Квантовая механика |
---|
|
Основа
|
Фундаментальные понятия
|
Эксперименты
|
Формулировки
|
Уравнения
|
Интерпретации
|
Развитие теории
|
Сложные темы
|
Известные учёные
|
См. также
|
См. также: Портал:Физика |
Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве (в общем случае, в конфигурационном пространстве) и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.
Играет в квантовой механике такую же важную роль, как уравнения Гамильтона или уравнение второго закона Ньютона в классической механике или уравнения Максвелла для электромагнитных волн.
Сформулировано Эрвином Шрёдингером в 1925 году, опубликовано в 1926 году. Уравнение Шрёдингера не выводится, а постулируется методом аналогии с классической оптикой, на основе обобщения экспериментальных данных[1].
Уравнение Шрёдингера предназначено для частиц без спина, движущихся со скоростями, много меньшими скорости света. В случае быстрых частиц и частиц со спином используются его обобщения (уравнение Клейна — Гордона, уравнение Паули, уравнение Дирака и др.).
История[править | править код]
Уравнение Шрёдингера на надгробии Эрвина и Аннемари Шрёдингер в Альпбахе
В начале XX века учёные пришли к выводу, что между предсказаниями классической теории и экспериментальными данными об атомной структуре существует ряд расхождений. Открытие уравнения Шрёдингера последовало за революционным предположением де Бройля, что не только свету, но и вообще любым телам (в том числе и любым микрочастицам) присущи волновые свойства.
Исторически окончательной формулировке уравнения Шрёдингера предшествовал длительный период развития физики. Само уравнение было сформулировано Эрвином Шрёдингером в 1925 году, в процессе объяснения, по просьбе Петера Дебая, идей де Бройля о волновой природе микрочастиц группе аспирантов Цюрихского университета[2]. Опубликовано в 1926 году[3].
За открытие этого уравнения Э. Шрёдингер получил Нобелевскую премию по физике 1933 года[4].
Зависящее от времени уравнение[править | править код]
Наиболее общая форма уравнения Шрёдингера — это форма, включающая зависимость от времени[5][6]:
-
Зависящее от времени уравнение (общий случай)
где — гамильтониан, — координаты, — импульсы.
Пример нерелятивистского уравнения Шрёдингера в координатном представлении для точечной частицы массы , движущейся в потенциальном поле c потенциалом :
-
Пример зависящего от времени уравнения Шрёдингера
В данном примере гамильтониан .
Некоторые свойства[править | править код]
Волновая функция, являющаяся решением уравнения Шрёдингера, и её первые производные должны быть однозначными и непрерывными во всём пространстве. Непрерывность производных физически означает непрерывность плотности потока[7].
Если потенциальная энергия нигде не обращается в бесконечность или обращается в в некоторой точке медленнее, чем , где — расстояние до этой точки, то волновая функция должна быть конечной во всем пространстве[7].
Средние значения механических величин для волнового пакета, который можно описать уравнением Шрёдингера, удовлетворяют классическим уравнениям Гамильтона (теорема Эренфеста)[8].
Уравнение Шрёдингера инвариантно относительно преобразований Галилея. Из этого факта вытекает ряд важных следствий: существование ряда операторов квантовой механики, связанных с преобразованиями Галилея; невозможность описать состояния со спектром масс или нестабильные элементарные частицы в нерелятивистской квантовой механике (теорема Баргмана); существование квантовомеханических инвариантов, порождаемых преобразованием Галилея[9].
Уравнение Шрёдингера является более сложным по сравнению с уравнениями Гамильтона классической механики. Уравнения Гамильтона являются системой обыкновенных дифференциальных уравнений первого порядка, а уравнение Шрёдингера является дифференциальным уравнением в частных производных[10].
Уравнение Шрёдингера линейно, то есть если волновые функции и удовлетворяют уравнению Шрёдингера, то ему удовлетворяет любая их линейная комбинация , где и — комплексные числа[11]. Вследствие этого линейная суперпозиция волновых функций не нарушается уравнением Шрёдингера, и для редукции волновой функции необходима операция измерения. Линейность оператора Шрёдингера является следствием и обобщением принципа суперпозиции, который важен для корректной формулировки понятия операции измерения[12].
Для всех квантовых систем, занимающих ограниченные области пространства, решения уравнения Шрёдингера существуют только для счётного множества значений энергии и представляют собой счётное множество волновых функций , члены которого нумеруются набором квантовых чисел [7][13]. Волновая функция нормального состояния (с наименьшей энергией) не обращается в нуль (не имеет узлов) нигде в пространстве. Нормальный энергетический уровень не может быть вырожденным. Осцилляционная теорема: для одномерного движения волновая функция дискретного спектра, соответствующая -му по величине собственному значению , обращается в нуль (при конечных значениях координаты x) раз[7].
Уравнение Шрёдингера, как и уравнения Гамильтона, является уравнением первого порядка по времени. Оно является математическим выражением принципа статистического детерминизма в квантовой механике: данное состояние системы определяет её последующее состояние не однозначно, а лишь с определённой вероятностью, задаваемой при помощи волновой функции .
Уравнение Шрёдингера симметрично по отношению к обоим направлениям времени. Эта симметрия выражается в его неизменности при изменении знака и одновременной замене волновой функции на комплексно сопряжённую [14].
Если и — два решения уравнения Шрёдингера, то их скалярное произведение не меняется с течением времени: . Это следует из равенства нулю производной скалярного произведения[15]:
Ограничения применимости[править | править код]
Уравнение Шрёдингера не может объяснить спонтанного излучения, так как волновая функция возбуждённого состояния является точным решением зависящего от времени уравнения Шрёдингера[16][17].
Уравнение Шрёдингера не может описывать процесс измерения в квантовой механике, поскольку оно линейно, детерминистично и обратимо во времени, а процесс измерения нелинеен, стохастичен и необратим во времени[18].
Уравнение Шрёдингера не может описывать процессы взаимных превращений элементарных частиц. Процессы взаимных превращений частиц описывает релятивистская квантовая теория поля.
Формулировка[править | править код]
Общий случай[править | править код]
В квантовой физике вводится комплекснозначная функция , описывающая чистое состояние объекта, которая называется волновой функцией. В наиболее распространённой копенгагенской интерпретации эта функция связана с вероятностью обнаружения объекта в одном из чистых состояний (квадрат модуля волновой функции представляет собой плотность вероятности)[19][20]. Поведение гамильтоновой системы в чистом состоянии полностью описывается с помощью волновой функции.
Отказавшись от описания движения частицы с помощью траекторий, получаемых из законов динамики, и определив вместо этого волновую функцию, необходимо ввести в рассмотрение уравнение, эквивалентное законам Ньютона и дающее рецепт для нахождения в частных физических задачах. Таким уравнением является уравнение Шрёдингера.
Пусть волновая функция задана в n-мерном конфигурационном пространстве, тогда в каждой точке с координатами в определённый момент времени она будет иметь вид . В таком случае уравнение Шрёдингера запишется в виде:
где , — постоянная Планка; — масса частицы, — внешняя по отношению к частице потенциальная энергия в точке в момент времени , — оператор Лапласа (или лапласиан), эквивалентен квадрату оператора набла и в n-мерной системе координат имеет вид:
Случай трёхмерного пространства[править | править код]
В трёхмерном случае пси-функция является функцией трёх координат, и в декартовой системе координат заменяется выражением
тогда уравнение Шрёдингера примет вид:
где , — постоянная Планка; — масса частицы, — потенциальная энергия в точке в момент времени t.
Стационарное уравнение Шрёдингера[править | править код]
Форма уравнения Шрёдингера показывает, что относительно времени его решение должно быть простым, поскольку время входит в это уравнение лишь через первую производную в правой части. Действительно, частное решение для случая, когда не является функцией времени, можно записать в виде:
где функция должна удовлетворять уравнению:
которое получается из уравнения Шрёдингера (1) при подстановке в него указанной выше формулы для (2). Заметим, что это уравнение вообще не содержит времени; в связи с этим оно называется стационарным уравнением Шрёдингера (уравнение Шрёдингера, не содержащее времени).
Выражение (2) является лишь частным решением зависящего от времени уравнения Шрёдингера (1), общее решение представляет собой линейную комбинацию всех частных решений вида (2). Зависимость функции от времени проста, но зависимость её от координаты не всегда имеет элементарный вид, так как уравнение (3) при одном выборе вида потенциальной функции совершенно отличается от того же уравнения при другом выборе этой функции. В действительности уравнение (3) может быть решено аналитически лишь для небольшого числа частных типов функции .
Уравнение Шрёдингера в инвариантной форме[править | править код]
Основной источник: [21]
Пусть классическая кинетическая энергия динамической системы имеет вид . Величины можно рассматривать как компоненты метрического тензора в пространстве измерений. В прямоугольных декартовых координатах — это просто массы частиц, а — обратные массы.
Уравнение Шрёдингера в инвариантной форме имеет вид:
Здесь — определитель матрицы .
Методы решения уравнения Шрёдингера[править | править код]
- Аналитический метод. Решение ищется в виде точного математического выражения. Этот метод применим лишь в немногих простейших случаях (одноэлектронные атомы, линейный осциллятор, потенциальная яма с бесконечно высокими стенками и т. п.)[22].
- Метод возмущений. Оператор Гамильтона рассматривается как сумма двух слагаемых. Одно из них рассматривается как невозмущённый оператор, имеющий точное аналитическое решение. Другое слагаемое рассматривается как малая возмущающая добавка к нему. При стационарном возмущении решение заключается в разложении собственных значений и собственных функций в ряд по степеням малой постоянной возмущения и нахождении приближённого решения системы получаемых уравнений[23]. При нестационарном возмущении волновая функция ищется в виде линейной комбинации собственных волновых функций с коэффициентами, зависящими от времени[24].
- Метод Ритца. Применяется для решения стационарного уравнения Шрёдингера. Определяются экстремальные значения средней полной энергии системы при помощи варьирования параметров некоторой пробной функции[25].
- Метод Хартри — Фока.
- Метод ВКБ.
Переход к классической механике[править | править код]
Основной источник: [26]
Уравнение Шрёдингера, описывающее движение микрообъекта в потенциальном поле :
Волновую функцию микрочастицы при можно представить в виде . Вследствие тождеств и уравнение Шрёдингера в этом случае можно записать в виде: .
При это уравнение переходит в уравнение Гамильтона — Якоби классической механики:
- .
Существование предельного перехода от уравнения Шредингера к уравнению Гамильтона — Якоби и даёт основание рассматривать механику Ньютона как предельный случай более общей квантовой механики, пригодной для описания как микроскопических, так и макроскопических объектов (принцип соответствия).
Аналогии и связи с другими уравнениями[править | править код]
Уравнения Максвелла для электромагнитных волн в пустом пространстве
можно путём введения новой комплексной величины , аналогичной волновой функции в уравнении Шрёдингера, преобразовать в одно уравнение
похожее на уравнение Шрёдингера[27].
Уравнение Шрёдингера сходно с уравнениями теплопроводности и диффузии классической физики тем, что оно является уравнением первого порядка по времени и отличается от них наличием мнимого коэффициента перед . Благодаря ему оно может иметь и периодические решения[28].
Уравнение Шрёдингера можно получить из принципа наименьшего действия, рассматривая как уравнение Эйлера
некоторой вариационной задачи, в которой плотность лагранжиана имеет вид[29][30]:
Уравнение Дирака можно записать в виде уравнения Шрёдингера:
Здесь: , ,
В ряде случаев решение стационарного уравнения Шрёдингера методом ВКБ можно искать в виде , причём действие удовлетворяет уравнению Гамильтона — Якоби . Разлагая функцию в ряд по степеням параметра : , получают в нулевом приближении для стационарное уравнение Гамильтона — Якоби, в следующих приближениях — поправки разного порядка[31].
Наводящие соображения[править | править код]
Волновое уравнение для волн де Бройля[править | править код]
К уравнению Шрёдингера можно прийти путём обобщения волнового уравнения на случай волн Де Бройля:[32]
где — оператор Лапласа, — волновая функция, обладающая свойствами волны де Бройля, — время, — пространственная координата, — фазовая скорость.
Если волновая функция является монохроматической, то решение этого уравнения можно представить в виде
где — круговая частота.
Уравнение для пространственной части волновой функции :
Воспользуемся выражением для длины волны:
Уравнение для пространственной части волновой функции принимает вид:
С учётом выражения для длины волны де Бройля:
и закона сохранения энергии:
где — импульс частицы, — постоянная Планка, — масса частицы, — потенциальная энергия частицы, — полная энергия частицы.
Получаем:
В итоге имеем стационарное уравнение Шрёдингера:
Для перехода к нестационарному уравнению Шрёдингера представим стационарное уравнение Шрёдингера в виде:
где .
При помощи равенства
приходим к нестационарному уравнению Шрёдингера:
Оператор сдвига во времени[править | править код]
В квантовой механике производную по времени от волновой функции можно рассматривать как оператор смещения по времени. По аналогии с классической механикой и соотношению между энергией и временем можно предположить, что его роль всегда играет гамильтониан. Отсюда немедленно следует уравнение Шрёдингера[33][34].
Соответствие между классической механикой и геометрической оптикой[править | править код]
К уравнению Шрёдингера можно прийти, опираясь на соответствие между классической механикой и геометрической оптикой. Понятиям материальной точки, траектории, скорости, потенциальной энергии, энергии, вариационному принципу Мопертюи в классической
механике соответствуют понятия волнового пакета, луча, групповой скорости, фазовой скорости (показателя преломления), частоты,
вариационного принципа Ферма в геометрической оптике[35].
Вариационному принципу Мопертюи в классической механике
- (1)
соответствует вариационный принцип Ферма в оптике
- (2)
Здесь — полная энергия, — потенциальная энергия, — фазовая скорость. Траектория в классической механике соответствует лучу света в оптике, если
- (3)
Волновой пакет можно представить в виде
- .
Для максимума пакета справедливо равенство
- .
Из этого равенства следует, что . В классической механике этому соответствует равенство . Из этих двух выражений получается формула для групповой скорости[36]:
- (4)
Тогда условие равенства скорости материальной точки и групповой скорости волнового пакета можно записать в виде[37]:
- (5)
Отсюда, используя (3), получаем:
Сравнивая коэффициенты при одинаковых степенях , находим
Первое из них дает , тогда из второго следует , , . Фазовая скорость волны зависит от частоты :
- (6)
Монохроматическая волна с фазовой скоростью удовлетворяет уравнению
- (7)
Частное решение этого уравнения имеет вид:
- (8)
где — частота волны. Подставив решение (8) в уравнение (7), получаем:
- (9)
Подставляя (6) в (9), получаем:
- (10)
Из уравнения (8) получаем:
- (11)
Подставляя (11) в (10), получаем зависящее от времени уравнение Шрёдингера (12)[38]:
- (12)
Обобщения[править | править код]
Уравнение Шрёдингера в электромагнитном поле[править | править код]
Нерелятивистскую бесспиновую частицу в электромагнитном поле, задаваемом потенциалами и , описывает уравнение Шрёдингера в магнитном поле (потенциал электрического поля — скалярный и входит как обычное слагаемое ):
Здесь — оператор импульса. Это уравнение записано в Гауссовой системе единиц. В системе СИ коэффициент при равен не , а .
Нелинейное уравнение Шрёдингера[править | править код]
Нелинейное уравнение Шрёдингера имеет вид:
где — комплекснозначная функция.
Применяется при описании нелинейных квантовомеханических явлений.
Квантовая теория поля[править | править код]
В квантовой теории поля при изучении релятивистских процессов с уничтожением и рождением элементарных частиц известно обобщение уравнения Шредингера в вариационных производных:
Здесь — амплитуда состояния, — интенсивность взаимодействия, — плотность обобщенной функции Гамильтона, — матрица рассеяния[39].
Это уравнение может быть переписано в форме функционального дифференциального уравнения Швингера — Томонаги:
где — пространственно-подобная поверхность в пространстве Минковского[40].
См. также[править | править код]
- Волновая функция
- Одномерное стационарное уравнение Шрёдингера
- Уравнение Дирака
- Уравнение Паули
- Уравнение Линдблада
- Уравнение фон Неймана
- Уравнение Гейзенберга
- Функции Йоста
- Группа Шрёдингера
- Уравнение Швингера — Томонаги
- Оператор Шрёдингера
- Нелинейное уравнение Шрёдингера
- Особенности преобразования рассеяния для двумерного уравнения Шрёдингера
Примечания[править | править код]
- ↑ Пригожин, 2006, с. 74.
- ↑ Капица П. Л. Некоторые принципы творческого воспитания и образования современной молодёжи // Эксперимент, теория, практика. — М., Наука, 1981. — с. 257.
- ↑ Кузнецов Б. Г. Основные идеи квантовой механики // отв. ред. Григорьян А. Т., Полак Л. С. Очерки развития основных физических идей. — М., АН СССР, 1959. — С. 390—421;
- ↑ The Nobel Prize in Physics 1933 Erwin Schrödinger. Дата обращения: 26 октября 2019. Архивировано 18 июля 2020 года.
- ↑
Shankar, R. Principles of Quantum Mechanics (неопр.). — 2nd. — Springer Science+Business Media/Springer Science+Business Media, 1994. — С. 143. — ISBN 978-0-306-44790-7. - ↑ Мотт, 1966, с. 52.
- ↑ 1 2 3 4 Ландау Л. Д., Лившиц Е. М. Квантовая механика. — М., Наука, 1972. — с. 78 — 82
- ↑ Паули, 1947, с. 47.
- ↑ Кемпфер, 1967, с. 390.
- ↑ Широков, 1972, с. 24.
- ↑ Пенроуз, 2003, с. 234.
- ↑ Паули, 1947, с. 43.
- ↑ Ширков, 1980, с. 464.
- ↑ Ландау Л. Д., Лифшиц Е. М. Квантовая механика. — М., Наука, 1972. — с. 83
- ↑ Любарский Г Я Теория групп и физика. — М., Наука, 1986. — c. 123
- ↑ Вигнер, 1961, с. 67.
- ↑ Мигдал, 1966, с. 49.
- ↑ Вигнер, 2002, с. 145.
- ↑ Ландау Л. Д., Лифшиц Е. М. Квантовая механика (нерелятивистская теория). — Издание 6-е, исправленное. — М.: Физматлит, 2004. — 800 с. — («Теоретическая физика», том III). — ISBN 5-9221-0530-2.
- ↑ В. А. Фок. Начала квантовой механики. — Л.: Кубуч, 1932; 2-е изд. — М.: Наука, 1976.
- ↑ Мотт Н., Снеддон И. Волновая механика и её применения. – М., Наука, 1966. – c. 77-78
- ↑ Ферми, 1968, с. 28.
- ↑ Ферми, 1968, с. 191.
- ↑ Ферми, 1968, с. 211.
- ↑ Грибов, 1999, с. 234.
- ↑ Жирнов Н. И. Классическая механика. — Серия: учебное пособие для студентов физико-математических факультетов педагогических институтов. — М., Просвещение, 1980. — Тираж 28 000 экз. — с. 212-213
- ↑ Мотт, 1966, с. 21.
- ↑ Блохинцев, 1963, с. 115.
- ↑ Кушниренко, 1971, с. 38.
- ↑ Дж. Займан Современная квантовая теория. — М., Мир, 1971. — c. 30
- ↑ Гречко Л. Г., Сугаков В. И., Томасевич О. Ф. Сборник задач по теоретической физике. — М., Высшая школа, 1972. — с. 58
- ↑ Соколов А. А., Тернов И. М. Квантовая механика и атомная физика. — М., Просвещение, 1970. — 39-40, 52
- ↑ П. А. М. Дирак Принципы квантовой механики. — М., Наука, 1960. — с. 148—152
- ↑ Кузнецов Б. Г. Основные идеи квантовой механики // отв. ред. Григорьян А. Т., Полак Л. С. Очерки развития основных физических идей. — М., АН СССР, 1959. — Тираж 5000 экз. — с. 403, 411, 412;
- ↑ Ферми, 1968, с. 15.
- ↑ Ферми, 1968, с. 17.
- ↑ Ферми, 1968, с. 19.
- ↑ Ферми, 1968, с. 21.
- ↑ Боголюбов Н. Н., Ширков Д. В. Введение в теорию квантованных полей. — М., ГИТТЛ, 1957. — с. 396—397
- ↑ Боголюбов Н. Н., Ширков Д. В. Введение в теорию квантованных полей. — М., ГИТТЛ, 1957. — с. 399—401
Ссылки[править | править код]
- Сферически симметричные состояния электрона в атоме водорода
Литература[править | править код]
- Шрёдингер Э. Избранные труды по квантовой механике. М.: Наука, 1976.
- Березин Ф. А., Шубин М. А. Уравнение Шредингера.— М.: Изд-во МГУ.— 1983.— 392 с.
- Кемпфер Ф. Основные положения квантовой механики. — М.: Мир, 1967. — 391 с.
- Ландау Л. Д., Лифшиц Е. М. Квантовая механика (нерелятивистская теория). — Издание 6-е, исправленное. — М.: Физматлит, 2004. — 800 с. — («Теоретическая физика», том III). — ISBN 5-9221-0530-2.
- Фок В. А. Начала квантовой механики. — Л.: Кубуч, 1932; 2-е изд. — М.: Наука, 1976.
- Паули В.. Общие принципы волновой механики. — М.: ОГИЗ, 1947. — 330 с.
- Пригожин Илья. От существующего к возникающему: время и сложность в физических науках. — М.: КомКнига, 2006. — 296 с. — ISBN 5-484-00313-X.
- Пенроуз Роджер. «Новый ум короля»: о компьютерах, мышлении и законах физики. — М.: Едиториал УРСС, 2003. — 384 с. — ISBN 5-354-00005-X.
- Кушниренко А. Н. Введение в квантовую теорию поля. — М.: Высшая школа, 1971. — 304 с.
- Широков Ю. М., Юдин Н. П. Ядерная физика. — М.: Наука, 1972. — 670 с.
- Мотт Н., Снеддон И. Волновая механика и её применения. — М.: Наука, 1966. — 428 с.
- Блохинцев Д. И. Основы квантовой механики. — М.: Наука, 1963. — 619 с.
- ред. Ширков Д. В. Физика микромира. — М.: Советская энциклопедия, 1980. — 528 с.
- Вигнер Е. Теория групп. — М.: ИЛ, 1961. — 444 с.
- Мигдал А. Б., Крайнов, В. П. Приближенные методы квантовой механики. — М.: Наука, 1966. — 152 с.
- Ферми Э. Квантовая механика. — М.: Мир, 1968. — 367 с.
- Вигнер Эуген Пол. Инвариантность и законы сохранения. Этюды о симметрии. — М.: Едиториал УРСС, 2002. — 320 с. — ISBN 5-354-00191-9.
- Грибов Л. А., Муштакова С .П. Квантовая химия. — М.: Гардарики, 1999. — 390 с. — ISBN 5-8297-0017-4.
Уравнение Шредингера имеет большое значение для квантовой механики — наряду со вторым законом Ньютона в классической механике или уравнением Максвелла для изучения природы электромагнитных волн. Закономерности, описанные ученым, объясняют движение частиц, скорость которых существенно меньше, чем скорость света.
Общее уравнение Шредингера — какой имеет вид и зачем нужно
Уравнением Шредингера называют линейное дифференциальное равенство с частными производными, которое описывает изменение в пространстве и во времени чистого состояния посредством волновой функции в гамильтоновых квантовых системах.
Опытным путем можно наблюдать волновые свойства частиц. Определение данного явления является следствием уравнения, которое описывает движение микроскопических частиц в разных силовых полях. Закономерности движения в квантовой механике вытекают из статистического толкования волн де Бройля и соотношения неопределенностей Гейзенберга.
Главное уравнение представляет собой формулу относительно волновой функции (psi) (x, y, z,t). Это объясняется тем, что (left|psi right|) является определением вероятности присутствия частицы в определенное время t в объеме ΔV, то есть в области со следующими координатами:
x и x + dx;
y и y + dy;
z и z+dz.
Основная закономерность нерелятивистской квантовой механики была представлена в 1926 году Э. Шредингером. Данная формула не является выводом, это — постулат. Справедливость уравнения подтверждается согласием с результатами опыта, что говорит о природном характере выявленной закономерности.
Общее уравнение Шредингера обладает следующим видом:
(-frac{h^{2}}{2m}Delta psi +Upsi =itimes hfrac{dpsi }{dt})
где ħ равно отношению (frac{h}{2pi })
m — является массой частицы,
Δ — оператор Лампаса,
i — представляет собой мнимую единицу,
U(x, y, z, t) — равно потенциальной функции частицы в силовом поле, в котором она движется,
(psi)(x, y, z, t) — служит искомой волновой функцией частицы.
Данная формула справедлива для любых частиц, спин которых равен нулю, движущихся с небольшой скоростью относительно скорости света. Уравнение можно дополнить условиями, характерными для волновой функции:
- волновая функция имеет конец, однозначна и непрерывна;
- производные волновой функции отличаются непрерывностью;
- (left|psi right|) интегрируема, что является условием нормировки вероятностей.
В первом случае описано уравнение, которое зависит от времени. Многие физические явления, наблюдаемые в микромире, можно охарактеризовать с помощью упрощенной формулы. При исключении зависимости волновой функции от времени можно определить закономерность Шредингера для стационарных состояний, то есть состояний, в которых значения энергии фиксированы. Такие ситуации возможны при стационарном силовом поле, в котором происходит движение частицы. Таким образом, функция U = U (x, y, z) не определяется временем и обладает смыслом потенциальной энергии.
В данном случае уравнение Шредингера будет иметь следующий вид:
(Delta psi +frac{2m}{h^{2}}left(E-U right)times psi =0)
Данная формула получила название уравнения Шредингера для стационарных состояний. Здесь используют полную энергию Е-частицы. Согласно теории дифференциальных уравнений доказано, что имеется бесчисленное множество решений подобных уравнений, которые имеют физический смысл при отборе методом наложения граничных условий. В случае уравнения Шредингера такими условиями являются характеристики регулярности волновых функций:
- конечность волновых функций;
- однозначность и непрерывность волновых функций наряду с первыми производными.
Реальным физическим смыслом обладают лишь те решения, которые определены регулярными функциями $$left|psi right|$$. Регулярные решения характерны не для любых значений величины Е, а лишь при конкретной их совокупности в рамках определенной задачи. Такие параметры энергии носят название собственные. В свою очередь решения с собственными значениями энергии определяют как собственные функции. С помощью собственных параметров Е формируют непрерывный или дискретный ряд. Для первого случая характерен непрерывный или сплошной спектр, для второго — дискретный спектр.
Применение уравнения Шредингера
Уравнение Шредингера не подходит для описания следующих явлений:
- Спонтанное излучение, в связи с тем, что волновая функция для возбужденного состояния представляет собой точное решение уравнения Шредингера с учетом зависимости от времени.
- Процесс изменения, характерный для квантовой механики, так как уравнение линейно, детерминистично и обладает обратимостью во времени, а данный процесс не отличается линейностью, стохастичен и необратим.
- Взаимное превращение элементарных частиц, по причине описания данных процессов релятивистской квантовой теорией поля.
Можно рассмотреть применение уравнения Шредингера к свободной частице или электрону, который совершает движение вдоль оси ОХ. При этом величина потенциальной энергии частицы, находящейся в свободном движении, равна нулю. То есть U = 0. Тогда уравнение Шредингера будет иметь следующий вид:
(Delta psi +frac{2m}{h^{2}}Epsi =0)
Исходя из гипотезы Бройля, можно смоделировать перемещение такого микроскопического объекта с помощью плоской монохроматической волны, занимающей все пространство:
(psi =psi _{0}e^{-ileft(omega t-vec{k}vec{y} right)})
Волновая функция, характеризующая движение свободной частицы вдоль оси ОХ, бедт записана следующим образом:
(psi =psi _{0}e^{-ileft(omega t-kx right)})
где (psi _{0}) является амплитудой волны.
Круговая частота (omega) и волновое число k связаны с полной энергией E и импульсом р следующими закономерностями:
(E=hω)
(p=hk)
Из данных соотношений следует:
(omega = frac{E}{h})
(k=frac{P}{h})
В таком случае волновая функция будет иметь следующий вид:
(psi =psi _{0}e^{frac{i}{h}left(Et-Px right)})
Продемонстрировать соответствие данного вида функции уравнению Шредингера можно, если определить (Delta psi) и (P^{2})
(frac{dpsi }{dx}=psi _{0}left(frac{-i}{h} right)left(-P right)times e^{frac{-i}{h}left(Et-Px right)}=frac{i}{h}Ppsi)
(Delta psi =frac{d^{2}psi }{dx^{2}}=left(frac{i}{h}P right)^{2}e^{-frac{i}{h}left(Et-Px right)}psi _{0}=-frac{P^{2}}{h^{2}}psi)
(P^{2}=frac{1}{psi }h^{2}Delta psi)
Далее необходимо определить (frac{dpsi }{dt}) и определить значение полной энергии Е:
(frac{dpsi }{dt}=-psi _{0}frac{i}{h}Etimes e^{-frac{i}{h}left(Et-Px right)}=-frac{i}{h}Epsi)
(E=-frac{1}{psi }times frac{h}{i}times frac{dpsi }{dt})
Используя отношение энергии частицы Е к импульсу p, получим формулу:
(E=frac{p^{2}}{2m})
Подставив данные значения в уравнение, можно вывести следующее равенство:
(-frac{1}{psi }times frac{h}{i}frac{dpsi }{dt}=frac{1}{2m}left(-frac{1}{psi }h^{2}Delta psi right))
(frac{h}{i}frac{dpsi }{dt}=frac{h^{2}}{2m}Delta psi)
(frac{h^{2}}{2m}Delta psi =ihfrac{dpsi }{dt})
(-frac{h^{2}}{2m}Delta psi =ihfrac{dpsi }{dt}=ihleft(-psi _{0} right)frac{i}{h} Ee^{-frac{i}{h}left(Et-Px right)}=Epsi)
(Delta psi +frac{2m}{h^{2}}Epsi =0)
Данное равенство соответствует уравнению Шредингера, когда U=0. Корректный вид волновой функции можно обосновать для случая движения частицы в силовом поле, в случае, когда потенциальная энергия не равна нулю. Формула будет иметь следующий вид:
(frac{P^{2}}{2m}= E-U)
Такое уравнение характеризует энергию движения частицы по аналогии с кинетической энергией в классической механике. После подстановки значений Е и Р уравнение приобретает следующий вид:
(frac{1}{2m}left(-frac{1}{psi }h^{2}Delta psi right)=-frac{1}{psi }frac{h}{i} frac{dpsi }{dt}-U)
(-frac{h^{2}}{2m}Delta psi +Upsi =frac{h}{i}frac{dpsi }{dt})
Конечная формулировка идентична уравнению Шредингера. Данное выражение применимо для частицы, которая совершает движение в силовом поле.
Пример решения уравнения Шредингера
Задание 1
Электрон движется в одном измерении вдоль оси ОХ между двумя потенциальными барьерами. В случае, если высота барьеров на концах ямы не имеет ограничений, электрон, как и в атоме, совершает финитное движение. Необходимо описать движение в квантовой механике и поведение импульса и энергии частицы.
Решение
Вначале следует изобразить ситуацию схематично
Согласно условиям задачи, функция U(x) обладает особым, разрывным видом и равна нулю в области между стенками. На краях ямы, то есть на ее барьерах, функция будет бесконечна:
При х=0 и х=l (U=propto)
При 0<x<1 U=0
Можно представить импульс электрона по модулю в виде определенной и постоянной величины, изменяющей знак во время отражения от барьера. Связь энергии электрона и импульса выражается таким образом:
(E=frac{p^{2}}{2m_{0}})
Уравнение Шредингера для стационарных состояний частиц, находящихся между барьерами, имеет следующий вид:
(frac{h^{2}}{2m_{0}}times psi ^{“}+Epsi =0)
Выполняя преобразования в формулах, получим:
(psi ^{“}+frac{p^{2}}{h^{2}}psi =0)
К полученной формуле следует прибавить граничные условия на барьерах ямы. Необходимо учесть связь волновой функции и вероятности нахождения частиц. Согласно условиям задания, частица за пределами стенок не находится. В таком случае значение волновой функции на стенках и за их пределами равно нулю. Граничные условия задания будут иметь следующий вид:
(xleq 0 ) ( psi =0)
(xleq 1 ) ( psi =0)
При дальнейших действиях нужно учитывать, что решением последней формулы являются волны де-Бройля. Одну волну де-Бройля в качестве решения к задаче не применить, так как с ее помощью заранее описывается свободная частица, движущаяся в одном направлении. В данном случае рассматривается движение частицы между стенками. Поэтому, используя принцип суперпозиции, в решении можно применить две волны де-Бройля, совершающих движение навстречу друг к другу с импульсами р и –р. Формула будет иметь следующий вид:
(psi =C_{1}times expleft(frac{i}{h}px right)+C_{2}times expleft(-frac{i}{h}px right))
Исходя из граничных условий и условий нормировки, можно определить постоянные (С_1) и (С_2). Сумма всех вероятностей позволит рассчитать вероятность нахождения электрона между стенками в любом месте и получить единицу, то есть значение вероятности достоверного события равна 1. Уравнение будет иметь такой вид:
(int_{0}^{l}{left|psi left(x right) right|^{2}}dx=1)
Исходя из первых граничных условий:
(C_{1}+C_{2}=C)
(C_{1}=-C_{2}=C)
Решение задачи будет иметь следующий вид:
(psi =Ctimes left(expleft(frac{i}{h}px right)-expleft(-frac{i}{h}px right) right))
(expleft(frac{i}{h}px right)-expleft(-frac{i}{h}px right) =2sin frac{px}{h})
(psi =Asin frac{px}{h})
(A=2iC)
Постоянная А выходит из условий нормировки. В данном случае она не представляет интереса. Необходимо использовать второе граничное условие. Тогда решение можно записать в виде уравнения:
(sin frac{pl}{h}=0)
Импульс при этом принимает только определенные значения:
(p_{n}=frac{h}{l}pi n)
n=±1, ±2…
Следует учесть, что n не равно нулю. Это объясняется тем, что в противном случае волновая функция повсюду имела нулевые значения. В этом случае для частицы между стенками состояние покоя не характерно. Электрон обязательно должен совершать движение. Минимальное значение возможного импульса движущейся частицы равен:
(frac{h}{l}pi =frac{hn}{2pi }frac{pi }{l}=frac{hn}{2l})
Ранее было указано, что импульс электрона изменяет знак во время отражения от барьеров. В этом заключается сложность представления ответа на вопрос, каков импульс у частицы, запертой между стенками. Он может быть равен –р или +р. Импульс не определен. Степень неопределенности будет выражаться в следующем:
рх-(-р)=2р
Неопределенность координаты Δх равна l. Обнаружить частицу можно в пределах между барьерами. Точное местонахождение электрона неизвестно. Наименьшее значение импульса имеет вид:
(frac{h}{2l})
Исходя из этого условия, можно вывести равенство:
(Delta xtimes Delta p_{x}=h)
Таким образом, соотношение Гейзенберга в рамках данной задачи, то есть при наличии наименьшего значения р, подтверждено. В случае произвольно-возможного значения импульса соотношение неопределенности приобретает такой вид:
(Delta xtimes Delta p_{x}geq h)
Согласно исходному постулату Гейзенберга-Бора о неопределенности Δх и Δу, установлена лишь нижняя граница неопределенностей, возможная при измерениях. В начале движения наблюдают минимальные неопределенности, которые возрастают со временем. Полученное уравнение демонстрирует следующее: импульс системы в квантовой механике не всегда изменяется непрерывно. Спектр импульса электрона в данном случае дискретный, импульс частицы между барьерами изменяется скачкообразно. Величина такого скачка при условиях задания является постоянной величиной и определяется как:
(frac{h}{2l})
Можно изобразить спектр возможных значений импульса электрона. Дискретность изменения механических величин, не применимая к классической механике, в квантовой механике является следствием ее математического аппарата. Невозможно представить наглядное объяснение скачкообразного изменения импульса. Это закон квантовой механики, данный вывод следует из него логически и является объяснением.
Далее необходимо обратиться к энергии электрона. Данная величина обладает связью с импульсом. В случае дискретного спектра импульса получают дискретный спектр значений энергии частицы между барьерами. Подставив ранее известные формулы в уравнение, получим:
(E_{n}=frac{p_{n}^{2}}{2m_{0}}=frac{1}{2m_{0}}times left(frac{h}{2l} right)^{2}n^{2})
где n = 1, 2,…, представляет собой квантовое число.
Таким образом, получают энергетические уровни.
На рисунке представлены энергетические уровни, согласно условию задания. Если изменить их, то схема расположения энергетических уровней будет изменена. В случае, когда частица обладает зарядом, как электрон, и расположена на самом низком энергетическом уровне, она будет в состоянии спонтанно испускать свет, как фотон. При этом переход на более низкий энергетический уровень возможен с условием:
(E_{n}-E_{M}=htimes nu _{nm})
Для этого задания волновые функции, характерные каждому стационарному состоянию, являются синусоидами. Их нулевые значения будут отмечены на стенках.
Уравнение Шредингера имеет огромное значение для развития современной науки. Квантовая механика является популярной дисциплиной для изучения в специализированных вузах. Нередко студенты учебных заведений сталкиваются со сложными задачами, решение которых отыскать порой достаточно сложно.
При возникновении трудностей в образовательном процессе получить квалифицированную помощь можно с помощью сервиса Феникс.Хелп.
Уравнение Шредингера
Классическая
механика в силу наличия волновых свойств
у микрочастиц не может дать правильного
описания их поведения. Это возможно
сделать с помощью квантовой механики,
созданной Шредингером, Гейзенбергом,
Дираком и др.
Основным уравнением
квантовой механики является уравнение
Шредингера. Состояние микрочастиц в
квантовой механике описывается волновой
функцией или Ψ (пси)-функцией. Эта функция
является функцией координат и времени
и может быть найдена путем решения
уравнения
(уравнение
Шредингера),
где m
– масса частицы; h
= h/2π
– постоянная Планка; Ψ
– волновая функция или пси-функция,
являющаяся функцией координат и времени
– оператор Лапласа;U=U(x,y,z,
t)
– потенциальная энергия частицы в
силовом поле, в котором она движется;
i
=
–
мнимая единица.
Уравнение Шредингера,
как и уравнение Ньютона в классической
механике, не может быть получено
теоретически, а представляет собой
обобщение большого числа опытных фактов.
Справедливость этого соотношения
доказывается тем, что все вытекающие
из него следствия самым точным образом
согласуются с опытными фактами.
Из уравнения
Шредингера следует, что вид волновой
функции Ψ определяется потенциальной
энергией U,
т.е. характером тех сил, которые действуют
на частицу. В общем виде потенциальная
энергия U
есть функция координат и времени. Для
стационарного (не меняющегося во времени)
силового поля потенциальная энергия
U
явно от времени не зависит. В этом случае
волновая функция Ψ распадается на два
множителя, один из которых зависит
только от времени, второй – только от
координат.
,
где Е – полная
энергия частицы.
Подставляя эту
функцию в уравнение Шредингера, получим
;
или
Это уравнение
Шредингера для стационарных состояний.
Оба уравнения справедливы для любой
частицы, движущейся с малой (v«c)
скоростью. Кроме того, на волновую
функцию накладываются дополнительные
условия:
-
Она должна быть
конечной, однозначной и непрерывной. -
Производные
должны быть непрерывными. -
Функция |Ψ|2
должна быть интегрируема.
В последнее
уравнение в качестве параметра входит
полная энергия Е частицы. Из теории
дифференциальных уравнений подобные
уравнения имеют решения (из бесчисленного
их множества), отражающие физический
смысл, не при любых значениях параметра
Е, а лишь при определенном их наборе,
характерном для данной задачи. Решения,
имеющие физический смысл, получают лишь
при наложении вышеперечисленных условий.
Значения энергии Е, при которых решения
уравнения Шредингера имеют физический
смысл, называются собственными.
Решения, т.е. волновые функции, которые
соответствуют собственным значениям
энергии, называются собственными
функциями.
Волновая функция и ее статистический смысл
Положение частицы
в пространстве в данный момент времени
в квантовой механике определяется
знанием волновой функции Ψ. Вероятность
dw
того, что частица находится в элементе
объема dV,
пропорциональна квадрату модуля волновой
функции |Ψ|2
и объему элемента dV
dw
= |Ψ|2
dV
Величина |Ψ|2
=
(квадрат
модуля Ψ-функции) имеет смысл плотности
вероятности, т.е. определяет вероятность
нахождения частицы в единичном объеме
в окрестности точки с координатами x,
y,
z.
Таким образом,
физический смысл имеет не сама Ψ-функция,
а квадрат ее модуля |Ψ|2.
Вероятность найти частицу в момент
времени t
в конечном объеме V
согласно теореме сложения вероятностей,
равна
.
Волновую функцию
необходимо нормировать таким образом,
чтобы вероятность достоверного события
обращалась в единицу. Это будет
выполняться, если за объем интегрирования
V
принять бесконечный объем всего
пространства. Условия нормировки
вероятностей
,
где интеграл
вычисляется по всему бесконечному
пространству, т.е. по координатам x,
y,
z
от -∞ до +∞.
При этом волновая
функция должна удовлетворять трем
раннее перечисленным условиям:
1. Должна быть
конечной (вероятность не может быть
больше 1).
2. Должна быть
однозначной (вероятность не может быть
неоднозначной величиной).
-
Должна быть
непрерывной (вероятность не может
изменяться скачком).
Соседние файлы в папке Физика
- #
- #
- #
- #
- #
- #
- #
- #
Уравнение Шрёдингера
Дуальная корпускулярно-волновая природа квантовых частиц описывается дифференциальным уравнением.
Согласно фольклору, столь распространенному среди физиков, случилось это так: в 1926 году физик-теоретик по имени Эрвин Шрёдингер выступал на научном семинаре в Цюрихском университете. Он рассказывал о странных новых идеях, витающих в воздухе, о том, что объекты микромира часто ведут себя скорее как волны, нежели как частицы. Тут слова попросил пожилой преподаватель и сказал: «Шрёдингер, вы что, не видите, что всё это чушь? Или мы тут все не знаем, что волны — они на то и волны, чтобы описываться волновыми уравнениями?» Шрёдингер воспринял это как личную обиду и задался целью разработать волновое уравнение для описания частиц в рамках квантовой механики — и с блеском справился с этой задачей.
Тут необходимо сделать пояснение. В нашем обыденном мире энергия переносится двумя способами: материей при движении с места на место (например, едущим локомотивом или ветром) — в такой передаче энергии участвуют частицы — или волнами (например, радиоволнами, которые передаются мощными передатчиками и ловятся антеннами наших телевизоров). То есть в макромире, где живём мы с вами, все носители энергии строго подразделяются на два типа — корпускулярные (состоящие из материальных частиц) или волновые. При этом любая волна описывается особым типом уравнений — волновыми уравнениями. Все без исключения волны — волны океана, сейсмические волны горных пород, радиоволны из далеких галактик — описываются однотипными волновыми уравнениями. Это пояснение нужно для того, чтобы было понятно, что если мы хотим представить явления субатомного мира в терминах волн распределения вероятности (см. Квантовая механика), эти волны также должны описываться соответствующим волновым уравнением.
Шрёдингер применил к понятию волн вероятности классическое дифференциальное уравнение волновой функции и получил знаменитое уравнение, носящее его имя. Подобно тому как обычное уравнение волновой функции описывает распространение, например, ряби по поверхности воды, уравнение Шрёдингера описывает распространение волны вероятности нахождения частицы в заданной точке пространства. Пики этой волны (точки максимальной вероятности) показывают, в каком месте пространства скорее всего окажется частица. Хотя уравнение Шрёдингера относится к области высшей математики, оно настолько важно для понимания современной физики, что я его все-таки здесь приведу — в самой простой форме (так называемое «одномерное стационарное уравнение Шрёдингера»). Вышеупомянутая волновая функция распределения вероятности, обозначаемая греческой буквой ψ («пси»), является решением следующего дифференциального уравнения (ничего страшного, если оно вам не понятно; главное — примите на веру, что это уравнение свидетельствует о том, что вероятность ведёт себя как волна):
где x — расстояние, h — постоянная Планка, а m, E и U — соответственно масса, полная энергия и потенциальная энергия частицы.
Картина квантовых событий, которую дает нам уравнение Шрёдингера, заключается в том, что электроны и другие элементарные частицы ведут себя подобно волнам на поверхности океана. С течением времени пик волны (соответствующий месту, в котором скорее всего будет находиться электрон) смещается в пространстве в соответствии с описывающим эту волну уравнением. То есть то, что мы традиционно считали частицей, в квантовом мире ведёт себя во многом подобно волне.
Когда Шрёдингер впервые опубликовал свои результаты, в мире теоретической физики разразилась буря в стакане воды. Дело в том, что практически в то же время появилась работа современника Шрёдингера — Вернера Гейзенберга (см. Принцип неопределенности Гейзенберга), в которой автор выдвинул концепцию «матричной механики», где те же задачи квантовой механики решались в другой, более сложной с математической точки зрения матричной форме. Переполох был вызван тем, что ученые попросту испугались, не противоречат ли друг другу два в равной мере убедительных подхода к описанию микромира. Волнения были напрасны. Сам Шрёдингер в том же году доказал полную эквивалентность двух теорий — то есть из волнового уравнения следует матричное, и наоборот; результаты же получаются идентичными. Сегодня используется в основном версия Шрёдингера (иногда его теорию называют «волновой механикой»), так как его уравнение менее громоздкое и его легче преподавать.
Однако представить себе и принять, что нечто вроде электрона ведёт себя как волна, не так-то просто. В повседневной жизни мы сталкиваемся либо с частицей, либо с волной. Мяч — это частица, звук — это волна, и всё тут. В мире квантовой механики всё не так однозначно. На самом деле — и эксперименты это вскоре показали — в квантовом мире сущности отличаются от привычных нам объектов и обладают другими свойствами. Свет, который мы привыкли считать волной, иногда ведёт себя как частица (которая называется фотон), а частицы вроде электрона и протона могут вести себя как волны (см. Принцип дополнительности).
Эту проблему обычно называют двойственной или дуальной корпускулярно-волновой природой квантовых частиц, причем свойственна она, судя по всему, всем объектам субатомного мира (см. Теорема Белла). Мы должны понять, что в микромире наши обыденные интуитивные представления о том, какие формы может принимать материя и как она себя может вести, просто неприменимы. Сам факт, что мы используем волновое уравнение для описания движения того, что привыкли считать частицами, — яркое тому доказательство. Как уже отмечалось во Введении, в этом нет особого противоречия. Ведь у нас нет никаких веских оснований полагать, будто то, что мы наблюдаем в макромире, должно с точностью воспроизводиться на уровне микромира. И тем не менее дуальная природа элементарных частиц остается одним из самых непонятных и тревожащих аспектов квантовой механики для многих людей, и не будет преувеличением сказать, что все беды начались с Эрвина Шрёдингера.
Уравнение шредингера и методы его решения
Аналог классического волнового уравнения был предложен Э. Шредингером в 1925 г. Как и классическое уравнение, уравнение Шредингера связывает производные волновой функции по времени и координате. Уравнение Шредингера описывает поведение любых нерелятивистских систем. На примерах частицы, находящейся в бесконечно глубокой яме, и гармонического осциллятора рассмотрены простейшие квантовые системы, получены дискретные спектры состояний. Возможности описания динамики данных систем ограничены набором квантовых чисел, отражающих универсальные и внутренние симметрии квантовых систем.
4.1. Уравнение Шредингера
В квантовой физике изменение состояния частицы описывается уравнением Шредингера
где – оператор Гамильтона – аналог классической функции Гамильтона
в которой и заменены операторами импульса x, y, z и координаты , , :
х → = х, y → = y, z → = z,
Уравнение Шредингера
Зависящее от времени уравнение Шредингера:
где – гамильтониан системы.
Разделение переменных. Запишем Ψ(,t) = ψ()θ(t), где ψ является функцией координат, а θ – функция времени. Если не зависит от времени, тогда уравнение ψ = iћψ принимает вид θψ = iћψθ или
Левая часть является функцией только координат, а правая не зависит от переменной x. Поэтому обе части последнего уравнения должны быть равны одной и той же постоянной, которую обозначим E
θ(t) = exp(−iEt/ћ), ψ() = Eψ() и Ψ(,t) = ψ()exp(−iEt/ћ).
Уравнение ψ() = Eψ() называют стационарным уравнением Шредингера. Для одномерной системы с массой m в поле с потенциалом U(x) оно принимает вид:
или
Для трехмерной системы с массой m в поле с потенциалом U():
−(ћ 2 /2m)Δψ() + U()ψ() = Eψ(),
где Δ – лапласиан.
Так как уравнение Шредингера является линейным уравнением первого порядка по времени, то с его помощью по заданному значению волновой функции Ψ(x, y, z, 0) в момент времени t = 0 можно найти её значение в произвольный момент времени t − Ψ(x, y, z, t).
Уравнение Шредингера для стационарного состояния, когда потенциальная энергия частицы не зависит от времени, имеет вид
Это уравнение называют стационарным уравнением Шредингера.
Так как в стационарном состоянии
Ψ(,t) = ψ()exp(−iEt/ћ) | (4.4) |
и вероятность найти частицу в момент t в точке x, y, z пропорциональна |Ψ(,t)|, то она
|ψ(x,y,z)| 2 , т.е. не зависит от времени. Аналогично, вероятность обнаружить значение физической величины, характеризующей систему, также не изменяется со временем, поскольку выражается через квадрат модуля волновой функции.
4.2. Частица в одномерной прямоугольной яме с бесконечными стенками
Потенциальная энергия U(x) в прямоугольной яме удовлетворяет следующим условиям:
Рис.4.1. Прямоугольная яма с бесконечными стенками
Частица находится в области 0 ≤ x ≤ L. Вне этой области ψ(x) = 0. Уравнение Шредингера для частицы, находящейся в области 0 ≤ x ≤ L
Волновая функция, являющаяся решением уравнения (4.9), имеет вид
ψ(x)= Аsin kx + Bcos kx, | (4.7) |
где k = (2mE/ћ 2 ) 1/2 . Из граничных условий ψ(0) = 0, ψ(L) = 0 и условий непрерывности волновой функции следует
kL = nπ, n = 1, 2, 3, … , то есть внутри потенциальной ямы с бесконечно высокими стенками устанавливаются стоячие волны, а энергия состояния частиц имеет дискретный спектр значений En
Частица может находиться в каком-то одном из множества дискретных состояний, доступных для неё.
Каждому значению энергии En соответствует волновая функция ψn(x), которая с учетом условия нормировки
В отличие от классической, квантовая частица в прямоугольной яме не может иметь энергию
E 2 π 2 /(2mL 2 ). Состояния частицы ψn в одномерном поле бесконечной потенциальной ямы полностью описывается с помощью одного квантового числа n. Спектр энергий дискретный.
Рис. 4.2. Уровни энергии и волновые функции частицы Ψ в бесконечной прямоугольной яме. Квадрат модуля волновой функции |Ψ| 2 определяет вероятность нахождения частицы в различных точках потенциальной ямы.
4.3. Гармонический осциллятор
Положение уровней частицы в потенциальной яме зависит от вида потенциальной ямы. В одномерной потенциальной яме гармонического осциллятора потенциальная энергия имеет вид
В этом случае одномерное уравнение Шредингера имеет вид
Допустимые значения полной энергии определяются формулой
En = ћω0(n + 1/2), n = 0, 1, 2, | (4.13) |
В отличие от бесконечной прямоугольной ямы, спектр уровней гармонического осциллятора эквидистантный.
С увеличением массы частицы или размеров области ее локализации квантовое описание частицы переходит в классическое.
Частица в одномерной потенциальной яме
Одномерная прямоугольная яма шириной L:
n = 1, 2, …
Одномерный гармонический осциллятор:
En = ћω0(n + 1/2), n = 0, 1, 2,
4.4. Частица в поле с центральной симметрией
В сферических координатах стационарное уравнение Шредингера для частицы в центральном потенциале U(r) имеет вид
Решение уравнения (4.14) записываются в виде произведения радиальной и угловой функций
ψ(r,θ,φ) = Rnl(r)Ylm(θ,φ), | (4.15) |
где радиальная функция Rnl(r) и угловая функция Ylm(θ,φ), называемая сферической, удовлетворяют уравнениям
2 Ylm(θ,φ) = ћ 2 l(l +1)Ylm(θ,φ) | (4.16) |
Ylm(θ,φ) = ћ 2 l(l +1)Ylm(θ,φ) | (4.17) |
Уравнение (4.16) определяет возможные собственные значения l и собственные функции Ylm(θ,φ) оператора квадрата момента 2 . Уравнение (4.17) определяет собственные значения энергии Е и радиальные собственные функции Rnl(r), от которых зависит энергия системы (рис. 4.3).
Схема уровней (последовательность и абсолютные значения энергий) зависит от радиальной функции Rnl(r), которая в свою очередь определяется потенциалом U(r), в котором находится частица.
Рис. 4.3. Радиальное распределение вероятности нахождения электрона в кулоновском поле протона (атом водорода). Расстояния даны в боровских радиусах
r0 = ћ 2 /mee 2 ≈ 0.529·10 8 cм.
существуют лишь при определенных значениях квантовых чисел n (радиальное квантовое число), l (орбитальное квантовое число) и m (магнитное квантовое число).
Возможные энергетические состояния системы (уровни энергии) определяются числами n и l и в случае сферически симметричных состояний не зависят от квантового числа m. Число n может быть только целым:
n = 1, 2, …, ∞. Число l может принимать значения 0, 1, 2, …, ∞.
4.5. Орбитальный момент количества движения
Собственные значения L 2 и Lz являются решением уравнений
2 Ylm(θ,φ) = L 2 Ylm(θ,φ) и zYlm(θ,φ) = LzYlm(θ,φ).
Они имеют следующие дискретные значения
L 2 = ћ 2 l(l + 1), где l = 0, 1, 2, 3, …,
Lz = ћm, где m = 0, ± 1, ± 2, ± 3,…, ± l.
Для характеристики состояний с различными значениями орбитального момента l обычно используют следующие обозначения:
Спектроскопические названия орбитальных моментов l
l = 0 | s-состояние |
l = 1 | p-состояние |
l = 2 | d-состояние |
l = 3 | f-состояние |
l = 4 | g-состояние |
l = 5 | h-состояние |
и. т. д. |
Состоянию с l = 0 отвечает сферически симметричная волновая функция. В тех случаях, когда l ≠ 0 волновая функция не имеет сферической симметрии. Симметрия волновой функции определяется симметрией сферических функций Ylm(θ,φ). Имеет место интересное квантовое явление, когда решение сферически симметричной задачи (потенциал описывает сферически симметричную систему) приводит к состояниям, не обладающим сферической симметрией. Таким образом, симметрия уравнений не обязательно должна отражаться в симметрии каждого отдельно взятого решения этих уравнений, а лишь во всей совокупности этих решений.
Для частицы, находящейся в сферически симметричном потенциале, величина орбитального момента количества движения L:
Обычно, для упрощения, когда говорят о величине орбитального момента количества движения, называют этой величиной квантовое число l, имея в виду, что между l и L имеется однозначная связь (4.18).
Рис. 4.4 Возможные ориентации вектора при квантовом числе l = 2.
Так как величина l может принимать только целочисленные значения 0, 1, 2, 3,…, то и орбитальный момент количества движения L квантуется. Например, для частицы с l = 2 момент количества движения
=
= 6.58·10 -22 √6 МэВ·сек ≈ 2.6·10 – 34 Дж·сек.
Пространственное квантование. Орбитальный момент количества движения является векторной величиной. Так как величина орбитального момента количества движения квантуется, то и направление по отношению к выделенному направлению z, например, к внешнему магнитному полю, также квантуется и принимает дискретные значения Lz = ћm, где m изменяется от +l до –l, т. е. имеет 2l + 1 значений. Например, при l = 2 величина m принимает значения +2, +1, 0, -1, -2 (см. рис. 4.4). Вместе с тем энергия системы не зависит от m, т. е. от направления вектора , что является очевидным следствием сферической симметрии системы.
Состояние частицы, находящейся в сферически симметричном поле, полностью описывается тремя квантовыми числами: n, l и m.
Появление квантовых чисел связано со свойствами симметрии системы. Характер этой симметрии определяет возможные значения квантовых чисел. Очевидно, что система, описываемая функцией e im φ , примет прежнее значение только тогда, когда азимутальный угол φ в результате поворота вокруг оси z примет прежнее значение φ. Этому условию функция e im φ удовлетворяет только в случае, когда величина mφ кратна 2π. Т.е. величина m должна иметь целые значения. Так как необходимо учитывать вращение в двух противоположных направлениях и отсутствие вращения, единственно возможными значениями оказываются m = 0, ±1, ±2, … .
4.6. Спин
Спин − собственный момент количества движения частицы. Между значением вектора спина и квантовым числом спина s выполняется такое же соотношение, как между величиной значением вектора орбитального момента и орбитальным квантовым числом l:
В отличие от орбитального квантового числа l, которое может быть лишь целым числом или нулем, спиновое квантовое число s (в дальнейшем просто спин) может быть как целым (включая нуль), так и полуцелым, т. е. s = 0, 1/2, 1, 3/2, 2, 5/2, … , но при этом для каждой элементарной частицы спин может принимать единственное присущее этому типу частиц значение. Так, спины π-мезонов и К-мезонов равны 0. Спины электрона, протона, нейтрино, кварков и их античастиц равны 1/2. Спин фотона равен 1. Бозоны составляют класс частиц с целым значением спина, спин фермионов имеет полуцелое значение. Спин частицы невозможно изменить, также как её заряд или массу. Это её неизменная квантовая характеристика.
Как и в случае других квантовых векторов, проекция вектора спина на любое фиксированное направление в пространстве (например, на ось z) может принимать 2s + 1 значение:
szћ = ±sћ, ±(s − 1)ћ, ±(s − 2)ћ. ±1/2ћ или 0.
Число sz − это квантовое число проекции спина. Максимальная величина sz совпадает с s. Так как спин электрона равен 1/2, то проекция этого спина может принимать лишь два значения sz = ±1/2. Если проекция +1/2, то говорят, что спин направлен вверх, если проекция -1/2, то говорят, что спин направлен вниз.
4.7. Полный момент количества движения
Полный момент количества движения частицы или системы частиц является векторной суммой орбитального и спинового моментов количества движения.
= + .
Квадрат полного момента имеет значение:
2 = ћ 2 j(j + 1).
Квантовое число полного момента j, соответствующее сумме двух векторов и , может принимать ряд дискретных значений, отличающихся на 1:
j = l + s, l + s −1. |l − s|
Проекция на выделенную ось Jz также принимает дискретные значения:
Число значений проекции Jz равно 2j + 1. Если для и определены единственные значения проекций на ось z lz и sz, то jz также определена однозначно: jz = lz + sz.
4.8. Квантовые числа
Квантовые числа – это целые или дробные числа, которые определяют все возможные значения физической величины, характеризующей различные квантовые системы – атомы, атомные ядра, кварки и другие частицы.
Таблица квантовых чисел
n | Радиальное квантовое число. Определяет число узлов волновой функции и энергию системы. n = 1, 2, …, ∞. |
J, j | Полный угловой момент J и его квантовое число j. Последнее никогда не бывает отрицательным и может быть целым или полуцелым в зависимости от свойств рассматриваемой системы. 2 = ћ 2 j(j + 1). |
L, l | Орбитальный угловой момент L и его квантовое число l. Интерпретация l такая же, как j, но l может принимать только целые значения, включая нуль: l = 0, 1, 2,…. L 2 = ћ 2 l(l + 1). |
m | Магнитное квантовое число. Проекция полного или орбитального углового момента на выделенную ось (обычно ось z) равна mћ. Для полного момента m = ±j, ±(j-1), …, ±1/2 или 0. Для орбитального m = ± l, ± (l-1), …, ±1, 0. |
S, s | Спиновый угловой момент S и его квантовое число s. Оно может быть либо положительным целым (включая нуль), либо полуцелым. s – неизменная характеристика частицы определенного типа. S 2 = ћ 2 s(s + 1). |
sz | Квантовое число проекции спинового момента частицы на выделенную ось. Эта проекция может принимать значения szћ, где sz = ± s, ± (s -1), …, ±1/2 или 0. |
P или π | Пространственная четность. Характеризует поведение системы при пространственной инверсии → – (зеркальном отражении). Полная четность частицы Р = π(-1) l , где π – её внутренняя четность, а (-1) l – её орбитальная четность. Внутренние четности кварков положительные, антикварков – отрицательные. |
I | Изоспин. Характеризует свойство зарядовой инвариантности сильных взаимодействий |
Для обозначения спинового момента часто используют букву J.
Все состояния, в которых может находиться квантовая система, описываются с помощью полного набора квантовых чисел. Так в случае протона в ядре состояние протона описывается с помощью четырех квантовых чисел, соответствующих четырем степеням свободы – трем пространственным координатам и спину. Это
- Радиальное квантовое число n ( 1, 2, …, ∞),
- Орбитальное квантовое число l (0, 1, 2, …),
- Проекция орбитального момента m (± l, ± (l-1), …, ±1, 0),
- Спин протона s =1/2.
Для описания сферически-симметричных систем в квантовой физике используются различные сферически симметричные потенциалы с различной радиальной зависимостью:
- Кулоновский потенциал U = Q/r,
- Прямоугольная потенциальная яма
- Потенциал типа гармонического осциллятора U = kr 2 ,
- Потенциал Вудса-Саксона (с его помощью описываются внутриядерные взаимодействия):
где U0, а и R – положительные константы (R – радиус ядра). Во всех случаях сферически симметричные системы можно описать с помощью набора квантовых чисел n, l, j, jz, однако, в зависимости от радиального вида потенциала энергетический спектр состояний системы будет различным.
Существование сохраняющихся во времени физических величин тесно связано со свойствами симметрии гамильтониана системы. Например, в случае, если квантовая система обладает центральной симметрией U = U(r), то этой системе соответствует сохранение орбитального момента количества движения l и одной из его проекций m. При этом из-за сферической симметрии задачи энергия состояний не будет зависеть от величины m, т. е. состояния будут вырожденными по m.
Наряду с пространственными симметриями, связанными с непрерывными преобразованиями, в квантовой физике существуют и другие симметрии – дискретные. Одной из них является зеркальная симметрия волновой функции относительно инверсии координат (→ -). Оператору инверсии соответствует квантовое число четность, которое может принимать два значения +1 и -1 в зависимости от того, сохраняется ли знак волновой функции при инверсии или меняется на противоположный.
Система тождественных частиц характеризуется еще одной симметрией – симметрией относительно перестановок тождественных частиц. Эта симметрия определяется свойствами частиц, образующих систему. Системы частиц с целым спином (бозонов) описываются симметричными волновыми функциями, системы частиц с полуцелым спином (фермионов) − антисимметричными волновыми функциями.
Задачи
4.1. Вычислите допустимые уровни энергии электрона, находящегося в одномерной прямоугольной потенциальной яме шириной 10 -8 см, протона, находящегося в потенциальной яме 5 Фм, и шарика массой 1 г, находящегося в потенциальной яме 1 см.
4.2. Рассчитать энергию перехода между состояниями 1s и 2s в атоме водорода.
4.3. Найти значение полного момента j для протона в d-состоянии. Каким будет результат измерения полного момента протона в состоянии 1d5/2?
4.4. Найти полный момент (квантовое число j) системы двух нуклонов в s‑состоянии (l = 0).
4.5. Какие значения может иметь полный момент системы j, если
А. Нейтрон и протон находятся в состояниях с |l,s:j>n = |1, 1 /2: 3 /2>, |l,s:j>p = |1, 1 /2: 3 /2>?
Б. Два нейтрона находятся в состояниях с |l,s:j>1 = |1, 1 /2: 3 /2> и |l,s:j>2 = |1, 1 /2: 3 /2>?
4.6. А) Нейтрон находится в p-состоянии. Найти значения полного момента j и возможные значения проекции момента jz. Каким будет результат измерения орбитального момента частицы в этом состоянии? Б) Рассмотрите задачу А) для протона в d-состоянии.
Ответ: А) j = 3/2, 1/2; jz = ±3/2, ±1/2; L = ћ√ l(l +1) = √ 2 ћ;
Б) j = 5/2, 3/2; jz = ±5/2, ±3/2, ±1/2; L = ћ√ l(l +1) = √ 6 ћ
4.7. А) Частица с собственным моментом s = 3/2 находится в состоянии с орбитальным моментом
l = 2. Найти полный момент частицы j.
Б) Частица с собственным моментом s = 1/2 находится в состоянии с орбитальным моментом
l = 3. Определите полный момент частицы j
Ответ: А) j = 7/2 ÷ 1/2; Б) j = 7/2, 5/2
4.8. Протон и нейтрон находятся в состоянии с относительным орбитальным моментом L = 1. Найти полный момент системы J.
Ответ: J = 0, 1, 2
4.9. На оболочке с квантовым числом n = 1, l = 2 находятся протон и нейтрон. Определить их суммарный полный момент J и его проекцию Jz. Изменится ли результат, если на оболочке n = 1,
l = 2 будут находиться два нейтрона?
4.10. Почему возникают вырожденные состояния?
4.11. Написать оператор Гамильтона электронов в атоме He.
4.12. Напишите стационарное уравнение Шредингера в сферической системе координат.
4.13. Какие квантовые числа характеризуют частицу в центрально-симметричной потенциальной яме?
4.14. Покажите, что волновые функции ψ = Aexp(kx −ωt) и ψ = Asin(kx −ωt) не удовлетворяют зависящему от времени уравнению Шредингера.
4.15. Покажите, что волновые функции ψ = Ae i(kx −ωt) и ψ = A(cos(kx −ωt) − sin(kx −ωt))удовлетворяют зависящему от времени уравнению Шредингера.
4.16. Частица находится в низшем состоянии n = 1 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L.
А) Рассчитайте вероятность обнаружить частицу в интервале Δx = 0.001L при x = 1 /2L, x = 2 /3L, x = L.
Б) Рассмотрите случай, когда частица находится в состоянии n = 2 при тех же значениях x.
Ответ: А) P(L/2) = 0.002; P(2L/3) = 0.0015; P(L) = 0; Б) P(L/2) = 0; P(2L/3) = 0.0015; P(L) = 0
4.17. Частица находится в состоянии n = 2 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L. Рассчитайте вероятность обнаружить частицу в интервале ( 1 /3L, 2 /3L).
Ответ: P(L/3, 2L/3) = 0.2
4.18. Электрон находится всостонии n = 5 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L. Рассчитайте вероятность обнаружить электрон в области x от 0.2L до 0.5L.
Ответ: P(0.2L, 0.5L) = 0.3
4.19. Электрон находится в бесконечно глубокой одномерной потенциальной яме. Рассчитайте ширину потенциальной ямы, если энергия состояния n = 1 равна 0.1 эВ.
Ответ: L = 1.9 нм
4.20. Рассчитайте средние значения и 2 > для состояний n = 1, 2, 3 в бесконечно глубокой прямоугольной потенциальной яме.
4.21. Что общего и в чем различие в описании атома водорода в теории Шредингера и в модели Бора?
4.22. Почему энергии атома водорода в теории Шредингера не зависят от орбитального квантового числа l?
4.23. Угловой момент характеризуется квантовым числом l = 3. Какие значения могут принимать Lz и L 2 ?
Ответ: Lz = -3ћ, -2ћ. 3ћ; L 2 = 12ћ 2
4.24. Угловой момент характеризуется квантовым числом l = 3. Какие значения могут принимать Lz и L 2 ?
Гидродинамика Шрёдингера на пальцах
В этой статье в качестве эксперимента я постараюсь максимально доступно рассказать, как работает новый метод расчёта гидродинамики, основанный на решении уравнения Шрёдингера.
Всем привет. В этой статье я хотел бы рассказать о новом методе расчёта гидродинамики, основанном на решении уравнения Шрёдингера вместо уравнений, типично используемых для гидродинамики вроде Навье-Стокса. Сам метод очень подробно и полно раскрыт в диссертации Albert Chern’а, названной “Fluid Dynamics with Incompressible Schrödinger Flow”. Однако, статья Chern’а кому-то может показаться написанной на не самом доступном языке, поэтому своей статьёй я бы хотел в первую очередь если не объяснить в деталях, как работает этот метод, то хотя бы объяснить, какими интересными свойствами он обладает, и что же именно скрывается за его математикой. Попутно я кратко расскажу о том, как устроены классические методы расчёта гидродинаимики и как новый подход от них отличается. В качестве эксперимента я бы хотел попробовать написать статью так, чтобы каждый, кто отдалённо интересуется программированием физики, нашёл в ней что-то интересное, понятное, и новое для себя — от начинающего программиста до бывалых расчётчиков.
Вступление
Почему это важно? В первую очередь потому, что это обозначает глубинное родство квантовомеханических и гидродинамических систем. В диссертации того паренька больше сотни страниц уделено тому, как это вообще так получилось. С участием явления сверхтекучести, которая является загадочным связующим звеном, так как проявляет очевидные свойства идеальной жидкости, являющиеся исключительно следствием квантовой механики. Я же в этой статье далее я рассмотрю только некоторые из параллелей, которые из этого, простите, вытекают.
Следующее очень важное следствие эквивалентности уравнения Шрёдингера и Навье-Стокса — это что решение одного из них эквивалентно решению другого. Так вот уравнение Навье-Стокса — нелиненое, его очень неудобно и неэффективно в общем случае решать, в то время как уравнение Шрёдингера — линеное и его решать гораздо проще. Чтобы составить представление, насколько же неудобным по сей день считается уравнение Навье-Стокса, могу сообщить, что существует целый международный фонд грантов для исследователей, которым хоть какую-то базу под них подстроит, так как(цитата):
Even basic properties of the solutions to Navier–Stokes have never been proven.
Уравнение Шрёдингера же, хоть и описывает мутную квантовую физику, поддаётся решению гораздо легче и эффективнее. Короче, я могу очень долго гудеть про то, как это невероятно и офигенно, но давайте уже перейдём к чему-то более конкретному.
Решение классической гидродинамики на пальцах
Что вообще такое — уравнение гидродинамики? Что такое уравнение Навье-Стокса и как его понять? С ответом на этот вопрос гораздо лучше меня справились миллионы авторов статей по этому делу, например, классическая статья от нвидии, по которой многие начинали: https://developer.download.nvidia.com/books/HTML/gpugems/gpugems_ch38.html Однако, я попробую написать очень сжато и на пальцах, что это всё значит и что с этим обычно делают.
Уравнение Навье-Стокса описывает закон, которому обязана подчиняться скорость каждой точки пространства, заполненного равномерной несжимаемой жидкостью. Представьте себе, например, бассейн с водой, в котором выделили некоторый куб, достаточно далеко от стенок, поверхности и дна, в котором нет ничего кроме воды. Вода в нём может как угодно течь, но не может ни образовывать пузырей, ни с чем-то сталкиваться (мы для простоты опустим эти эффекты). Тогда само уравнение Навье-Стокса описывает закон, которому будет подчиняться скорость каждой точки воды в этом кубе:
(frac<partial vec u><partial t>=-(vec u cdot vec nabla)vec u-frac<1><rho>vec nabla p + nu <vec nabla>^2 vec u + vec F)
(vec nabla vec u = 0)
прежде чем вообще смотреть на это уравнение, предлагаю сразу из него выбросить ненужное — то, что нам всё равно не пригодится для понимания и только место занимает. Это член, отвечающий за диффузию (nu <vec nabla>^2 vec u) (у идеальной жидкости один фиг диффузии нет), и за внешнюю силу (vec F) (так как мы обойдёмся без неё). Остаётся система:
(frac<partial vec u><partial t>=-(vec u cdot vec nabla)vec u-frac<1><rho>vec nabla p)
(vec nabla vec u = 0)
Здесь перевёрнутый треугольник называется оператором Набла, который обозначает дифференцирование. Причём смысл этого оператора меняется в зависимости от того, где именно он стоит (например, перед вектором или скаляром). Я постараюсь объяснить смысл каждого его вхождения по порядку. На пальцах смысл всей формулы в следующем. (vec u(vec x)) — это значение скорости жидкости, которое определяется в каждой точке пространства (vec x) . Уравнение описывает закономерности, которым обязана подчиняться эта величина, если она описывает поведение несжимаемой жидкости. Работает хоть для двумерного, хоть для трёхмерного случая. В левой части первого уравнения стоит (frac<partial vec u(vec x)><partial t>) — это величина называется производной по времени и показывает, как быстро и куда(это вектор) изменится скорость в точке (vec x) в момент времени (t) .
Нулевой вектор производной по времени обозначает, что скорость в этой точке сейчас не меняется, а, например, вектор (10, 0)[м/c 2 ] обозначает, что за следующую секунду скорость вырастет на 10[м/с] по оси x(если сама производная не поменяется).
Слагаемое вида (-(vec v cdot vec nabla)vec u) называется адвекцией и говорит, что поле скоростей (vec u) в этой точке утекает в направлении (vec v) . В нашем же случае (vec u = vec v) , то есть поле скоростей сносит само себя. Это, кстати, и называется нелинейностью и из-за этого возникает миллион проблем при решении этого уравнения.
В принципе, смысл этого члена достаточно интуитивно можно представить именно как утекание каждой точки воды по вектору её скорости. Однако, в общем случае производная векторного поля (vec u) по направлению (vec v) обозначается как ((vec v cdot vec nabla)vec u) и обозначает, как меняется функция (vec u) в направлении (vec v) для этой точки.
Слагаемое же (-frac<1><rho>vec nabla p) является ускорением, которое получает жидкость в точке из-за градиента давления.
Оператор (vec nabla) , действующий на скалярное поле(например, давление), называется градиентом. Если слева от некоторой точки давление больше, чем справа, то градиент в ней будет направлен вправо и будет увлекать за собой жидкость в этом направлении. Например, ветер всегда дует в направлении, обратном градиенту давления воздуха (отсюда и минус). Электрический ток течёт в направлении градиента электрического потенциала:
(E=vec nabla phi)
Второе уравнение (vec nabla vec u = 0) называется уравнение непрерывности, а оператор (vec nabla) здесь действует на вектор и называется дивергенцией.
Оператор дифференцирования, действующий на вектор, называется дивергенцией. Дивергенция, равная нулю, говорит, что для каждого маленького кубика сколько в него жидкости втекает, столько и вытекает. А так как любой объём можно разбить на маленькие кубики, то свойство будет справедливо и для объёма любой формы. Это свойство называют также условием несжимаемости, так как если бы в какой-то объём втекало больше жидкости, чем вытекало, это бы означало, что жидкость в объёме накапливается, сжимаясь. Другой случай применения дивергенции, который может помочь её представить — это теорема Гаусса:
(vec nabla E=rho)
Эта теорема говорит, что напряжённость электрического поля, которая “вытекает” из некоторого объёма, всегда вызвана электрическим зарядом плотности (rho) внутри этого объёма. Если в объёме заряда нет, то и дивергенция нулевая.
То есть, одним предложением уравнение Навье-Стокса можно описать так: темп изменения скорости определяется течением и градиентом давления, но жидкость при этом не может сжиматься.
Классическое решения уравнения Навье-Стокса
Посмотрим теперь, как это уравнение можно программно решить. Для этого можно использовать подход, который называется расщеплением — разбить сложный физический процесс, состоящий из нескольких элементарных, на отдельные чередующиеся стадии и считать, что на каждой стадии работает только один элементарный процесс, а остальные выключены. Как ни странно, можно доказать (см. статью выше), что это — на самом деле математически обоснованная стратегия. Поэтому будем считать, что состояние скоростей для каждой точки в текущий момент времени (vec u(vec x, t)) нам известно. А для расчёта состояния в следующий момент времени (t+dt) , разобьём сложный процесс гидродинамической эволюции на простые стадии:
1) снесём поле скоростей по течению. это может немного “сжать” жидкость.
2) найдём такое давление, чтобы жидкость “расжалась”.
Первый шаг называется адвекцией, второй — проекцией.
Адвекция
Адвекция, или течение, можно приближённо посчитать достаточно легко — если известно, что в точке (vec x) , в момент времени (t) скорость равна (vec u(vec x, t)) , то в момент времени (t+dt) скорость в неё притечёт жидкость из точки (vec x – vec u(x, t)cdot dt) .
(vec u^*(vec x, t+dt)=vec u(vec x – vec u(vec x, t), t))
То есть мы получили промежуточное значение скорости, котороже уже утекло по течению, но теперь в нём нарушено условие непрерывности.
Это особенно удобно программируется на GPU, так как это можно посчитать, если хранить скорость в текстуре и её обновлять, просто читая тексели со смещением (- vec u(x, t)cdot dt) и используя стандартную аппаратную линейную интерполяцию.
Проекция
Проекция берёт скорость, для которой нарушено условие непрерывности (vec u^*) и ищет такое давление, которое её “выправит” до нормальной скорости (vec u) . Умные мужики доказали, что такое поле можно найти единственным образом и оно всегда будет градиентом некоторого скалярного поля (давления, в нашем случае):
(vec u(vec x, t+dt)=vec u^*(vec x, t+dt) + vec nabla p)
Помножим обе стороны этого равенства на оператор дифференцирования:
(vec nabla vec u(vec x, t+dt)=vec nabla vec u^*(vec x, t+dt) + vec nabla^2 p)
“ПОГОДИ-КА СУСЕЛ, ЭТО ЕЩЁ ЧТО” — можете меня спросить вы. Всё по порядку, но на самом деле отсюда для общего понимания достаточно знать, что если (vec u^*(vec x)) известно(а оно известно), то отсюда можно найти давление (p(vec x)) . Если вспомнить, что в нашем случае дивергенция скорости равна нулю, то остаётся вот такое выражение.
(vec nabla^2 p=-vec nabla u^*)
В правой части этого равенства стоит дивергенция скорости, которую можно легко приблизительно посчитать, если известна скорость (vec u^*) (а она известна). В левой части стоит штука, которая называется лапласианом давления.
Лапласиан — это оператор дифференцирования (ещё называется оператор набла) в квадрате, то есть применённый дважды к скалярному полю. Первый раз применяем оператор дифференцирования — получаем градиент. Второй раз — получаем дивергенцию. Таким образом оператор лапласа — это дивергенция градиента скалярного поля. Его можно представить как изменение потока скорости через маленький кубик, которое будет вызвано давлением в точке. Ещё одна аналогия — как поменяется дивергенция электрического поля в объёмчике, если в него положить заряд плотностью (rho) (опять же, теорема Гаусса):
(vec nabla vec E = rho) , (vec nabla phi=vec E) => (vec nabla^2 vec phi = rho)
Уравнение вида “лапласиан чего-то неизвестного равен чему-то известному” называется уравнением Пуассона. Что бы это ни значило, существует стандартный итеративный алгоритм, который позволяет его решить, то есть найти такое давление, чтобы его лапласиан был равен чему угодно. “Что угодно” мы знаем — это дивергенция промежуточной скорости, поэтому считаем по ней давление. Далее для давления считаем градиент и вычитаем результат из промежуточной скорости, чтобы получить окончательную скорость для следующего шага по времени:
(vec u=vec u^* + vec nabla p)
Шаги адвекции и проекции повторяем до посинения, рассчитывая всё дальше и дальше эволюцию поля течений по времени. Для визуализации можно, например, напускать частиц, которые могу сноситься этим полем скоростей. Результат выглядит так:
Важно понять, что в этом видосе, равно как и во всех остальных гифках этой статьи, жидкость на самом деле находится в большом кубе (границы которого не показаны), а не только там, где видны частицы. Частицы только уносятся полем скоростей, как, например, частицы дыма уносятся полем скоростей воздухе. Сами частицы никакой роли в физике процесса не играют и только позволяют относительно наглядно его продемонстрировать. Частицы обычно добавляются заранее туда, где ожидаются какие-то интересные турбулентности.
Важные особенности классического подхода
“Всё здорово, сусел, но в названии статьи ты написал что-то там про Шрёдингера! Он вообще где? Зачем нам это всё?” — спросите вы. Вопрос резонный. Но всю крутость подхода со Шрёдингером можно осознать, только если иметь представление о слабых сторонах классического солвера, который мы рассмотрели в предыдущей главе. В чём же они заключаются? Давайте об этом поговорим.
Основа любого расчётного метода — это то, как в нём представлены моделируемые данные. В рассмотренном нами подходе мы храним значение скорости для каждой точки. Например, в текселях двумерной или трёхмерной текстуры. Этот способ здорово работает, если требуется описать ровное поле течений, в котором нет особенностей (так называются завихрения и разные другие неоднородности). Неоднородностей обычно нет в вязких жидкостях вроде мёда или майонеза, поэтому метод очень здорово подходит, чтобы моделировать майонез. Но более текучие среды (например, вода, воздух и дым) отличаются тем, что в них существенную роль играют злополучные турбулентные течения — мелкие завихрения, имеющие очень сложную и нерегулярную структуру, даже образующие фракталы, которые очень неудобно описывать просто их значениями в каждой точке текстуры/массива. Если попытаться их моделировать, то все мелкие особенности быстро смазываются и расплываются, что соответствует поведению вязкой жидкости. Такое поведение называется численной вязкостью — это вязкость жидкости, которая появляется не потому что она является частью уравнения, которое мы решаем, а это паразитная вязкость, всплывающая как паразитное следствие нашего метода решения. Более того, напомню, что первое, что мы сделали, не успев взглянуть на уравнение Навье-Стокса — выкинули из него вязкость, так в ней недостатка точно не будет.
А вот избавиться от вязкости гораздо труднее, чем случайно её посчитать. Один из способов — это измельчать расчётную сетку. Чтобы таким методом получить что-то хоть как-то похожее на дым, понадобится сетка минимум 1024x1024x1024, то есть как минимум гигабайт памяти, если хранить по 1 байту на узел. А хранить захочется как минимум трёхкомпонентную скорость, то есть, скорее всего, 32 гигабайта в сумме. Это не только не разумно с точки зрения затрат памяти, это ещё и очень медленно. Другой способ — это представлять скорость не её направлением в каждой точке, а как сумму маленьких элементарных вихрей. Этот метод называется также методом дискретных вихрей. В нём вообще всё не так просто с процессами порождения новых вихрей и удаления старых, с поддержанием нужной плотности (так как вихри друг друга уносят, как частицы) и ещё миллион проблем, можете сами почитать, если интересно. Другой подход основан на том, что в реальных течениях вихри имеют свойство образовывать вращающиеся нити. Представьте медленно движущийся жгут, вокруг которого быстро вращается жидкость. Если такой жгут замыкается в кольцо, получается тороидальный вихрь, образующий знакомое кольцо дыма:
Существуют подходы, которые вместо хранения величины скорости в точках, хранят именно параметры таких жгутов. Но такие методы полагаются на топологию, поэтому в них необходимо считать, как жгуты взаимодействуют, сливаются, распадаются и вообще происходящее быстро теряет простоту и наглядность.
Однако, у классического метода есть одно очень важное положительное свойство — в нём вообще нет параметров. Обратите внимание, что для расчёта используется только скорость и больше вообще ничего — ни вязкости, ни даже плотности. В уравнении Навье-Стокса без вязкости есть плотность, но её можно “спрятать” в нормировку давления, поэтому можно сказать, что в исходном уравнении параметров также нет. Забегая вперёд, замему, что в солвере на уравнении Шрёдинге будет параметр. Загадочный.
На следующей странице мы рассмотрим, как же применить уравнения Шрёдингера, чтобы смоделировать тот же самый процесс, и какой в этом профит. Будет много картинок.
[spoiler title=”источники:”]
http://nuclphys.sinp.msu.ru/sem2/sem04.html
http://gamedev.ru/code/articles/shrodinger_hydrodynamics
[/spoiler]