Прежде чем перейти к разбору как решать системы уравнений, давайте разберёмся, что называют системой уравнений
с двумя неизвестными.
Запомните!
Системой уравнений называют два уравнения с двумя неизвестными (чаще всего неизвестные в них называют
«x» и «y»),
которые объединены в общую систему фигурной скобкой.
Например, система уравнений может быть задана следующим образом.
Чтобы решить систему уравнений, нужно найти и «x», и «y».
Как решить систему уравнений
Существуют два основных способа решения систем уравнений. Рассмотрим оба способа решения.
Способ подстановки
или
«железобетонный» метод
Первый способ решения системы уравнений называют способом подстановки или «железобетонным».
Название «железобетонный» метод получил из-за того, что с помощью этого метода практически всегда можно
решить систему уравнений. Другими словами, если у вас не получается решить систему уравнений,
всегда пробуйте решить её методом подстановки.
Разберем способ подстановки на примере.
Выразим из первого уравнения «x + 5y = 7»
неизвестное «x».
Важно!
Чтобы выразить неизвестное, нужно выполнить два условия:
- перенести неизвестное, которое хотим выразить, в левую часть уравнения;
- разделить и левую и правую часть уравнения на нужное число так,
чтобы коэффициент при неизвестном стал равным единице.
Перенесём в первом уравнении «x + 5 y = 7» всё что
содержит «x» в левую часть,
а остальное в правую часть по
правилу переносу.
При «x» стоит коэффициент равный единице, поэтому дополнительно делить уравнение
на число не требуется.
Теперь, вместо «x» подставим во второе уравнение полученное выражение
«x = 7 − 5y» из первого уравнения.
x = 7 − 5y | |
3(7 − 5y) − 2y = 4 |
Подставив вместо «x» выражение «(7 − 5y)»
во второе уравнение,
мы получили обычное линейное уравнение с одним неизвестным «y».
Решим его по правилам
решения линейных уравнений.
Чтобы каждый раз не писать всю систему уравнений заново, решим полученное уравнение
«3(7 − 5y) − 2y = 4» отдельно.
Вынесем его решение отдельно с помощью
обозначения звездочка (*).
x = 7 − 5y | |
3(7 − 5y) − 2y = 4 (*) |
(*) 3(7 − 5y) − 2y = 4
21 − 15y − 2y = 4
− 17y = 4 − 21
− 17y = − 17 | :(−17)
y = 1
Мы нашли, что «y = 1».
Вернемся к первому уравнению «x = 7 − 5y» и вместо «y» подставим в него полученное числовое значение.
Таким образом можно найти «x».
Запишем в ответ оба полученных значения.
Ответ: x = 2; y = 1
Способ сложения
Рассмотрим другой способ решения системы уравнений. Метод называется способ сложения.
Вернемся к нашей системе уравнений еще раз.
По правилам математики уравнения системы можно складывать. Наша задача в том, чтобы сложив исходные
уравнения, получить такое уравнение, в котором останется только одно неизвестное.
Давайте сейчас сложим уравнения системы и посмотрим, что из этого выйдет.
Запомните!
При сложения уравнений системы
левая часть первого уравнения полностью складывается
с левой частью второго уравнения,
а правая часть полностью складывается с
правой частью.
x + 5y = 7 | (x + 5y) + (3x − 2y) = 7 + 4 | ||
+ => |
x + 5y + 3x − 2y = 11 |
||
3x − 2y = 4 | 4x + 3y = 11 |
При сложении уравнений мы получили уравнение «4x + 3y = 11».
По сути, сложение уравнений в исходном виде нам ничего
не дало, так как в полученном уравнении мы по прежнему имеем оба неизвестных.
Вернемся снова к исходной системе уравнений.
Чтобы при сложении неизвестное «x» взаимноуничтожилось,
нужно сделать так, чтобы в первом уравнении при «x» стоял коэффициент
«−3».
Для этого умножим первое уравнение на «−3».
Важно!
При умножении уравнения на число, на это число умножается каждый член уравнения.
x + 5y = 7 | ·(−3) | |
3x − 2y = 4 |
x ·(−3) + 5y · (−3) = 7 · (−3) |
|
3x − 2y = 4 |
−3x −15y = −21 | |
3x − 2y = 4 |
Теперь сложим уравнения.
−3x −15y = −21 | (−3x −15y ) + (3x − 2y) = −21 + 4 | ||
+ => |
−3x −15y + 3x − 2y = −21 + 4 |
||
3x − 2y = 4 | −17y = −17 |:(−17) | ||
y = 1 |
Мы нашли «y = 1».
Вернемся к первому уравнению и подставим вместо «y» полученное числовое
значение и найдем «x».
Ответ: x = 2; y = 1
Пример решения системы уравнения
способом подстановки
Выразим из первого уравнения «x».
Подставим вместо «x» во второе уравнение полученное выражение.
x = 17 + 3y | |
(17 + 3y) − 2y = −13 (*) |
(*) (17 + 3y) − 2y = −13
17 + 3y − 2y = −13
17 + y = −13
y = −13 − 17
y = −30
Подставим в первое уравнение полученное числовое значение «y = −30» и
найдем «x».
x = 17 + 3 · (−30) | |
y = −30 |
Ответ: x = −73; y = −30
Пример решения системы уравнения
способом сложения
Рассмотрим систему уравнений.
3(x − y) + 5x = 2(3x − 2) | |
4x − 2(x + y) = 4 − 3y |
Раскроем скобки и упростим выражения в обоих уравнениях.
3x − 3y + 5x = 6x − 4 | |
4x − 2x − 2y = 4 − 3y |
8x − 3y = 6x − 4 | |
2x −2y = 4 − 3y |
8x − 3y − 6x = −4 | |
2x −2y + 3y = 4 |
Мы видим, что в обоих уравнениях есть «2x».
Наша задача, чтобы при сложении уравнений «2x» взаимноуничтожились и в
полученном уравнении осталось только «y».
Для этого достаточно умножить первое уравнение на «−1».
2x − 3y = −4 |·(−1) | |
2x + y = 4 |
2x · (−1) − 3y · (−1) = −4 · (−1) |
|
2x + y = 4 |
Теперь при сложении уравнений у нас останется только «y» в уравнении.
−2x + 3y = 4 | (−2x + 3y ) + (2x + y) = 4 + 4 | ||
+ => |
−2x + 3y + 2x + y = 4 + 4 |
||
2x + y = 4 | 4y = 8 | :4 | ||
y = 2 |
Подставим в первое уравнение полученное числовое значение «y = 2» и
найдем «x».
Ответ: x = 1; y = 2
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
8 мая 2020 в 16:20
Алина Козлова
Профиль
Благодарили: 0
Сообщений: 1
Алина Козлова
Профиль
Благодарили: 0
Сообщений: 1
у-2х=-3
х+у=3
0
Спасибо
Ответить
9 мая 2020 в 21:50
Ответ для Алина Козлова
Evgeny Bayron
Профиль
Благодарили: 0
Сообщений: 1
Evgeny Bayron
Профиль
Благодарили: 0
Сообщений: 1
y=3-x
3-x-2x=-3
x=2
y-2*2=-3
y=1
0
Спасибо
Ответить
15 мая 2019 в 13:21
Марина Чернявская
Профиль
Благодарили: 0
Сообщений: 1
Марина Чернявская
Профиль
Благодарили: 0
Сообщений: 1
Решительно систему уравнений.
4x+3y =22.
-x+7y =10.
a)графическим способом.
б)способом подстановки
в)способом сложения
0
Спасибо
Ответить
15 мая 2019 в 22:31
Ответ для Марина Чернявская
Лёха Чешуйка
Профиль
Благодарили: 0
Сообщений: 2
Лёха Чешуйка
Профиль
Благодарили: 0
Сообщений: 2
в): Домножаем первое на 1, второе на 4:
4x+3y=22
-4x+28y=40
Складываем:
4x+(-4x)+3y+28y=22+40
31y=62
y=62/31
y=2
Подставляем y в первое:
4x+3 · 2=22
4x=22-6
4x=16
x=4
0
Спасибо
Ответить
15 мая 2019 в 22:41
Ответ для Марина Чернявская
Лёха Чешуйка
Профиль
Благодарили: 0
Сообщений: 2
Лёха Чешуйка
Профиль
Благодарили: 0
Сообщений: 2
б): Выражаем из второго x:
-x=10-7y
x=7y-10
Подставляем x в первое:
4(7y-10)+3y=22
28y-40+3y=22
31y=22+40
31y=62
y=2
Подставляем y в первое:
4x+3 · 2=22
4x=22-6
4x=16
x=4
0
Спасибо
Ответить
20 октября 2015 в 13:24
Елена Тутуликова
Профиль
Благодарили: 0
Сообщений: 1
Елена Тутуликова
Профиль
Благодарили: 0
Сообщений: 1
Помогите, пожалуйста, решить систему уравнений.{y + sinx = 5; {4y + 2 sinx = 19
Спасибо!
0
Спасибо
Ответить
23 октября 2015 в 21:25
Ответ для Елена Тутуликова
Елизавета Яременко
Профиль
Благодарили: 0
Сообщений: 5
Елизавета Яременко
Профиль
Благодарили: 0
Сообщений: 5
Я думаю{y + sinx =5; {4y + 2 sinx =19
0
Спасибо
Ответить
9 июня 2016 в 14:19
Ответ для Елена Тутуликова
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
Евгений Фёдоров
Профиль
Благодарили: 0
Сообщений: 60
sinx = 1/2
y = 9/2
0
Спасибо
Ответить
Основные понятия
Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.
Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.
Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.
Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.
Получай лайфхаки, статьи, видео и чек-листы по обучению на почту
Узнай, какие профессии будущего тебе подойдут
Пройди тест — и мы покажем, кем ты можешь стать, а ещё пришлём подробный гайд, как реализовать себя уже сейчас
Линейное уравнение с двумя переменными
Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.
Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.
Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.
Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:
-
Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.
-
Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.
-
Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).
-
Провести прямую через эти две точки и вуаля — график готов.
Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!
Система двух линейных уравнений с двумя переменными
Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.
Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:
Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.
Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.
Можно записать систему иначе:
Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.
Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.
Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.
Метод подстановки
Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:
-
Выразить одну переменную через другую из более простого уравнения системы.
-
Подставить то, что получилось на место этой переменной в другое уравнение системы.
-
Решить полученное уравнение, найти одну из переменных.
-
Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.
-
Записать ответ. Ответ принято записывать в виде пар значений (x; y).
Решим систему уравнений методом подстановки
Потренируемся решать системы линейных уравнений методом подстановки.
Пример 1
-
Решите систему уравнений:
x − y = 4
x + 2y = 10 -
Выразим x из первого уравнения:
x − y = 4
x = 4 + y -
Подставим получившееся выражение во второе уравнение вместо x:
x + 2y = 10
4 + y + 2y = 10 -
Решим второе уравнение относительно переменной y:
4 + y + 2y = 10
4 + 3y = 10
3y = 10 − 4
3y = 6
y = 6 : 3
y = 2 -
Полученное значение подставим в первое уравнение вместо y и решим уравнение:
x − y = 4
x − 2 = 4
x = 4 + 2
x = 6
Ответ: (6; 2).
Пример 2
-
Решите систему линейных уравнений:
x + 5y = 7
3x = 4 + 2y -
Сначала выразим переменную x из первого уравнения:
x + 5y = 7
x = 7 − 5y -
Выражение 7 − 5y подставим вместо переменной x во второе уравнение:
3x = 4 + 2y
3 (7 − 5y) = 4 + 2y -
Решим второе линейное уравнение в системе:
3 (7 − 5y) = 4 + 2y
21 − 15y = 4 + 2y
21 − 15y − 2y = 4
21 − 17y = 4
17y = 21 − 4
17y = 17
y = 17 : 17
y = 1 -
Подставим значение y в первое уравнение и найдем значение x:
x + 5y = 7
x + 5 = 7
x = 7 − 5
x = 2
Ответ: (2; 1).
Пример 3
-
Решите систему линейных уравнений:
x − 2y = 3
5x + y = 4 -
Из первого уравнения выразим x:
x − 2y = 3
x = 3 + 2y -
Подставим 3 + 2y во второе уравнение системы и решим его:
5x + y = 4
5 (3 + 2y) + y = 4
15 + 10y + y = 4
15 + 11y = 4
11y = 4 − 15
11y = −11
y = −11 : 11
y = −1 -
Подставим получившееся значение в первое уравнение и решим его:
x − 2y = 3
x − 2 (−1) = 3
x + 2 = 3
x = 3 − 2
x = 1
Ответ: (1; −1).
Метод сложения
Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:
-
При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.
-
Складываем почленно левые и правые части уравнений системы.
-
Решаем получившееся уравнение с одной переменной.
-
Находим соответствующие значения второй переменной.
-
Запишем ответ в в виде пар значений (x; y).
Пример.
Домножим первое уравнение системы на -2, второе оставим без изменений. Система примет вид:
Сложим уравнения, получим
Отсюда y = -3, а, значит, x = 2
Ответ: (2; -3).
Система линейных уравнений с тремя переменными
Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:
- ax + by + cz = d
Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).
Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.
Решение задач
Разберем примеры решения систем уравнений.
Задание 1. Как привести уравнение к стандартному виду ах + by + c = 0?
5x − 8y = 4x − 9y + 3
Как решаем:
-
5x − 8y = 4x − 9y + 3
-
5x − 8y − 4x + 9y = 3
-
x + y = 3
Задание 2. Как решать систему уравнений способом подстановки
Как решаем:
-
Выразить у из первого уравнения:
-
Подставить полученное выражение во второе уравнение:
-
Найти соответствующие значения у:
Ответ: (2; −1), (−1; 2).
Задание 3. Как решать систему уравнений методом сложения
Как решаем:
- Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
- Решаем полученное квадратное уравнение любым способом. Находим его корни:
- Найти у, подставив найденное значение в любое уравнение:
- Ответ: (1; 1), (1; -1).
Задание 4. Решить систему уравнений
Как решаем:
Решим второе уравнение и найдем х = 2, х = 5.
Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.
Ответ: (2; 4); (5; 13).
Задание 5. Как решить систему уравнений с двумя неизвестными
Как решаем:
При у = -2 первое уравнение не имеет решений, при у = 2 получается:
Ответ: (-4; 2); (4; 2).
Системой уравнений называют два уравнения с двумя неизвестными (как правило, неизвестные обозначаются x и y ) , которые объединены в общую систему фигурной скобкой.
Пример системы уравнений
{ x + 2 y = 8 3 x − y = − 4
Решить систему уравнений – найти пару чисел x и y , которые при подстановке в систему уравнений образуют верное равенство в обоих уравнениях системы.
Существует два метода решений систем линейных уравнений:
- Метод подстановки.
- Метод сложения.
Алгоритм решения системы уравнений методом подстановки:
- Выразить из любого уравнения одну переменную через другую.
- Подставить в другое уравнение вместо выраженной переменной полученное значение.
- Решить уравнение с одной неизвестной.
- Найти оставшуюся неизвестную.
Пример:
Решить систему уравнений методом подстановки
{ x + 2 y = 8 3 x − y = − 4
Решение:
- Выразить из любого уравнения одну переменную через другую.
{ x = 8 − 2 y 3 x − y = − 4
- Подставить в другое уравнение вместо выраженной переменной полученное значение.
{ x = 8 − 2 y 3 x − y = − 4
{ x = 8 − 2 y 3 ( 8 − 2 y ) − y = − 4
- Решить уравнение с одной неизвестной.
3 ( 8 − 2 y ) − y = − 4
24 − 6 y − y = − 4
− 7 y = − 4 − 24
− 7 y = − 28
y = − 28 − 7 = 28 7 = 4
y = 4
- Найти оставшуюся неизвестную.
y = 4
x = 8 − 2 y = 8 − 2 ⋅ 4 = 8 − 8 = 0
Ответ можно записать одним из трех способов:
Ответ:
- x = 0, y = 4
- { x = 0 y = 4
- ( 0 ; 4 )
Решение системы уравнений методом сложения.
Метод сложения основывается на следующем свойстве:
если
{ a = b c = d
то
( a + c ) = ( b + d )
Идея метода сложения состоит в том, чтобы избавиться от одной из переменных, сложив уравнения.
Пример:
Решить систему уравнений методом сложения
{ x + 2 y = 8 3 x − y = − 4
Давайте избавимся в данном примере от переменной x . Суть метода состоит в том, чтобы в первом и во втором уравнении перед переменной x стояли противоположные коэффициенты. Во втором уравнении перед x стоит коэффициент 3 . Для того, чтобы метод сложения сработал, надо чтобы перед переменной x оказался коэффициент ( − 3 ) . Для этого домножим левую и правую часть первого уравнения на ( − 3 ) .
{ x + 2 y = 8 | ⋅ ( − 3 ) 3 x − y = − 4
{ ( − 3 ) ⋅ ( x + 2 y ) = ( − 3 ) ⋅ 8 3 x − y = − 4
{ − 3 x − 6 y = − 24 3 x − y = − 4
Теперь, когда перед переменной в обоих уравнениях стоят противоположные коэффициенты, при сложении левых частей уравнений переменная x исчезнет.
{ − 3 x − 6 y = − 24 3 x − y = − 4 ⊕
( − 3 x − 6 y ) + ( 3 x − y ) = ( − 24 ) + ( − 4 )
− 3 x − 6 y + 3 x − y = − 24 − 4
− 7 y = − 28
y = − 28 − 7 = 28 7 = 4
Осталось найти переменную x . Для этого подставим y = 4 в любое из двух уравнений системы. Например, в первое.
x + 2 y = 8
x + 2 ⋅ 4 = 8
x + 8 = 8
x = 8 − 8 = 0
Ответ можно записать одним из трех способов:
Ответ:
- x = 0, y = 4
- { x = 0 y = 4
- ( 0 ; 4 )
Задания для самостоятельного решения
№1. Решите систему уравнений { 4 x + y = 10 x + 3 y = − 3
В ответе запишите сумму решений.
№2. Две прямые пересекаются в точке C (см. рис.). Найдите абсциссу точки C .
№3. На рисунке изображены графики функций y = 3 − x 2 и y = − 2 x . Вычислите координаты точки B .
Запишите координаты в ответе через точку с запятой.
Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.
Пример:
а) (begin{cases}x-2y=5\3x+2y=7end{cases}) |
г) (begin{cases}3(5-x)-4y=0\y-2x+4=0 end{cases}) |
б)(begin{cases}3b=13-2a\5a=5-2b end{cases}) |
д)(begin{cases}frac{p}{3} + frac{m-6}{2} = 1-9m \11p+3(m-p-1)=-2(m+1) end{cases}) |
в)(begin{cases}3x-8=2y\x+y=6end{cases}) |
е)(begin{cases}0,02y=1,25-3,21x \1,5x-frac{3}{4}=4-0,1yend{cases}) |
Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.
Пример:
Пара значений (x=3);(y=-1) является решением первой системы, потому что при подстановке этих тройки и минус единицы в вместо (x) и (y), оба уравнения превратятся в верные равенства (begin{cases}3-2cdot (-1)=5 \3 cdot 3+2 cdot (-1)=7 end{cases})
А вот (x=1); (y=-2) – не является решением первой системы, потому что после подстановки второе уравнение «не сходится» (begin{cases}1-2cdot(-2)=5 \3cdot1+2cdot(-2)≠7 end{cases})
Отметим, что такие пары часто записывают короче: вместо “(x=3); (y=-1)” пишут так: ((3;-1)).
Как решить систему линейных уравнений?
Есть три основных способа решения систем линейных уравнений:
- Способ подстановки.
-
Возьмите любое из уравнений системы и выразите из него любую переменную.
(begin{cases}x-2y=5\3x+2y=7 end{cases})(Leftrightarrow) (begin{cases}x=5+2y\3x+2y=7end{cases})(Leftrightarrow)
-
Полученное выражение подставьте вместо этой переменной в другое линейное уравнение системы.
(Leftrightarrow) (begin{cases}x=5+2y\3(5+2y)+2y=7end{cases})(Leftrightarrow)
-
Равносильными преобразованиями уравнений найдите по очереди каждое неизвестное.
(Leftrightarrow) (begin{cases}x=5+2y\15+6y+2y=7end{cases})(Leftrightarrow)(begin{cases}x=5+2y\8y=-8end{cases})(Leftrightarrow)(begin{cases}x=5+2y\y=-1end{cases})(Leftrightarrow)(begin{cases}x=5-2\y=-1end{cases})(Leftrightarrow)(begin{cases}x=3\y=-1end{cases})
-
Ответ запишите парой чисел ((x_0;y_0))
Ответ: ((3;-1))
- Способ алгебраического сложения.
-
Равносильно преобразовывая каждое уравнение в отдельности, запишите систему в виде:(begin{cases}a_1 x+b_1 y=c_1\a_2 x+b_2 y=c_2end{cases}).
(begin{cases}3y=13-2x\5x=5-2yend{cases})(Leftrightarrow)(begin{cases}2x+3y=13\5x+2y=5end{cases})(Leftrightarrow)
-
Теперь нужно сделать так, чтоб коэффициенты при одном из неизвестных стали одинаковы (например, ((3) и (3)) или противоположны по значению (например, (5) и (-5)). В нашем примере уравняем коэффициенты при игреках. Для этого первое уравнение домножим на (2), а второе – на (3).
(begin{cases}2x+3y=13 |cdot 2\ 5x+2y=5 |cdot 3end{cases})(Leftrightarrow)(begin{cases}4x+6y=26\15x+6y=15end{cases})(Leftrightarrow)
-
Сложите (или вычтите) почленно обе части уравнения так, чтобы получилось уравнение с одним неизвестным.
- Найдите неизвестное из полученного уравнения.
(-11x=11) (|∶(-11))
(x=-1) - Подставьте найденное значение неизвестного в любое из исходных уравнений и найдите второе неизвестное.
(3y=13-2x)
(3y=13-2·(-1))
(3y=15)
(y=5) -
Ответ запишите парой чисел ((x_0;y_0)).
Ответ: ((-1;5))
- Графический способ.
-
Приведите каждое уравнение к виду линейной функции
(y=kx+b).(begin{cases}3x-8=2y\x+y=6end{cases})(Leftrightarrow)(begin{cases}2y=3x-8 |:2\y=6-xend{cases})(Leftrightarrow)(begin{cases}y=frac{3}{2}x-4\y=-x+6end{cases})
-
Постройте графики этих функций. Как? Можете прочитать здесь.
- Найдите координаты ((x;y)) точки пересечения графиков и запишите их в ответ в виде ((x_0;y_0 )).
Ответ: ((4;2))
Замечание к шагу 1: нет никакой разницы какую переменную и из какого уравнения выражать. Обычно более удобно выражать ту переменную, перед которой нет коэффициента или, говоря точнее, коэффициент которой равен единице (в примере выше это был икс в первом уравнении).
Почему так? Потому что во всех остальных случаях у нас при выражении переменной получилась бы дробное выражение. Попробуем, например, выразить икс из второго уравнения системы:
(begin{cases}x-2y=5\3x+2y=7 end{cases})(Leftrightarrow) (begin{cases}x=5+2y\3x=7-2yend{cases})(Leftrightarrow)(begin{cases}x=5+2y\x=frac{7-2y}{3}end{cases})
И сейчас нам нужно будет эту дробь
подставлять в первое уравнение и решать то, что получиться. До верного ответа мы бы всё равно дошли, но идти было бы неудобнее
Замечание к шагу 3: В каком случае уравнения складывают, а в каком вычитают? Ответ прост – делайте так, чтоб пропала переменная: если «уравненные» коэффициенты имеют один и тот же знак – вычитайте, а если разные – складывайте.
Пример. Решите систему уравнений: (begin{cases}12x-7y=2\5y=4x-6end{cases})
Решение:
(begin{cases}12x-7y=2\5y=4x-6end{cases}) |
Приводим систему к виду (begin{cases}a_1 x+b_1 y=c_1\a_2 x+b_2 y=c_2end{cases}) преобразовывая второе уравнение. |
|
(begin{cases}12x-7y=2\-4x+5y=-6end{cases}) |
«Уравняем» коэффициенты при иксах. Для этого домножим второе уравнение на (3). |
|
(begin{cases}12x-7y=2\-12x+15y=-18end{cases}) |
Знаки при иксах разные, поэтому чтоб иксы пропали, уравнения надо сложить. |
|
(0·x+8y=-16) |
Делим уравнение на (8), чтобы найти (y). |
|
(y=-2) |
Игрек нашли. Теперь найдем (x), подставив вместо игрека (-2) в любое из уравнений системы. |
|
(12x-7·(-2)=2) |
Икс тоже найден. Пишем ответ. |
Ответ: ((-1;-2))
Матхак. Если сомневаетесь в правильности ответа (неважно каким способом вы решали), проверьте подстановкой значений (x_0) и (y_0) в каждое уравнение. Если оба уравнения превратятся в верные равенства, то ответ правильный.
Пример: решая систему (begin{cases}3x-8=2y\x+y=6end{cases}), мы получили ответ ((4;2)). Проверим его, подставив вместо икса (4), а вместо игрека (2).
(begin{cases}3cdot 4-8=2cdot 2\4+2=6end{cases})(Leftrightarrow)(begin{cases} 12-8=4\6=6end{cases})(Leftrightarrow)(begin{cases} 4=4\6=6end{cases})
Оба уравнения сошлись, решение системы найдено верно.
Пример. Решите систему уравнений: (begin{cases}3(5x+3y)-6=2x+11\4x-15=11-2(4x-y)end{cases})
Решение:
(begin{cases}3(5x+3y)-6=2x+11\4x-15=11-2(4x-y)end{cases}) |
Раскроем скобки в уравнениях. |
|
(begin{cases}15x+9y-6=2x+11\4x-15=11-8x+2yend{cases}) |
Перенесем все выражения с буквами в одну сторону, а числа в другую. |
|
(begin{cases}15x-2x+9y=11+6\4x+8x-2y=11+15end{cases}) |
Приведем подобные слагаемые. |
|
(begin{cases}13x+9y=17\12x-2y=26end{cases}) |
Во втором уравнении каждое слагаемое – четное, поэтому упрощаем уравнение, деля его на (2). |
|
(begin{cases}13x+9y=17\6x-y=13end{cases}) |
Эту систему линейных уравнений можно решить любым из способов, но мне кажется, что способ подстановки здесь удобнее всего. Выразим y из второго уравнения. |
|
(begin{cases}13x+9y=17\y=6x-13end{cases}) |
Подставим (6x-13) вместо (y) в первое уравнение. |
|
(begin{cases}13x+9(6x-13)=17\y=6x-13end{cases}) |
Первое уравнение превратилась в обычное линейное. Решаем его. Сначала раскроем скобки. |
|
(begin{cases}13x+54x-117=17\y=6x-13end{cases}) |
Перенесем (117) вправо и приведем подобные слагаемые. |
|
(begin{cases}67x=134\y=6x-13end{cases}) |
Поделим обе части первого уравнения на (67). |
|
(begin{cases}x=2\y=6x-13end{cases}) |
Ура, мы нашли (x)! Подставим его значение во второе уравнение и найдем (y). |
|
(begin{cases}x=2\y=12-13end{cases})(Leftrightarrow)(begin{cases}x=2\y=-1end{cases}) |
Запишем ответ. |
Ответ: ((2;-1))
Скачать статью
Home » 7 класс » Как решается система уравнений? Методы решения систем уравнения.
Методы решения систем уравнения.
Разберем два вида решения систем уравнения:
1. Решение системы методом подстановки.
2. Решение системы методом почленного сложения (вычитания) уравнений системы.
Для того чтобы решить систему уравнений методом подстановки нужно следовать простому алгоритму:
1. Выражаем. Из любого уравнения выражаем одну переменную.
2. Подставляем. Подставляем в другое уравнение вместо выраженной переменной, полученное значение.
3. Решаем полученное уравнение с одной переменной. Находим решение системы.
Чтобы решить систему методом почленного сложения (вычитания) нужно:
1.Выбрать переменную у которой будем делать одинаковые коэффициенты.
2.Складываем или вычитаем уравнения, в итоге получаем уравнение с одной переменной.
3. Решаем полученное линейное уравнение. Находим решение системы.
Решением системы являются точки пересечения графиков функции.
Рассмотрим подробно на примерах решение систем.
Пример №1:
Решим методом подстановки
2x+5y=1 (1 уравнение)
x-10y=3 (2 уравнение)
1. Выражаем
Видно что во втором уравнении имеется переменная x с коэффициентом 1,отсюда получается что легче всего выразить переменную x из второго уравнения.
x=3+10y
2.После того как выразили подставляем в первое уравнение 3+10y вместо переменной x.
2(3+10y)+5y=1
3.Решаем полученное уравнение с одной переменной.
2(3+10y)+5y=1 (раскрываем скобки )
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2
Решением системы уравнения является точки пересечений графиков, следовательно нам нужно найти x и у, потому что точка пересечения состоит их x и y.Найдем x, в первом пункте где мы выражали туда подставляем y.
x=3+10y
x=3+10*(-0,2)=1
Точки принято записывать на первом месте пишем переменную x, а на втором переменную y.
Ответ: (1; -0,2)
Пример №2:
Решим методом почленного сложения (вычитания).
3x-2y=1 (1 уравнение)
2x-3y=-10 (2 уравнение)
1.Выбираем переменную, допустим, выбираем x. В первом уравнении у переменной x коэффициент 3, во втором 2. Нужно сделать коэффициенты одинаковыми, для этого мы имеем право домножить уравнения или поделить на любое число. Первое уравнение домножаем на 2, а второе на 3 и получим общий коэффициент 6.
3x-2y=1 |*2
6x-4y=2
2x-3y=-10 |*3
6x-9y=-30
2.Из первого уравнения вычтем второе, чтобы избавиться от переменной x.Решаем линейное уравнение.
__6x-4y=2
6x-9y=-30
-4y+9y=2+30
5y=32 | :5
y=6,4
3.Находим x. Подставляем в любое из уравнений найденный y, допустим в первое уравнение.
3x-2y=1
3x-2*6,4=1
3x-12,8=1
3x=1+12,8
3x=13,8 |:3
x=4,6
Точкой пересечения будет x=4,6; y=6,4
Ответ: (4,6; 6,4)
Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно. Без шуток. ЗДЕСЬ