Как найти с какой силой выталкивается

Сила: что это за величина

Прежде чем говорить о силе Архимеда, нужно понять, что это вообще такое — сила.

В повседневной жизни мы часто видим, как физические тела деформируются (меняют форму или размер), ускоряются и тормозят, падают. В общем, чего только с ними не происходит! Причина любых действий или взаимодействий тел — ее величество сила.

Сила — это физическая векторная величина, которая воздействует на данное тело со стороны других тел. Сила измеряется в ньютонах — единице измерения, которую назвали в честь Исаака Ньютона.

Поскольку сила — величина векторная, у нее, помимо модуля, есть направление. От того, куда направлена сила, зависит результат.

Вот стоите вы на лонгборде: можете оттолкнуться вправо, а можете влево — в зависимости от того, в какую сторону оттолкнетесь, результат будет разный. В этом случае результат выражается в направлении движения.

Сила — векторная величина

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Практикующий детский психолог Екатерина Мурашова

Бесплатный курс для современных мам и пап от Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков

Практикующий детский психолог Екатерина Мурашова

Открытие закона Архимеда

Так вышло, что закон Архимеда известен не столько своей формулировкой, сколько историей возникновения.

Легенда гласит, что царь Герон II попросил Архимеда определить, из чистого ли золота сделана его корона, при этом не причиняя вреда самой короне. То есть расплавить корону или растворить — нельзя.

Взвесить корону Архимеду труда не составило, но этого было мало — нужно ведь определить объем короны, чтобы рассчитать плотность металла, из которого она отлита.

Рассчитать плотность металла, чтобы установить, золотая ли корона, можно по формуле плотности.

Формула плотности тела

ρ = m/V

ρ — плотность тела [кг/м3]

m — масса тела [кг]

V — объем тела [м3]

Дальше, согласно легенде, Архимед, озабоченный мыслями о том, как определить объем короны, погрузился в ванну — и вдруг заметил, что уровень воды в ванне поднялся. Тут ученый осознал, что объем его тела вытеснил равный ему объем воды, следовательно, и корона, если ее опустить в заполненный до краев таз, вытеснит из него объем воды, равный ее объему.

Решение задачи было найдено и, согласно самой расхожей версии легенды, ученый закричал «Эврика!» и побежал докладывать о своей победе в царский дворец (и так торопился, что даже не оделся). 🤦🏻‍♂️

Попробуйте онлайн-курс подготовки к ЕГЭ по физике с опытным преподавателем в Skysmart!

Формула и определение силы Архимеда для жидкости

На поверхность твердого тела, погруженного в жидкость, действуют силы давления. Эти силы увеличиваются с глубиной погружения, и на нижнюю часть тела будет действовать со стороны жидкости большая сила, чем на верхнюю.

Равнодействующая всех сил давления, действующих на поверхность тела со стороны жидкости, называется выталкивающей силой или силой Архимеда. Истинная причина появления выталкивающей силы — наличие различного гидростатического давления в разных точках жидкости.

Определение архимедовой силы для жидкостей звучит так:

Выталкивающая сила, действующая на тело, погруженное в жидкость, равна по модулю весу вытесненной жидкости и противоположно ему направлена.

Формула архимедовой силы для жидкости

FАрх = ρжgVпогр

ρж — плотность жидкости[кг/м3]

Vпогр — объем погруженной части тела [м3]

g — ускорение свободного падения [м/с2]

На планете Земля g = 9,8 м/с 2.

А теперь давайте порешаем задачки, чтобы закрепить, как вычислить архимедову силу.

Задача 1

В сосуд погружены три железных шарика равных объемов. Одинаковы ли силы, выталкивающие шарики? Плотность жидкости вследствие ничтожно малой сжимаемости на любой глубине считать примерно одинаковой.

Задача на расчет архимедовой силы №1

Решение

Да, так как объемы одинаковы, а архимедова сила зависит от объема погруженной части тела, а не от глубины.

Задача 2

На графике показана зависимость модуля силы Архимеда FАрх, действующей на медленно погружаемый в жидкость кубик, от глубины погружения x. Длина ребра кубика равна 10 см, его нижнее основание все время параллельно поверхности жидкости. Определите плотность жидкости. Ускорение свободного падения принять равным 10 м/с2.

Задача на расчет архимедовой силы №1

Решение

Сила Архимеда, действующая на кубик, равна FАрх = ρжgVпогр.

Vпогр. — объем погруженной части кубика,

ρж — плотность жидкости.

Учитывая, что нижнее основание кубика все время параллельно поверхности жидкости, можем записать:

FАрх = ρжgV погр = ρжga 2x

где а — длина стороны кубика.

Выразим плотность:

ρ = FАрх / ga2x

Рассматривая любую точку данного графика, получим:

ρ = FАрхga2x = 20,25 / 10 × 7,5 × 10-2 = 2700 кг/м3

Ответ: плотность жидкости равна 2700 кг/м 3.

Условия плавания тел

Из закона Архимеда вытекают следствия об условиях плавания тел.

Почему корабли не тонут?

Корабль сделан из металла, плотность которого больше плотности воды. И, по идее, он должен тонуть. Но дело в том, что корпус корабля заполнен воздухом, поэтому общая плотность судна оказывается меньше плотности воды, и сила Архимеда выталкивает его на поверхность. Если корабль получит пробоину, то пространство внутри заполнится водой — следовательно, общая плотность корабля увеличится. Судно утонет.

В подводных лодках есть специальные резервуары, которые заполняют водой или сжатым воздухом. Если нужно уйти на глубину — водой, если подняться — сжатым воздухом. Рыбы используют такой же принцип в плавательном пузыре — наполняют его воздухом, чтобы подняться наверх.

Человеку, чтобы не утонуть, тоже достаточно набрать в легкие воздух и не двигаться — вода будет выталкивать тело на поверхность. Именно поэтому важно не тратить силы и кислород в легких на панику и борьбу, а расслабиться и позволить физическим законам сделать все за нас.

Формула и определение силы Архимеда для газов

На самом деле тут все очень похоже на жидкости. Начнем с формулировки закона Архимеда:

Выталкивающая сила, действующая на тело, погруженное в газ, равна по модулю весу вытесненного газа и противоположно ему направлена.

Формула архимедовой силы для газов

FАрх = ρгgVпогр

ρг — плотность газа [кг/м3]

Vпогр — объем погруженной части тела [м3]

g — ускорение свободного падения [м/с2]

На планете Земля g = 9,8 м/с 2.

Сила Архимеда для газов действует аналогично архимедовой силе для жидкостей. Давайте убедимся в этом, решив задачку.

Задача

Груз какой максимальной массы может удерживать воздушный шар с гелием объема 0,3 м3, находясь в атмосфере Земли? Плотность воздуха равна 1,3 кг/м 3. Гелий считать невесомым.

Решение

Подставляем значения и получаем:

FАрх = ρгgVпогр = 1,3 × 10 × 0,3 = 0,39 Н

По второму закону Ньютона для инерциальных систем отсчета:

FАрх = mg

Выражаем массу груза и подставляем значения:

m = FАрх / g = 0,39 / 10 = 0, 039 кг = 39 кг

Ответ: груз максимальной массы 39 г может удержать данный шарик с гелием.

Когда сила Архимеда не работает

Архимедова сила не работает лишь в трех случаях:

  1. Невесомость. Главное условие возникновения Архимедовой силы — это наличие веса у среды. Если мы находимся в невесомости, холодный воздух не опускается, а горячий, наоборот, не поднимается.

  2. Тело плотно прилегает к поверхности. Отсутствие газа или жидкости между поверхностью и телом свидетельствует об отсутствии выталкивающей силы — телу просто неоткуда выталкиваться.

  3. Растворы и смеси. Если взять спирт, плотность которого меньше плотности воды, и смешать его с водой, получится раствор. На него не будет действовать сила Архимеда, несмотря на то, что плотность спирта меньше плотности воды — он просто растворится.

Видеоурок: закон Архимеда

Зако́н Архиме́да — закон гидростатики и аэростатики: на тело, погружённое в жидкость или газ, действует выталкивающая сила, численно равная весу объема жидкости или газа, вытесненного телом. Закон открыт Архимедом в III веке до н. э. Выталкивающая сила также называется архимедовой силой или гидростатической подъёмной силой[1][2] (её не следует путать с аэро- и гидродинамической подъёмной силой, возникающей при обтекании тела потоком газа или жидкости).

Так как сила Архимеда обусловлена силой тяжести, то в невесомости она не действует.

В соответствии с законом Архимеда для выталкивающей силы выполняется[3]:

{displaystyle F_{A}=rho gV,}

где:

Описание[править | править код]

Выталкивающая или подъёмная сила по направлению противоположна силе тяжести, прикладывается к центру тяжести объёма, вытесняемого телом из жидкости или газа.

Если тело плавает (см. плавание тел) или равномерно движется вверх или вниз, то выталкивающая или подъёмная сила по модулю равна силе тяжести, действующей на вытесненный телом объём жидкости или газа.

Плавание тела. Сила Архимеда (F_{A}) уравновешивает вес тела (F_{p}):

{displaystyle F_{A}=F_{p};}
ρж g Vж = ρт g Vт

Например, воздушный шарик объёмом V, наполненный гелием, летит вверх из-за того, что плотность гелия ({displaystyle rho _{He}}) меньше плотности воздуха ({displaystyle rho _{air}}):

{displaystyle F_{A}>F_{p};}

{displaystyle rho _{air}gV>rho _{He}gV.}

Закон Архимеда можно объяснить при помощи разности гидростатических давлений на примере прямоугольного тела, погруженного в жидкость или газ. В силу симметрии прямоугольного тела, силы давления, действующие на боковые грани тела, уравновешиваются. Давление ({displaystyle P_{A}}) и сила давления ({displaystyle F_{A}}), действующие на верхнюю грань тела, равны:

{displaystyle P_{A}=rho gh_{A};}
{displaystyle F_{A}=rho gh_{A}S,}

где:

Давление ({displaystyle P_{B}}) и сила давления ({displaystyle F_{B}}), действующие на нижнюю грань тела, равны:

{displaystyle P_{B}=rho gh_{B};}
{displaystyle F_{B}=rho gh_{B}S,}

где:

Сила давления жидкости или газа на тело определяется разностью сил {displaystyle F_{B}} и {displaystyle F_{A}}:

{displaystyle F_{B}-F_{A}=rho gh_{B}S-rho gh_{A}S=rho gleft(h_{B}-h_{A}right)S=rho ghS=rho gV,}

где:

Разница давлений:

{displaystyle P_{B}-P_{A}=rho gh_{B}-rho gh_{A}=rho gh.}

В отсутствие гравитационного поля, то есть в состоянии невесомости, закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление (естественной) конвекции, поэтому, например, воздушное охлаждение и вентиляцию жилых отсеков космических аппаратов необходимо производить принудительно вентиляторами.

Обобщения[править | править код]

Некий аналог закона Архимеда справедлив также в любом поле сил, которое по-разному действуют на тело и на жидкость (газ), либо в неоднородном поле. Например, это относится к полю сил инерции (например, к полю центробежной силы) — на этом основано центрифугирование. Пример для поля немеханической природы: диамагнетик в вакууме вытесняется из области магнитного поля большей интенсивности в область с меньшей.

Вывод закона Архимеда для тела произвольной формы[править | править код]

Вывод через мысленный эксперимент[править | править код]

Если мысленно заменить погружённое в жидкость тело той же жидкостью, мысленно размещённая в том же объёме порция воды будет находиться в равновесии и действовать на окружающую воду с силой, равной силе тяжести, действующей на порцию воды. Так как перемешивания частиц воды не происходит, можно утверждать, что окружающая вода действует на выделенный объём с той же силой, но направленной в противоположном направлении, то есть с силой, равной {displaystyle mg=rho gV}[4][5][6].

Расчёт силы[править | править код]

Гидростатическое давление p на глубине h, оказываемое жидкостью с плотностью rho на тело, есть {displaystyle p=rho gh}. Пусть плотность жидкости (rho ) и напряжённость гравитационного поля (g) — постоянные величины, а h — параметр. Возьмём тело произвольной формы, имеющее ненулевой объём. Введём правую ортонормированную систему координат Oxyz, причём выберем направление оси z совпадающим с направлением вектора {vec  {g}}. Ноль по оси z установим на поверхности жидкости. Выделим на поверхности тела элементарную площадку dS. На неё будет действовать сила давления жидкости, направленная внутрь тела, d{vec  {F}}_{A}=-pd{vec  {S}}. Чтобы получить силу, которая будет действовать на тело, возьмём интеграл по поверхности:

{displaystyle {vec {F}}_{A}=-int limits _{S}{p,d{vec {S}}}=-int limits _{S}{rho gh,d{vec {S}}}=-rho gint limits _{S}{h,d{vec {S}}}=^{*}-rho gint limits _{V}{operatorname {grad} (h),dV}=^{**}-rho gint limits _{V}{{vec {e}}_{z}dV}=-rho g{vec {e}}_{z}int limits _{V}{dV}=(rho gV)(-{vec {e}}_{z}).}

При переходе от интеграла по поверхности к интегралу по объёму пользуемся обобщённой теоремой Остроградского-Гаусса.

{displaystyle {}^{*}h(x,y,z)=z;}
{displaystyle ^{**}operatorname {grad} h=nabla h={vec {e}}_{z}.}

Получаем, что модуль силы Архимеда равен {displaystyle rho gV}, и направлена сила Архимеда в сторону, противоположную направлению вектора напряжённости гравитационного поля.

Вывод через закон сохранения энергии[править | править код]

Закон Архимеда можно также вывести из закона сохранения энергии. Работа силы, действующей со стороны погружённого тела на жидкость, приводит к изменению её потенциальной энергии:

{displaystyle  A=-F*(h_{1}-h_{2})=-Delta E_{p}=-m_{text{ж}}gDelta h,}

где {displaystyle m_{text{ж}}} — масса вытесненной части жидкости, Delta h — перемещение её центра масс. Отсюда модуль вытесняющей силы:

{displaystyle  F=m_{text{ж}}g.}

По третьему закону Ньютона эта сила, равна по модулю и противоположна по направлению силе Архимеда, действующей со стороны жидкости на тело. Объём вытесненной жидкости равен объёму погруженной части тела, поэтому массу вытесненной жидкости можно записать как:

{displaystyle  m_{text{ж}}=rho _{text{ж}}V_{text{т}},} где {displaystyle V_{text{т}}} — объем погружённой части тела.

Таким образом, для силы Архимеда имеем:

{displaystyle  F_{A}= F=m_{text{ж}}g=rho _{text{ж}}gV_{text{т}}.}

Условие плавания тел[править | править код]

Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести {displaystyle F_{T}} и силы Архимеда {displaystyle F_{A}}, которые действуют на это тело. Возможны следующие три случая:

  • {displaystyle F_{T}>F_{A}} — тело тонет;
  • {displaystyle F_{T}=F_{A}} — тело плавает в жидкости или газе;
  • {displaystyle F_{T}<F_{A}} — тело всплывает до тех пор, пока не начнёт плавать.

Другая формулировка (где {displaystyle rho _{t}} — плотность тела, {displaystyle rho _{s}} — плотность среды, в которую тело погружено):

  • {displaystyle rho _{t}>rho _{s}} — тело тонет;
  • {displaystyle rho _{t}=rho _{s}} — тело плавает в жидкости или газе;
  • {displaystyle rho _{t}<rho _{s}} — тело всплывает до тех пор, пока не начнёт плавать.

Примечания[править | править код]

  1. Архимеда закон : [арх. 1 января 2023] // Анкилоз — Банка. — М. : Большая российская энциклопедия, 2005. — С. 331. — (Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов ; 2004—2017, т. 2). — ISBN 5-85270-330-3.
  2. Архимеда закон // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 123. — 707 с. — 100 000 экз.
  3. Всё написанное ниже, если не оговорено иное, относится к однородному полю силы тяжести (например, к полю, действующему вблизи поверхности планеты).
  4. Перышкин А. , Оригинальное доказательство закона Архимеда. Дата обращения: 28 сентября 2020. Архивировано 20 июля 2020 года.
  5. Доказательство закона Архимеда для тела произвольной формы. Дата обращения: 28 сентября 2020. Архивировано 21 сентября 2020 года.
  6. Buoyancy (англ.). Архивировано 14 июля 2007 года.

Ссылки[править | править код]

  • Архимедов закон // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Закон Архимеда // Энциклопедия «Кругосвет».

На прошлом уроке мы доказали с помощью опытов существование силы, действующей на тела, погруженные в жидкость или газ — выталкивающей силы. Также мы теперь знаем, что ее можно рассчитать по формуле: $F_{выт} = gm_ж = P_ж$. Но какое еще есть значение у этой силы? На этом уроке мы более подробно рассмотрим выталкивающую силу.

Выталкивающая сила и вес тела

Как можно на опыте определить, с какой силой тело, погруженное целиком в жидкость, выталкивается из жидкости?
Давайте познакомимся с таким опытом. Он представлен на рисунке 1.

Подвесим на пружину небольшую емкость для жидкости и тело цилиндрической формы ниже. На конце пружины у нас расположена стрелка-указатель. Она отмечает растяжение пружины на штативе (рисунок 1, а). Таким образом, мы видим вес тела в воздухе.

Рисунок 1. Опыт по определению зависимости выталкивающей силы и веса погруженного тела

Теперь опустим наше тело в большой сосуд. Сосуд имеет трубку для слива и наполнен жидкостью до уровня этой трубки (рисунок 1, б).

Когда мы полностью опустим тело в сосуд, часть жидкости из него выльется через трубку для слива в стакан. Объем этой жидкости будет равен объему тела. Мы уже знаем, что на тело действует выталкивающая сила: пружина сокращается, стрелка-указатель поднимается, вес тела в жидкости становится меньше.

А теперь возьмем жидкость, которая вылилась в стакан. Зальем ее в емкость, которая также подвешена к пружине (рисунок 1, в). Теперь стрелка-указатель вернулась к своему изначальному положению.

Так чему равна эта сила? Сделаем вывод из данного опыта.

Сила, выталкивающая целиком погруженное в жидкость тело, равна весу жидкости в объеме этого тела.

Если провести подобный опыт с газом, а не с жидкостью, то мы получим, что сила, выталкивающая тело из газа, равна весу газа, взятого в объеме тела.

Сила Архимеда

Как называют силу, которая выталкивает тела, погруженные в жидкости и газы?
Теперь мы добавим, что эту выталкивающую силу называют архимедовой силой. Архимед (рисунок 2) — древнегреческий ученый и инженер, сделавший множество открытий и в математике, и в физике. Именно он первый обнаружил наличие выталкивающей силы и рассчитал ее значение.

Рисунок 2. Архимед (287–212 годы до н. э.) — древнегреческий ученый и инженер

Как подсчитать архимедову силу?
В прошлом уроке мы получили формулу $F_{выт} = P_ж = g m_ж$. Теперь мы будем называть эту силу архимедовой $F_A$.

Из выше рассмотренных опытов мы можем выразить массу вытесненной жидкости через ее плотность и объем тела, который эту жидкость вытеснил (они одинаковы): $m_ж = rho_ж cdot V_т$. Получим формулу для архимедовой силы.

$F_A = g rho_ж V_т$.

От чего зависит архимедова сила?

Взгляните еще раз на формулу: $F_A = g rho_ж V_т$.

Ясно видно, что архимедова сила зависит только от плотности жидкости и от объема тела, которое мы погружаем в эту жидкость.

Если мы будем погружать в одну и ту же жидкость тела разной плотности и разной формы (рисунок 3), то значение силы меняться не будет (при условии, что эти тела будут обладать одинаковым объемом).

Рисунок 3. Демонстрация равенства силы Архимеда для тел одинакового объема, погруженных в одну и ту же жидкость

Определение веса тела, погруженного в жидкость или газ

На тело, погруженное в жидкость (или в газ), действуют две силы: сила тяжести и архимедова сила. Направлены они в противоположные стороны. Вес тела в жидкости $P_1$ будет меньше веса тела в вакууме $P$ на архимедову силу $F_A$. То есть:
$P_1 = P space − space F_A = gm space − space gm_ж$.

Если тело погружено в жидкость или газ, то его вес уменьшается на вес вытесненной им жидкости или газа.

Пример задачи

Определите выталкивающую силу, которая будет действовать на камень объемом $2.6 space м^3$, лежащий на морском дне.

Дано:
$V_т = 2.6 space м^3$
$rho_ж = 1030 frac{кг}{м^3}$
$g = 9.8 frac{Н}{кг}$

$F_A — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Сила Архимеда рассчитывается по формуле:
$F_A = g rho_ж V_т$.

Подставим численные значения величин и рассчитаем эту силу:
$F_A = 9.8 frac {Н}{кг} cdot 1030 frac{кг}{ м^3} cdot 2.6 space м^3 approx 26 244 space Н approx 26.2 space кН$.

Ответ: $F_A approx 26,2 space кН$.

Забавное дополнение: легенда об Архимеде

Архимед, великий изобретатель, шокировал своих современников гениальными открытиями. Его имя упоминается во множестве легенд, но одна из них стала наиболее известной: легенда о том, как Архимед пришел к открытию выталкивающей силы.

Царь Гиерон поручил Архимеду проверить работу мастера, который изготовил для него золотую корону.

Долгое время ученый не мог найти ответ: как определить количество некачественных примесей? Проблема заключалась в том, что определить ее объем — сложная задача. По легенде озарение настигло Архимеда, когда он принимал ванну.

Ученый заметил, что из ванны вылилась вода, когда он залез в нее. И здесь его посетила гениальная мысль. Все вы слышали его известную цитату: «Эврика! Эврика!» (в переводе означает: «Нашел!  Нашел!»).

Так Архимед победно выкрикивал свою фразу, потрясенный своим открытием, что она дошла в виде легенды и до наших времен.

Упражнения

Упражнение №1

К коромыслу весов подвешены два цилиндра одинаковой массы: свинцовый и алюминиевый (рисунок 4). Весы находятся в равновесии. Нарушится ли равновесие весов, если оба цилиндра одновременно погрузить в воду; в спирт? Ответ обоснуйте. Проверьте его на опыте. Как зависит выталкивающая сила от объема тела?

Рисунок 4. Цилиндры одинаковой массы, но изготовленные из разных материалов

Посмотреть ответ

Скрыть

Ответ:

Когда мы погрузим цилиндры в жидкость, на каждый их них будет действовать сила Архимеда. Если эти силы будут равны, то весы останутся в равновесии.

Запишем формулы архимедовой силы для каждого цилиндра.
Для свинцового цилиндра:
$F_{A1} = g rho_ж V_1$.
Для алюминиевого цилиндра:
$F_{A2} = g rho_ж V_2$.

Мы видим, что равенство этих сил зависит от объемов цилиндров. Они равны? Нет, они имеют одинаковые массы, но разные плотности. Цилиндр из алюминия будет обладать большим объемом, чем свинцовый цилиндр ($V = frac{m}{rho}$). Значит, на алюминиевый цилиндр будет действовать большая выталкивающая сила, чем на свинцовый.

Если мы проверим это на опыте, то увидим подтверждение нашим выводам (рисунок 5).

Рисунок 5. Погружение цилиндров из разных материалов в жидкости

При этом весы выйдут из равновесия в случае и с водой (рисунок 5, а), и со спиртом (рисунок 5, б). Так как мы опускаем цилиндры одновременно в один и тот же тип жидкости, значение архимедовой силы, действующей на цилиндры, будет различаться только в зависимости от объемов этих цилиндров — свинцовый перевесит алюминиевый в любой жидкости.

Заметим, что в случае погружения в воду, архимедова сила будет больше, чем в случае погружения в спирт. Это объясняется тем, что вода имеет большую плотность, чем спирт.

Упражнение №2

К коромыслу весов подвешены два алюминиевых цилиндра одинакового объема. Нарушится ли равновесие весов, если один цилиндр погрузить в воду, а другой — в спирт? Ответ обоснуйте. Зависит ли выталкивающая сила от плотности жидкости?

Посмотреть ответ

Скрыть

Ответ:

Если один цилиндр погрузить в воду, а другой — в спирт, то равновесие весов нарушится (рисунок 6). На цилиндр, находящийся в воде, будет действовать большая архимедова сила.

Рисунок 6. Зависимость величины архимедовой силы от плотности жидкости

Так происходит, потому что архимедова сила зависит от объема погруженного тела (а они у нас одинаковые: $V_1 = V_2 = V$) и от плотности жидкости:
$F_А = g rho_ж V$.
Плотность спирта ($800 frac{кг}{м^3}$) меньше плотности воды ($1000 frac{кг}{м^3}$). Значит, на цилиндр, погруженный в воду, будет действовать большая архимедова сила, чем на тот, что погружен в спирт.

Упражнение №3

Объем куска железа равен $0.1 space дм^3$. Какая выталкивающая сила будет на него действовать при полном его погружении в воду; в керосин?

Дано:
$V = 0.1 space дм^3$
$g = 9.8 frac{Н}{кг}$
$rho_1 = 1000 frac{кг}{м^3}$
$rho_2 = 800 frac{кг}{м^3}$

СИ:
$V = 0.1 cdot 10^{-3} space м^3$

$F_{А1} — ?$
$F_{А2} — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Рассчитаем архимедову силу, которая будет действовать на кусок железа в воде:
$F_{А1} = g rho_1 V$,
$F_{А1} = 9.8 frac{Н}{кг} cdot 1000 frac{кг}{м^3} cdot 0.1 cdot 10^{-3} space м^3 = 0.98 space Н approx 1 space Н$.

Теперь рассчитаем архимедову силу, которая будет действовать на кусок железа в керосине:
$F_{А2} = g rho_2 V$,
$F_{А2} = 9.8 frac{Н}{кг} cdot 800 frac{кг}{м^3} cdot 0.1 cdot 10^{-3} space м^3 = 0.784 space Н approx 0.8 space Н$.

Ответ: $F_{А1} approx 1 space Н$, $F_{А2} approx 0.8 space Н$.

Упражнение №4

Бетонная плита объемом $2 space м^3$ погружена в воду. Какую силу необходимо приложить, чтобы удержать ее в воде; в воздухе?

Дано:
$V = 2 space м^3$
$g = 9.8 frac{Н}{кг}$
$rho_1 = 1000 frac{кг}{м^3}$
$rho_2 = 1.29 frac{кг}{м^3}$
$rho_б = 2300 frac{кг}{м^3}$

$F_1 — ?$
$F_2 — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Бетонная плита находится в воде. На нее действует сила тяжести и архимедова сила. Они направлены противоположно друг другу и будут иметь разные величины. Разность этих сил — и будет искомая сила $F_1$, которую нужно приложить, чтобы удержать бетонную плиту в воде (чтобы она не опускалась на дно и не всплывала):
$F_1 = F_{тяж} space − space F_{А1}$.

Сила тяжести рассчитывается по формуле:
$F_{тяж} = gm$.
Массу бетонной плиты мы можем выразить через ее плотность и объем:
$m = rho_б V$,
$F_{тяж} = g rho_б V$.

Архимедова сила, действующая на бетонную плиту в воде:
$F_{А1} = g rho_1 V$.

Подставим силу тяжести и архимедову силу в формулу и рассчитаем $F_1$:
$F_1 = F_{тяж} space − space F_{А1} = g rho_б V space − space g rho_1 V = gV cdot (rho_б space − space rho_1)$,
$F_1 = 9.8 frac {Н}{кг} cdot 2 space м^3 cdot (2300 frac{кг}{м^3} space − space 1000 frac{кг}{м^3}) = 25 space 480 space Н approx 25 space кН$.

Используем ту же формулу для того, чтобы рассчитать силу $F_2$, которую нужно приложить, чтобы удержать бетонную плиту в воздухе:
$F_2 = gV cdot (rho_б space − space rho_2)$,
$F_2 = 9.8 frac {Н}{кг} cdot 2 space м^3 cdot (2300 frac{кг}{м^3} space − space 1.29 frac{кг}{м^3}) approx 45 space 054 space Н approx 45 space кН$.

Ответ: $F_1 approx 25 space кН$, $F_2 approx 45 space Н$.

Упражнение №5

Предположив, что корона царя Гиерона в воздухе весит $20 space Н$, а в воде — $18.75 space Н$, вычислите плотность вещества короны. Полагая, что к золоту было подмешано только серебро, определите, сколько в короне было золота и сколько серебра. При решении задачи плотность золота считайте равной $20 space 000 frac{кг}{м^3}$, плотность серебра — $10 space 000 frac{кг}{м^3}$. Каков был бы объем короны из чистого золота?

Дано:
$P_1 = 20 space Н$
$P_2 = 18.75 space Н$
$rho_з = 20 space 000 frac{кг}{м^3}$
$rho_с = 10 space 000 frac{кг}{м^3}$
$g = 9.8 frac{Н}{кг}$
$rho_1 = 1.29 frac{кг}{м^3}$
$rho_2 = 1000 frac{кг}{м^3}$

$rho — ?$
$m_з — ?$
$m_с — ?$
$V_1 — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Вес короны в воздухе $P_1$ будет меньше веса тела в вакууме $P$ на архимедову силу $F_{A1}$. То есть:
$P_1 = P space − space F_{A1}$.

Значит, вес короны в вакууме будет равен сумме ее веса в воздухе и архимедовой силы:
$P = P_1 space + space F_{А1}$,
$gm = P_1 space + space g rho_1 V$.

Теперь запишем такое же уравнение для веса короны в воде:
$gm = P_2 space + space g rho_2 V$.

Левые части уравнений у нас равны, поэтому мы можем приравнять правые части друг к другу:
$P_1 space + space g rho_1 V = P_2 space + space g rho_2 V$.
Перенесем элементы, содержащие неизвестный объем вправо:
$P_1 space − space P_2 = g rho_2 V space − space g rho_1 V$,
$P_1 space − space P_2 = gV (rho_2 space − space rho_1)$.

Выразим отсюда объем короны и рассчитаем его:
$V = frac{P_1 space − space P_2}{g (rho_2 space − space rho_1)}$,
$V = frac{20 space Н space − space 18.75 space Н}{9.8 frac{Н}{кг} (1000 frac{кг}{м^3} space − space 1.29 frac{кг}{м^3})} = frac{1.25}{9787} space м^3 = 12.8 cdot 10^{-5} space м^3$.

Используем одно из первых уравнений для веса короны в вакууме и в воздухе:
$gm = P_1 space + space g rho_1 V$.
Выразим отсюда массу короны и рассчитаем ее:
$m = frac{P_1 space + space g rho_1 V}{g}$,
$m = frac{20 space Н space + space 9.8 frac{Н}{кг} cdot 1.29 frac{кг}{м^3} cdot 12.8 cdot 10^{-5} space м^3}{9.8 frac{Н}{кг}} approx 2.04 space кг$.

Теперь мы знаем массу и объем короны. Рассчитаем ее плотность:
$rho = frac{m}{V}$,
$rho = frac{2.04 space кг}{12.8 cdot 10^{-5} space м^3} approx 16 space 000 frac{кг}{м^3}$.

Корона состоит из серебра и золота. Это означает, что ее общий объем мы можем записать в виде суммы объемов серебра и золота, ее составляющих:
$V = V_с space + space V_з$.
То же самое с общей массой короны:
$m = m_с space + space m_з$.

Запишем объемы через массы и плотности (а также выразим массу золота через общую массу короны и массу серебра):
$V_с = frac{m_с}{rho_с}$,
$V_з = frac{m_з}{rho_з} = frac{m space − space m_с}{rho_з}$.

Подставим эти объемы в формулу для общего объема короны и выразим из нее массу серебра:
$V = frac{m_с}{rho_с} space + space frac{m space − space m_с}{rho_з} = frac{m_с (rho_з space − space rho_с) space + space rho_с m}{rho_с rho_з} = m_с cdot frac{rho_з space − space rho_с}{rho_с rho_з} space + space frac{m}{rho_з}$,
$m_с = frac{V space − space frac{m}{rho_з}}{frac{rho_з space − space rho_с}{rho_с rho_з}} = frac{rho_с (V rho_з space − space m)}{rho_з space − space rho_с}$.

Рассчитаем массу серебра, содержащегося в короне:
$m_с = frac{10 space 000 frac{кг}{м^3} (12.8 cdot 10^{-5} space м^3 cdot 20 space 000 frac{кг}{м^3} space − space 2.04 space кг)}{20 space 000 frac{кг}{м^3} space − space 10 space 000 frac{кг}{м^3}} = frac{5200 frac{кг^2}{м^3}}{10 space 000 frac{кг}{м^3}} = 0.52 space кг$.

Теперь мы можем вычислить и количество золота в короне:
$m_з = m space − space m_с$,
$m_з = 2.04 space кг space − space 0.52 space кг = 1.52 space кг$.

Если бы вся корона была из золота, то ее объем был бы равен:
$V_1 = frac{m}{rho_з}$,
$V_1 = frac{2.04 space кг}{20 space 000 frac{кг}{м^3}} = 10.2 cdot 10^{-5} space м^3$.

Ответ: $rho approx 16 space 000 frac{кг}{м^3}$, $m_з = 1.52 space кг$, $m_с = 0.52 space кг$, $V_1 = 10.2 cdot 10^{-5} space м^3$.

Упражнение №6

По мелким камешкам ходить босыми ногами больно. Почему человек не испытывает боли, если ходит по таким же камням в воде?

Посмотреть ответ

Скрыть

Ответ:

Что означает фраза «ходить по камням»? Со стороны физики, когда мы наступаем на камни, мы давим на них своим весом: $p = frac{F}{S} = frac{P}{S}$.

Когда мы оказываемся в воде, наш вес уменьшается. Это следствие действия на нас архимедовой силы. Уменьшается вес — уменьшается и давление наших стоп на камни.

Содержание:

Выталкивающая сила:

Наблюдение. Почему тяжело погрузить мяч в воду, и почему, как только мы его отпустим, он выпрыгивает из воды? Почему в море легче плавать, чем в озере? Почему в воде мы можем поднять камень, а в воздухе — нет?

Опыт 1. Подвесим к пружине тело (рис. 138). В связи с тем, что на тело действует сила тяжести Выталкивающая сила в физике - виды, формулы и определения с примерами

Газы во многом подобны жидкостям. На тела, помещённые в газ, также действует выталкивающая сила. Именно под действием этой силы воздушные шары, метеорологические зонды, детские шарики, наполненные водородом, поднимаются вверх.

А от чего зависит выталкивающая сила ?

Опыт 2. Два тела разного объёма, но одинаковой массы, погрузим полностью в одну и ту же жидкость (воду). Мы видим, что тело большего объёма выталкивается из жидкости (воды) с большей силой (рис. 139).Выталкивающая сила в физике - виды, формулы и определения с примерами

Выталкивающая сила зависит от объёма погружённого в жидкость тела. Чем больше объём тела, тем большая выталкивающая сила действует на него.

Опыт 3. Погрузим полностью два тела одинакового объёма и массы в разные жидкости, например воду и керосин (рис. 140). Нарушение равновесия в этом случае свидетельствует, что в воде на тело действует большая выталкивающая сила, это можно связать с тем, что плотность воды больше, чем плотность керосина.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Выталкивающая сила зависит от плотности жидкости, в которую погружено тело. Чем больше плотность жидкости, тем большая выталкивающая сила действует на погружённое в неё тело.

Обобщая результаты наблюдений и опытов можно сделать такой вывод.

На тело, погружённое в жидкость (газ), действует выталкивающая сила, равная по значению весу жидкости (газа), вытесненной этим телом.

Это утверждение называют законом Архимеда, древнегреческого учёного, который его открыл и, по легенде, успешно применил для решения практической задачи: определил, содержится ли в золотой короне царя Гиерона примесь серебра. Силу, которая выталкивает тело из жидкости или газа, называют еще архимедовой силой.

На основе закона Архимеда можно сразу написать формулу для определения выталкивающей силы, но чтобы лучше понять, вследствие чего она возникает, выполним простые расчёты. Для этого рассмотрим тело в форме прямоугольного бруска, погружённого в жидкость таким образом, чтобы его верхняя и нижняя фан и располагались параллельно поверхности жидкости (рис. 141). Выталкивающая сила в физике - виды, формулы и определения с примерами

Посмотрим, каким будет результат действия сил давления на поверхность этого тела.

Согласно закону Паскаля горизонтальные силы Выталкивающая сила в физике - виды, формулы и определения с примерами и Выталкивающая сила в физике - виды, формулы и определения с примерами действующие на симметричные боковые грани бруска, попарно равны по значению и противоположно направлены. Они не выталкивают брусок вверх, а только сжимают его с боков. Рассмотрим силы гидростатического давления на верхнюю и нижнюю грани бруска.

Пусть верхняя грань площадью S расположена на глубине Выталкивающая сила в физике - виды, формулы и определения с примерами тогда сила давления Выталкивающая сила в физике - виды, формулы и определения с примерами, на неё будет равна: Выталкивающая сила в физике - виды, формулы и определения с примерами

где Выталкивающая сила в физике - виды, формулы и определения с примерами — плотность жидкости.

Нижняя грань бруска площадью S расположена на большей глубине Выталкивающая сила в физике - виды, формулы и определения с примерами, поэтому сила давления Выталкивающая сила в физике - виды, формулы и определения с примерами на неё будет также больше, чем Выталкивающая сила в физике - виды, формулы и определения с примерами:  Выталкивающая сила в физике - виды, формулы и определения с примерами

Обе силы давления Выталкивающая сила в физике - виды, формулы и определения с примерами, и Выталкивающая сила в физике - виды, формулы и определения с примерами действуют вдоль вертикали, их равнодействующая и будет силой Архимеда Выталкивающая сила в физике - виды, формулы и определения с примерами, направленной вверх в сторону большей силы Выталкивающая сила в физике - виды, формулы и определения с примерами, а её значение будет равно разности сил

Выталкивающая сила в физике - виды, формулы и определения с примерами и Выталкивающая сила в физике - виды, формулы и определения с примерами:  Выталкивающая сила в физике - виды, формулы и определения с примерами.

Поскольку разность Выталкивающая сила в физике - виды, формулы и определения с примерами является высотой бруска, то произведение Выталкивающая сила в физике - виды, формулы и определения с примерами равно объёму тела Выталкивающая сила в физике - виды, формулы и определения с примерами, и мы окончательно получаем формулу,

являющуюся математическим выражением закона Архимеда:
Выталкивающая сила в физике - виды, формулы и определения с примерами

Действительно, поскольку жидкость не сжимается, то объём вытесненной телом жидкости равен объёму этого тела, и произведение Выталкивающая сила в физике - виды, формулы и определения с примерами равно массе жидкости Выталкивающая сила в физике - виды, формулы и определения с примерами в объёме тела Выталкивающая сила в физике - виды, формулы и определения с примерами. В свою очередь, произведение Выталкивающая сила в физике - виды, формулы и определения с примерами является весом этой жидкости.

Из приведённого расчета наглядно видно, что выталкивающая (архимедова) сила возникает вследствие того, что значения гидростатического давления на разных глубинах неодинаковы и возрастают с глубиной.

Архимедовую силу можно определить экспериментально.

Опыт 4. Подвесим тело к динамометру (рис. 142). На тело действует сила тяжести почти 10 Н. Погрузим тело в жидкость (рис. 143).

Выталкивающая сила в физике - виды, формулы и определения с примерамиДинамометр показывает 6 Н. Определим разность показаний динамометра. Она равняется 4 Н.

Кстати:

Однажды у императора Цао-Цао, который правил в Китае свыше 2000 лет тому назад, возникла мысль взвесить слона. Как ни суетились сановники, никто из них не мог ничего придумать, ведь нигде не было таких гигантских весов, чтобы на них можно было взвесить слона. Когда все сановники признали свою беспомощность, пришёл человек по имени Чао Чун и сказал, что он может взвесить слона. Он попросил: «Прикажите поставить слона в большую лодку, после чего обозначьте уровень погружения лодки в воду. Снимите слона, а лодку загрузите камнями так, чтобы она погрузилась до отметки. Вес камней будет равен весу слона”. Талантливый самородок, на много лет опередивший великого Архимеда, получил за своё предложение «щедрое» вознаграждение – благосклонный кивок императора Цао-Цао.

Выталкивающая сила и закон Архимеда

При взаимодействии твердых неподвижных тел, действуя друг на друга, они только деформируются. И действие каждого из этих тел на другое характеризуется силой.

Как взаимодействуют твердое тело и жидкость

Если твердое тело взаимодействует с жидкостью, то оно проникает в жидкость. Что происходит в таком случае? Ответ на этот вопрос получим из опыта.

К резиновой нити прицепим груз и измерим длину нити, которая растягивается весом груза. Если же груз после этого опустить в воду, то станет заметным сокращение длины нити. Таким образом, вес тела в воде уменьшился. Это возможно только потому, что в жидкости на погруженное тело действует выталкивающая сила. Направление этой силы противоположно направлению действия силы тяжести.

Как рассчитать значение выталкивающей силы

Опыты показывают, что значение выталкивающей силы зависит как от характеристик погруженного тела, так и от свойств жидкости.

Возьмем металлический цилиндр и стакан, объем которого равен объему цилиндра. Прицепим их к крючку динамометра и определим вес цилиндра и стакана (рис. 110). Теперь полностью погрузим цилиндр в воду. Динамометр покажет уменьшение веса. Но если стакан полностью заполнить водой, то показания динамометра восстановятся. Таким образом, выталкивающая сила равна весу воды, объем которой равен объему тела. Если воду заменить насыщенным раствором соли в воде, то выталкивающая сила будет большей, так как большим будет вес воды, объем которой равен объему тела.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Если учесть, что вес жидкости  Выталкивающая сила в физике - виды, формулы и определения с примерами то для расчета выталкивающей силы можно использовать формулу

Выталкивающая сила в физике - виды, формулы и определения с примерами

где Выталкивающая сила в физике - виды, формулы и определения с примерами – выталкивающая сила; Выталкивающая сила в физике - виды, формулы и определения с примерами – плотность жидкости; Выталкивающая сила в физике - виды, формулы и определения с примерами – объем погруженного в жидкость тела или его части.

Зависимость, выраженная формулой для выталкивающей силы, называется законом Архимеда, сама выталкивающая сила — силой Архимеда.

От чего зависит сила Архимеда

Почему действует сила Архимеда в жидкости? Представим себе, что в жидкость погружено тело в виде прямоугольного бруска (рис. 111).

На тело, погруженное в жидкость, действует выталкивающая сила, которая равна весу жидкости в объеме погруженного тела или его погруженной части.

Выталкивающая сила в физике - виды, формулы и определения с примерами

В результате действия силы тяжести в жидкости существует давление, которое согласно закону Паскаля действует во всех направлениях. В связи с этим на верхнюю грань бруска будет действовать сила Выталкивающая сила в физике - виды, формулы и определения с примерами направленная вниз.

На нижнюю грань будет действовать сила Выталкивающая сила в физике - виды, формулы и определения с примерами направленная вверх. Так как Выталкивающая сила в физике - виды, формулы и определения с примерами, то и Выталкивающая сила в физике - виды, формулы и определения с примерами. Равнодействующая этих сил направлена вверх. Это и будет сила Архимеда.

Действует сила Архимеда и в газах, так как в них давление тоже изменяется с высотой.

Окончательно закон Архимеда можно сформулировать так: на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу жидкости или газа в объеме погруженной части тела.

В газах сила Архимеда значительно меньше, чем в жидкостях, поскольку плотность газа намного меньше плотности жидкости.

Выталкивающая сила в жидкостях и газах

Почему мяч, если его погрузить в воду и отпустить, выпрыгивает над поверхностью воды? Почему тяжелый камень, который на суше нельзя сдвинуть с места, можно легко поднять под водой? Почему корабль, севший на мель, самостоятельно не может всплыть? Попробуем разобраться.

Существование выталкивающей силы:

Подвесим к коромыслу весов два одинаковых шара. Массы шаров равны, значит, весы будут уравновешены (рис. 27.1, а). Подставим под правый шар пустой сосуд (рис. 27.1, б). Затем нальем в сосуд воду и увидим, что равновесие весов нарушится (рис. 27.1, в), — некая сила пытается вытолкнуть шар из воды.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Откуда берется эта сила? Чтобы разобраться, рассмотрим погруженный в жидкость кубик. На него со всех сторон действуют силы гидростатического давления жидкости (рис. 27.2). Силы гидростатического давления Выталкивающая сила в физике - виды, формулы и определения с примерамидействующие на боковые грани кубика, противоположны по направлению и равны по значению, так как площади боковых граней одинаковы и эти грани расположены на одинаковой глубине. Такие силы уравновешивают друг друга. А вот силы гидростатического давления Выталкивающая сила в физике - виды, формулы и определения с примерами , соответственно действующие на верхнюю и нижнюю грани кубика, друг друга не уравновешивают. На верхнюю грань кубика действует сила давления Выталкивающая сила в физике - виды, формулы и определения с примерами: Выталкивающая сила в физике - виды, формулы и определения с примерами где Выталкивающая сила в физике - виды, формулы и определения с примерами — гидростатическое давление жидкости; S — площадь грани. Аналогично на нижнюю грань кубика действует сила давления Выталкивающая сила в физике - виды, формулы и определения с примерами : Выталкивающая сила в физике - виды, формулы и определения с примерами Нижняя грань находится на большей глубине, чем верхняя Выталкивающая сила в физике - виды, формулы и определения с примерами поэтому сила давления Выталкивающая сила в физике - виды, формулы и определения с примерами больше силы давления Выталкивающая сила в физике - виды, формулы и определения с примерами

Выталкивающая сила в физике - виды, формулы и определения с примерами

Равнодействующая этих сил равна разности значений сил Выталкивающая сила в физике - виды, формулы и определения с примерами и направлена в сторону действия большей силы, то есть вертикально вверх. По вертикали вверх на кубик, погруженный в жидкость, действует сила, обусловленная разностью давлений на его нижнюю и верхнюю грани, — выталкивающая сила: Выталкивающая сила в физике - виды, формулы и определения с примерами На тело, помещенное в газ, тоже действует выталкивающая сила, но она значительно меньше выталкивающей силы, действующей на то же тело в жидкости, поскольку плотность газа намного меньше плотности жидкости. Выталкивающую силу, которая действует на тело в жидкости или газе, называют также архимедовой силой (в честь древнегреческого ученого Архимеда (рис. 27.3), который первым указал на существование этой силы и вычислил ее значение).

Выталкивающая сила в физике - виды, формулы и определения с примерами

Расчет и вычисление силы Архимеда

Вычислим значение архимедовой (выталкивающей) силы для кубика, погруженного в жидкость (см. рис. 27.2). Вы уже знаете, что архимедова сила равна разности сил давлений жидкости на нижнюю и верхнюю грани кубика: Выталкивающая сила в физике - виды, формулы и определения с примерами где Выталкивающая сила в физике - виды, формулы и определения с примерами — сила давления жидкости на верхнюю грань кубика; Выталкивающая сила в физике - виды, формулы и определения с примерами — сила давления жидкости на нижнюю грань кубика. Зная Выталкивающая сила в физике - виды, формулы и определения с примерами, найдем выталкивающую силу: Выталкивающая сила в физике - виды, формулы и определения с примерами Разность глубин Выталкивающая сила в физике - виды, формулы и определения с примерами, на которых находятся нижняя и верхняя грани кубика, — это высота h кубика, следовательно, Выталкивающая сила в физике - виды, формулы и определения с примерами. Произведение площади S основания кубика на его высоту h — это объем V кубика: V= Sh, значит, формула для расчета архимедовой силы: Выталкивающая сила в физике - виды, формулы и определения с примерами Здесь Выталкивающая сила в физике - виды, формулы и определения с примерами — это масса жидкости в объеме кубика, то есть масса жидкости, объем которой равен объему кубика. Так как Выталкивающая сила в физике - виды, формулы и определения с примерами, то Выталкивающая сила в физике - виды, формулы и определения с примерами Архимедова сила равна весу жидкости в объеме кубика: Выталкивающая сила в физике - виды, формулы и определения с примерами

Мы рассмотрели случай с кубиком, полностью погруженным в жидкость. Однако полученный результат выполняется для тела любой формы, а также в случаях, когда тело погружено в жидкость частично (для расчетов следует брать объем погруженной в жидкость части тела). Кроме того, результат справедлив и для газов. А теперь сформулируем закон Архимеда: На тело, погруженное в жидкость или газ, действует выталкивающая сила, которая равна весу жидкости или газа в объеме погруженной части тела: Выталкивающая сила в физике - виды, формулы и определения с примерами где Выталкивающая сила в физике - виды, формулы и определения с примерами — архимедова сила; Выталкивающая сила в физике - виды, формулы и определения с примерами— плотность жидкости или газа; Выталкивающая сила в физике - виды, формулы и определения с примерами — объем погруженной части тела. Архимедова сила приложена к центру погруженной части тела и направлена вертикально вверх (рис. 27.4).

Выталкивающая сила в физике - виды, формулы и определения с примерами

Выясняем, всегда ли на тело, погруженное в жидкость, действует архимедова сила:

Подвесим к динамометру камешек на нити. Динамометр покажет вес камешка. Подставим стакан с водой так, чтобы камешек оказался полностью погруженным в воду. Показание динамометра уменьшится. Кажется, что камешек «потерял» часть своего веса. Но никакой потери веса тела в жидкости не происходит: вес перераспределяется между подвесом (нитью) и опорой (жидкостью). Даже если архимедова сила, действующая на тело, достаточна, чтобы его удержать, и подвес не будет растянут, тело все равно не находится в состоянии невесомости, ведь оно давит на опору — жидкость. Следует отметить: когда тело плавает, его вес распределяется на воду, окружающую всю поверхность тела. Поэтому во время плавания нам кажется, что мы потеряли вес. Такие комфортные условия поддержания тяжелого тела обусловили то, что в результате эволюции самые массивные существа на Земле живут в океане (рис. 27.5).

Именно архимедова сила помогает нам поднимать в воде тяжелые камни или другие предметы, ведь часть силы тяжести, действующей на эти тела, уравновешивается не силой наших рук, а выталкивающей силой.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Однако случается, что вода не помогает поднять тело, а наоборот — препятствует этому. Это происходит, если тело лежит на дне и плотно к нему прилегает. Вода не может попасть под нижнюю поверхность тела и помочь своим давлением поднять его. В таком случае, чтобы оторвать тело от дна, нужно преодолеть не только силу тяжести, действующую на тело, но и силу давления воды на верхнюю поверхность тела (рис. 27.6). Данное явление может стать причиной трагедии: если подводная лодка опустится на глинистое дно и вытеснит из­ под себя воду, всплыть сама она не сможет.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Пример №1

Однородный алюминиевый брусок массой 540 г полностью погружен в воду и не касается дна и стенок сосуда. Определите архимедову силу, действующую на брусок. Анализ физической проблемы. Для вычисления архимедовой силы нужно знать плотность воды и объем бруска. Объем бруска определим по его массе и плотности. Плотности воды и алюминия узнаем из таблиц плотностей (с. 249). Задачу будем решать в единицах СИ.

Дано:

Выталкивающая сила в физике - виды, формулы и определения с примерами,Выталкивающая сила в физике - виды, формулы и определения с примерами,Выталкивающая сила в физике - виды, формулы и определения с примерами,Выталкивающая сила в физике - виды, формулы и определения с примерами

Найти:

Выталкивающая сила в физике - виды, формулы и определения с примерами

Решение:

По закону Архимеда: Выталкивающая сила в физике - виды, формулы и определения с примерами По определению плотности: Выталкивающая сила в физике - виды, формулы и определения с примерами

Подставим выражение для объема бруска в формулу для расчетов архимедовой силы:Выталкивающая сила в физике - виды, формулы и определения с примерами

Проверим единицу, найдем значение искомой величины:

Выталкивающая сила в физике - виды, формулы и определения с примерамиВыталкивающая сила в физике - виды, формулы и определения с примерами

Ответ: Выталкивающая сила в физике - виды, формулы и определения с примерами

Итоги:

На тело, находящееся в жидкости или газе, действует выталкивающая (архимедова) сила. Причина ее появления в том, что давление, которое оказывает жидкость или газ на верхнюю поверхность тела, отличается от давления, оказываемого на нижнюю поверхность тела. Закон Архимеда: на тело, погруженное в жидкость или газ, действует выталкивающая сила, которая направлена вертикально вверх и равна весу жидкости или газа в объеме погруженной части тела:Выталкивающая сила в физике - виды, формулы и определения с примерами

Условия плавания тел

При приготовлении раствора соли определенной плотности хозяйки погружают в него сырое яйцо: если плотность раствора недостаточна, яйцо тонет, если достаточна — всплывает. аналогично определяют плотность сахарного сиропа при консервации.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Вы наверняка можете привести множество примеров плавания тел. Плавают корабли и лодки, деревянные игрушки и воздушные шарики, плавают рыбы, дельфины, другие существа. А от чего зависит способность тела плавать? Проведем опыт. Возьмем небольшой сосуд с водой и несколько шариков, изготовленных из разных материалов. Будем поочередно погружать тела в воду, а потом отпускать их без начальной скорости. Далее в зависимости от плотности тела возможны разные варианты (см. таблицу).

Выталкивающая сила в физике - виды, формулы и определения с примерами

Погружение

Тело начинает тонуть и в конце концов опускается на дно сосуда. Выясним, почему это происходит. На тело действуют две силы: 1) сила тяжести Выталкивающая сила в физике - виды, формулы и определения с примерами (поскольку Выталкивающая сила в физике - виды, формулы и определения с примерами), направленная вертикально вниз; 2) выталкивающая сила Выталкивающая сила в физике - виды, формулы и определения с примерами направленная вертикально вверх. Тело погружается, а это значит, что сила, направленная вниз, больше: Выталкивающая сила в физике - виды, формулы и определения с примерами Поскольку Выталкивающая сила в физике - виды, формулы и определения с примерами . После сокращения на Выталкивающая сила в физике - виды, формулы и определения с примерами имеем:

Выталкивающая сила в физике - виды, формулы и определения с примерами тело тонет в жидкости или газе, если плотность тела больше, чем плотность жидкости или газа. Вариант 2. Плавание внутри жидкости. Тело не тонет и не всплывает, а остается плавать внутри жидкости. Попробуйте доказать, что в данном случае плотность тела равна плотности жидкости:

Выталкивающая сила в физике - виды, формулы и определения с примерами

тело плавает внутри жидкости или газа, если плотность тела равна плотности жидкости или газа. Вариант 3. Всплытие. Тело начинает всплывать и в конце концов останавливается на поверхности жидкости, погрузившись в жидкость частично. Пока тело всплывает, архимедова сила больше силы тяжести: Выталкивающая сила в физике - виды, формулы и определения с примерами или: Выталкивающая сила в физике - виды, формулы и определения с примерами Остановка тела на поверхности жидкости означает, что архимедова сила и сила тяжести уравновешены: Выталкивающая сила в физике - виды, формулы и определения с примерами тело всплывает в жидкости или газе либо плавает на поверхности жидкости, если плотность тела меньше, чем плотность жидкости или газа.

Плавание тел в живой природе

Тела обитателей морей и рек содержат в своем составе много воды, поэтому их средняя плотность близка к плотности воды. Чтобы свободно двигаться в жидкости, они должны «управлять» средней плотностью своего тела. Приведем примеры. У рыб с плавательным пузырем такое управление происходит за счет изменения объема пузыря (рис. 28.1). Моллюск наутилус (рис. 28.2), обитающий в тропических морях, может быстро всплывать и снова опускаться на дно благодаря тому, что может менять объем внутренних полостей в организме (моллюск живет в закрученной спиралью раковине). Распространенный в Европе водяной паук (рис. 28.3) несет с собой в глубину воздушную оболочку на брюшке — именно она дает ему запас плавучести и помогает вернуться на поверхность.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Выталкивающая сила в физике - виды, формулы и определения с примерами

Выталкивающая сила в физике - виды, формулы и определения с примерами

Пример №2

Медный шар массой 445 г имеет внутри полость объемом 450 см3. Будет ли этот шар плавать в воде? Анализ физической проблемы. Чтобы ответить на вопрос, как поведет себя шар в воде, нужно плотность шара Выталкивающая сила в физике - виды, формулы и определения с примерами сравнить с плотностью воды Выталкивающая сила в физике - виды, формулы и определения с примерами Для вычисления плотности шара следует определить его объем и массу. Масса воздуха в шаре незначительна по сравнению с массой меди, поэтому Выталкивающая сила в физике - виды, формулы и определения с примерами Объем шара — это объем медной оболочки Выталкивающая сила в физике - виды, формулы и определения с примерами и объем полости Выталкивающая сила в физике - виды, формулы и определения с примерами Объем медной оболочки можно определить, зная массу и плотность меди. О плотностях меди и воды узнаем из таблиц плотностей (с. 249). Задачу целесообразно решать в представленных единицах.

Дано:

Выталкивающая сила в физике - виды, формулы и определения с примерамиВыталкивающая сила в физике - виды, формулы и определения с примерами,Выталкивающая сила в физике - виды, формулы и определения с примерами,Выталкивающая сила в физике - виды, формулы и определения с примерами,Выталкивающая сила в физике - виды, формулы и определения с примерами

Найти:

Выталкивающая сила в физике - виды, формулы и определения с примерами

Решение:

По определению плотности:Выталкивающая сила в физике - виды, формулы и определения с примерами

Объем шара: Выталкивающая сила в физике - виды, формулы и определения с примерами — объем медной оболочки.

Таким образом, Выталкивающая сила в физике - виды, формулы и определения с примерами

Решим задачу по действиям. 1. Определим объем шара:

Выталкивающая сила в физике - виды, формулы и определения с примерами

2. Зная объем и массу шара, определим его плотность:

Выталкивающая сила в физике - виды, формулы и определения с примерами

Анализ результата: плотность шара меньше плотности воды, поэтому шар будет плавать на поверхности воды.

Ответ: да, шар будет плавать на поверхности воды.

  • Заказать решение задач по физике

Итоги:

Тело тонет в жидкости или газе, если плотность тела больше, чем плотность жидкости или газа Выталкивающая сила в физике - виды, формулы и определения с примерами плавает внутри жидкости или газа, если плотность тела равна плотности жидкости или газа Выталкивающая сила в физике - виды, формулы и определения с примерами Тело всплывает в жидкости или газе либо плавает на поверхности жидкости, если плотность тела меньше плотности жидкости или газа Выталкивающая сила в физике - виды, формулы и определения с примерами

Судоходство и воздухоплавание

Стальной брусок в воде тонет, а стальные корабли плавают. Нейлоновая ткань падает в воздухе, а воздушные шары, изготовленные из этой ткани, поднимаются вверх сами и поднимают гондолы с пассажирами. Почему же стальные корабли плавают в воде, а воздушные шары называют аппаратами, которые легче воздуха? Получить ответы на эти вопросы вам помогут знания об основах судоходства и воздухоплавания.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Почему плавают суда

На первый взгляд, сталь непригодна для изготовления плавучего средства: плотность стали намного больше плотности воды, поэтому стальная пластинка в воде тонет. Но если из пластинки сделать кораблик и опустить его на поверхность воды, кораблик будет плавать (рис. 29.1). Почему? Дело в том, что погруженная в воду часть кораблика вытесняет воды достаточно, чтобы архимедова сила уравновесила силу тяжести, действующую на кораблик. Другими словами, средняя плотность кораблика за счет воздуха внутри него намного меньше плотности воды. Именно поэтому кораблик плавает на поверхности воды лишь немного в нее погружаясь.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Этот принцип лежит в основе конструкции всех судов. Средняя плотность судов намного меньше плотности воды, поэтому суда плавают на ее поверхности, погружаясь на относительно небольшую часть своего объема.

Характеристики судов:

Когда новое судно спускают на воду, оно начинает погружаться. Нижняя часть судна начинает вытеснять воду, вследствие чего возникает архимедова сила. Когда архимедова сила уравновешивает силу тяжести, действующую на судно, оно прекращает погружение. Глубину, на которую погружается судно, называют осадкой. Осадка судна изменяется в зависимости от загруженности судна и от того, в речной или морской воде оно находится. Разумеется, судно нельзя перегружать.

На корпус судна нанесена ватерлиния — линия, указывающая максимально допустимую осадку судна, при которой оно может безопасно плавать (рис. 29.2). Когда судно полностью нагружено, оно находится в воде вровень с ватерлинией.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Вес воды, которую вытесняет судно, погруженное в воду до ватерлинии, то есть архимедова сила, действующая на полностью нагруженное судно, называется полным водоизмещением судна. Напомним: поскольку нагруженное судно плавает на поверхности воды, то архимедова сила, которая действует на него, по значению равна силе тяжести, действующей на судно с грузом: Выталкивающая сила в физике - виды, формулы и определения с примерами Самые большие суда — танкеры для нефти — имеют полное водоизмещение до 5 млн кН, то есть их масса вместе с грузом достигает 500 000 т. Если из полного водоизмещения исключить вес самого судна, то получим максимальный вес груза, который может взять на борт данное судно, то есть определим грузоподъемность судна. грузоподъемность судна — максимальный вес груза, который судно может взять на борт, — это разность между полным водоизмещением судна и его весом. Украина — морское государство. В стране есть морской и речной флот, а также порты, имеющие большое экономическое значение: Одесский, Ильичевский, Южный, Николаевский, Херсонский, Бердянский, Мариупольский.

Как осуществилась мечта человека летать

Люди уже давно используют воздушные шары (аэростаты), поднимающиеся в воздух благодаря заполнению их оболочки горячим воздухом или легким газом. На воздушный шар в воздухе действует выталкивающая сила. Средняя плотность воздушного шара меньше плотности воздуха, поэтому выталкивающая сила больше силы тяжести и шар поднимается вверх. Разность между выталкивающей (архимедовой) силой и силой тяжести представляет собой подъемную силу воздушного шара. Сейчас воздушные шары используют для метеорологических и других исследований, соревнований, перевозок пассажиров, туристических и познавательных путешествий. Воздушные шары, наполненные легким газом (в основном гелием), называют шарльерами. В последнее время распространены воздушные шары, наполненные горячим воздухом, — современные монгольфьеры (рис. 29.3). Высокую температуру воздуха внутри шара поддерживают газовые горелки, установленные в его горловине. Поскольку плотность воздуха с высотой уменьшается, воздушные шары не могут подняться на какую угодно высоту. Воздушные шары поднимаются только до той высоты, где плотность воздуха равна средней плотности шара вместе с грузом.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Пример №3

В речном порту судно взяло на борт 100 т груза. В результате осадка судна увеличилась на 0,2 м и достигла максимально допустимой. Какова площадь сечения судна на уровне ватерлинии? Анализ физической проблемы. Когда на судно взяли груз, оно увеличило осадку и дополнительно вытеснило некоторый объем воды. По закону Архимеда, вес груза равен весу дополнительно вытесненной воды: Выталкивающая сила в физике - виды, формулы и определения с примерами Осадка судна увеличилась всего на 20 см, значит, площадь сечения судна на уровне поверхности воды изменилась незначительно. Поэтому объем дополнительно вытесненной воды равен Выталкивающая сила в физике - виды, формулы и определения с примерами где h — увеличение осадки; S — площадь сечения судна на уровне ватерлинии (по условию судно достигло максимальной осадки). Порт речной, поэтому плотность воды равна Выталкивающая сила в физике - виды, формулы и определения с примерами Задачу следует решать в единицах СИ.

Дано:

Выталкивающая сила в физике - виды, формулы и определения с примерамиВыталкивающая сила в физике - виды, формулы и определения с примерами,Выталкивающая сила в физике - виды, формулы и определения с примерами,Выталкивающая сила в физике - виды, формулы и определения с примерами

Найти:

Выталкивающая сила в физике - виды, формулы и определения с примерами

Решение:

1. Определим массу дополнительно вытесненной воды. По закону Архимеда:Выталкивающая сила в физике - виды, формулы и определения с примерами

Выталкивающая сила в физике - виды, формулы и определения с примерамипоэтому Выталкивающая сила в физике - виды, формулы и определения с примерами

2. Определим объем дополнительно вытесненной воды:

Выталкивающая сила в физике - виды, формулы и определения с примерами

3. Площадь S сечения судна на уровне ватерлинии найдем через объем вытесненной воды:

Выталкивающая сила в физике - виды, формулы и определения с примерами

Ответ:Выталкивающая сила в физике - виды, формулы и определения с примерами

Мы решили задачу 1 по действиям. Решите эту задачу в общем виде (получите общую формулу, найдите значение искомой величины).

Пример №4

Объем воздушного шара равен Выталкивающая сила в физике - виды, формулы и определения с примерами Шар натягивает трос, которым прикреплен к причалу, с силой 800 Н. После освобождения троса шар смог подняться на некоторую высоту. Какова плотность воздуха на этой высоте, если плотность воздуха у причала Выталкивающая сила в физике - виды, формулы и определения с примерами

Выталкивающая сила в физике - виды, формулы и определения с примерами

Анализ физической проблемы. Шар прекратил подъем потому, что на этой высоте его средняя плотность равна плотности воздуха Выталкивающая сила в физике - виды, формулы и определения с примерами. Чтобы определить среднюю плотность шара, следует найти его массу. Массу шара найдем по силе тяжести, действующей на шар. Для определения силы тяжести выполним пояснительный рисунок и покажем все силы, действовавшие на шар на причале: Выталкивающая сила в физике - виды, формулы и определения с примерами — сила тяжести; Выталкивающая сила в физике - виды, формулы и определения с примерами — архимедова сила, Выталкивающая сила в физике - виды, формулы и определения с примерами — сила натяжения троса. Шар на причале не двигался, поэтому силы, действовавшие на него, были скомпенсированы. Задачу будем решать по действиям в единицах СИ.

Дано:

Выталкивающая сила в физике - виды, формулы и определения с примерами,Выталкивающая сила в физике - виды, формулы и определения с примерами,Выталкивающая сила в физике - виды, формулы и определения с примерами,Выталкивающая сила в физике - виды, формулы и определения с примерами

Найти:

Выталкивающая сила в физике - виды, формулы и определения с примерами

Решение:

Силы, действовавшие на прикрепленный к причалу шар, были скомпенсированы, следовательно:

Выталкивающая сила в физике - виды, формулы и определения с примерами

1. Найдем архимедову силу, которая действовала на прикрепленный к причалу шар:

Выталкивающая сила в физике - виды, формулы и определения с примерами

2. Найдем силу тяжести, действующую на шар:

Выталкивающая сила в физике - виды, формулы и определения с примерами

3. Определим массу шара:Выталкивающая сила в физике - виды, формулы и определения с примерами

4. По известным массе и объему шара вычислим его среднюю плотность:

Выталкивающая сила в физике - виды, формулы и определения с примерами

5. Плотность воздуха на высоте максимального подъема шара равна средней плотности шара, потому на этой высотеВыталкивающая сила в физике - виды, формулы и определения с примерами

Ответ:Выталкивающая сила в физике - виды, формулы и определения с примерами

Итоги:

Взаимодействие тел:

Вы узнали, что причиной изменения скорости движения тел и причиной изменения формы и объема тел является взаимодействие.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Вы ознакомились с разными силами в механике.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Вы продолжили знакомство с физическими телами и веществами и узнали о физических величинах, характеризующих тело, вещество, взаимодействие.

Выталкивающая сила в физике - виды, формулы и определения с примерами

Вы узнали о давлении жидкостей и газов, ознакомились с законом Паскаля, законом Архимеда, доказали наличие атмосферного давления.

Выталкивающая сила в физике - виды, формулы и определения с примерами

  • Условия плавания тел в физике 
  • Гидростатическое взвешивание в физике
  • Воздухоплавание в физике
  • Машины и механизмы в физике
  • Атмосферное давление в физике и его измерение
  • Манометры в физике
  • Барометры в физике
  • Жидкостные насосы в физике

Содержание:

  • Определение и формула силы выталкивания
  • Примеры решения задач

На поверхность тела, которое находится в жидкости или газе действуют силы давления. Известно, что давление увеличивается с увеличением
глубины погружения. Значит, что силы давления, которые действуют на нижнюю часть тела и направлены вверх больше по модулю, чем силы,
которые действуют на верхнюю часть тела и направлены вниз.

Определение и формула силы выталкивания

Определение

Равнодействующую сил давления на тело, которое погружено в жидкость или газ называют выталкивающей силой. Выталкивающая сила
может быть больше, чем сила тяжести, которая действует на тело. Силы выталкивания появляются и в том случае,если тело находится
в жидкости или газе частично.

Если тело, находящееся в жидкости оставить в покое, то оно тонет, находится в равновесии или всплывает на поверхность.
Это зависит от соотношения силы тяжести и выталкивающей силы (FA),действующих на тело. В первом случае (тело тонет)
mg>FA . Если mg=FA, то тело находится в равновесии. При mgA
тело всплывает на поверхность.

На тело, погруженное в жидкость или газ, действует сила выталкивания (сила Архимеда FA), равная весу вытесненной им жидкости или газа.
В математическом виде данный закон выглядит как:

$$F_{A}=rho V g$$

где $rho$ – плотность жидкости (газа),
в которую погружено тело, g=9,8 м/с2 – ускорение свободного падения, V – объем тела (его части),
которое находится в жидкости (газе). Сила Архимеда приложена к центру тяжести объема части тела, которая находится в жидкости (газе).

Закон Архимеда можно применять для вычисления плотности однородного тела неправильной формы. При этом тело взвешивают два раза:
один раз в воздухе, второй раз, погрузив тело в жидкость, плотность которой известна.

Основной единицей измерения силы Архимеда, как и любой силы в системе СИ является: [FA]=Н

В СГС: FA]=дин

1Н= (кг•м)/с2

Примеры решения задач

Пример

Задание. Какова сила выталкивания, которая действует на куб, погруженный в систему жидкостей.
Сосуд наполнен водой, поверх воды налит керосин. Граница раздела жидкостей проходит посередине грани куба. Плотность воды считайте равной
$rho$1=103 кг/м3 ,
плотность керосина равна $rho$2=0,81•103
кг/м3 . Сторона куба равна a=0,1 м.

Решение. Сделаем рисунок.

Сила выталкивания, которая действует со стороны воды, на половину куба равна:

$$F_{A 1}=rho_{1} frac{V}{2} g$$

где V=a3

Сила выталкивания, которая действует со стороны керосина, на половину куба равна:

$$F_{A 2}=rho_{2} frac{V}{2} g$$

Обе силы направлены вверх. Приложены они к разным точкам (центрам масс объемов тел, погруженных в соответствующие жидкости),
при суммировании векторы можно перенести в одну точку параллельно самим себе. Получим, результирующая сила выталкивания равна:

$$F_{A}=F_{A 1}+F_{A 2}(1.3)$$

Подставим компоненты силы (1.2), (1.3) в выражение (1.1), имеем:

$$F_{A}=rho_{1} frac{a^{3}}{2} g+rho_{2} frac{a^{3}}{2} g$$

Проведем вычисления:

$$F_{A}=10^{3} frac{(0,1)^{3}}{2} cdot 9,8+0,81 cdot 10^{3} frac{(0,1)^{3}}{2} cdot 9,8 approx 8,8(H)$$

Ответ. Ответ: FA=8,8 Н

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Какова плотность камня, если его вес в воздухе 3,2 Н, а вес в воде 1,8 Н.

Решение. Вес камня в воздухе:

$$P=rho g V rightarrow V=frac{P}{rho g}$$

где $rho$ – плотность камня, V – объем камня.
Взвешивая камень в воде, получаем вес камня в жидкости, равный:

$$P^{prime}=P-F_{A}(2.2)$$

где FA – сила выталкивания (сила Архимеда). В соответствии с законом Архимеда:

$$F_{A}=rho_{H_{2} O g V}$$

где $rho$H2O
плотность воды. Подставим вместо V выражение (2.1), имеем:

$$F_{A}=rho_{H_{2} O g} frac{P}{rho g}=frac{rho_{H_{2} O}}{rho} P(2.4)$$

Подставим в уравнение (2.2) формулу (2.4), получаем:

$$rho=frac{P cdot rho_{H_{2} O}}{P-P^{prime}}(2.5)$$

Плотность воды будем считать равной
$rho$H2O=103 кг/м3 .
Можно провести вычисления:

$rho=frac{3,2 cdot 10^{3}}{3,2-1,8} approx 2,29 cdot 10^{3}$ кг/м3

Ответ. Плотность камня $ 2,29 cdot 10^{3}$ кг/м3

Читать дальше: Формула силы тока.

Добавить комментарий