Результирующая сила Кулона
Формулировки экспериментального закона: результирующая сила Кулона, принцип суперпозиции сил, принцип независимого наложения сил.
Формула экспериментальной связи физических величин и словесное изложение формулы: Fрез = (sumlimits_i {{{bf{F}}_i}} ). Каждая пара зарядов взаимодействует по закону Кулона так, будто остальных зарядов нет. Результирующая сила Кулона равна векторной сумме сил Кулона, действующих на исследуемый заряд со стороны каждого из остальных зарядов.
Расшифровка формулы:
Fрез = (sumlimits_i {{{bf{F}}_i}} ) = F1 + F2 + F3 +…+ Fi +… Результирующая сила Кулона − это векторная сумма всех сил электростатического взаимодействия, действующих на выделенный заряд со стороны каждого из остальных точечных зарядов; S − математический знак суммирования, заменяет запись F1 + F2 + F3 +…+ Fi +…; i – индекс суммирования, принимает значения i = 1, 2, 3,…; F1, F2, F3,…, Fi,… − все силы Кулона, действующие на выделенный заряд q со стороны всех остальных точечных зарядов q1, q2, q3,…, qi,… Вектор результирующей силы приложен к заряду и направлен, как векторная сумма всех сил Кулона, действующих на выделенный заряд q со стороны всех остальных точечных зарядов q1, q2, q3,…, qi,…
Смысл константы (фундаментальная/нефундаментальная): новой константы не возникает.
Условия применения закона: закон применяется всегда.
Взаимодействия электрических зарядов исследовали ещё до Шарля Кулона. В частности, английский физик Кавендиш в своих исследованиях пришёл к выводу, что неподвижные заряды при взаимодействии подчиняются определённому закону. Однако он не обнародовал своих выводов. Повторно закон Кулона был открыт французским физиком, именем которого был назван этот фундаментальный закон.
История открытия
Эксперименты с заряженными частицами проводили много физиков:
- Г. В. Рихман;
- профессор физики Ф. Эпинус;
- Д. Бернулли;
- Пристли;
- Джон Робисон и многие другие.
Все эти учёные очень близко подошли к открытию закона, но никому из них не удалось математически обосновать свои догадки. Несомненно, они наблюдали взаимодействие заряженных шариков, но установить закономерность в этом процессе было непросто.
Кулон проводил тщательные измерения сил взаимодействия. Для этого он даже сконструировал уникальный прибор – крутильные весы (см. Рис. 2).
У придуманных Кулоном весов была чрезвычайно высокая чувствительность. Прибор реагировал на силы порядка 10-9 Н. Коромысло весов, под действием этой крошечной силы, поворачивалось на 1º. Экспериментатор мог измерять угол поворота, а значит и приложенную силу, пользуясь точной шкалой.
Благодаря гениальной догадке учёного, идея которой состояла в том, что при соприкосновении заряженного и незаряженного шариков, электрический заряд делился между ними поровну. На это сразу реагировали крутильные весы, коромысло которых поворачивалось на определённый угол. Заземляя неподвижный шарик, Кулон мог нейтрализовать на нём полученный заряд.
Таким образом, учёный смог уменьшать первоначальный заряд подвижного шарика кратное число раз. Измеряя угол отклонения после каждого деления заряда, Кулон увидел закономерность в действии отталкивающей силы, что помогло ему сформулировать свой знаменитый закон.
Формулировка
Кулон исследовал взаимодействие между шариками, ничтожно малых размеров, по сравнению с расстояниями между ними. В физике такие заряженные тела называются точечными. Другими словами, под определение точечных зарядов подпадают такие заряженные тела, если их размерами, в условиях конкретного эксперимента, можно пренебречь.
Для точечных зарядов справедливо утверждение: Силы взаимодействия между ними направлены вдоль линии, проходящей через центры заряженных тел. Абсолютная величина каждой силы прямо пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними (см. рис. 3). Данную зависимость можно выразить формулой: |F1|=|F2|=(ke*q1*q2) / r2
Остаётся добавить, что векторы сил направлены друг к другу для разноименных зарядов, и противоположно, в случае с одноимёнными зарядами. То есть между разноимёнными зарядами действует электрическое притяжение, а между одноимёнными – отталкивание.
Таким образом, закон Кулона описывает взаимодействие между двумя электрическими зарядами, которое лежит в основе всех электромагнитных взаимодействий.
Для того чтобы действовал сформулированный выше закон, необходимо выполнение следующий условий:
- соблюдение точечности зарядов;
- неподвижность заряженных тел;
- закон выражает зависимости между зарядами в вакууме.
Границы применения
Описанная выше закономерность при определённых условиях применима для описания процессов квантовой механики. Правда, закон Кулона формулируется без понятия силы. Вместо силы используется понятие потенциальной энергии кулоновского взаимодействия. Закономерность получена путём обобщения экспериментальных данных.
Следует отметить, что на сверхмалых расстояниях (при взаимодействиях элементарных частиц) порядка 10 — 18 м проявляются электрослабые эффекты. В этих случаях закон Кулона, строго говоря, уже не соблюдается. Формулу можно применять с учётом поправок.
Нарушение закона Кулона наблюдается и в сильных электромагнитных полях (порядка 1018 В/м), например поблизости магнитаров (тип электронных звёзд). В такой среде кулоновский потенциал уменьшается не обратно пропорционально, а экспоненциально.
Кулоновские силы подпадают под действие третьего закона Ньютона: F1 = – F2. Они используются для описания законов всемирного тяготения. В этом случае формула приобретает вид: F = ( m1* m2 ) / r2 , где m1 и m2 – массы взаимодействующих тел, а r – расстояние между ними.
Закон Кулона стал первым открытым количественным фундаментальным законом, обоснованным математически. Его значение в исследованиях электромагнитных явлений трудно переоценить. С момента открытия и обнародования закона Кулона началась эра изучения электромагнетизма, имеющего огромное значение в современной жизни.
Коэффициент k
Формула содержит коэффициент пропорциональности k, который для согласования соразмерностей в международной системе СИ. В этой системе единицей измерения заряда принято называть кулоном (Кл) – заряд, проходящий за 1 секунду сквозь проводник, где силы тока составляет 1 А.
Коэффициент k в СИ выражается следующим образом: k = 1/4πε0, где ε0 – электрическая постоянная: ε0 = 8,85 ∙10-12 Кл2/Н∙м2. Выполнив несложные вычисления, мы находим: k = 9×109 H*м2 / Кл2. В метрической системе СГС k =1.
На основании экспериментов было установлено, что кулоновские силы, как и принцип суперпозиции электрических полей, в законах электростатики описывают уравнения Максвелла.
Если между собой взаимодействуют несколько заряженных тел, то в замкнутой системе результирующая сила этого взаимодействия равняется векторной сумме всех заряженных тел. В такой системе электрические заряды не исчезают – они передаются от тела к телу.
Закон Кулона в диэлектриках
Выше было упомянуто, что формула, определяющая зависимость силы от величины точечных зарядов и расстояния между ними, справедлива для вакуума. В среде сила взаимодействия уменьшается благодаря явлению поляризации. В однородной изотопной среде уменьшение силы пропорционально определённой величине, характерной для данной среды. Эту величину называют диэлектрической постоянной. Другое название – диэлектрическая проницаемость. Обозначают её символом ε. В этом случае k = 1/4πεε0.
Диэлектрическая постоянная воздуха очень близка к 1. Поэтому закон Кулона в воздушном пространстве проявляется так же как в вакууме.
Интересен тот факт, что диэлектрики могут накапливать электрические заряды, которые образуют электрическое поле. Проводники лишены такого свойства, так как заряды, попадающие на проводник, практически сразу нейтрализуются. Для поддержания электрического поля в проводнике необходимо непрерывно подавать на него заряженные частицы, образуя замкнутую цепь.
Применение на практике
Вся современная электротехника построена на принципах взаимодействия кулоновских сил. Благодаря открытию Клоном этого фундаментального закона развилась целая наука, изучающая электромагнитные взаимодействия. Понятие термина электрического поля также базируется на знаниях кулоновских сил. Доказано, что электрическое поле неразрывно связано с зарядами элементарных частиц.
Грозовые облака не что иное как скопление электрических зарядов. Они притягивают к себе индуцированные заряды земли, в результате чего появляется молния. Это открытие позволило создавать эффективные молниеотводы для защиты зданий и электротехнических сооружений.
На базе электростатики появилось много изобретений:
- конденсатор;
- различные диэлектрики;
- антистатические материалы для защиты чувствительных электронных деталей;
- защитная одежда для работников электронной промышленности и многое другое.
На законе Кулона базируется работа ускорителей заряженных частиц, в частности, функционирование Большого адронного коллайдера (см. Рис. 4).
Ускорение заряженных частиц до околосветовых скоростей происходит под действием электромагнитного поля, создаваемого катушками, расположенными вдоль трассы. От столкновения распадаются элементарные частицы, следы которых фиксируются электронными приборами. На основании этих фотографий, применяя закон Кулона, учёные делают выводы о строении элементарных кирпичиков материи.
Использованная литература:
- Сивухин Д. В. Общий курс физики. — М.: Физматлит; Изд-во МФТИ, 2004.
- Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: Учеб. пособ.: Для вузов.
- Ландсберг Г. С. Элементарный учебник физики. Том II. Электричество и магнетизм.
Видео по теме
Закон Кулона: равнодействующие и моменты сил
В этой статье собраны задачи, где потребуется найти равнодействующую сил, а для этого нужно обладать и минимумом геометрических знаний. Также понадобится вспомнить, как определить силу упругости, и как определить момент силы.
Задача 1.
Два электрона находятся в точках, определяемых радиус-векторами и соответственно. Вычислить ускорение, сообщаемое одним электроном другому.
Ускорение будет определяться силой кулоновского отталкивания между электронами:
Сила зависит от расстояния, а расстояние можно определить как длину вектора, являющегося разностью радиус-векторов электронов:
Тогда ускорение:
Ответ: 14,9 м/с.
Задача 2.
Три точечных заряда Кл, Кл и Кл расположены последовательно вдоль одной прямой и связаны двумя нитями длиной м каждая. Найти натяжение нитей, если заряд находится посередине.
К задаче 2
Все заряды являются одноименными и, следовательно, отталкиваются. На первый из них действует две силы: одна – сила взаимодействия со вторым зарядом, вторая – с третьим:
Аналогично, на третий заряд будут действовать силы:
Из рисунка видно, что
Тогда:
Ответ: Н, или 0,1 Н, Н, или 0,074 Н
Задача 3.
Три одинаковых шарика, расположенных вдоль одной прямой, соединили вместе двумя одинаковыми пружинами жесткостью каждая. Расстояние между крайними шариками равно . Затем всем шарикам сообщили одинаковый заряд, при этом расстояние между крайними шариками стало . Найти величину заряда , сообщенного каждому шарику.
Определим, насколько увеличилось расстояние.
Сила упругости пружин равна:
Жесткость обозначили , чтобы отличать от коэффициента в формуле кулоновой силы.
Сила кулоновского отталкивания, аналогично предыдущей задаче, будет складываться для крайнего левого шарика из силы взаимодействия с крайним правым и силы взаимодействия с тем шариком, что посередине:
Приравняем силу упругости и кулонову силу:
Теперь можно «вытащить» из этого равенства заряд:
Ответ:
Задача 4.
Электрическое поле образовано двумя зарядами Кл и Кл, расположенными на расстоянии см друг от друга в точках A и В. Какая сила будет действовать на капельку С, находящуюся на расстоянии 5 см от середины отрезка АВ, если заряд капельки равен заряду 10 электронов?
К задаче 4
Капелька будет взаимодействовать с обоими зарядами: к одному (первому) притягиваться, а от второго – отталкиваться, и по модулю, в силу равенства зарядов по модулю, силы будут равны. Поэтому, чтобы найти суммарную силу (равнодействующую), нужно сложить обе силы векторно. Заметим, что вектора сил будут образовывать прямоугольный треугольник, поэтому равнодействующую можно определить по теореме Пифагора.
Теперь можем определить равнодействующую:
Ответ: Н, или 2 нН.
Задача 5.
На концах невесомого непроводящего стержня длиной находятся два невесомых шарика с зарядами и . На перпендикуляре, проведенном через середину стержня, на расстоянии от основания перпендикуляра расположен точечный заряд . Определить вращающий момент, действующий на стержень.
К задаче 5
Так как заряды разноименные, то заряд один из них будет притягивать, а другой – отталкивать, отсюда вращающий момент. Момент – это пара сил, это, кроме того, произведение силы на плечо.
Модули сил взаимодействия зарядов одинаковы:
Определим расстояние между зарядами:
Вращать стержень будут только изображенные на рисунке красным составляющие кулоновых сил, а они равны . Определим из рисунка синус соответствующего угла:
Тогда момент сил равен удвоенному произведению силы на плечо (так как сил – две):
Задача 6.
Одноименные заряды мкКл, мкКл и мкКл расположены в вершинах треугольника со сторонами см, см и см. Определить модуль силы, действующей на заряд .
К задаче 6
Снова предстоит найти векторную сумму сил и , которые являются силами взаимодействия зарядов 1 – 3 и 2 – 3.
Модуль силы равен:
Модуль силы равен:
Модуль равнодействующей может быть определен по теореме косинусов:
Нам неизвестен , однако он равен , а косинус этого угла мы тоже можем найти из теоремы косинусов:
Тогда косинус нужного нам угла равен:
Определим результирующую силу:
Подставим числа:
Ответ: 0,77 Н
Между заряженными телами существует сила взаимодействия, благодаря которой они могут притягиваться или отталкиваться друг от друга. Закон Кулона описывает данную силу, показывает степень её действия в зависимости от размеров и формы самого тела. Об этом физическом законе пойдёт речь в данной статье.
Содержание
- 1 Неподвижные точечные заряды
- 2 Крутильные весы Шарля Кулона
- 3 Коэффициент пропорциональности k и электрическая постоянная
- 4 Направление силы Кулона и векторный вид формулы
- 5 Где закон Кулона применяется на практике
- 6 Направление сил в законе Кулона
- 7 История открытия закона
Неподвижные точечные заряды
Закон Кулона применим к неподвижным телам, размер которых намного меньше их расстояния до других объектов. На таких телах сосредоточен точечный электрический заряд. При решении физических задач размерами рассматриваемых тел пренебрегают, т.к. они не имеют особого значения.
На практике покоящиеся точечные заряды изображаются следующим образом:
В данном случае q1 и q2 — это положительные электрические заряды, и на них действует сила Кулона (на рисунке не показана). Размеры точечных объектов не имеют значения.
Обратите внимание! Покоящиеся заряды располагаются друг от друга на заданном расстоянии, которое в задачах обычно обозначается буквой r. Далее в статье данные заряды будем рассматривать в вакууме.
Крутильные весы Шарля Кулона
Это прибор, разработанный Кулоном в 1777 году, помог вывести зависимость силы, названной в последствии в его честь. С его помощью изучается взаимодействие точечных зарядов, а также магнитных полюсов.
Крутильные весы имеют небольшую шёлковую нить, расположенную в вертикальной плоскости, на которой висит уравновешенный рычаг. На концах рычага расположены точечные заряды.
Под действием внешних сил рычаг начинает совершать движения по горизонтали. Рычаг будет перемещаться в плоскости до тех пор, пока его не уравновесит сила упругости нити.
В процессе перемещений рычаг отклоняется от вертикальной оси на определённый угол. Его принимают за d и называют углом поворота. Зная величину данного параметра, можно найти крутящий момент возникающих сил.
Крутильные весы Шарля Кулона выглядят следующим образом:
Коэффициент пропорциональности k и электрическая постоянная
В формуле закона Кулона есть параметры k — коэффициент пропорциональности или — электрическая постоянная. Электрическая постоянная представлена во многих справочниках, учебниках, интернете, и её не нужно считать! Коэффициент пропорциональности в вакууме на основе можно найти по известной формуле:
Здесь — электрическая постоянная,
— число пи,
— коэффициент пропорциональности в вакууме.
Дополнительная информация! Не зная представленные выше параметры, найти силу взаимодействия между двумя точечными электрическими зарядами не получится.
Формулировка и формула закона Кулона
Чтобы подытожить вышесказанное, необходимо привести официальную формулировку главного закона электростатики. Она принимает вид:
Сила взаимодействия двух покоящихся точечных зарядов в вакууме прямо пропорциональна произведению этих зарядов и обратно пропорциональна квадрату расстояния между ними. Причём произведение зарядов необходимо брать по модулю!
В данной формуле q1 и q2 — это точечные заряды, рассматриваемые тела; r2 — расстояние на плоскости между этими телами, взятое в квадрате; k — коэффициент пропорциональности ( для вакуума).
Направление силы Кулона и векторный вид формулы
Для полного понимания формулы закон Кулона можно изобразить наглядно:
F1,2 — сила взаимодействия первого заряда по отношению ко второму.
F2,1 — сила взаимодействия второго заряда по отношению к первому.
Также при решении задач электростатики необходимо учитывать важное правило: одноимённые электрические заряды отталкиваются, а разноимённые притягиваются. От этого зависит расположение сил взаимодействия на рисунке.
Если рассматриваются разноимённые заряды, то силы их взаимодействия будут направлены навстречу друг другу, изображая их притягивание.
Формула основного закона электростатики в векторном виде можно представить следующим образом:
— сила, действующая на точечный заряд q1, со стороны заряда q2,
— радиус-вектор, соединяющий заряд q2 с зарядом q1,
Важно! Записав формулу в векторном виде, взаимодействующие силы двух точечных электрических зарядов надо будет спроецировать на ось, чтобы правильно поставить знаки. Данное действие является формальностью и часто выполняется мысленно без каких-либо записей.
Где закон Кулона применяется на практике
Основной закон электростатики — это важнейшее открытие Шарля Кулона, которое нашло своё применение во многих областях.
Работы известного физика использовались в процессе изобретения различных устройств, приборов, аппаратов. К примеру, молниеотвод.
При помощи молниеотвода жилые дома, здания защищают от попадания молнии во время грозы. Таким образом, повышается степень защиты электрического оборудования.
Молниеотвод работает по следующему принципу: во время грозы на земле постепенно начинают скапливаться сильные индукционные заряды, которые поднимаются вверх и притягиваются к облакам. При этом на земле образуется немаленькое электрическое поле. Вблизи молниеотвода электрическое поле становится сильнее, благодаря чему от острия устройства зажигается коронный электрический заряд.
Далее образованный на земле заряд начинает притягиваться к заряду облака с противоположным знаком, как и должно быть согласно закону Шарля Кулона. После этого воздух проходит процесс ионизации, а напряжённость электрического поля становится меньше возле конца молниеотвода. Таким образом, риск попадания молнии в здание минимален.
Обратите внимание! Если в здание, на котором установлен молниеотвод, попадёт удар, то пожара не произойдёт, а вся энергия уйдёт в землю.
На основе закона Кулона было разработано устройство под названием “Ускоритель частиц”, которое пользуется большим спросом сегодня.
В данном приборе создано сильное электрическое поле, которое увеличивает энергию попадающих в него частиц.
Направление сил в законе Кулона
Как и говорилось выше, направление взаимодействующих сил двух точечных электрических зарядов зависит от их полярности. Т.е. одноимённые заряды будут отталкиваться, а разноимённые притягиваться.
Кулоновские силы также можно назвать радиус-вектором, т.к. они направлены вдоль линии, проведённой между ними.
В некоторых физических задачах даются тела сложной формы, которые не получается принять за точечный электрический заряд, т.е. пренебречь его размерами. В сложившейся ситуации рассматриваемое тело необходимо разбить на несколько мелких частей и рассчитывать каждую часть по отдельности, применяя закон Кулона.
Полученные при разбиении вектора сил суммируются по правилам алгебры и геометрии. В результате получается результирующая сила, которая и будет являться ответом для данной задачи. Данный способ решения часто называют методом треугольника.
История открытия закона
Взаимодействия двух точечных зарядов рассмотренным выше законом в первый раз были доказаны в 1785 Шарлем Кулоном. Доказать правдивость сформулированного закона физику удалось с использованием крутильных весов, принцип действия которых также был представлен в статье.
Кулон также доказал, что внутри сферического конденсатора нет электрического заряда. Так он пришёл к утверждению, что величину электростатических сил можно менять путём изменения расстояния между рассматриваемыми телами.
Таким образом, закон Кулона по-прежнему является главнейшим законом электростатики, на основе которого было сделано немало величайших открытий. В рамках данной статьи была представлена официальная формулировка закона, а также подробно описаны его составляющие части.
Содержание:
По современным представлениям основой всего многообразия явлений природы являются четыре фундаментальных взаимодействия между частицами микромира (электрон, протон и др.) — сильное, слабое, электромагнитное и гравитационное. Каждый вид взаимодействия связан с определённой характеристикой частицы. Например, гравитационное взаимодействие зависит от масс частиц, электромагнитное — от электрических зарядов.
Электромагнитное взаимодействие лежит в основе всех электрических, магнитных и оптических явлений. Этим же взаимодействием обусловлены силы упругости и силы трения, известные вам из механики. Взаимодействие атомов и молекул, которое мы рассматривали при изучении молекулярно-кинетической теории, также является электромагнитным. Электромагнитное взаимодействие определяет свойства веществ в различных агрегатных состояниях и их химические превращения. Поскольку молекулярные силы имеют электромагнитную природу, то практически все биологические явления обусловлены электромагнетизмом.
Электродинамика — раздел физики, в котором изучают закономерности физических явлений, обусловленных электрическими и магнитными взаимодействиями, материальным носителем которых является электромагнитное поле. Термин «электродинамика» ввёл в физику французский учёный Андре Мари Ампер (1775—1836) в 1822 г.
При изучении электродинамики вы познакомитесь с законами взаимодействия тел (частиц), обладающих электрическим зарядом, особенностями упорядоченного движения заряженных частиц, физическими величинами, характеризующими электрические и магнитные явления.
В 10 классе вам предстоит изучить следующие разделы электродинамики: электростатика, постоянный электрический ток, ток в различных средах и электромагнитные явления.
Электростатика — раздел электродинамики, в котором изучают свойства, взаимодействие и условия равновесия неподвижных в некоторой инерциальной системе отсчёта электрически заряженных тел, распределение заряда на которых не изменяется со временем, а также электростатические поля, создаваемые зарядами таких тел. Термин «электростатика» введён Ампером в 1822 г. Фундамент электростатики составляют экспериментальные научные факты, отражающие поведение заряженных тел при их электрическом взаимодействии. Ядро электростатики составляют закон сохранения электрического заряда, опытным путём установленный в 1759 г. петербургским академиком Францем Эпинусом (1724—1802), и закон взаимодействия покоящихся точечных зарядов, экспериментально открытый в 1785 г. французским учёным Шарлем Кулоном (1736—1806).
Электростатика
На уроках физики в 8 классе при проведении опытов вы наблюдали притяжение крошек пенопласта, небольших кусочков бумаги (рис. 76), лёгкой станиолевой гильзы (рис. 77) к потёртой о сухую бумагу пластмассовой линейке или стеклянной палочке. Во всех перечисленных случаях имело место явление электризации тел. Оно заключается в возникновении противоположных по знаку электрических зарядов, модули которых равны, на первоначально электрически нейтральных телах. А что означает, что тело или частица обладает электрическим зарядом? Как взаимодействуют электрически заряженные тела?
Электрический заряд
Электрический заряд частицы является источником электромагнитного поля, связанного с материальным носителем. Электрический заряд, или количество электричества (обозначают буквой q или Q), — физическая скалярная величина, характеризующая интенсивность электромагнитного взаимодействия тел (частиц). Электрическому заряду присущи следующие фундаментальные свойства:
- электрический заряд существует в двух видах, которые названы положительным и отрицательным зарядом (существование двух видов заряда установил Шарль Дюфэ (1698—1739) в 1733 г., а в 1747 г. Бенджамин Франклин (1706—1790) приписал им знаки « + » и « —»);
- в любой электрически изолированной системе алгебраическая сумма зарядов тел (частиц) не изменяется;
- значение электрического заряда тела (частицы) не зависит от выбора системы отсчёта, а значит, не зависит от того, движется оно (она) или покоится;
- электрический заряд тела (частицы) не зависит ни от его (её) механического состояния, ни от каких-либо действующих на него (неё) сил.
Носителем заряда может быть как элементарная частица, так и макроскопическое тело.
В одном моле вещества
Как вы знаете, электрическое взаимодействие проявляется в том, что одноимённо заряженные тела (частицы) отталкивают друг друга (рис. 78, а), а разноимённо заряженные — притягивают друг друга (рис. 78, б). Если в электрически нейтральном теле заряды распределены неравномерно и вследствие этого возникли противоположно заряженные части, то такие тела тоже электрически взаимодействуют (см. рис. 76 и 77).
Заряды разных тел (частиц) могут отличаться не только знаком, но и числовым значением.
За единицу электрического заряда в СИ принят кулон (Кл). Эта единица названа в честь Ш. Кулона. 1 Кл — электрический заряд, проходящий через поперечное сечение проводника за промежуток времени 1 с при силе постоянного тока 1 А.
Один кулон — очень большая единица заряда. Расчёты показывают, что диаметр удалённого от всех остальных тел металлического шара, находящегося в сухом воздухе, должен быть равен примерно 110 м, чтобы на нём мог находиться избыточный заряд 1 Кл. Вместе с тем при включении автомобильных фар сила тока в цепи приблизительно 10 А, т. е. ежесекундно через поперечное сечение проводников, подсоединённых к фарам, проходит заряд приблизительно 10 Кл.
На рубеже XIX и XX столетий учёные экспериментально установили, что в природе существует электрический заряд, модуль которого минимален, называемый элементарным. Ядра всех атомов содержат протоны, которые являются носителями положительного элементарного заряда, а сами атомы содержат электроны, являющиеся носителями отрицательного элементарного заряда. Равенство модулей зарядов электрона и протона установлено с точностью Модуль элементарного электрического заряда Кл. Обычно ограничиваются двумя значащими цифрами: Кл.
Электроны, протоны и нейтроны входят в состав всех тел, так как из них состоят атомы и молекулы любого вещества. В электрически нейтральном теле алгебраическая сумма зарядов всех частиц равна нулю. Если каким-нибудь образом создать в таком теле избыток зарядов одного знака, то оно окажется заряженным. Заряд q тела образуется совокупностью элементарных зарядов и всегда кратен элементарному заряду е (электрический заряд дискретен):
где— числа протонов и электронов в данном теле.
Например, тело, заряд которого q = 7e, отличается от нейтрального тела потерей семи электронов.
Закон сохранения электрического заряда
Модули противоположных по знаку зарядов, возникших в результате электризации на находившихся в контакте телах, равны. В этом можно убедиться на опыте. Возьмём эбонитовую палочку и кусочек меха. При трении друг о друга тела электризуются. Поместим поочерёдно внутрь металлической сферы, укреплённой на стержне электрометра, эбонитовую палочку (рис. 79, а) и кусочек меха (рис. 79, б). Стрелка электрометра отклонится, причём как в первом, так и во втором случаях на один и тот же угол. Если одновременно опустить внутрь сферы эбонитовую палочку и кусочек меха (рис. 79, в), то стрелка электрометра останется на месте. Следовательно, модули зарядов обоих тел равны, а их знаки противоположны.
Результаты многочисленных экспериментов позволили сформулировать утверждение, которое является фундаментальным законом природы — законом сохранения электрического заряда: в электрически изолированной системе при любых взаимодействиях алгебраическая сумма электрических зарядов остаётся постоянной:
где n — число зарядов в системе. Систему тел (частиц) называют электрически изолированной, если между ней и внешними телами нет обмена электрически заряженными частицами.
- Электрический заряд — физическая скалярная величина, характеризующая интенсивность электромагнитного взаимодействия тел (частиц). Электрический заряд существует в двух видах: положительный и отрицательный. Одноимённые заряды отталкиваются, а разноимённые — притягиваются.
- Существует заряд, модуль которого минимален, называемый элементарным:
- Электрический заряд дискретен, т. е. электрический заряд любой частицы или тела является кратным элементарному электрическому заряду.
- Закон сохранения электрического заряда: в электрически изолированной системе при любых взаимодействиях алгебраическая сумма электрических зарядов остаётся постоянной:
- Значение электрического заряда не зависит от того, движется он или покоится.
Взаимодействие точечных зарядов
Обсуждая электризацию как электростатическое явление, мы не задавали вопрос: «А как определить силу, с которой одно заряженное тело притягивает или отталкивает другое?». Ответ на этот вопрос был найден в конце XVIII столетия независимо друг от друга двумя учёными: Г. Кавендишем в 1774 г. и Ш. Кулоном в 1785 г. Однако современникам стали известны только результаты опытов Кулона.
Закон Кулона
Вы уже встречались с физическими моделями при изучении механики (материальная точка) и молекулярной физики (идеальный газ). В электростатике при изучении взаимодействия электрически заряженных тел эффективной оказывается модель «точечный заряд». Точечный заряд — заряд такого заряженного тела, размеры которого значительно меньше расстояния от этого тела до точки наблюдения и до других тел (т. е. размерами заряженного тела в условиях данной задачи можно пренебречь).
Кулон первым опубликовал результаты своих исследований по взаимодействию неподвижных точечных зарядов.
Он на опыте изучил зависимость сил электрического взаимодействия тел от модулей зарядов этих тел и расстояния между ними. Полученное им соотношение является одним из основных законов электростатики.
В своих опытах Кулон использовал специальный прибор — крутильные весы (рис. 80). Крутильные весы представляют собой два стеклянных цилиндра, внутри которых на тонкой серебряной нити подвешено лёгкое непроводящее коромысло. На одном конце коромысла закреплён проводящий шар 1, а на другом — бумажный противовес 3. Шар 1 можно заряжать с помощью такого же проводящего шара 2, находящегося на изолирующем стержне, который крепится на крышке нижнего цилиндра. При соприкосновении шара 1 с заряженным шаром 2 заряд распределяется между ними поровну, и шары отталкиваются. По углу закручивания нити, отсчитываемому по шкале, можно определить силу, с которой заряд шара 2 действует на заряд шара 1. Проведя большое количество опытов, Кулон установил, что модуль сил взаимодействия двух заряженных шаров обратно пропорционален квадрату расстояния между ними:
Разряжая шар 2 прикосновением руки, а затем касаясь им уже заряженного шара 1, Кулон смог получить на нём заряды, модуль которых в 2, 4, 8 и т. д. раз меньше первоначального. Он выяснил, что при неизменном расстоянии модуль сил взаимодействия двух неподвижных небольших заряженных тел прямо пропорционален произведению модулей электрических зарядов каждого из них:
Обобщив экспериментальные данные, Кулон сформулировал закон, получивший его имя.
Модули сил взаимодействия двух неподвижных точечных заряженных тел в вакууме прямо пропорциональны произведению модулей зарядов этих тел, обратно пропорциональны квадрату расстояния между ними, а сами силы направлены вдоль прямой, соединяющей эти тела, являясь силами отталкивания для одноимённых зарядов и силами притяжения для разноимённых.
(14.1)
где k — коэффициент пропорциональности, зависящий от выбора единиц физических величин, — модули точечных зарядов, r — расстояние между ними.
Силы взаимодействия неподвижных точечных зарядов называют кулоновскими силами. В соответствии с третьим законом Ньютона эти силы противоположно направлены а их модули равны (рис. 81).
В СИ коэффициент пропорциональности
где— электрическая постоянная
Опытным путём установили, что силы взаимодействия двух точечных зарядов не изменяются при появлении третьего точечного заряда или любого числа точечных зарядов. В этом случае силы воздействия
каждого из зарядов на заряд определяют по закону Кулона. Результирующая сила является векторной суммой сил, с которыми каждый из этих зарядов в отдельности воздействует на заряд (принцип суперпозиции).
Используя принцип суперпозиции и закон Кулона, можно описать электростатическое взаимодействие любой системы зарядов. На рисунке 82 показаны три взаимодействующих между собой точечных электрических заряда: Равнодействующей сил, действующих на заряд qi со стороны зарядов является сила которая равна векторной сумме сил Силы воздействия зарядов на заряд определяют по закону Кулона.
Закон Кулона, описывающий электростатическое взаимодействие, формально похож на закон всемирного тяготения Ньютона, определяющий силы гравитационного взаимодействия двух тел:
В обоих случаях модуль сил взаимодействия:
- — обратно пропорционален квадрату расстояния между материальными точками;
- — прямо пропорционален величинам, характеризующим те свойства тел (материальных точек), которые определяют взаимодействия, — массам в одном случае и электрическим зарядам — в другом.
Для измерения сил электрического и гравитационного взаимодействий учёные использовали похожие по устройству экспериментальные установки.
Однако между силами гравитационного и электростатического взаимодействий существует и важное различие. Ньютоновские силы тяготения — это всегда силы притяжения. Кулоновские же силы взаимодействия зарядов могут быть как силами притяжения (между разноимёнными зарядами), так и силами отталкивания (между одноимёнными зарядами).
Закон Кулона в виде (14.1) справедлив не только для точечных зарядов, но и для заряженных тел сферической формы, заряды которых распределены равномерно по всему объёму или по поверхности этих тел (при этом r — расстояние между центрами сферических тел).
Как показывают опыты, взаимодействие электрически заряженных тел в вакууме практически не отличается от их взаимодействия в воздухе. Поэтому формулу (14.1) применяют, описывая взаимодействие заряженных тел как в вакууме, так и в воздухе. Если заряженное тело находится в воде, керосине, масле или какой-нибудь другой непроводящей среде, то модуль сил взаимодействия будет меньше, чем в вакууме.
Экспериментальные факты свидетельствуют о том, что воздействие неподвижного в данной инерциальной системе отсчёта точечного заряда на движущийся точечный заряд может быть описано законом Кулона с приемлемой точностью. Так, описание рассеяния а-частиц на ядрах атомов золота в опытах Резерфорда с помощью модели точечного заряда, на который действует кулоновская сила со стороны неподвижного ядра, согласуется с экспериментальными данными в пределах точности последних Модуль скорости движения а-частиц относительно ядра атома золота
где с — скорость распространения света в вакууме, с
Два и более движущихся в данной инерциальной системе заряда не могут характеризоваться только кулоновским взаимодействием, так как каждый из них создаёт в окружающем пространстве магнитное поле, которое действует магнитной силой на остальные заряды, движущиеся в нём.
- Точечный заряд — заряд такого заряженного тела, размеры которого значительно меньше расстояния от этого тела до точки наблюдения и до других тел (т. е. размерами заряженного тела в условиях данной задачи можно пренебречь).
- Закон Кулона: модули сил взаимодействия двух неподвижных точечных заряженных тел в вакууме прямо пропорциональны произведению модулей зарядов этих тел, обратно пропорциональны квадрату расстояния между ними, а сами силы направлены вдоль прямой, соединяющей эти тела, являясь силами отталкивания для одноимённых зарядов и силами притяжения для разноимённых:
- Силы взаимодействия двух точечных зарядов не изменяются при появлении других точечных зарядов. Силы воздействия каждого из зарядов на заряд определяют по закону Кулона, а результирующую силу, действующую на заряд находят как векторную сумму сил, с которыми каждый из этих зарядов в отдельности воздействует на заряд (принцип суперпозиции).
- Закон Кулона справедлив для неподвижных точечных зарядов и сферических тел с равномерным распределением заряда по поверхности или объёму.
Пример №1
Две бусинки, электрические заряды которых 40 нКл и 90нКл, закреплены на непроводящем стержне на расстоянии r=40 см друг от друга. Определите: а) где надо поместить третью бусинку, имеющую заряд, чтобы она оказалась в равновесии; б) каким должен быть заряд третьей бусинки, чтобы сила электростатического взаимодействия каждой из трёх бусинок с остальными двумя равнялась нулю.
Дано:
r= 40 см = 0,40 м
x-? -?
Решение, а) Третья бусинка, имеющая заряд будет находиться в равновесии, если её поместить в некоторую точку A между зарядами на прямой, соединяющей эти заряды (рис. 83). Пусть заряд <0. Тогда со стороны зарядов на заряд будут действовать противоположно направленные кулоновские силы притяжения
Согласно второму закону Ньютона эта бусинка будет покоиться, если модули сил равны. Тогда, приняв расстояние от заряда до точки А равным х, запишем:Так как k и не равны нулю, то это выражение можно сократить: Извлечём из обеих частей равенства квадратный корень Отсюда
Такое же значение х мы получим, если примем заряд бусинки положительным (проверьте это самостоятельно).
б) Сила электростатического взаимодействия каждой из трёх бусинок с остальными двумя равна нулю, если, например, третья бусинка притягивает вторую с силой, модуль которой равен модулю силы с какой её отталкивает первая бусинка (рис. 84). При этом заряд третьей бусинки должен быть отрицательным, т. е. <0. Тогда Отсюда
Ответ: х=16 см, расстояние до бусинки с зарядом не зависит от значения и знака её заряда; если заряд бусинки = —14 нКл, то сила электростатического взаимодействия каждой из трёх бусинок с остальными двумя равна нулю.
Пример №2
Два одинаковых маленьких проводящих шарика массой m = 20мг каждый подвешены в воздухе на лёгких нерастяжимых нитях длиной l = 0,20 м, закреплённых в одной точке подвеса. Один из шариков отвели в сторону, сообщили ему заряд q < 0 и отпустили. После столкновения шарики разошлись так, что угол между нитями составил 2а = 60° (рис. 85). Определите значение заряда, который был сообщён первому шарику, а также количество избыточных электронов на каждом из шариков после их столкновения.
Дано:
l=0,20 м
2а = 60°
q – ? N — ?
Решение. Воспользуемся законом сохранения электрического заряда. При столкновении двух одинаковых проводящих шариков сообщённый одному из них заряд разделился поровну и на каждом шарике оказался избыточный отрицательный заряд Hа каждый шарик действуют сила тяжестисила электростатического взаимодействия и сила упругости нити (рис. 86).После столкновения шарики разошлись и установилось равновесие. Векторная сумма сил, действующих на каждый шарик, стала равной нулю:
Модуль силы электростатического взаимодействияПоскольку шарики разошлись симметрично относительно вертикали, проходящей через точку подвеса нитей, то (см. рис. 86). Следовательно, Так как (см. рис. 86),
Количество избыточных электронов на каждом шарике
Электростатическое поле
Заряженные тела и частицы, которые кратко называют зарядами, взаимодействуют друг с другом. Это подтверждают многочисленные опыты, а закон Кулона позволяет определить силы взаимодействия неподвижных точечных зарядов. Но что является причиной подобного взаимодействия, каков его механизм?
Первым, кто догадался, что «тела действуют друг на друга на расстоянии посредством обращения окружающей среды в состояние напряжения», был выдающийся английский учёный Майкл Фарадей (1791 —1867). Обобщая результаты собственных исследований, проведённых с 1832 г. по 1852 г., Фарадей ввёл в физику новое понятие — поле. Математическую завершённость идее Фарадея об изменении состояния пространства вблизи заряженных тел (частиц) и возникновении новой сущности, впоследствии названной электромагнитным полем, придал его гениальный соотечественник и преемник Джемс Клерк Максвелл (1831 —1879).
Электрический заряд, создающий в окружающем пространстве электрическое поле, называют источником поля и часто обозначают символом Q. Электрическое поле оказывает силовое действие на любой другой заряд q, помещённый в него.
Самая существенная особенность электрического поля — его материальность, т. е. электрическое поле — вид материи. В реальности существования электрического поля можно убедиться по его проявлениям: поле, созданное зарядом, действует с определённой силой на другие заряды, которые в него вносят.
Поле, создаваемое неподвижными относительно используемой инерциальной системы отсчёта электрическими зарядами, называют электростатическим полем.
Чтобы исследовать электростатическое поле, создаваемое зарядом Q, поместим в это поле заряд q$, называемый пробным. Под пробным зарядом
понимают заряд, модуль которого достаточно мал и собственное поле не меняет существенно распределения остальных зарядов, создающих исследуемое поле. Пробный заряд должен быть точечным, чтобы можно было исследовать поле в малых областях пространства. Пробный заряд может быть как положительным, так и отрицательным.
Отметим, что свойство электрического поля, обусловленное присутствием тела с зарядом-источником поля Q, воздействовать некоторой силой проявляется не только в точке, в которой находится пробный заряд д0. Это свойство присуще всем точкам поля, создаваемого зарядом Q.
Используя пробный заряд q0, можно количественно охарактеризовать электростатическое поле, создаваемое любым заряженным телом, указав модуль и направление силы, действующей на этот заряд д0. Удобно пользоваться такой характеристикой электростатического поля, которая не зависит от числового значения пробного заряда. Ею является напряжённость.
Напряжённость электростатического поля
Если в произвольно выбранную точку А электростатического поля, созданного зарядом Q, внести пробный заряд то поле подействует на него с определённой силой Поместим поочерёдно в эту же точку поля другие пробные заряды значения которых в 2, 3, 4 и т. д. раз отличаются от значения заряда . Опыт показывает, что модули сил действующих со стороны электростатического поля, созданного зарядом Q, на пробные заряды прямо пропорциональны значениям этих зарядов.
Таким образом, отношение силы, действующей на помещённый в некоторую точку поля пробный заряд, к значению этого заряда для данной точки поля остаётся неизменным. Это отношение является силовой характеристикой электростатического поля, получившей название напряжённость.
Напряжённостью электростатического поля в любой его точке называют физическую векторную величину, характеризующую силовое действие поля на вносимые в него заряды и равную отношению силы
с которой поле действует на пробный заряд находящийся в выбранной точке, к значению этого заряда:
Из выражения (15.1) следует, что единицей напряжённости электростатического поля в СИ является ньютон на кулон В СИ широко используют другое название этой единицы — вольт на метр . Покажите самостоятельно, что
Выражение (15.1) позволяет определить силу, действующую на точечный заряд q, помещённый в электростатическое поле напряжённостью , созданное другим точечным зарядом Q:
Напряжённость поля, как и сила, величина векторная. Направление напряжённости поля совпадает с направлением силы, действующей на положительный пробный электрический заряд. Напряжённость в любой точке электростатического поля направлена вдоль прямой, соединяющей эту точку и точечный заряд, создающий поле. Напряжённость поля, созданного точечным положительным зарядом Q > 0, направлена от заряда, а напряжённость поля, созданного точечным отрицательным зарядом Q < 0, —к заряду (рис. 87).
Напряжённость поля, создаваемое точечным зарядом
Найдём напряжённость электростатического поля, созданного точечным зарядом, модуль которого |Q|. Поместим в некоторую точку поля положительный пробный заряд Согласно закону Кулона модуль силы, действующей на пробный заряд,
где г — расстояние между зарядом Q, создающим поле, и точкой, в которую помещён пробный заряд . Подставляя выражение для модуля кулоновской силы в формулу для модуля напряжённости поля, получим:
Модуль напряжённости поля, создаваемого равномерно заряженной сферой, заряд которой Q, в точках на её поверхности и вне сферы на расстоянии r от её центра определяют по формуле точках, находящихся
внутри сферы, как мы увидим дальше,
Напряжённость электростатического поля, создаваемого равномерно заряженной бесконечной плоскостью, одинакова во всех точках полупространства с каждой стороны от плоскости (при этом , а её модуль
где S — площадь некоторого участка плоскости, q — заряд этого участка.
Принцип суперпозиции электрических полей
Если заряженные тела, создающие электростатические поля, не меняют своего состояния (распределения электрических зарядов) в зависимости от присутствия или отсутствия других тел, то напряжённость результирующего поля, образованного наложением рассматриваемых полей в некоторой точке:
где — напряжённости полей в указанной точке, создаваемые 1-м, 2-м, 3-м, …, п-м заряженным телом в отсутствие других (как заряженных, так и незаряженных) тел.
Самым простым примером проявления принципа суперпозиции являются электростатические поля, созданные разными точечными зарядами: если в определённой точке пространства электростатические поля создаются системой точечных зарядов, напряжённости которых в указанной точке то напряжённость результирующего поля в этой точке равна векторной сумме напряжённостей полей, создаваемых каждым из точечных зарядов системы в отдельности.
На рисунке 88 показано, как можно определить напряжённость результирующего поля, созданного двумя точечными электрическими зарядами противоположных знаков в точках А и В.
Напряжённости полей, созданных зарядами в точке А, направлены вдоль
прямой, соединяющей заряды, в противоположные стороны. Напряжённость результирующего поля в точке А равна векторной сумме напряжённостей и и также направлена вдоль прямой, соединяющей заряды. Напряжённость результирующего поля в точке В, находящейся вне прямой, соединяющей заряды, равна векторной сумме напряжённостей Определить её можно по правилу параллелограмма (см. рис. 88).
Аналогично определяют напряжённость и для электростатического поля системы проводящих концентрических заряженных сфер.
Линии напряжённости электростатического поля
Чтобы наглядно отображать распределение поля в пространстве, Фарадеем в 1845 г. был предложен способ изображения электрических полей в виде воображаемых линий, называемых линиями напряжённости (силовыми линиями).
Линии напряжённости — воображаемые направленные линии, касательные к которым в каждой точке поля совпадают по направлению с напряжённостью электростатического поля в той же точке (т. е. с направлением электростатической силы, действующей на положительный заряд) (рис. 89).
Очевидно, что через любую точку поля, в которой можно провести одну и только одну линию напряжённости. В каждой такой точке напряжённость имеет вполне определённое направление.
На рисунке 90, а показаны линии напряжённости полей, образованных зарядами, равномерно распределёнными по поверхности уединённых проводящих шариков. Направление каждой стрелки на рисунке 90, а совпадает с направлением напряжённости поля. Линии напряжённости в первом случае направлены от положительного заряда в бесконечность, а во втором — из бесконечности к отрицательному заряду и оканчиваются на нём.
В электростатическом поле линии напряжённости начинаются и оканчиваются на электрических зарядах даже тогда, когда одним своим концом уходят в бесконечность, где и находятся недостающие на рисунке заряды.
На рисунке 90, б показаны линии напряжённости электростатического поля, образованного двумя разноимёнными зарядами, модули которых одинаковые, находящимися на проводящих шариках. Стрелки показывают направления напряжённости поля в различных его точках.
На рисунке 90, в приведены линии напряжённости электростатического поля двух одинаково заряженных шариков.
На рисунке 90, г изображено поле, созданное зарядами противоположных знаков, модули которых одинаковые, находящимися на двух плоских металлических пластинах, длина которых много больше расстояния между ними. Линии напряжённости такого поля параллельны друг другу за исключением пространства вблизи краёв пластин и вне области их перекрытия. Электростатическое поле в центральной области между разноимённо заряженными металлическими пластинами является примером однородного поля. Электростатические поля, изображённые на рисунке 90, а, б, в, являются неоднородными, так как или модуль, или направление (или и то и другое) напряжённости в разных точках поля отличаются.
Электростатическое поле, напряжённость которого в любой его точке одинакова, называют однородным электростатическим полем.
Линии напряжённости электростатического поля не прерываются в пространстве (при отсутствии в нём других зарядов), никогда не пересекаются и не касаются друг друга.
Чтобы линии напряжённости отображали не только направление, но и модуль напряжённости поля, на рисунках их условились проводить с определённой густотой. Густота линий напряжённости в пространстве зависит от модуля напряжённости поля: линии напряжённости идут гуще там, где модуль напряжённости поля больше, и реже там, где он меньше. В однородном электростатическом поле густота линий напряжённости не меняется. Картину линий напряжённости принято строить так, чтобы она по возможности отображала симметрию изображаемого электростатического поля. Количество линий напряжённости, началом или концом которых служит данный заряд, пропорционально значению этого заряда (рис. 91)
- Поле, создаваемое неподвижными относительно используемой инерциальной системы отсчёта электрическими зарядами, называют электростатическим полем.
- Напряжённостью электростатического поля в любой его точке называют физическую векторную величину, характеризующую силовое действие поля на вносимые в него заряды и равную отношению силы, с которой поле действует на пробный заряд, находящийся в выбранной точке, к значению этого заряда:
- Модуль напряжённости поля, создаваемого в вакууме или воздухе точечным зарядом, прямо пропорционален модулю этого заряда и обратно пропорционален квадрату расстояния между зарядом и точкой, в которой определяют значение напряжённости:
- Линии напряжённости — воображаемые направленные линии, касательные к которым в каждой точке поля совпадают по направлению с напряжённостью электростатического поля. Линии напряжённости начинаются на положительных зарядах и оканчиваются на отрицательных, нигде не прерываются в пространстве, не содержащем других зарядов, не пересекаются и не касаются друг друга.
- Электростатическое поле, напряжённость которого в любой его точке одинакова, называют однородным электростатическим полем.
Пример №3
Два неподвижных точечных заряда = 6,70нКл и =-13,3 нКл находятся в воздухе на расстоянии r=5,00 см друг от друга. Определите модуль напряжённости электростатического поля в точке, находящейся на расстоянии = 3,00 см от положительного заряда и =4,00см от отрицательного.
Дано:
Решение. Согласно принципу суперпозиции напряжённость результирующего поля (рис. 93) определяют по правилу параллелограмма. Здесь — напряжённости полей, создаваемых точечными зарядамив данной точке. Из условия задачи и теоремы, обратной
теореме Пифагора, следует, что угол между прямой. Модуль напряжённости Е результирующего
поля найдём по теореме Пифагора:
как заряды точечные, то
С учётом этого
Пример №4
Первоначально неподвижный шарик массой m = 10 г и зарядом q = 10 нКл начинает падать с ускорением, модуль которого в вертикальном однородном электростатическом поле. Определите напряжённость этого поля. Механическим сопротивлением среды пренебречь.
Дано:
Решение. В начальный момент на шарик действуют сила тяжести со стороны гравитационного поля Земли и электрическая сила со стороны однородного электростатического поля. Модуль ускорения, с которым начинает падать положительно заряженный шарик, меньше модуля ускорения свободного падения Следовательно, электрическая сила направлена вертикально вверх и совпадает по направлению с напряжённостью электростатического поля (рис. 94). Модуль напряжённости определим, используя второй закон Ньютона: В проекции на вертикальную ось О у (см. рис. 94) это уравнение имеет вид
Ответ: напряжённость электростатического поля направлена вертикально вверх и её модуль
Потенциальность электростатического поля
Электростатическое поле, действуя на находящиеся в нём заряды с определённой силой, может их перемещать. Из механики вы знаете, что при перемещении тела действующая на него сила совершает работу. Выясним, от чего зависит работа силы по перемещению электрического заряда в электростатическом поле.
Работа силы однородного электростатического поля по перемещению электрического заряда. В общем случае работа сил электрического поля при перемещении заряда зависит как от его начального и конечного положений, так и от вида траектории, по которой движется заряд.
Однако электростатическое поле имеет важную особенность. Работа сил этого поля при перемещении заряда между двумя точками зависит только от положения этих точек и не зависит от вида траектории. Такой же особенностью обладает и гравитационное поле. Физические поля, работа сил которых не зависит от формы траектории, называют потенциальными (или консервативными). Покажем, что электростатическое поле потенциально.
Пусть положительный пробный заряд перемещают в однородном электростатическом поле напряжённостью из точки В в точку С вдоль линии напряжённости рассматриваемого поля (рис. 95, а). При этом сила с которой поле действует на заряд , совершает работу. В скалярном виде выражение для работы имеет вид a., где a — угол между силой и перемещением заряда. Модуль электрической силы , cosa= 1 (направления силы и перемещения заряда совпадают), , где d — расстояние между точками В и С. Тогда работа силы однородного электростатического поля по перемещению заряда:
Если заряд перемещают по прямой из точки В в точку D под углом a к направлению напряжённости поля (рис. 95, б), то a = d. Работа силы поля по перемещению заряда и в этом случае:
Очевидно, что для перемещения заряда в обратном направлении (из точки D в точку В) внешней силе требуется, преодолевая силу поля, совершить
работу, минимальное значение которой будет таким же поэтому . Следовательно, когда заряд возвращается в начальную точку, т. е. при движении заряда по замкнутой траектории, работа силы поля равна нулю.
Предположим, что перемещение заряда из точки В в точку D происходит в однородном электростатическом поле напряжённостью по криволинейной траектории (рис. 96). В этом случае траекторию можно разбить на такие малые участки, чтобы каждый из них можно было считать прямолинейным. Если алгебраически просуммировать работы силы на каждом из этих участков, то получим:
где — модуль перемещения на i-м малом участке траектории, — угол между направлениями перемещения и напряжённости поля (i=1, 2, 3 n).
Таким образом, работа силы однородного электростатического поля по перемещению заряда из одной точки поля в другую не зависит от формы траектории, т. е. однородное электростатическое поле потенциально.
Воспользовавшись законом сохранения энергии, можно показать, что любое электростатическое поле является потенциальным. Это означает, что электростатическое и гравитационное поля имеют похожие свойства, определяемые их потенциальным характером. Применительно к электростатическому полю эти свойства выражаются в следующем:
а) Точечный электрический заряд, находящийся в любой точке электростатического поля, обладает потенциальной энергией взаимодействия с этим полем, значение которой определяют относительно произвольно выбираемой нулевой точки. В нулевой точке потенциальную энергию заряда в поле принимают равной нулю. Потенциальная энергия взаимодействия точечного заряда с электростатическим полем равна работе, которую совершили бы силы поля при перемещении данного заряда из указанной точки поля в нулевую точку.
б) Работа сил электростатического поля по перемещению электрического заряда из начальной точки 1 в конечную точку 2 равна приращению (изменению) потенциальной энергии заряда в поле, взятому со знаком минус, или же убыли потенциальной энергии:
(16.2)
где — потенциальные энергии перемещаемого заряда в начальной и конечной точках электростатического поля.
Следует подчеркнуть, что потенциальная энергия — это энергия взаимодействия, и её необходимо относить не к заряженной частице или телу, а к системе в целом. В частности, для заряженной частицы (тела), находящейся в электростатическом поле, это потенциальная энергия взаимодействия заряженной частицы с полем, т. е. с другими заряженными частицами и (или) телами, являющимися источниками этого поля. Кратко это принято формулировать так: потенциальная энергия заряда в поле.
Знак «минус» в выражении (16.2) означает, что если сила электростатического поля совершает положительную работу (подобно силе гравитационного поля Земли при падении камня), то потенциальная энергия заряженного тела в поле уменьшается: . При этом согласно закону сохранения энергии под воздействием только сил электростатического поля (другие силы
отсутствуют) увеличивается кинетическая энергия тела:
На этом основано ускорение заряженных частиц электростатическим полем. Если работа сил электростатического поля отрицательна (подобно работе силы гравитационного поля при движении камня, брошенного вверх), то потенциальная энергия заряда в поле увеличивается: При этом кинетическая энергия заряженного тела при отсутствии неэлектростатических сил уменьшается:
Потенциал электростатического поля как его энергетическая характеристика
Из выражений (16.1) и (16.2) следует, что приращение (изменение) потенциальной энергии заряда в однородном электростатическом поле при его перемещении из точки / в точку 2 поля пропорционально значению этого заряда. Как свидетельствуют результаты многочисленных экспериментов, эта пропорциональность сохраняется и для неоднородного электростатического поля. После выбора точки поля, в которой потенциальная энергия заряда принята равной нулю, значения потенциальной энергии заряда во всех остальных точках поля становятся однозначно определяемыми формулой (16.2). Если в произвольно выбранную точку электростатического поля поочерёдно вносить пробные зарядызначения которых отличаются в 2, 3, 4 и т. д. раз, то потенциальные энергии этих зарядов будут прямо пропорциональны их значениям.
Таким образом, отношение потенциальной энергии пробного заряда в поле к значению этого заряда для данной точки поля остаётся неизменным. Это отношение является энергетической характеристикой электростатического поля, получившей название потенциал.
Потенциалом электростатического поля в данной точке пространства называют физическую скалярную величину, характеризующую энергетическое состояние поля в данной точке пространства и равную отношению потенциальной энергии точечного (пробного) заряда помещённого в данную точку поля, к значению этого заряда:
(16.3)
Поскольку потенциальная энергия заряда в электростатическом поле зависит от выбора нулевой точки, то эта зависимость сохраняется и для потенциала. Если принять, что на бесконечно большом расстоянии от источника поле отсутствует, т. е. потенциальная энергия системы «заряд — электростатическое поле» на бесконечности равна нулю, то потенциал поля в данной точке можно определить следующим образом:
Потенциал электростатического поля в данной точке численно равен работе, которую совершают силы поля при перемещении единичного положительного заряда из данной точки в бесконечность.
За единицу потенциала в СИ принят вольт (В). Единица названа в честь итальянского учёного Алессандро Вольта (1745—1827), внёсшего большой вклад в изучение электрических явлений. 1 В — потенциал такой точки электростатического поля, в которой заряд 1 Кл обладал бы потенциальной энергией 1 Дж.
Потенциал электростатического поля точечного заряда q на расстоянии r от него в вакууме или в воздухе определяют соотношением
(16.4)
Знак заряда-источника поля определяет знак потенциала этого поля. Потенциал поля, создаваемого равномерно заряженной сферой радиусом R, заряд которой q, в вакууме или в воздухе в точках вне сферы на расстоянии r > R от её центра определяют по формуле . В точках, находящихся на поверхности и внутри сферы,
Для потенциала выполняется принцип суперпозиции: если поле создано системой n точечных зарядов, то потенциал такого поля в любой точке пространства равен алгебраической сумме потенциалов полей в этой же точке пространства, создаваемых каждым из точечных зарядов системы в отдельности:
(16.5)
Геометрическое место точек в электростатическом поле, потенциалы которых одинаковы, называют эквипотенциальной поверхностью.
Используя эквипотенциальные поверхности, можно представлять графически электростатические поля. Через каждую точку поля проходят только одна линия напряжённости и одна эквипотенциальная поверхность. В каждой точке электростатического поля линия напряжённости и эквипотенциальная поверхность взаимно перпендикулярны (рис. 97). Представление электростатического поля с помощью эквипотенциальных поверхностей, как и термин «потенциал», ввёл немецкий учёный К. Ф. Гаусс в 1840 г.
- Работа сил электростатического поля по перемещению заряда из начальной точки 1 в конечную точку 2 равна приращению (изменению) потенциальной энергии заряда в этом поле, взятому со знаком минус, или же убыли потенциальной энергии:
- Работа силы однородного электростатического поля по перемещению заряда
- Работа сил электростатического поля по перемещению заряда из начальной точки 1 в конечную точку 2 равна приращению (изменению) потенциальной энергии заряда в этом поле, взятому со знаком минус, или же убыли потенциальной энергии:
- Потенциалом электростатического поля в данной точке пространства называют физическую скалярную величину, характеризующую энергетическое состояние поля в данной точке пространства и равную отношению потенциальной энергии точечного (пробного) заряда, помещённого в данную точку поля, к значению этого заряда:
- Если иоле создано системой точечных зарядов, то его потенциал в данной точке пространства равен алгебраической сумме потенциалов полей в этой точке, создаваемых каждым из точечных зарядов системы в отдельности:
Пример №5
Электрон, двигаясь со скоростью, модуль которой попадает в однородное электростатическое поле, направление линий напряжённости которого совпадает с направлением его скорости. Пройдя расстояние d = 2,0 см, электрон начинает двигаться в обратном направлении. Определите модуль напряжённости электростатического поля. Как изменилась потенциальная энергия взаимодействия электрона с полем к моменту перемены направления движения? Масса электрона
Дано:
Решение. До изменения направления движения сила однородного электростатического поля совершает отрицательную работу по торможению электрона:
Эту работу также можно определить по формуле А = eEd.
Значит, —
Согласно закону сохранения энергии полная энергия системы «электрон— поле» остаётся неизменной, т. е. Следовательно,
, т. е. потенциальная энергия электрона в
поле возрастает на величину
Разность потенциалов электростатического поля
Напряжение. Связь между напряжением и напряжённостью однородного электростатического поля
Поскольку потенциальная энергия любой системы тел, взаимодействующих посредством потенциальных сил, зависит от выбора нулевой точки (нулевого уровня), то до осуществления такого выбора потенциальная энергия системы может быть определена только с точностью до некоторой постоянной величины. Но изменение потенциальной энергии не зависит от значения этой постоянной величины и однозначно характеризует процесс перехода системы из одного состояния в другое. Это относится и к изменению потенциальной энергии заряженной частицы (заряда) в электростатическом поле.
Понятие потенциала существенно для количественного описания электростатического поля наряду с его напряжённостью. Перемещение заряженных частиц в электростатическом поле, сопровождаемое изменением их потенциальной энергии, характеризуют, используя понятие «разность потенциалов». Как и приращение (изменение) потенциальной энергии, разность потенциалов не зависит от выбора нулевой точки.
Разностью потенциалов между двумя точками электростатического поля называют физическую скалярную величину, равную отношению работы совершаемой силой поля при перемещении пробного заряда из начальной точки 1 в конечную точку 2, к значению перемещаемого заряда:
Разность потенциалов определяется убылью потенциальной энергии перемещаемого в поле единичного положительного заряда.
Противоположную по знаку разности потенциалов величину называют приращением (изменением) потенциала:
За единицу разности потенциалов в СИ принимают вольт (В). 1 В — разность потенциалов таких двух точек поля, для которых при перемещении заряда 1 Кл из точки / в точку 2 сила, действующая на заряд со стороны поля, совершила бы работу 1 Дж.
Потенциал проводника можно измерить электрометром. Для этого проводник соединяют со стрелкой электрометра, корпус которого заземляют. Отклонение стрелки электрометра покажет наличие разности потенциалов между проводником и Землёй. Приняв потенциал Земли равным нулю, можно считать, что электрометр измеряет потенциал проводника.
Если имеются два заряженных проводника, то, соединив один из них со стрелкой, а другой с корпусом электрометра, измеряют разность потенциалов между заряженными проводниками.
Связь между напряжением и напряжённостью однородного электростатического поля
Термин «напряжение» ввёл в 1792 г. Вольта. Для электростатических полей понятия «электрическое напряжение» и «разность потенциалов» тождественны.
Работа, совершаемая силами однородного электростатического поля напряжённостью при перемещении пробного положительного заряда из точки 1 с потенциалом в точку 2 с потенциалом , может быть определена в соответствии с выражением (17.1)
а в соответствии с выражением (16.1)
где d — модуль перемещения заряда вдоль линии напряжённости электростатического поля.
Приравнивая соответствующие части равенств, найдём выражение, устанавливающее связь между модулем напряжённости однородного электростатического поля и разностью потенциалов, т. е. между двумя характеристиками электростатического поля: откуда
Принимая во внимание, что получим (17.2)
На основании формулы (17.2) вводят единицу напряжённости СИ вольт
на метр модуль напряжённости такого однородного электростатического поля, в котором напряжение между двумя точками, находящимися на одной и той же линии напряжённости на расстоянии 1 м, составляет 1 В.
Используя термин «напряжение», на практике точки / и 2 поля выбирают так, чтобы
- Работа, совершаемая силами электростатического поля мри перемещении пробного заряда из начальной точки 1 в конечную точку 2, равна произведению значения заряда и разности потенциалов (напряжения) между этими двумя точками поля:
- Модуль напряжённости однородного электростатического поля и разность потенциалов (напряжение) при условии, что связаны между собой соотношением
Пример №6
В центре сферы с равномерно распределённым положительным зарядом = 36 нКл находится маленький шарик с отрицательным зарядом, модуль которого =16нКл. Определите потенциал электростатического поля в точке, находящейся вне сферы на расстоянии r= 10 м от её центра.
Дано:
Решение. Потенциал в искомой точке определим по принципу суперпозиции: — потенциал электростатического поля положительно заряженной сферы, а — потенциал электростатического поля отрицательно заряженного шара
Поскольку:
Ответ:
Пример №7
Электрон, движущийся вдоль линии напряжённости электростатического поля, в точке поля с потенциалом = 0,90В имеет скорость,
дуль которой—. Определите потенциал точки поля, в которой
электрон начинает двигаться в обратном направлении. Масса электронакг.
Дано:
Решение. При движении электрона силы поля совершают работу Эта работа равна приращению (изменению) кинетической энергии электрона:
. С учетом того, что скорость
движения электрона уменьшилась до нуля, получим:
откуда
Проводники в электростатическом поле
Мы уже обсуждали сходство и различие гравитационного и электростатического взаимодействий. Следует отметить ещё одно их существенное различие. От сил тяготения нельзя защититься. Нет такого убежища, в котором бы силы тяготения не действовали. А вот получить надёжную защиту от электростатических сил вполне возможно. Такую защиту может обеспечить любой проводник. Так какие же свойства проводников позволяют использовать их для электростатической защиты?
В металлах свободными заряженными частицами являются электроны. Это происходит потому, что электроны, находящиеся на внешних оболочках атомов, утрачивают связи со своими атомами и могут относительно свободно передвигаться по всему объёму металла.
Выясним, что происходит в однородном металлическом проводнике, если его внести в электростатическое поле. Для этого поместим металлический проводник А в электростатическое поле, созданное двумя заряженными пластинами В и С (рис. 99). Напряжённость этого поля направлена от положительно заряженной пластины В к отрицательно заряженной пластине С.
Под действием электрических сил свободные электроны наряду с непрекращающимся тепловым движением начнут двигаться упорядоченно. Они будут накапливаться слева у поверхности проводника А, создавая там избыточный отрицательный заряд. Недостаток электронов на правой стороне проводника приведёт к возникновению на ней избыточного положительного заряда.
Перераспределившиеся заряды создают собственное электрическое поле Линии напряжённости этого поля в проводнике направлены в сторону, противоположную линиям напряжённости внешнего поля Упорядоченное перемещение свободных электронов в проводнике прекратится, если собственное поле скомпенсирует внешнее В этом случае напряжённость результирующего поля внутри проводника станет равной нулю, т. е. электрическое поле в проводнике исчезнет.
Следовательно, электростатическое поле внутри проводника отсутствует. Суммарный заряд любой внутренней области проводника равен нулю и не влияет на распределение зарядов на его поверхности и на напряжённость поля внутри проводника. На этом свойстве проводников основана электростатическая защита. Чтобы защитить чувствительные к электрическому полю приборы, их помещают внутрь заземлённых полых проводников со сплошными или сетчатыми стенками. Чаще, однако, экранируют не приборы, а сам источник электрического поля, от нежелательного воздействия которого необходимо защитить расположенные поблизости устройства.
Следствием того, что напряжённость электростатического поля внутри однородного проводника равна нулю, является то, что потенциал всех точек проводника одинаков. В самом деле, если напряжённость поля равна нулю, то разность потенциалов между любыми двумя точками проводника равна нулю. Поэтому можно говорить о потенциале проводника, не указывая конкретную точку, в которой он определён.
Электростатическая индукция
В соответствии с законом сохранения электрического заряда модули избыточных зарядов, возникающих на противоположных поверхностях первоначально незаряженного проводника при внесении его в электростатическое поле, должны быть равными. Проверим это на опыте.
Закрепим на непроводящих стержнях два плотно соприкасающихся металлических цилиндра А и В с прикреплёнными к ним листочками тонкой бумаги. Внесём их в электростатическое поле положительно заряженного шара (рис. 100, а). Листочки бумаги разойдутся, что свидетельствует о появлении зарядов на цилиндрах. Свободные электроны под действием поля, создаваемого зарядом шара, переместятся с цилиндра В на цилиндр А, зарядив его отрицательно. Цилиндр В из-за недостатка электронов станет положительно заряженным.
Явление, при котором на поверхности проводника (в данном случае на поверхности соединённых цилиндров), помещённого в электростатическое поле, появляются электрические заряды, называют электростатической индукцией или электризацией через влияние. Электрические заряды, возникающие в результате электростатической индукции, называют индуцированными.
Если заряженный шар убрать, то угол расхождения листочков бумаги уменьшится до нуля. Это объясняется тем, что в отсутствие электростатического поля, создаваемого зарядом шара, электроны равномерно распределяются по всему объёму обоих цилиндров.
При разъединении цилиндров в поле заряженного шара на них окажутся противоположные по знаку заряды (рис. 100, б), модули которых равны. Эти заряды сохранятся и в том случае, если заряженный шар, создающий поле, убрать (рис. 100, в). Только в этом случае заряды будут у соседних оснований цилиндров. В том, что модули зарядов обоих цилиндров равны, можно убедиться, соединив их (рис. 100, г): угол между листочками равен нулю.
Распределение зарядов в проводнике
Выясним, как распределяются заряды в наэлектризованном проводнике. Проведём опыт. Сообщим проводнику электрический заряд. Маленьким шариком на изолирующей ручке будем касаться различных точек на внешней поверхности заряженного полого металлического шара, а затем электрометра (рис. 101, а). Отмечая каждый раз угол отклонения стрелки электрометра, можно убедиться, что на внешней поверхности шара заряд распределяется равномерно. Если же коснуться маленьким шариком внутренней поверхности заряженного полого шара, а затем электрометра, то стрелка электрометра не отклонится (рис. 101, б). Следовательно, на внутренней поверхности шара избыточного заряда нет, т. е. заряды, сообщённые проводнику, располагаются на его внешней поверхности.
Зарядим проводник стреловидной формы положительным зарядом. Наибольший заряд, приходящийся на < небольшие одинаковой площади участки поверхности, находится на выпуклостях проводника, особенно на остриях. На рисунке 102 штриховой линией для наглядности показано распределение модуля напряжённости
поля у поверхности заряженного проводника стреловидной формы. Напряжённость электростатического поля вблизи острых выступов заряженного проводника может оказаться настолько большой, что начнётся ионизация молекул газов, входящих в
состав воздуха, в результате которой появятся положительные и отрицательные ионы и электроны. Заряженные частицы с тем же знаком заряда, что и на острие, движутся от него, увлекая нейтральные молекулы. Вследствие этого возникает направленное движение воздуха у острия, или, как говорят, «электрический ветер». Его можно обнаружить, если поднести к острию зажжённую свечу: её пламя отклонится в сторону от острия и может быть даже погашено.
Явление стекания зарядов с заострённых проводников приходится учитывать в технике. Для предотвращения стекания зарядов у всех приборов и механизмов, используемых в высоковольтных системах, металлические части делают закруглёнными, а концы металлических стержней снабжают гладкими наконечниками.
- Проводник — одна из моделей, используемых в электростатике, описывающая однородное тело, внутри которого напряжённость электростатического поля везде равна нулю.
- Явление, при котором на поверхности проводника, помещённого в электростатическое поле, появляются электрические заряды, называют электростатической индукцией или электризацией через влияние.
- Потенциалы всех точек на поверхности и внутри однородного проводника, помещённого в электростатическое поле, одинаковы.
- Заряды, сообщённые проводнику, располагаются на его внешней поверхности.
Диэлектрики в электростатическом поле
Исследуя явление электризации через влияние, английский физик Стефан Грей (1670—1736) установил в 1729 г., что вещества можно разделить на два класса: способные переносить электрические заряды и этим свойством не обладающие. Соответствующие термины «проводник» и «изолятор» были введены в 1742 г. англичанином Жаном Теофилом Дезагюлье (1683 —1744). Примерами хороших диэлектриков являются янтарь, стекло, эбонит, резина, шёлк, пластмасса, слюда, фарфор. Что происходит в диэлектрике, помещённом в электростатическое поле?
Диэлектрики
Термин «диэлектрик» ввёл Фарадей в 1838 г. для обозначения вещества, в которое проникает электростатическое поле («диэлектрик» от греч. dia — через, сквозь и англ, electric — электрический). В диэлектрике все электроны связаны с ядрами атомов. Электрическое поле не «отрывает» их от атомов, а лишь слегка смещает по отношению к положительно заряженным ядрам. Диэлектрик содержит только связанные заряды, т. е. заряды, входящие в состав атомов (молекул) диэлектрика и лишённые возможности свободно перемещаться под действием электрического поля.
Выясним, что происходит в диэлектрике, помещённом в электростатическое поле.
Проведём опыт. Длинную деревянную линейку установим на подставке так, чтобы она могла свободно вращаться (рис. 103). Наэлектризуем стеклянную (или эбонитовую) палочку и поднесём её к одному из концов линейки. Линейка начнёт поворачиваться. Следовательно, незаряженный диэлектрик, каким является деревянная линейка, притягивается к заряженному телу. Подобное поведение диэлектрика возможно только при условии появления на его концах избыточных зарядов, противоположных по знаку.
Поляризация диэлектрика
Каков же механизм перераспределения зарядов по поверхности диэлектрика? Действие электростатического поля с напряжённостью в которое помещён диэлектрик, сводится к перераспределению электронов в объёме каждого атома диэлектрика. В результате центр электрического заряда электронной оболочки атома смещается относительно центра положительного заряда ядра атома. В целом нейтральная молекула превращается в электрический диполь (ди — два, ноль — полюс) (рис. 104). Рассмотренное явление получило название электронной поляризации. Механизм электронной поляризации универсален, поскольку проявляется в атомах, молекулах или ионах любого диэлектрика.
Если диэлектрики состоят из молекул, являющихся электрическими диполями в отсутствие внешнего поля, то их называют полярными (вода, аммиак, эфир, ацетон и др.). У полярных диэлектриков в отсутствие внешнего электростатического поля молекулы-диполи, совершая тепловое движение, располагаются хаотически (рис. 105, а). Результирующее электрическое поле, создаваемое молекулами-диполями, практически равно нулю.
Под действием внешнего электростатического поля молекулы-диполи стремятся повернуться так, чтобы их оси совпали с направлением напряжённости внешнего поля (рис. 105, б). Если направление напряжённости поля перпендикулярно поверхностям, ограничивающим диэлектрик, то одна из этих поверхностей оказывается заряженной отрицательно, а другая — положительно.
У неполярных диэлектриков (парафин, бензол, азот и др.) молекулы со сферически симметричным распределением зарядов в отсутствие внешнего электрического поля не создают и собственного поля (рис. 105, в). Под влиянием электростатического поля, как уже было сказано, положительные и отрицательные заряды в пределах молекулы несколько смещаются один относительно другого, образуя диполь. Поэтому, как и в случае с полярными диэлектриками, в неполярных диэлектриках на одной поверхности появляется положительный поляризационный заряд, на другой — отрицательный (рис. 105, г).
В отличие от свободных зарядов проводника поляризационные заряды в диэлектрике не перемещаются, поэтому их и называют связанными. Эти заряды нельзя отделить один от другого. Так, если поляризованный диэлектрик разрезать пополам во внешнем электрическом поле, то на одной стороне каждой половинки будет нескомпенсированный положительный заряд, а на другой — отрицательный.
Электрическое поле внутри диэлектрика
Поляризационные заряды (см. рис. 105, б, г) создают собственное электростатическое поле, напряжённость которого направлена навстречу напряжённости внешнего поля и ослабляет её, но не компенсирует полностью.
Согласно принципу суперпозиции модуль напряжённости Е результирующего электростатического поля внутри диэлектрика
Для характеристики электрических свойств диэлектриков вводят физическую величину, называемую диэлектрической проницаемостью вещества.
Диэлектрическая проницаемость вещества — физическая скалярная величина, показывающая, во сколько раз модуль напряжённости электростатического поля внутри однородного диэлектрика меньше модуля напряжённости поля в вакууме:
Если точечные неподвижные заряды находятся в однородном безграничном диэлектрике, то модуль сил их электростатического взаимодействия определяют по формуле:
Различные диэлектрики поляризуются внешним полем по-разному и имеют разную диэлектрическую проницаемость. Так, диэлектрическая проницаемость дистиллированной воды при температуре 25 °С равна 78,54, льда при температуре —10 °С — 95, а стекла — от 4 до 16 в зависимости от его сорта. Диэлектрическую проницаемость воздуха, равную 1,0006, при решении задач округляют до 1.
Поляризацию частиц в сильном электростатическом поле используют в электрических фильтрах для очистки дыма от твёрдых продуктов сгорания топлива, загрязняющих территорию вокруг тепловых электростанций и крупных предприятий (рис. 106). Для этого в дымоходах устанавливают проводники специальной формы, которым сообщают определённый электрический заряд
Электрофильтры устанавливают на химических заводах, в цехах, производящих цемент, и других аналогичных производствах. Поляризованные частицы всевозможной пыли притягиваются к вертикальным электродам (рис. 107). Когда модуль силы тяжести, действующей на частицы, задерживаемые фильтром, достигает определённого значения, пыль оседает на дно фильтра. Для очистки фильтра пыль из него периодически удаляют.
- Диэлектрик — одна из моделей, используемых в электростатике, описывающая такое вещество, что внутри тел, состоящих из этого вещества, напряжённость электростатического поля может быть отлична от нуля.
- Явление перераспределения электрических зарядов в диэлектрике при внесении его в электростатическое поле называют поляризацией.
- Диэлектрическая проницаемость вещества — физическая скалярная величина, показывающая, во сколько раз модуль напряжённости электростатического поля внутри однородного диэлектрика меньше модуля напряжённости поля в вакууме:
Электроёмкость
Проводники и системы, состоящие из нескольких проводников, обладают свойством накапливать электрический заряд. Во многих электротехнических и радиотехнических приборах используют устройства, способные при малых размерах накапливать достаточно большой по абсолютной величине электрический заряд. Выясним, как это можно осуществить.
Электрическая ёмкость
Для характеристики свойства проводника накапливать электрический заряд ввели физическую величину — электрическую ёмкость. Для объяснения физического смысла этой величины рассмотрим следующий опыт: присоединим тонким длинным проводником к стержню электрометра с заземлённым корпусом уединённый полый металлический шар.
Проводник считают уединённым, если он расположен вдали от возможных источников электрического поля как проводящих, так и непроводящих тел. Если вблизи заряженного проводника находятся другие тела, то вследствие явления электростатической индукции в проводниках происходит перераспределение свободных электрических зарядов, а в диэлектриках — смещение в противоположные стороны разноимённых зарядов, входящих в состав атомов и молекул вещества, приводящее к возникновению поляризационных зарядов. Поляризационные заряды, возникающие в диэлектриках, и заряды, индуцируемые на проводниках, создают дополнительное электростатическое поле, изменяющее потенциал заряженного проводника.
Касаясь наэлектризованным проводящим шариком, закреплённым на изолирующей ручке, внутренней поверхности полого металлического шара, будем последовательно сообщать ему одинаковые положительные электрические заряды, увеличивая его суммарный заряд в 2, 3 и т. д. раз (рис. 108). Чем больше сообщённый шару электрический заряд, тем больше его потенциал, так как где R — радиус шара.
Значит, во сколько раз увеличился заряд шара, соответственно во столько же раз увеличился и его потенциал, т. е. отношение электрического заряда к потенциалу остаётся величиной постоянной для данного шара:
Прямая пропорциональная зависимость между потенциалом и электрическим зарядом справедлива не только для шарообразных проводников, но и для любого уединённого проводника произвольной формы. Необходимо только, чтобы форма и размеры проводника, а также диэлектрические свойства среды, в которой он находится, оставались неизменными.
Электрическая ёмкость С уединённого проводника — физическая скалярная величина, количественно характеризующая способность проводника накапливать электрический заряд и равная отношению заряда q проводника к его потенциалу
Обращаем ваше внимание, что электрическая ёмкость является характеристикой проводника и не зависит ни от его заряда, ни от потенциала. Поскольку заряды располагаются только на внешней поверхности проводника, то ни от вещества, из которого он изготовлен, ни от его массы электроёмкость проводника также не зависит. Она зависит только от формы и размеров проводника, а также от диэлектрической проницаемости среды, в которой этот проводник находится.
Единицу электрической ёмкости в СИ называют фарад (Ф).
1 Ф — электроёмкость такого уединённого проводника, которому для повышения потенциала на 1 В необходимо сообщить заряд 1 Кд:
1 Ф — очень большая электроёмкость. Например, в вакууме электроёмкостью С — 1 Ф обладал бы уединённый шар радиусом м (для сравнения: радиус земного шара м). Поэтому на практике применяют дольные единицы: микрофарад (1 мкФ = Ф), нанофарад (1 нФ = 1 • Ф) и пикофарад (1 пФ = 1 Ф).
Например, электроёмкость такого огромного проводника, как земной шар, С = 0,71 мФ, а электроёмкость человеческого тела примерно С= 50 пФ.
Электроёмкость уединённого проводящего шара радиусом R, находящегося в безграничной среде с диэлектрической проницаемостью определяют по формуле Это выражение можно получить в результате математических преобразований двух формул: для нахождения электроёмкости и потенциала заряженного шара
Конденсаторы
Для получения нужных значений электроёмкости используют конденсатор — систему, состоящую из двух или более проводников и способную накапливать и отдавать (перераспределять) электрические заряды. Конденсатор — от лат. condensare — уплотнять, сгущать.
Чтобы на электроёмкость конденсатора не оказывали влияние окружающие тела, проводникам, образующим конденсатор, придают такую форму, при которой поле, создаваемое зарядами этих проводников, сосредоточено между ними. Этому условию удовлетворяют две близко расположенные пластины (плоский конденсатор) (рис. 109, а), два коаксиальных цилиндра (цилиндрический конденсатор) (рис. 109, б), две концентрические сферы (сферический конденсатор) (рис. 109, в).
Широко распространенный тип конденсаторов представляет собой две ленты металлической фольги, разделённые тонкой парафинированной бумагой, полистиролом, слюдой или другим диэлектриком, которые свёрнуты в тугую спираль и запаяны (рис. 110).
Используют и так называемые воздушные конденсаторы, в которых изолирующим слоем, отделяющим проводники, является воздух.
Простейший конденсатор — система, состоящая из двух проводников, разделённых слоем диэлектрика, толщина d которого мала по сравнению с размерами проводников (рис. 111). Проводники, образующие конденсатор, называют его обкладками.
На обкладках конденсатора накапливаются противоположные по знаку электрические заряды, модули которых равны. Процесс накопления зарядов на обкладках называют зарядкой конденсатора. Процесс нейтрализации зарядов при соединении обкладок конденсатора проводником называют разрядкой конденсатора. Модуль заряда, находящегося на одной из обкладок конденсатора, называют зарядом конденсатора.
Свойство конденсатора накапливать и сохранять в течение длительного промежутка времени электрические заряды характеризуют его электрической ёмкостью.
Электрической ёмкостью С конденсатора называют физическую скалярную величину, количественно характеризующую способность конденсатора накапливать электрические заряды и равную отношению заряда q конденсатора к напряжению U между его обкладками:
Электроёмкость плоского конденсатора
Если обкладками конденсатора являются две одинаковые параллельные друг другу пластины, то конденсатор называют плоским. Электростатическое поле заряженного плоского конденсатора в основном сосредоточено между его обкладками и является практически однородным (рис. 112, а). Вблизи краёв пластин однородность поля нарушается, однако этим часто пренебрегают, когда расстояние между пластинами значительно меньше их размеров (рис. 112, б).
Чтобы установить, от чего зависит электроёмкость плоского конденсатора, проведём несколько опытов. В качестве обкладок конденсатора используем две металлические пластины, расположенные в воздухе на некотором расстоянии параллельно друг другу.
Соединим стержень электрометра с одной из пластин, а его корпус с другой (рис. 113). Зарядим конденсатор, подключив его к батарее элементов (источнику тока) на некоторый промежуток времени. Когда между пластинами конденсатора возникнет напряжение (стрелка электрометра отклонится), отключим его от источника тока.
Если перемещать пластины относительно друг друга, уменьшая площадь их взаимного перекрытия при неизменном расстоянии между ними, то показания электрометра при этом увеличиваются, хотя сообщённый пластинам при зарядке конденсатора заряд не изменяется. Так как напряжение между пластинами увеличивается при уменьшении площади перекрытия пластин конденсатора, то его электроёмкость должна уменьшаться
Увеличивая расстояние между пластинами конденсатора, не меняя площади их перекрытия, будем наблюдать возрастание показаний электрометра, т. е. увеличение напряжения между пластинами конденсатора, что возможно при уменьшении его электроёмкости. Значит, чем больше расстояние между пластинами конденсатора, тем меньше его электроёмкость
Если между обкладками конденсатора поместить пластину из диэлектрика, например, из стекла, то показания электрометра уменьшатся. Напряжение между обкладками в этом случае уменьшается, следовательно, электроёмкость конденсатора увеличивается
В СИ коэффициентом пропорциональности между электроёмкостью конденсатора и определяющими её величинами (S, d, ) является электрическая
постоянная
Результаты экспериментов позволяют записать формулу для определения электроёмкости плоского конденсатора:
где S — площадь одной из обкладок конденсатора, d — расстояние между обкладками, — диэлектрическая проницаемость среды, находящейся между его обкладками.
Зависимость электроёмкости конденсатора от расстояния между его пластинами используют в схемах кодирования клавиатуры персонального компьютера. Под каждой клавишей находится конденсатор, электроёмкость которого изменяется при нажатии на клавишу. Микросхема, подключённая к каждой клавише, при изменении электроёмкости выдаёт кодированный сигнал, соответствующий данной букве (рис. 114).
Условное изображение конденсатора постоянной электроёмкости на электрических схемах представлено на рисунке 115.
На схемах номинальную электроёмкость конденсаторов обычно указывают в микрофарадах и пикофарадах. Однако реальная электроёмкость конденсатора может значительно меняться в зависимости от многих факторов. Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором его можно использовать в заданных условиях в течение срока службы. Это напряжение может находиться в пределах от нескольких вольт до нескольких сотен киловольт. Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. Для многих типов конденсаторов с увеличением температуры допустимое напряжение уменьшается.
Для получения нужной электроёмкости конденсаторы соединяют в батареи, используя их параллельное и последовательное соединение. При параллельном соединении (рис. 116) положительно заряженные обкладки конденсаторов соединяют в одну группу, а отрицательно заряженные — в другую. При таком соединении напряжение на всех конденсаторах одинаковое, но их заряды могут быть разными.
При параллельном соединении конденсаторов:
1) напряжение на полюсах батареи конденсаторов равно напряжению на каждом конденсаторе:
2) полный заряд батареи конденсаторов равен сумме зарядов отдельных конденсаторов
3) электроёмкость батареи конденсаторов равна сумме электроёмкостей отдельных конденсаторов:
Параллельное соединение конденсаторов применяют для получения большой электроёмкости.
При последовательном соединении (рис. 117) положительно заряженная обкладка предыдущего конденсатора соединена с отрицательно заряженной обкладкой последующего. При таком соединении модули зарядов на всех обкладках равны, а суммарный заряд соединённых друг с другом обкладок равен нулю.
При последовательном соединении конденсаторов:
1) напряжение на полюсах батареи конденсаторов равно сумме напряжений на отдельных конденсаторах:
2) заряд батареи конденсаторов равен заряду каждого конденсатора:
3) величина, обратная электроёмкости батареи, равна сумме величин, обратных электроёмкостям отдельных конденсаторов:
1. Электрическая ёмкость уединённого проводника — физическая скалярная величина, количественно характеризующая способность проводника накапливать электрический заряд и равная отношению заряда проводника к его потенциалу:
2. Электроёмкость проводника зависит только от его формы и размеров, а также от диэлектрической проницаемости среды, в которой этот проводник находится.
3. Электрической ёмкостью конденсатора называют физическую скалярную величину, количественно характеризующую способность
конденсатора накапливать электрические заряды и равную отношению заряда конденсатора к напряжению между его обкладками:
4. Электроёмкость плоского конденсатора зависит от площади обкладок, расстояния между ними и диэлектрической проницаемости среды, находящейся между обкладками:
Пример №8
Плоскому конденсатору электроёмкостью С = 0,4 мкФ сообщён электрический заряд q = 2 нКд. Определите модуль напряжённости электростатического поля между обкладками конденсатора, если расстояние между ними d- 5 мм.
Дано:
Решение. Модуль напряжённости однородного электростатического поля определим по формуле Так как напряжение между обкладками конденсатора
Ответ:
Пример №9
Пространство между обкладками плоского конденсатора заполнено диэлектриком. Конденсатор зарядили до напряжения и отключили от источника тока. Определите диэлектрическую проницаемость диэлектрика, если после его удаления из конденсатора напряжение увеличилось до
Дано:
Решение.
В обоих случаях заряд конденсатора будет одинаковым так как он отключён от источника тока. Поскольку Электроёмкость плоского конденсатора определяют по формуле . Для рассматриваемых случаев электроемкости соответственно равны:
(2). Подставив формулы (2) в равенство (1), получим:
Ответ:
Энергия электростатического поля конденсатора
В процессе электризации тел внешние силы совершают работу по перераспределению зарядов между телами, преодолевая силы кулоновского притяжения при разделении отрицательных и положительных зарядов. Но всякое разделение зарядов приводит к возникновению электростатического поля. Это означает, что для создания электростатического поля системы заряженных тел необходимо совершить работу по перемещению зарядов между этими телами. Если в качестве таких тел рассматривать обкладки конденсатора, то процесс его зарядки можно представить как перенос заряда q с одной обкладки на другую, в результате чего одна из них приобретает заряд —q, а другая — +q. Работа, совершённая при этом внешними силами, равна энергии электростатического поля заряженного конденсатора.
Убедиться в том, что заряженный конденсатор обладает энергией, можно на опыте. Соберём электрическую цепь, состоящую из источника тока, конденсатора и электрической лампы (рис. 118). Зарядим конденсатор, подсоединив его к источнику тока. Затем, отключив конденсатор от источника тока, подсоединим его к лампе. При этом наблюдаем кратковременную вспышку света. В данном случае во время разрядки конденсатора его энергия превращается во внутреннюю энергию спирали лампы, часть этой энергии расходуется на излучение света.
При прохождении электрического тока по цепи конденсатор заряжался, т. е. на его обкладках накапливались электрические заряды. При этом в окружающем конденсатор пространстве возникло электростатическое поле. Суммарный электрический заряд обеих обкладок конденсатора до зарядки, во время зарядки и после разрядки равен нулю. Единственное изменение, которое произошло при разрядке конденсатора, заключается в том, что исчезло электростатическое поле, которое создавалось зарядами на обкладках конденсатора. Следовательно, энергией обладало электростатическое поле, образованное зарядами на обкладках заряженного конденсатора.
Если форма и размеры обкладок конденсатора, а также расстояние между ними и диэлектрические свойства среды, заполняющей пространство между обкладками, остаются неизменными, то напряжение на конденсаторе прямо пропорционально модулю
заряда его обкладок (рис. 119). Чтобы
увеличить модуль заряда на обкладках от до внешней силе необходимо совершить работу по перемещению бесконечно малой положительной порции заряда с отрицательной обкладки на положительную. Этой работе на рисунке 119 соответствует площадь заштрихованного столбика. Полная же работа А по зарядке конденсатора до напряжения U равна сумме площадей всех аналогичных столбиков, т. е. площади фигуры под графиком зависимости В данном случае — площади треугольника, равной половине произведения его основания на высоту:
Приращение энергии электростатического поля заряженного конденсатора равно работе, совершённой внешней силой при его зарядке:
Учитывая, что q-CU, формулу для определения энергии электростатического поля заряженного конденсатора можно записать в виде
Энергию электростатического поля заряженного конденсатора можно выразить через напряжённость поля, сосредоточенного между его обкладками (рис. 120).
Электроёмкость плоского конденсатора напряжение между обкладками U-Ed. Следовательно,
где V-Sd — объём пространства между обкладками конденсатора.
Применение конденсаторов
Конденсаторы находят широкое применение в электротехнике, радиотехнической и телевизионной аппаратуре, радиолокационной технике, телефонии, технике счётно-решающих устройств, лазерной технике, электроэнергетике (например, для улучшения коэффициента мощности промышленных установок, регулирования напряжения в распределительных сетях, в устройствах освещения люминесцентными лампами), металлопромышленности (например, для плавки и термической обработки металлов), добывающей промышленности (например, в электровзрывных устройствах), медицинской технике (например, в рентгеновской аппаратуре, приборах электротерапии), фототехнике (для получения вспышки света при фотографировании).
В связи с этим наряду с миниатюрными конденсаторами, имеющими массу менее грамма и размеры порядка нескольких миллиметров, существуют конденсаторы с массой в несколько тонн (рис. 121).
Энергию электростатического поля любого конденсатора можно определить но формулам
Пример №10
Плоский воздушный конденсатор, состоящий из двух обкладок площадью 5= 100 каждая, поместили в керосин, диэлектрическая проницаемость которого = 2,0, и подключили к источнику тока, напряжение на полюсах которого U = 120 В. Определите работу, которую необходимо совершить, чтобы после отключения конденсатора от источника тока увеличить расстояние между его обкладками от
Дано:
Решение. Модуль заряда каждой из обкладок
конденсатора . Энергия электростатического поля конденсатора до изменения расстояния между его обкладками
После отключения конденсатора от источника тока заряды на его обкладках не изменяются.
Энергию электростатического поля конденсатора после увеличения расстояния между его обкладками определим следующим образом:
Работа, которую необходимо совершить, чтобы увеличить расстояние между обкладками конденсатора, равна приращению энергии электростатического поля конденсатора:
Ответ: A = 0,13 мкДж.
Электрический заряд и электрическое поле
Перераспределение зарядов в теле, вызываемое воздействием другого заряженного тела, называется электризацией через влияние или электростатической индукцией.
Существуют заряды двух видов: положительные и отрицательные. Элементарный заряд
Электрические явления известны с древних времен. Но только XX в. можно назвать «веком электричества». Вряд ли можно представить себе нашу жизнь без компьютеров, телевизоров, телефонов, светильников и различной бытовой техники.
Само слово «электричество» происходит от греческого названия янтаря — электрон. Еще в древние времена заметили, что если янтарь потереть куском ткани, то он будет притягивать различные легкие предметы. Пластмассовая линейка, потертая бумажной салфеткой, также притягивает мелкие кусочки бумаги. Таким образом проявляется статическое электричество.
И янтарь, и линейка приобретают электрический заряд благодаря трению, т. е. происходит электризация трением. Но для электризации существенным является не столько трение, сколько контакт (соприкосновение) тел. Трение играет лишь вспомогательную роль. Благодаря ему достигается более тесный контакт, что приводит к более сильной электризации. Простейшим способом электризации является контактный, при котором заряженное и незаряженное тела приводят в соприкосновение. В результате часть заряда с заряженного тела переходит на незаряженное.
Следовательно, электрический заряд — это физическая скалярная величина, определяющая способность тел участвовать в электромагнитных взаимодействиях и их интенсивность.
Существующие два вида электрических зарядов в 1733 г. французский физик Шарль Франсуа Дюфе (1698 — 1739) назвал смоляным и стеклянным. «Я не сомневаюсь, что стекло и горный хрусталь ведут себя совершенно противоположно копаловой смоле, янтарю или испанскому воску» — писал он в мемуарах Парижской академии наук. Он отметил также, что «наэлектризованные тела отталкиваются теми телами, которые сообщили им электричество, но притягиваются некоторыми другими наэлектризованными телами». Это доказывают и эксперименты, которые Вы можете проделать сами. Если подвесить наэлектризованную линейку на нити и поднести к ней такую же наэлектризованную линейку, то они оттолкнутся (рис. 57, а, б). Если же заряды линеек различны, то они притягиваются друг к другу (рис. 57, в).
В 1750 г. американский ученый Бенджамин Франклин (1706—1790) разработал теорию электрических явлений. Основная идея этой теории: существует универсальная электрическая материя (субстанция), которая не наблюдается в нормальном состоянии тел. По терминологии Франклина тело, получившее избыток такой материи, например, в результате трения, оказывается заряженным положительно, а тело, потерявшее часть материи, — отрицательно. Он предложил считать заряды, возникающие на стекле, потертом о шелк, — положительными, а заряды, возникающие на поверхности эбонита, потертого о мех, — отрицательными. Одноименные заряды отталкиваются, а разноименные — притягиваются.
В обычных условиях тела содержат одинаковое количество положительных и отрицательных зарядов, т. е. они не заряжены, или электрически нейтральны. Тело можно наэлектризовать, т. е. создать на нем избыток или недостаток зарядов. Явление перераспределения зарядов между телами, называется электризацией, а тело, обладающее избытком или недостатком зарядов какого-либо знака, — наэлектризованным телом. Простейший способ электризации тел — электризация трением, при котором электризуются оба тела и притом разноименно. Например, при натирании янтаря тканью происходит разделение зарядов между ними, но сумма разделившихся зарядов равна нулю. Поэтому названия «положительный» и «отрицательный» следует понимать как знаки перед абсолютной величиной электрического заряда.
Явление электризации иллюстрирует один из фундаментальных законов природы — закон сохранения электрического заряда:
в любой замкнутой (электрически изолированной) системе алгебраическая сумма электрических зарядов остается постоянной при любых взаимодействиях внутри нее.
Этот закон справедлив как в макромире, например при зарядке конденсаторов, так и в микромире, например в ядерных реакциях и процессах взаимодействия элементарных частиц. Поэтому подобные законы называются фундаментальными.
Положительно и отрицательно заряженные частицы входят в состав всех атомов. Полный электрический заряд q системы равен алгебраической сумме ее положительных и отрицательных зарядов:
Для исследования заряженных тел используют модель точечного заряда. По аналогии с понятием материальной точки в механике точечным зарядом называется заряженное тело, размерами которого в условиях данной задачи можно пренебречь. Модель точечного заряда применима, если сила, действующая на заряженное тело, не зависит от его ориентации. Это условие выполняется, когда расстояние между заряженными телами велико по сравнению с их размерами и их формой и взаимной ориентацией можно пренебречь.
Эксперименты показывают, что ни у одного из заряженных тел не встречается заряд, который был бы по абсолютной величине меньше, чем заряд электрона. Поэтому абсолютное значение заряда электрона называют элементарным зарядом.
Носителями элементарных зарядов являются элементарные частицы: электроны (—е) и протоны (+е), которые входят в состав всех тел.
В СИ основной единицей заряда является кулон (1 Кл).
Один кулон — заряд, проходящий за одну секунду через поперечное сечение проводника, в котором проходит постоянный ток силой один ампер (1 Кл = 1 А • с).
1 Кл — очень большой заряд. Он в раз больше элементарного электрического заряда. Экспериментально установлено, что заряды частиц и тел кратны элементарному заряду
Название «протон» от греческого слова — простейший было введено Э. Резерфордом (1871 — 1937) в 1919г.
Для обнаружения электрического заряда используется электроскоп (рис. 58).
Он состоит из корпуса, внутри которого находятся два (или один) подвижных листочка. Листочки укреплены на металлическом стержне, который изолирован от корпуса и заканчивается металлическим шариком. Если поднести заряженный предмет близко к шарику, то листочки окажутся одноименно заряженными и оттолкнутся друг от друга. Чем больше заряд, тем больше расходятся листочки. Знак заряда таким образом определить невозможно.
Электроскоп можно использовать для определения знака заряда, предварительно сообщив ему какой-либо заряд известного знака, например отрицательный. Поднеся к шарику электроскопа отрицательно заряженное тело, мы увидим, что листочки раздвинутся больше. В случае положительно заряженного тела листочки электроскопа
сблизятся. В настоящее время для измерения величины электрического заряда используются чувствительные приборы — электрометры.
Если в каждой точке исследуемого пространства обнаруживается действие некоторой силы, причем это действие изменяется закономерно при переходе от одной точки к другой, то говорят, что в пространстве существует поле сил,
В случае, когда поле характеризуется векторными величинами (т. е. не только их модулями, по и направлениями), оно называется векторным.
Электрическим полем называют вид материи, посредством которого происходит взаимодействие электрических зарядов, т. с. поле играет роль передатчика взаимодействий между заряженными телами.
Понятие электрического поля было введено Майклом Фарадеем (1791 — 1867) в 30-х гг. XIX в. Согласно Фарадею, каждый заряд создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой заряд, и наоборот. Так осуществляется взаимодействие зарядов.
Свойства электрического поля:
- является материальным (обладает импульсом, энергией);
- порождается электрическим зарядом;
- обнаруживается по действию на заряд (действует на заряды с некоторой силой).
Поле, создаваемое неподвижными электрическими зарядами, называется электростатическим.
Раздел физики, в котором изучают свойства и взаимодействие неподвижных электрических зарядов и создаваемых ими электрических полей, называется электростатикой.
Классическая механика исходила из принципа дальнодействия. В соответствии с ним силу создает одно тело, которое мгновенно действует на другое удаленное тело.
В случае электромагнитного взаимодействия, как показало развитие науки, необходимо исходить из принципа близкодействия, при котором воздействие передается от одной точки к другой в окружающем пространстве. При этом необходимо учитывать конечную скорость передачи действия.
Электрическое иоле не является абстрактным понятием, введенным для удобства описания электрических взаимодействий. Оно представляет собой объективную реальность, особую форму материи, обладающую определенными физическими свойствами. При наличии в электрическом поле других зарядов оно взаимодействует с ними.
Электростатическое поле можно описать различными способами, например с помощью формул (аналитически), в виде таблиц, графически.
Помимо электростатического поля, порождаемого неподвижными зарядами, существует электрическое поле, порождаемое иными источниками, о которых речь пойдет в дальнейшем.
При изучении общих свойств этих нолей мы будем говорить об электрическом поле.
Любой технологический процесс, связанный с распылением, разделением, дроблением, смешиванием, перемещением ио трубам и т. п. различных диэлектрических материалов, сопровождается электризацией. В результате этого ежегодно в мире происходят сотни взрывов и пожаров на нефтяных базах, бензохранилищах, танкерах, самолетах, причиной которых является статическое электричество. Так, при заправке самолетов горючим разность потенциалов между Землей и горючим в топливных баках может достигать
160 000 В.
Закон Кулона
Радиус-вектор точки проводится из начала координат в данную точку пространства.
Закон всемирного тяготения: две материальные точки притягиваются друг к другу с силой, прямо пропорциональной произведению их масс, обратно пропорциональной квадрату расстояния между ними и направленной по прямой соединяющей эти точки:
Единицы в СИ: силы тока — ампер (1 А); силы — ньютон (1 Н). Масса электрона
В 1785 г. появились первые мемуары Шарля Огюстена Кулона (17.36—1806), в которых описывалось экспериментальное определение закона взаимодействия наэлектризованных тел. Прибор, которым пользовался Кулон для своих опытов, назывался крутильными весами (рис. 59).
Он состоял из подвижного коромысла ас длиной 21,7 см, подвешенного на тонкой серебряной нити диаметром 40 мкм длиной 75,8 см. На одном конце коромысла крепился шарик а диаметром 4,5—6 мм, а на втором — противовес с. Второй шарик b находился на неподвижном стержне, прикрепленном к крышке весов. В опытах измерялась сила отталкивания между одноименно заряженными шариками при различных расстояниях между ними.
На поверхность цилиндра, защищавшего всю систему от внешних воздействий, была нанесена шкала, позволявшая определять расстояние между шариками при их различных положениях. При зарядке шариков коромысло под действием силы отталкивания поворачивалось.
Для его возвращения в исходное положение необходимо было закрутить упругую нить в противоположную сторону на некоторый угол. По углу закручивания нити определялась сила взаимодействия заряженных шариков. Таким образом, удалось измерить силу отталкивания между одноименно заряженными шариками при различных расстояниях между ними.
При помощи крутильных весов Кулон установил количественный закон электростатического взаимодействия, называемый в настоящее время законом Кулона:
силы взаимодействия F двух точечных электрических зарядов в вакууме, покоящихся в данной инерциальной системе отсчета, прямо пропорциональны их величинам обратно пропорциональны квадрату расстояния г между ними и направлены вдоль прямой, соединяющей эти заряды (рис. 60):
Здесь k — коэффициент пропорциональности (как видно из формулы,
в СИ – электрическая постоянная.
Формула (1) определяет модули сил, с которыми взаимодействуют заряды. Силы направлены по прямой линии, соединяющей заряды. Заряд действует на заряд с силой а заряд действует на заряд с силой (рис. 61).
В соответствии с третьим законом Ньютона Если заряды одноименные, то действующие на них силы направлены в противоположные стороны (см. рис. 61, а). Если же заряды разноименные, то действующие на них силы направлены навстречу друг другу (см. рис. 61, б).
В векторном виде закон Кулона записывается так: где — радиус-вектор, проведенный от первого заряда ко второму, a — сила, действующая со стороны первого заряда на второй.
В аналогичном виде можно записать и закон всемирного тяготения с учетом того, что радиус-вектор направлен в сторону, противоположную силе притяжения
Модуль силы взаимодействия F уменьшается, если заряды взаимодействуют не в вакууме, а в веществе (это изменение будет обсуждаться позже).
Наиболее простой вид законы взаимодействия заряженных тел имеют в случае точечных зарядов. Подчеркнем, что закон Кулона применим не только к взаимодействию точечных зарядов, но и к равномерно заряженным телам сферической формы независимо от величины расстояния между центрами сфер.
Справедливость закона Кулона подтверждена тщательными многочисленными экспериментами, и в настоящее время показатель степени при установлен с погрешностью до
Первым закон взаимодействия неподвижных зарядов сформулировал английский физик Генри Кавендиш (1731 —1810) в 1773 г., но он редко публиковал свои исследования, поэтому большая часть его трудов осталась неопубликованной. Только в 1879 г. английский физик Дж. К. Максвелл, ознакомившись с хранившимися в Кембриджском университете неизданными рукописями Кавендиша, опубликовал его работы.
Напряженность электрического поля. Принцип суперпозиции электрических полей
Для количественной характеристики электрического поля вводят физическую векторную величину — напряженность электрического поля.
Исследуют электростатическое поле с помощью пробного заряда, который условились считать положительным. Под пробным понимается точечный заряд, собственное поле которого не изменяет механического состояния и распределения остальных зарядов, создающих исследуемое поле.
Внесем в электрическое иоле неподвижного точечного электрического заряда q пробный заряд Заряд q, создающий электростатическое поле, называется источником поля. Электростатическое иоле не действует на свой источник. На заряд будет действовать сила, модуль которой согласно закону Кулона различен в разных точках поля, но пропорционален заряду Вследствие этого отношение модуля этой силы к заряду не зависит от выбора заряда и характеризует электрическое поле в точке, где находится заряд . Если теперь поместить в ту же точку поля заряда q другой заряд то отношение также не будет зависеть от выбора заряда Таким образом, выполняется соотношение
Эта величина обозначается буквой Е и называется модулем напряженности электрического поля. Напряженность поля является величиной векторной, так как получается посредством деления векторной величины — силы Кулона на скалярную величину — заряд. Поэтому можно дать следующее определение:
- напряженность электрического поля векторная физическая величина, являющаяся силовой характеристикой электрического поля, определяется отношением силы, действующей со стороны поля на положительный точечный электрический заряд, находящийся в данной точке поля, к величине этого заряда:
В случае положительного заряда направления вектора напряженности электростатического поля и вектора силы совпадают, а в случае отрицательного заряда — противоположны.
Единицей напряженности электрического поля в СИ является ньютон на
кулон
Модуль напряженности Е электрического поля в данной точке пространства, находящейся на расстоянии r от точечного заряда q, может быть вычислен по
формуле
В векторном виде напряженность электростатического поля можно определить следующим образом:
где — радиус-вектор данной точки пространства. Заряд q расположен в начале координат.
Таким образом, вектор напряженности определяется во всех точках пространства и зависит только от положения точки наблюдения, задаваемой радиус-вектором в данной системе отсчета:
А можно ли определить напряженность электрического поля в точке, где находится сам заряд, т. е. при r = 0? Оказывается, напряженность поля в этой точке для точечного заряда не определена. Но в этом случае модель точечного
заряда не применима. Реальное заряженное тело обладает определенными размерами и формой, которые необходимо учитывать при нахождении напряженности электростатического поля. Если форма проводящего тела сферическая, то напряженность поля достаточно просто определяется везде.
Зная вектор в какой-либо точке поля, можно определить силу, которая будет действовать на точечный заряд, помещенный в данную точку. При этом нас не интересует расположение точечных зарядов — источников этого поля.
Часто в экспериментальных задачах напряженность электрического поля измеряется в большом числе точек, и результаты записываются в виде таблицы. Это еще один способ задания поля — табличный.
Гораздо нагляднее представлять поля графически. Этот способ придумал Майкл Фарадей в 1845 г. Он изображал электрическое поле с помощью силовых линий и получал своеобразные карты, или диаграммы, поля. Силовая линия — воображаемая направленная линия в пространстве, касательная к которой в каледой точке направлена вдоль вектора напряженности поля в этой точке (рис. 62).
Условились считать, что силовые линии начинаются на положительных и оканчиваются на отрицательных зарядах (это следует из выбора знака пробного заряда). Линии могут начинаться на положительных зарядах и уходить в бесконечность (рис. 63, а) или приходить из бесконечности к отрицательному заряду (рис. 63, б).
Графическое изображение поля с помощью силовых линий наглядно показывает направление сил Кулона в каждой точке поля.
Кроме того, силовые линии проводят таким образом, чтобы их густота была пропорциональна модулю напряженности поля. А поскольку модуль напряженности электрического поля пропорционален заряду (E~q), то число линий, выходящих из заряда или входящих в него, пропорционально величине заряда. Там, где силовые линии расположены гуще, напряженность поля больше, и наоборот.
Силовые линии поля не могут пересекаться (рис. 64), так как в этом случае вектор напряженности поля в точке пересечения имел бы несколько различных направлений.
Силовые линии двух точечных разноименных и одноименных зарядов приведены на рисунках 65 а, б, 66 и 67 соответственно.
Подчеркнем, что если в случае одинаковых по модулю зарядов силовые линии симметричны (см. рис. 65), то при различных значениях зарядов это не так (рис. 68).
Эксперименты показывают, что напряженности электрических полей подчиняются принципу суперпозиции:
напряженность электрического поля системы точечных зарядов в некоторой точке пространства равна векторной сумме напряженностей полей, создаваемых каждым из этих зарядов по отдельности в той же точке (рис. 69):
Рис. 65. Силовые линии электростатических нолей двух заряженных шариков: а — при разноименных зарядах; б — при одноименных зарядах
Принципы суперпозиции (от латинского слова superposition — добавление) устанавливают правила сложения физических величин одинаковой природы.
Принцип суперпозиции означает, что присутствие других точечных зарядов никак не сказывается на поле, создаваемом данным точечным зарядом, т. е. поля существуют независимо друг от друга.
Электрическое поле называется однородным, если в каждой его точке вектор напряженности одинаков по модулю и направлению, т. е. Графически однородное иоле представляется набором параллельных равноотстоящих силовых линий.
Примерами однородного электростатического поля являются:
- поле между двумя пластинами, заряды которых равны по модулю и противоположны по знаку (рис. 70, 71);
- поле равномерно заряженной бесконечной плоскости в вакууме (рис. 72).
Отметим, что у краев пластин существуют области краевых эффектов, в которых поля являются неоднородными.
Работа электростатического поля при перемещении заряда
Работа силы — это физическая скалярная величина, равная произведению модулей силы, перемещения и косинуса угла между направлениями силы и перемещения;
Единица работы в СИ — джоуль (1 Дж).
Внешние силы — это силы, действующие на тела системы со стороны тел, не входящих в исследуемую систему.
Внутренние силы в любой механической системе — это силы взаимодействия между телами, входящими в исследуемую систему.
Силы, работа которых не зависит от траектории, а определяется только начальным и конечным положениями тела в пространстве, называются потенциальными или консервативными.
Потенциальная энергия — это энергия взаимодействия тел. В поле силы тяжести для тела массой m, находящегося на высоте h над уровнем, выбранным за нулевой, она определяется по формуле где R — радиус Земли.
Работа консервативных сил равна приращению потенциальной энергии, взятому с обратным знаком, или ее убыли:
На заряд q, помещенный в однородное электростатическое поле напряженностью действует сила (рис. 73).
Поэтому при перемещении заряда вдоль отрезка АВ электростатическим полем будет совершена работа
где — длина катета прямоугольного треугольника ABC.
Рассмотрим теперь перемещение заряда по траектории АСВ. В этом случае работа однородного поля может быть вычислена как сумма работ по двум прямолинейным взаимно перпендикулярным участкам траектории:
Как видно, работа поля такая же, как и при перемещении заряда по отрезку АВ.
Наконец рассмотрим перемещение заряда между точками А и В по кривой АВ (рис. 74).
Его можно представить как совокупность n малых перемещений в виде ступенек. На этих малых участках кривой АВ работа совершается только
на участках, параллельных напряженности Работа в этом случае может быть найдена как сумма работ па каждом из отрезков
Если работа сил электростатического поля не зависит от траектории, то такое поле является потенциальным, или консервативным.
Следовательно, сила Кулона является консервативной, так же как и сила тяжести. Это следует и из сравнения формул закона Кулона и закона всемирного
тяготения:
Работу консервативных сил системы «заряд — поле» можно представить как разность потенциальных энергий в начале и в конце траектории:
где — потенциальные энергии заряда q в точках — приращение потенциальной энергии.
Напомним, что убыль физической величины равна разности ее начального и конечного значений, а приращение — наоборот, разности конечного и начального значений.
Как мы показали, потенциальная энергия заряда q в однородном электростатическом поле напряженностью определяется соотношением
где d — расстояние от заряда до отрицательно заряженной пластины.
Таким образом, во всех разобранных примерах работа сил электростатического поля по перемещению заряда не зависит от траектории и равна изменению потенциальной энергии заряда в поле, взятому с противоположным знаком.
Аналогичное свойство имеет сила тяжести, работа которой также не зависит от траектории движения тела, а определяется только его начальным и конечным положениями.
Потенциал. Разность потенциалов. Напряжение. Принцип суперпозиции потенциалов
Электростатическое поле в каждой точке пространства можно описывать не только векторной силовой характеристикой — напряженностью но и скалярной энергетической характеристикой — потенциалом электростатического поля
Потенциал электростатического поля — скалярная физическая величина, равная отношению потенциальной энергии W, которой обладает точечный заряд q в данной точке пространства, к величине этого заряда:
Единицей потенциала в СИ является вольт: 1 В =
Один вольт — потенциал, создаваемый электростатическим полем в точке, в которой потенциальная энергия пробного заряда величиной один кулон равна одному джоулю.
Из определения потенциала следует, что энергию W заряда q в данной точке пространства можно найти по формуле
Как было показано в предыдущем параграфе, работу сил электростатического поля по перемещению заряда q из произвольной точки 1 пространства в произвольную точку 2 (рис. 75) можно вычислить как
Если потенциал, создаваемый электростатическим полем в точке 1, равен а в точке 2 — то выражение для работы А сил поля можно переписать в виде
Таким образом, дня расчета работы сил электростатического поля по перемещению заряда q достаточно знать только разность потенциалов между начальной и конечной точками положения заряда в пространстве.
В электростатическом поле разность потенциалов называют еще электрическим напряжением и обозначают U.
Таким образом, под разностью потенциалов (электрическим напряжением) между двумя точками в пространстве понимают отношение работы сил электростатического поля по перемещению точечного заряда q из точки 1 в точку 2 к величине этого заряда:
Поскольку при вычислении работы сил поля необходимо знать только разность потенциалов, то выбирать нулевой уровень отсчета потенциала можно произвольно. Для удобства проведения расчетов часто за нулевой потенциал (уровень) выбирают потенциал поверхности Земли или проводника, соединенного с Землей. Такой проводник называют заземленным.
Заметим, что под действием сил электростатического поля свободный положительный точечный заряд будет перемещаться из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательный — наоборот.
Это различие объясняется тем, что силы, действующие со стороны поля на заряды различных знаков, имеют различные направления. В качестве механической аналогии движения положительного заряда в сторону убывания потенциала можно привести пример со скатывающимся с горы мячиком, который также движется в направлении «убывания» высоты горки (потенциальной энергии).
Если полагать, что в бесконечности поле отсутствует, т. е. потенциальная энергия находящегося там заряда равна нулю, то выражение для потенциала принимает вид
где — работа поля по перемещению заряда q из данной точки пространства в бесконечность.
Таким образом, потенциал электростатического поля в данной точке пространства численно равен работе, которую совершают силы поля при перемещении единичного положительного точечного заряда из данной точки пространства в бесконечность.
Можно показать, что потенциал поля, создаваемого точечным зарядом q, в точке, находящейся в вакууме на расстоянии r от заряда, определяется по формуле
Следовательно, работа по перемещению заряда между точками 1 и 2, находящимися на расстояниях от точечного заряда q, может быть вычислена по формуле
Рассмотрим систему, состоящую из n точечных зарядов, произвольным образом расположенных в пространстве. Для вычисления потенциала электростатического поля, создаваемого данной системой, в некоторой точке пространства используется принцип суперпозиции потенциалов:
потенциал электрического поля системы точечных зарядов в некоторой точке пространства равен алгебраической сумме потенциалов, создаваемых каждым их этих зарядов по отдельности в этой же точке:
Знак потенциала совпадает со знаком заряда.
Потенциал любого изолированного проводника можно измерить, отсчитывая его от потенциала Земли. Сделать это можно с помощью прибора, называемого электрометром или электростатическим вольтметром.
Один из простейших электрометров — электрометр Брауна (рис. 76) — аналогичен по устройству обычному электроскопу. Для определения потенциала заряженного проводника необходимо соединить его со стержнем электрометра, а металлический корпус электрометра соединить с Землей.
Часть заряда перейдет на стержень электрометра и подвижную легкую стрелку, которая, отталкиваясь от стержня, отклонится на некоторый угол и укажет на шкале значение потенциала проводника относительно Земли.
Электрометр Брауна пригоден для измерения разностей потенциалов от 1 кВ до 10 кВ. Существуют более чувствительные электрометры (статические вольтметры), позволяющие измерять напряжения от 0,01 В до 0,1 В.
Эквипотенциальные поверхности. Связь между напряжением и напряженностью для однородного поля
Для графического изображения полей, кроме силовых линий электрического поля, удобно использовать эквипотенциальные поверхности, или поверхности равного потенциала:
Пересекаясь с плоскостью чертежа, эквипотенциальные поверхности дают эквипотенциальные линии.
Через каждую точку поля проходит только одна силовая линия и одна эквипотенциальная поверхность, причем в каждой точке поля силовая линия и
соответствующая эквипотенциальная поверхность взаимно перпендикулярны (рис. 77).
Докажем свойство перпендикулярности силовых линий и эквипотенциальных поверхностей методом «от противного». Для этого предположим, что справедливо обратное утверждение — перпендикулярность отсутствует. Тогда должен существовать компонент вектора напряженности электрического поля, параллельный данной поверхности (рис. 78), и, соответственно, должна появиться сила, действующая на заряд по касательной к эквипотенциальной поверхности.
Следовательно, при перемещении заряда по эквипотенциальной поверхности эта сила будет совершать отличную от нуля работу. Но тогда согласно определению разности потенциалов рассматриваемая поверхность уже не будет эквипотенциальной, так как ее потенциал в разных точках различен
Таким образом, применив метод «от противного», мы пришли к противоречию. Это значит, что истинно утверждение: при вектор напряженности поля не имеет касательного (тангенциального) компонента Следовательно, силовые линии электростатического поля всегда перпендикулярны его эквипотенциальным поверхностям.
Начертив эквипотенциальные линии, соответствующие различным значениям потенциала, можно получить наглядное представление о том, как изменяется потенциал в данном поле (рис. 79, 80, 81).
В тех областях поля, где потенциал быстрее изменяется от точки к точке, эквипотенциальные поверхности расположены гуще. Модуль напряженности электростатического поля больше в точках, расположенных в таких областях.
Найдем связь между напряженностью однородного электростатического поля и напряжением U, создаваемым этим полем между точками 1 и 2 в пространстве (см. рис. 79).
Для этого вычислим работу сил поля двумя различными способами.
С одной стороны, при перемещении заряда q из точки 1 в точку 2 электрическим полем будет совершена работа
С учетом определения напряженности поля находим
С другой стороны, работу сил поля можно определить через электрическое напряжение:
Приравнивая правые части соотношений (2) и (3), получим
Из соотношения (4) видно, что напряженность электрического поля можно измерять как в вольтах на метр, так и в ньютонах на кулон Покажем, что эти единицы эквивалентны:
Поскольку двум соседним эквипотенциальным поверхностям соответствует одна и та же разность потенциалов то на основании формулы, связывающей напряжение U и напряженность Е однородного электростатического поля
можно сделать вывод о том, что эквипотенциальные поверхности гуще там , где модуль напряженности поля больше И наоборот, расстояние между эквипотенциальными поверхностями больше там, где модуль напряженности поля меньше.
Во многих электрических установках используются очень высокие разности потенциалов — порядка 10—100 кВ (например, в кинескопе телевизора ~25 кВ).
При таких разностях потенциалов поля могут ионизировать воздух, т. е. поле «вырывает» электроны из атомов. Образуется большое число свободных заряженных частиц, и воздух становится проводником. Электрический пробой (искрение) сухого воздуха происходит при напряженности поля Пробой возникает на шероховатостях и остриях поверхности, т. е. местах с малым радиусом кривизны, где поле становится сильно неоднородным. Поэтому обычно проводники стараются делать как можно более гладкими. При радиусе кривизны R = 5мм проводника в окружающем его воздухе напряжение пробоя составляет U~ 15 кВ. Это обстоятельство накладывает ограничения на величину напряжения, передаваемого по линиям электропередач, так как вследствие пробоя начинаются существенные потери электроэнергии через воздух.
Формулы для напряжения позволяют также выражать работу и энергию во внесистемных энергетических величинах — электрон-вольтах, которые часто применяются при исследовании элементарных частиц, движущихся в электрических и магнитных полях.
Электрон-вольт — энергия, которую приобретет частица с зарядом, равным по модулю заряду электрона пройдя разность потенциалов в 1 В:
Проводники в электростатическом поле. Электростатическая защита
Электролиты — вещества, растворы или расплавы которых проводят электрический ток (кислоты, основания, соли); плазма — четвертое состояние вещества с высокой степенью ионизации его частиц; ион — атом (или группа атомов), потерявший или приобретший один или несколько электронов.
Проводники — вещества, по которым могут свободно перемещаться электрические заряды.
Проводниками являются металлы, электролиты, а также вещества, находящиеся в плазменном состоянии.
Термин «проводник» является переводом английского слова conductor, который ввел Ж-Т. Дезагюлье в 1739 г. для обозначения «тел, действующих как каналы для транспорта электрической силы».
В металлах носителями заряда являются свободные электроны (электроны проводимости), в электролитах — положительные и отрицательные ионы, в плазме — свободные электроны и ионы.
В отсутствие внешнего электростатического поля носители зарядов в проводнике находятся в равновесии. Если бы это условие не выполнялось, то свободные легкоподвижные заряженные частицы, имеющиеся в достаточном количестве во всяком проводнике, под действием сил поля пришли бы в движение, и равновесие было бы нарушено. Они двигались бы до тех пор, пока действующая на них сила не обратилась бы в нуль. Следовательно, напряженность электростатического поля в любой точке внутри проводника равна нулю. Это означает также, что потенциал проводника одинаков во всех его точках.
Незаряженный проводник содержит в себе в равных количествах положительные и отрицательные заряды. Во внешнем электростатическом поле в первоначально незаряженном проводнике происходит движение свободных зарядов; положительных по направлению приложенного поля, отрицательных — в противоположном направлении.
Полный заряд проводника в соответствии с законом сохранения электрического заряда, остается равным нулю, хотя на одной части поверхности проводника накапливаются положительные, а на другой — отрицательные заряды (рис. 83).
Такие заряды называют индуцированными.
Явление разделения разноименных зарядов в проводнике, помещенном в электрическое поле, называется электростатической индукцией. Возникшее разделение зарядов исчезает при отключении внешнего поля.
Явление электростатической индукции доказывает факт существования разноименных электрических зарядов в любом незаряженном проводнике.
В незаряженном проводнике, помещенном во внешнее электростатическое поле (создаваемое зарядами на других телах), происходит перераспределение свободных зарядов до тех пор, пока напряженность поля во всех точках внутри проводника не станет равной нулю.
Таким образом, условие должно выполняться для всех точек внутри проводника независимо от того, заряжен он сам или помещен во внешнее электростатическое поле.
Явление электростатической индукции позволяет осуществлять бесконтактное разделение зарядов (рис. 84) и получение заряда необходимого знака с помощью заземления (рис. 85).
Значок на электрических схемах обозначает заземление. Благодаря своим огромным размерам Земля действует как резервуар зарядов, принимая и отдавая электроны. Поднесем отрицательно заряженный стержень к заземленному металлическому предмету, не касаясь его. Тогда свободные электроны в металле под действием силы Кулона со стороны одноименно заряженного стержня будут отталкиваться и уходить в Землю. Если отсоединить заземление и убрать стержень, то на металлическом предмете останется избыточный положительный заряд. Таким образом, можно зарядить предмет положительным зарядом.
Рассмотрим проводник сферической формы. Будем считать, что он достаточно удален от других тел и от поверхности Земли. Его избыточный заряд будет распределяться по поверхности равномерно. Если заряд сферы q, а площадь поверхности S, то величина равная заряду, приходящемуся на единицу площади поверхности сферы называется поверхностной плотностью заряда.
Модуль напряженности электростатического поля в вакууме у поверхности сферы радиусом R, равномерно заряженной с поверхностной плотностью определяется соотношением
Внутри сферы E = 0, поскольку поля, создаваемые различными ее участками, компенсируют друг друга (рис. 86).
Когда форма проводника отличается от сферической, то распределение силовых линий вокруг него неравномерно (рис. 87).
Как показывают эксперименты, наибольшая плотность силовых линий (поверхностная плотность заряда) возникает на острых частях проводника, которые имеют наибольшую кривизну (наименьший радиус кривизны).
Если проводник имеет острие, то поверхностная плотность заряда на конце такого острия будет настолько велика, что под действием сильного электрического поля воздух вблизи острия будет ионизироваться. При этом молекулы воздуха «отнимают» заряды от острия и, зарядившись, устремляются от него вдоль силовых линий поля (если пренебречь массой молекул). Заряд проводника как бы «стекает» с острия по силовым линиям, образуя так называемый «электрический ветер».
Открытие разряжающих свойств металлического острия принадлежит Б. Франклину. Он же предложил использовать свойства острия для молниеотвода (громоотвода).
В силу этого обстоятельства проводник, имеющий острие, быстро теряет заряд. Для того чтобы заряд на изолированном проводнике мог достаточно долго сохраняться, проводник должен иметь «плавные» формы.
На явлении «электрического ветра» основано устройство молниеотвода. Во время грозы вблизи концов проводников возникает электрическое поле такой напряженности, что оно ионизирует окружающий воздух. Возникает «электрический ветер», «дующий» с острия молниеотвода навстречу заряженному грозовому облаку. Этот «ветер» разряжает облако и предотвращает попадание молнии в защищаемый объект. Иными словами, молниеотвод предотвращает разряд атмосферного электричества, а не «вызывает» его на себя. «Электрический ветер» используется в медицине для лечения кожи и внутренних органов.
По словам Б. Франклина, молниеотвод «…либо предотвращает удар молнии из ” облака, либо уже при ударе отводит его в землю без ущерба для здания».
На бюсте Б. Франклина вырезана надпись «Он отнял молнию у небес и власть у тиранов».
Первый молниеотвод в Европе в 1754 г. создал чешский ученый Прокопий Дивиш (1698— 1756).
Установлено, что наибольшая напряженность электрического поля в сухом воздухе при нормальном атмосферном давлении достигает Поле с большим значением напряженности ионизирует воздух и приводит к возникновению искрового разряда, сопровождаемого световыми и звуковыми явлениями.
Поле внутри проводника равно нулю. Так, например, если проводник заряжен отрицательно, то отрицательные заряды внутри проводника будут стремиться к его поверхности, чтобы расположиться как можно дальше друг от друга. Параллельная поверхности проводника составляющая вектора напряженности электрического поля отсутствует, иначе в проводнике возник бы электрический ток. Это означает, что внешнее электростатическое поле никаких «действий» во внутренних частях проводника произвести не может. Следовательно, замкнутая проводящая оболочка защищает все, что находится внутри нее, от действия внешнего электростатического поля (рис. 88).
Силовые линии внешнего электростатического поля заканчиваются на индуцированных зарядах, располагающихся только на поверхности проводника. Кроме того, у поверхности проводника силовые линии должны быть направлены перпендикулярно поверхности вследствие отсутствия составляющей вектора напряженности электрического поля, параллельной поверхности.
В этом и заключается принцип электростатической защиты: чувствительные приборы помещают внутрь проводящей оболочки, например металлической сетки, предотвращая таким образом влияние на них внешних электростатических полей.
Отметим, что проводящая оболочка экранирует только поле внешних зарядов. Если заряды находятся внутри оболочки, индуцированные заряды возникают и на ее внутренней поверхности. Поэтому замкнутая проводящая оболочка не экранирует поле электрических зарядов, помещенных внутри нее (рис. 89).
Диэлектрики в электрическом поле. Диэлектрическая проницаемость вещества
Вещество называется изотропным, если его свойства во всех направлениях одинаковы.
Диэлектрики (изоляторы) — вещества, в которых практически отсутствуют свободные носители зарядов. В таких веществах не может проходить электрический ток.
Диэлектриками являются все газы (неионизированные), ряд жидкостей (дистиллированная вода, спирт и др.) и твердых веществ (стекло, эбонит, фарфор, слюда, шелк и др.).
Термин «диэлектрик» происходит от греческого слова — через, сквозь и английского слова electric — электрический.
Этот термин введен М. Фарадеем в 1838 г. для обозначения веществ, в которые проникает электрическое поле.
Термин «изолятор» происходит от французского слова isoler — разобщать.
В диэлектриках, в отличие от проводников, свободные электрические заряды практически отсутствуют. Заряженные частицы внутри диэлектрика могут только незначительно смещаться относительно своих равновесных положений, что объясняет плохую электропроводность диэлектриков.
Диэлектрики все же незначительно проводят электрический ток, поскольку в них есть свободные носители тока, но их в раз меньше, чем в проводниках.
Существуют полярные и неполярные диэлектрики.
Неполярный диэлектрик состоит из атомов или молекул, у которых центры
распределения положительных и отрицательных зарядов совпадают. К таким диэлектрикам относятся, например, инертные газы, кислород, водород, бензол (рис. 90, а).
Полярный диэлектрик состоит из молекул, у которых центры распределения положительных и отрицательных зарядов не совпадают (рис. 90, б). Такие молекулы можно рассматривать как электрические диполи. Слово «диполь» происходит от двух греческих слов: — два и — ось, полюс. Электрический диполь — система двух равных по величине зарядов противоположного знака +q и —q, находящихся на расстоянии l друг от друга, малом по сравнению с расстоянием r до рассматриваемой точки поля. На рисунке диполь схематически изображают в виде гантели (рис. 91).
Векторная физическая величина, обозначаемая называется электрическим дипольным моментом, который направлен но оси диполя от отрицательного заряда к положительному (см. рис. 91).
Полярными диэлектриками являются спирты, вода. Взаимодействие молекул полярного диэлектрика с заряженной палочкой представлено на рисунке 92.
Любой диэлектрик, как и проводник, электризуется при внесении его во внешнее электрическое поле. В неполярных диэлектриках центры разноименных зарядов молекул под действием внешнего электрического поля смещаются в противоположные стороны и молекулы превращаются в диполи (рис. 93).
В полярных диэлектриках на диполи будет действовать пара сил (например, ), стремящаяся повернуть их вдоль силовой линии (рис. 94, а, б). В результате диполи молекул выстраиваются вдоль силовых линий поля, поворачиваясь положительно заряженным концом в сторону силовых линий (рис. 94, в).
Вследствие того что заряды в атомах и молекулах связаны силами притяжения, во много раз большими, чем силы, действующие на эти же заряды во внешнем поле, они могут только немного сместиться под действием поля на расстояния порядка размеров самого атома. На поверхности диэлектрика возникают заряды. Их называют, в отличие от свободных, поляризационными или связанными. На ближайшей к заряженному телу части возникают заряды, разноименные с зарядом влияющего тела, а на удаленной части диэлектрика — одноименные. Явление смещения разноименных связанных зарядов в противоположные стороны под действием приложенного внешнего электростатического поля называется поляризацией.
Смещение поляризационных зарядов в диэлектрике приводит к возникновению дополнительного электрического поля направленного противоположно прикладываемому внешнему полю (рис. 95).
Напряженность результирующего поля в диэлектрике согласно принципу суперпозиции станет или по модулю Это означает, что напряженность поля внутри диэлектрика меньше, чем в вакууме.
Уменьшение внешнего поля определяется способностью диэлектрика поляризоваться, и оно тем сильнее, чем больше поляризационных зарядов появится на поверхности диэлектрика.
Диэлектрическая проницаемость – величина, характеризующая поляризацию диэлектрика под действием электрического поля. Она зависит от рода вещества и его состояния (давления, температуры и т. д.).
Попытка разделить диэлектрик на две части во внешнем поле не приводит к появлению разноименно заряженных тел, как это происходит с проводником. Особенности поляризации диэлектрика проявляются в том, что на противоположных сторонах каждой из частей появляются разноименные заряды.
После извлечения обеих частей диэлектрика из внешнего поля индуцированные связанные заряды исчезают.
Безразмерная физическая величина, равная отношению модуля напряженности однородного электрического поля в вакууме к модулю напряженности Е электрического поля в однородном диэлектрике, внесенном во внешнее поле, называется диэлектрической проницаемостью:
Диэлектрическая проницаемость показывает, во сколько раз напряженность электрического поля внутри однородного изотропного диэлектрика меньше, чем в вакууме. Диэлектрические проницаемости веществ приведены в таблице 2.
Таблица 2.
Диэлектрическая проницаемость некоторых веществ
При графическом изображении полей вне и внутри диэлектрика густота силовых линий внутри должна быть в раз меньше, чем снаружи.
При расчете модулей кулоновской силы взаимодействия, напряженности поля и потенциала точечных зарядов необходимо учитывать ослабление электрического поля внутри диэлектрика и руководствоваться формулами, содержащими диэлектрическую проницаемость данной среды:
Сегнетоэлектрики — вещества, имеющие очень большую диэлектрическую проницаемость. Например, диэлектрическая проницаемость сегнетовой соли достигает величины Сегнетоэлектриками являются кристаллы титаната бария, ниобата лития, дигидрофосфата калия.
Сегнетоэлектрики широко используются в детекторах электромагнитных волн.
Электроемкость
Еще в середине XVIII в. считалось, что электричество — это особая жидкость, содержащаяся в любом заряженном теле. Наблюдавшееся с течением времени уменьшение заряда на телах трактовалось как «испарение» такой «электрической жидкости». Поэтому для уменьшения «испарения» (сохранения заряда) вполне естественно было поместить заряженное тело в какую-нибудь емкость. Как отголосок тех наивных представлений об электричестве в физике осталось слово электроемкость.
Чтобы разобраться со значением этого понятия, рассмотрим два проводника произвольной формы, находящиеся в однородном изотропном диэлектрике. Зарядим их равными разноименными зарядами +q и — q. При этом между проводниками установится некоторая разность потенциалов (напряжение):
Эксперимент показывает, что увеличение заряда каждого проводника, например, в 2 раза приводит к увеличению напряжения между ними также в 2 раза, т. е. отношение для данной пары проводников остается постоянным:
Физическую скалярную величину, определяемую данным отношением, обозначают С и называют электроемкостью. Она характеризует способность системы проводников накапливать электрический заряд.
Понятием электроемкости можно охарактеризовать и уединенный проводник, считая, что заряды противоположного знака при этом находятся в бесконечности. Рассмотрим уединенный заряженный проводник, находящийся в однородном изотропном диэлектрике в отсутствие внешних полей. Его потенциал (относительно бесконечности) пропорционален заряду:
Электроемкость уединенного проводника равна отношению заряда проводника к его потенциалу и является для данного проводника величиной постоянной:
Электроемкость определяется геометрической формой, размерами проводника и диэлектрической проницаемостью среды, в которой он находится. Она не зависит от вещества проводника, находящегося на нем заряда и его потенциала.
Определим электроемкость уединенного шара. При сообщении шару заряда q вокруг него возникает электрическое поле, такое же, как поле точечного заряда q. Поэтому потенциал шара относительно бесконечности будет
С другой стороны,
Получаем электроемкость уединенного шара радиусом /? в однородном ди-
электрике:
(4)
В СИ единицей электроемкости является фарад — это электроемкость уединенного проводника, потенциал которого увеличивается на один вольт при сообщении ему заряда один кулон
1Ф — это очень большая величина. Такой емкостью обладает в вакууме уединенный шар радиусом км, т. е. шар, превышающий своими размерами Землю в 1400 раз. (Емкость земного шара равна 709 мкФ.) Поэтому на практике используют следующие дольные единицы: микрофарад, нанофарад, пикофарад.
Конденсаторы
Для практического использования электрической энергии необходимо уметь ее накапливать. Эта задача решается с помощью конденсатора — специального электрического устройства. Конденсатор — устройство, состоящее из изолированных друг от друга проводников, предназначенное для накопления (аккумуляции) электрического заряда и энергии.
Проводники, образующие конденсатор, называются его обкладками. Как правило, при зарядке конденсатора заряды его обкладок равны по величине и противоположны по знаку. Под зарядом конденсатора понимают значение заряда положительно заряженной обкладки.
Термин «конденсатор» от латинского слова condensate — сгущать ввел A. Вольта в 1782 г.
Первые электрические конденсаторы были изготовлены Э. Клейстом и П. Ван Мушенбреком в 1745 г. По имени города Лейдена, где работал Мушенбрек, французский физик Жан Нолле назвал их лейденскими банками (рис. 96).
Плоским называется конденсатор, состоящий из двух параллельных металлических пластин (обкладок), расположенных на небольшом расстоянии друг от друга и разделенных слоем диэлектрика (рис. 97).
Электроемкостью (емкостью) конденсатора называется физическая скаляр
ная величина, равная отношению заряда конденсатора к разности потенциалов между его обкладками:
При использовании этой формулы предполагается, что расстояние ме>клу обкладками плоского конденсатора намного меньше их собственных размеров. Тогда внутри конденсатора электрическое поле однородное, а вне его равно нулю.
Электроемкость конденсатора зависит от его размеров и формы, а также свойств заполняющего его диэлектрика.
Найдем электроемкость плоского конденсатора. Внутри него электрическое поле складывается из полей положительно и отрицательно заряженных обкладок. Вследствие того что расстояние между обкладками намного меньше их размеров, поле внутри конденсатора можно найти согласно принципу суперпозиции полей, создаваемых равномерно заряженными бесконечными плоскостями, с учетом диэлектрической проницаемости заполняющего его вещества:
Исходя из определения поверхностной плотности заряда
находим
(2)
Искомое напряжение между обкладками
Следовательно,
где — электрическая постоянная, — диэлектрическая проницаемость вещества между пластинами, S — площадь обкладки, d — расстояние между обкладками.
Емкость плоского конденсатора прямо пропорциональна площади его обкладок, диэлектрической проницаемости заполняющего его вещества и обратно пропорциональна расстоянию между пластинами.
Разность потенциалов между обкладками конденсатора нельзя повышать беспредельно, так как увеличиваются электрические силы, стремящиеся оторвать друг от друга разноименно заряженные части молекул диэлектрика. При некотором предельном для данного конденсатора значении разности потенциалов происходит разрушение диэлектрика. Заряды обкладок практически мгновенно нейтрализуются, т. е. происходит пробой конденсатора. Конденсатор при этом выходит из строя. Внешне пробой конденсатора часто проявляется в виде электрических искр, проходящих через диэлектрик. Таким образом, каждый конденсатор характеризуется максимальным рабочим напряжением, при превышении которого происходит его пробой.
В зависимости от используемого диэлектрика различают бумажные, воздушные, электролитические (рис. 98), керамические, слюдяные, полистирольные конденсаторы.
Кроме того, по используемому рабочему напряжению конденсаторы подразделяются на низковольтные и высоковольтные.
К низковольтным относятся электролитические и слюдяные конденсаторы с напряжением пробоя 100 В. Если напряжение пробоя превышает 100 В, то конденсаторы относятся к высоковольтным. Примером высоковольтного конденсатора, разность потенциалов в котором может быть доведена до 100 кВ, является лейденская банка.
На электрических схемах конденсатор обозначается символом
Соединения конденсаторов
В настоящее время практически ни одно электронное или радиотехническое устройство не обходится без конденсаторов.
Конденсаторы соединяют в батареи, чтобы обеспечить требуемую электроемкость при заданном напряжении. Соединение конденсаторов в батарее может быть параллельным, последовательным или смешанным.
При параллельном соединении конденсаторов (рис. 99) и подключении его к источнику напряжением обкладки конденсаторов соединены между собой проводником, и поэтому имеют одинаковый потенциал: верхние — а нижние — Эту разность потенциалов между обкладками конденсатора называют напряжением U.
Напряжение U на обкладках всех конденсаторов одно и то же, т. е. U= и
Кроме того, знаки зарядов нижних обкладок конденсаторов одинаковы и противоположны знакам зарядов верхних обкладок, а суммарный заряд батареи q равен сумме зарядов на каждом из конденсаторов (см. рис. 99):
Разделив это выражение на U, получим
Следовательно, электроемкость батареи при параллельном соединении конденсаторов определяется по формуле
В случае, когда емкость батареи Таким образом, электроемкость батареи параллельно соединенных конденсаторов всегда превышает наибольшую из электроемкостей конденсаторов, составляющих ее.
Параллельное соединение конденсаторов применяется для увеличения емкости системы, при этом
При последовательном соединении конденсаторов (рис. 100) и подключении его к источнику напряжением заряд +q переходит от источника на левую обкладку конденсатора емкостью а заряд -q — на правую обкладку конденсатора емкостью
Если участок между конденсаторами до подключения к источнику был электрически нейтральным, то согласно закону сохранения заряда результирующий заряд на нем должен остаться равным нулю. Вследствие электризации через влияние на правой обкладке первого конденсатора появится заряд — q, а на левой обкладке последнего конденсатора — +q. Таким образом, при последовательном соединении конденсаторов соединяются обкладки с разными знаками зарядов (см. рис. 100).
В результате одинаковым является заряд q каждого конденсатора, равный полному заряду батареи:
а напряжение батареи последовательно соединенных конденсаторов равно сумме напряжений на всех конденсаторах:
Если учесть, что то емкость батареи конденсаторов при их последовательном соединении можно определить из соотношения
В случае, когда емкость батареи
Таким образом, при последовательном соединении емкость батареи всегда не превышает наименьшую из емкостей конденсаторов, составляющих ее.
Последовательное соединение конденсаторов применяется для увеличения
предельного рабочего напряжения батареи, так как максимально допустимое напряжение батареи будет больше, чем у любого составляющего ее конденсатора.
Энергия заряженного конденсатора. Энергия электрического поля
Работа, совершаемая внешними силами над системой, идет на увеличение ее энергии: Работа внутренних сил системы совершается за счет уменьшения ее энергии:
Заряженный конденсатор обладает энергией, которую можно рассматривать либо как потенциальную энергию взаимодействия зарядов, сосредоточенных на обкладках, либо как энергию создаваемого этими зарядами электрического поля, заключенного между обкладками конденсатора.
При зарядке конденсатора в нем создается электростатическое поле, при разрядке оно исчезает. Работа, совершенная внешним источником для зарядки конденсатора, идет на увеличение энергии поля, а работа при разрядке конденсатора совершается за счет уменьшения энергии поля. Можем сделать вывод, что электростатическое поле обладает определенным количеством потенциальной энергии.
Энергия заряженного конденсатора определяется работой, совершенной для его зарядки (способ зарядки на величину энергии не влияет), т. е. на перемещение заряда с одной обкладки на другую для создания заданного напряжения U на обкладках:
Работа А, совершаемая электрическим полем при разрядке конденсатора.
определяется площадью S треугольника ОАВ в предположении, что напряжение U па конденсаторе равномерно уменьшалось до нуля в процессе разрядки
(рис. 102):
Здесь — среднее значение разности потенциалов при разрядке.
Изменение энергии электрического поля равно работе, совершенной при разрядке конденсатора:
С учетом определения электроемкости находим
Получим формулу для энергии плоского конденсатора аналитически, исходя из того, что для полной разрядки конденсатора необходимо совершить работу А, чтобы переместить электроны, создающие отрицательный заряд — q обкладки, на положительно заряженную обкладку. В результате электрическое поле исчезнет.
С одной стороны, если U — напряжение на обкладках конденсатора, — напряженность электростатического поля, d — расстояние между обкладками конденсатора, то для разрядки конденсатора необходимо совершить работу
С другой стороны, работа электростатических сил совершается за счет убыли потенциальной энергии конденсатора:
В конденсаторе, напряженность поля внутри которого Е, заряд одной обкладки создает поле, модуль напряженности которого В поле этой обкладки находится заряд q, распределенный по поверхности другой обкладки.
Потенциальная энергия этого заряда в поле конденсатора будет
Здесь d — расстояние между обкладками.
Вследствие того что напряжение U на обкладках конденсатора и модуль напряженности поля в нем связаны соотношением Е – Ud, энергия конденсатора определяется полученным ранее графически соотношением
С учетом выражения для электроемкости плоского конденсатора
и напряжения U = Ed получим где Sd=V — внутренний объем конденсатора.
Таким образом, энергию плоского конденсатора можно рассчитать по формуле
Поле плоского конденсатора существует практически только внутри него — между обкладками. Тогда энергию заряженного конденсатора можно представить также как энергию поля, локализованного в пространстве между обкладками с плотностью энергии
Плотность энергии поля численно равна энергии поля, находящейся в единичном объеме:
Она пропорциональна квадрату напряженности электрического поля в этой
области. Это выражение справедливо не только для однородных полей, но и для электростатических полей любой конфигурации в случае, когда вещество, заполняющее пространство, изотропное.
Впервые понятие плотности энергии электрического поля ввел Дж. Максвелл. Он полагал, что энергия электрического поля рассредоточена по всему объему с плотностью Наличие энергии у электрического поля является доказательством того, что поле является особым видом материи.
Основные формулы электростатики
Закон сохранения электрического заряда:
Закон Кулона:
Напряженность электрического поля:
Принцип суперпозиции:
Работа сил электростатического поля:
Потенциал электрического поля:
Потенциал электрического поля системы точечных зарядов:
Разность потенциалов:
Диэлектрическая проницаемость вещества:
Электроемкость конденсатора:
Электроемкость плоского конденсатора:
Последовательное соединение конденсаторов:
Параллельное соединение конденсаторов:
Электроемкость уединенного проводника:
Энергия заряженного конденсатора:
Плотность энергии электростатического поля:
Элементарный заряд:
Электрическая постоянная:
Единицы измерения основных величин, встречающихся в электростатике
- Закон сохранения заряда в физике
- Электрическое поле заряженного шара
- Электрические явления в физике
- Потенциал поля точечного заряда в физике
- Тепловые двигатели и их КПД
- Тепловое состояние тел
- Изменение агрегатного состояния вещества
- Электродинамика