решением находились в этом промежутке, достаточно выполнения условии –Тригонометрические уравнения - формулы и примеры с решением
  2. Для того чтобы один корень Тригонометрические уравнения - формулы и примеры с решением находился в промежутке Тригонометрические уравнения - формулы и примеры с решением а второй справа от 1 (или в точке 1), достаточно выполнения условии Тригонометрические уравнения - формулы и примеры с решением
  3. Для того чтобы один корень Тригонометрические уравнения - формулы и примеры с решением находился в промежутке Тригонометрические уравнения - формулы и примеры с решением а второй слева от-1 (или в точке -1), достаточно выполнения условийТригонометрические уравнения - формулы и примеры с решением

Решаем совокупность систем неравенств (3)-(5): 10 + а >0, 10-а >0, а2-64 > 0, или

Тригонометрические уравнения - формулы и примеры с решением

Тогда

Тригонометрические уравнения - формулы и примеры с решением

Первая система не имеет решений, а из других получаем Тригонометрические уравнения - формулы и примеры с решением Ответ: Тригонометрические уравнения - формулы и примеры с решением

  • Тригонометрические неравенства
  • Формулы приведения
  • Синус, косинус, тангенс суммы и разности
  • Формулы двойного аргумента
  • Функция y=sin x и её свойства и график
  • Функция y=cos x и её свойства и график
  • Функции y=tg x и y=ctg x – их свойства, графики
  • Арксинус, арккосинус, арктангенс и арккотангенс числа

Чтобы успешно решать тригонометрические уравнения удобно пользоваться методом сведения к ранее решенным задачам. Давайте разберемся, в чем суть этого метода?

В любой предлагаемой задаче вам необходимо увидеть уже решенную ранее задачу, а затем с помощью последовательных равносильных преобразований попытаться свести данную вам задачу к более простой.

Так, при решении тригонометрических уравнений обычно составляют некоторую конечную последовательность равносильных уравнений, последним звеном которой является уравнение с очевидным решением. Только важно помнить, что если навыки решения простейших тригонометрических уравнений не сформированы, то решение более сложных уравнений будет затруднено и малоэффективно.

Кроме того, решая тригонометрические уравнения, никогда не стоит забывать о возможности существования нескольких способов решения.

Пример 1. Найти количество корней уравнения cos x = -1/2 на промежутке [0; 2π].

Решение:

I способ. Изобразим графики функций y = cos x и y = -1/2 и найдем количество их общих точек на промежутке [0; 2π] (рис. 1).Тригонометрические уравнения

Так как графики функций имеют две общие точки на промежутке [0; 2π], то уравнение содержит два корня на данном промежутке.

II способ. С помощью тригонометрического круга (рис. 2) выясним количество точек, принадлежащих промежутку [0; 2π], в которых cos x = -1/2. По рисунку видно, что уравнение имеет два корня.Тригонометрические уравнения

III способ. Воспользовавшись формулой корней тригонометрического уравнения, решим уравнение cos x = -1/2.

cos x = -1/2;

x = ± arccos (-1/2) + 2πk, k – целое число (k € Z);

x = ± (π – arccos 1/2) + 2πk, k – целое число (k € Z);

x = ± (π – π/3) + 2πk, k – целое число (k € Z);

x = ± 2π/3 + 2πk, k – целое число (k € Z).

Промежутку [0; 2π] принадлежат корни  2π/3 и -2π/3 + 2π, k – целое число. Таким образом, уравнение имеет два корня на заданном промежутке.

Ответ: 2.

В дальнейшем тригонометрические уравнения будут решаться одним из предложенных способов, что во многих случаях не исключает применения и остальных способов.

Пример 2. Найти количество решений уравнения tg (x + π/4) = 1 на промежутке [-2π; 2π].

Решение:

Воспользовавшись формулой корней тригонометрического уравнения, получим:

x + π/4 = arctg 1 + πk, k – целое число (k € Z);

x + π/4 = π/4 + πk, k – целое число (k € Z);

x = πk, k – целое число (k € Z);

Промежутку [-2π; 2π] принадлежат числа -2π; -π; 0; π; 2π. Итак, уравнение имеет пять корней на заданном промежутке.

Ответ: 5.

Пример 3. Найти количество корней уравнения cos2 x + sin x · cos x = 1 на промежутке [-π; π].

Решение:

Так как 1 = sin2 x + cos2 x (основное тригонометрическое тождество), то исходное уравнение принимает вид:

cos2 x + sin x · cos x = sin2 x + cos2 x;

sin2 x – sin x · cos x = 0;

sin x(sin x – cos x) = 0. Произведение равно нулю, а значит хотя бы один из множителей должен быть равен нулю, поэтому:

sin x = 0 или sin x – cos x = 0.

Так как значение переменной, при которых cos x = 0, не являются корнями второго уравнения (синус и косинус одного и того же числа не могут одновременно быть равными нулю), то разделим обе части второго уравнения на cos x:

sin x = 0 или sin x / cos x – 1 = 0.

Во втором уравнении воспользуемся тем, что tg x = sin x / cos x, тогда:

sin x = 0 или tg x = 1. С помощью формул имеем:

x = πk или x = π/4 + πk, k – целое число (k € Z).

Из первой серии корней промежутку [-π; π] принадлежат числа -π; 0; π. Из второй серии: (π/4 – π) и π/4.

Таким образом, пять корней исходного уравнения принадлежат промежутку [-π; π].

Ответ: 5.

Пример 4. Найти сумму корней уравнения tg2 x + сtg2 x + 3tg x + 3сtgx + 4 = 0 на промежутке [-π; 1,1π].

Решение:

Перепишем уравнение в следующем виде:

tg2 x + сtg2 x + 3(tg x + сtgx) + 4 = 0 и сделаем замену.

Пусть tg x + сtgx = a. Обе части равенства возведем в квадрат:

(tg x + сtg x)2 = a2. Раскроем скобки:

tg2 x + 2tg x · сtgx + сtg2 x = a2.

Так как tg x · сtgx = 1, то tg2 x + 2 + сtg2 x = a2, а значит

tg2 x + сtg2 x = a2 – 2.

Теперь исходное уравнение имеет вид:

a2 – 2 + 3a + 4 = 0;

a2 + 3a + 2 = 0. С помощью теоремы Виета получаем, что a = -1 или a = -2.

Сделаем обратную замену, имеем:

tg x + сtgx = -1 или tg x + сtgx = -2. Решим полученные уравнения.

tg x + 1/tgx = -1 или tg x + 1/tgx = -2.

По свойству двух взаимно обратных чисел определяем, что первое уравнение не имеет корней, а из второго уравнения имеем:

tg x = -1, т.е. x = -π/4 + πk, k – целое число (k € Z).

Промежутку [-π; 1,1π] принадлежат корни: -π/4; -π/4 + π. Их сумма:

-π/4 + (-π/4 + π) =  -π/2 + π = π/2.

Ответ: π/2.

Пример 5. Найти среднее арифметическое корней уравнения sin 3x + sin x = sin 2x на промежутке [-π; 0,5π].

Решение:

Воспользуемся формулой sin α + sin β = 2sin ((α + β)/2) · cos ((α – β)/2), тогда

sin 3x + sin x = 2sin ((3x + x)/2) · cos ((3x – x)/2) = 2sin 2x · cos x и уравнение принимает вид

2sin 2x · cos x = sin 2x;

2sin 2x · cos x – sin 2x = 0. Вынесем общий множитель sin 2x за скобки

sin 2x(2cos x – 1) = 0. Решим полученное уравнение:

sin 2x = 0 или 2cos x – 1 = 0;Тригонометрические уравнения

sin 2x = 0 или cos x = 1/2;

2x = πk или x = ±π/3 + 2πk, k – целое число (k € Z).

Таким образом, имеем корни

x = πk/2, x = π/3 + 2πk, x = -π/3 + 2πk, k – целое число (k € Z).

Промежутку [-π; 0,5π] принадлежат корни -π; -π/2; 0; π/2 (из первой серии корней); π/3 (из второй серии); -π/3 (из третьей серии). Их среднее арифметическое равно:

(-π – π/2 + 0 + π/2 + π/3 – π/3)/6 = -π/6.

Ответ: -π/6.

Пример 6. Найти количество корней уравнения sin x + cos x = 0 на промежутке [-1,25π; 2π].

Решение:

Данное уравнение является однородным уравнением первой степени. Разделим обе его части на cosx (значение переменной, при которых  cos x = 0, не являются корнями данного уравнения, так как синус и косинус одного и того же числа не могут одновременно быть равными нулю). Исходное уравнение имеет вид:

tg x + 1 = 0;

tg x = -1;

x = -π/4 + πk, k – целое число (k € Z).

Промежутку [-1,25π; 2π] принадлежат корни -π/4; (-π/4 + π); и (-π/4 + 2π).

Таким образом, заданному промежутку принадлежат три корня уравнения.

Ответ: 3.

Научитесь делать самое главное – четко представлять план решения задачи, и тогда любое тригонометрическое уравнение будет вам по плечу.

 Остались вопросы? Не знаете, как решать тригонометрические уравнения?
Чтобы получить помощь репетитора – зарегистрируйтесь.

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Добавить комментарий