Как найти само деление

Содержание материала

  1. В данный момент вы не можете посмотреть или раздать видеоурок ученикам
  2. Получите невероятные возможности
  3. Видео
  4. Основные понятия и определения
  5. Нахождение неизвестного делимого или делителя
  6. Способы нахождения разных частей деления

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности

1. Откройте доступ ко всем видеоурокам комплекта. 2. Раздавайте видеоуроки в личные кабинеты ученикам. 3. Смотрите статистику просмотра видеоуроков учениками.

Нет, спасибо

Получить доступ

Видео

Основные понятия и определения

Определение 5

Делитель — это число, на которое данное число делится нацело. Делитель всегда меньше или равен числу.

Делится нацело = без остатка.

Наименьшим делителем любого числа является единица.

Наибольшим делителем числа является само число.

Делителем нуля будет любое число, но сам 0 делителем не будет.

При делении нуля на любое число получаем 0. А делить на ноль нельзя.

У единицы только один делитель — единица.

Другие числа, кроме 1, имеют не меньше двух делителей.

Определение 6

Кратное — число, которое делится на данное число нацело. Всегда больше или равно числу.

Наименьшее кратное числа является равным самому числу.

Наибольшее кратное подобрать нельзя, потому что ряд натуральных чисел бесконечен. У любого натурального числа бесконечное множество кратных.

Ноль является кратным для любого числа. При умножении на ноль всегда получается ноль.

Когда одно число делится нацело на другое, то первое число — кратное второго, а второе — делитель первого.

Примечание 2

a:b=c,гдеa-кратноеbиb-делительa.

Нахождение неизвестного делимого или делителя

Еще один случай, который нам нужно рассмотреть, – это нахождение неизвестного делимого, если мы знаем делитель и частное, а также нахождение делителя при известном частном и делимом. Сформулировать это правило мы можем с помощью уже упомянутой здесь связи между умножением и делением.

Определение 5

Для нахождения неизвестного делимого нужно умножить делитель на частное.

Посмотрим, как применяется данное правило.

Пример 5

Решим с его помощью уравнение x:3=5. Перемножаем между собой известное частное и известный делитель и получаем 15, которое и будет нужным нам делимым.

Вот краткая запись всего решения:

x:3=5,x=3·5,x=15.

Проверка показывает, что мы все подсчитали верно, ведь при делении 15 на 3 действительно получается 5. Верное числовое равенство – свидетельство правильного решения.

Указанное правило можно интерпретировать как умножение правой и левой части уравнения на одинаковое отличное от число. Это преобразование никак не влияет на корни уравнения.

Переходим к следующему правилу.

Определение 6

Для нахождения неизвестного делителя нужно разделить делимое на частное.

Пример 6

Возьмем простой пример – уравнение 21:x=3. Для его решения разделим известное делимое 21 на частное 3 и получим 7. Это и будет искомый делитель. Теперь оформляем решение правильно:

21:x=3,x=21:3,x=7.

Удостоверимся в верности результата, подставив семерку в исходное уравнение. 21:7=3, так что корень уравнения был вычислен верно.

Важно отметить, что это правило применимо только для случаев, когда частное не равно нулю, ведь в противном случае нам опять же придется делить на . Если же частным будет нуль, возможны два варианта. Если делимое также равно нулю и уравнение выглядит как :x=, то значение переменной будет любым, то есть данное уравнение имеет бесконечное число корней. А вот уравнение с частным, равным , с делимым, отличным от , решений иметь не будет, поскольку таких значений делителя не существует. Примером может быть уравнение 5:x=, которое не имеет ни одного корня.

Способы нахождения разных частей деления

Теперь давайте рассмотрим данный пример:

$$30:3=10$$

В нашем случае 30 — это делимое, 3 — делитель, а 10 — частное. На данном примере давайте разберем, как находить каждую часть деления.

Для того чтобы найти неизвестный множитель, нужно произведение разделить на другой множитель.

$$xcdot10=30 newline 30:10=x newline x=3$$

Чтобы найти неизвестное делимое, надо частное умножить на делитель.

$$x:3=10 newline 3cdot10=x newline x=30$$

Чтобы найти неизвестный делитель, надо делимое разделить на частное.

$$30:x=10 newline 30:10=x newline x=3$$

Решим пример:

$$56:x=8$$

Деление имеет ряд правил, которые обязательно нужно запомнить. К счастью, их всего три:

Ни одно число нельзя делить на нуль.

Если разделить число на 1, то в ответе мы получим это же число.

Если разделить число на само себя, то в ответе мы получим 1.

Теги



Подобно тому, как вычитание является обратным действием для сложения, так и для умножения существует свое обратное арифметическое действие.

Рассмотрим задачу. В школьной столовой раздали 90 яблок по 3 яблока каждому ученику класса. Сколько учеников учатся в этом классе?

Если бы нам было известно количество учеников в классе и количество яблок, которое получил каждый из них, то общее число яблок мы узнали бы, умножив число учеников на число яблок, доставшееся каждому. То есть, количество учеников – это первый сомножитель, количество яблок – второй сомножитель, а сколько яблок раздали – это произведение.

Таким образом, в нашей задаче даны произведение и множитель (один из сомножителей), а неизвестный второй сомножитель необходимо отыскать. То есть, нам нужно найти число, умножив которое на 3, мы получим 90. Это число 30, потому что (textcolor{red} {30 cdot 3 = 90})

Деление – это арифметическое действие, которое состоит в нахождении одного из
сомножителей при помощи данного произведения и второго сомножителя.

Делимое – это число, которое мы делим на другое. Это то самое произведение,
которое нам дано.

Делитель – это число, на которое мы делим делимое. Это данный нам один из
множителей.

Частное – это результат действия деление, то есть, искомый нами второй
сомножитель.

На записи действие деление обозначается: двоеточием ( (textcolor{red} {:}) ), знаком обелюс ( (textcolor{red} {div}) ), горизонтальной чертой или косой чертой ( (textcolor{red} {/}) ).

Так, решение нашей задачи
можно записать следующими способами:

  • (textcolor{red} {90:3=30})
  • (textcolor{red} {90div 3=30})
  • (textcolor{red} {90/3=30})
  • (textcolor{red} {Large frac{90}{3} normalsize =30})

При записи от руки действие деление принято записывать в виде двоеточия, обелюс применяется в печатной литературе, косая черта, которая по-другому называется слеш, – при записи на компьютере, а горизонтальная черта используется при записи деления в виде обыкновенной дроби.

Итак, разделить число a на число b – это значит найти такое число c, которое при умножении его на число b дает в результате числа a.
То есть: (textcolor{red} {adiv b=c}) , если (textcolor{red} {bcdot c=a}) .

И еще одно пояснение для понимания: разделить число a на число b означает разделить число a на b одинаковых частей, каждая из которых равна c. Иными словами, мы одно число a делим на равные части. Количество этих частей равно числу b. А величина каждой из этих частей – это результат действия деления, и эта величина равна c.

Например, нам нужно разделить 15 роз между пятью девочками так, чтобы каждая получила одинаковое количество цветов. Чтобы узнать, какое количество роз получит каждая девочка, нужно общее количество (15) цветов разделить на количество девочек (5), то есть, на 5 одинаковых частей. Нетрудно понять, что каждая из девочек получит 3 розы, потому что (textcolor{red} {5cdot 3=15}) .

Компоненты действия
деление:

Компоненты действия деления

Деление с остатком и неполное частное

Но не всегда можно одно число разделить на другое. Вернее сказать, что не всегда можно сделать это полностью. Например, 37 нельзя разделить на 5, потому что нет такого натурального числа, умножив которое на 5, мы получили бы 37. В этом случае говорят, что 37 не делится нацело на 5.

К примеру, если мы захотим раздать все 37 яблок поровну между пятью детьми, то у нас это сделать не получится. Мы сможем раздать (использовать из всего количества яблок) только по 7 яблок каждому ( (textcolor{red} {7cdot 5=35}) ), и у нас останется 2 яблока ( (textcolor{red} {37-35=2}) ).

В таком случае действие деление также состоит из делимого (в нашем случае 37) и делителя (5). Полученное число 7 называется неполное частное, потому что не все делимое число мы смогли разделить на необходимое число частей. А разница между полным делимым (37) и использованными из него единицами (35), то есть число 2, называется остаток.

Итак, деление с остатком – это нахождение
такого наибольшего целого числа, умножив которое на делитель, мы получим число,
максимально близкое к делимому, но не превосходящее его. Это искомое число
называется неполное частное. Разница
между делимым и неполным частным называется остаток.

Остаток всегда меньше делителя!

Отсюда следует общий вид действия деления натуральных чисел для случаев деления без остатка и с остатком.
Разделить целое число a (делимое) на целое число b (делитель) означает найти такие числа c и d, при которых справедливы следующие соотношения:
(textcolor{red} {a=bcdot c+d}) ;
(textcolor{red} {d<b}) .
Если (textcolor{red} {d=0}) , тогда говорят, что a делится на b без остатка.

Компоненты действия
деление с остатком:

Компоненты действия деление с остатком

Задачи, которые решаются при помощи
действия деления

В курсе математики
средней школы наиболее часто используется деление при решении таких задач,
когда нужно:

  • Узнать, во сколько раз одно число меньше и больше другого? Этот вопрос может звучать по-другому: сколько раз меньшее число содержится (помещается) в большем? Или: сколько раз поместится в большем числе меньшее?
    Например: сколько пятиграммовых стиков сахара находится в килограммовой упаковке? (1000 г : 5 г = 200 шт.).
  • Число разделить на заданное количество равных частей.
    Например: сколько получится грамм сахара в каждом пакете, если пересыпать килограмм сахара в 5 одинаковых пакетов поровну? (1000 г : 5 шт. = 200 г).
  • Уменьшить число в заданное количество раз.
    Например: для приготовления блюда на 5 человек использовали 1 кг сахара, а сколько сахара потребуется для приготовления этого же блюда для одного человека? (1000 г : 5 чел. = 200 г).

Связь деления с умножением, сложением и
вычитанием

Когда мы выполняем находим
произведение двух чисел, эти числа нам известны, а от нас требуется найти
результат действия умножение. При делении (без остатка) нам известно
произведение двух чисел, а найти нужно такое число, которое при умножении на
известное данное число дает это самое произведение.

Следовательно, действие
деление является обратным действию умножения.

Справедливо также и
обратное, что действие умножение обратно действию деления. Таким образом:

Умножение и деление – это
взаимно обратные действия.

Связь деления с
умножением, а также со сложением и вычитанием прекрасно видна, если
рассмотреть, как с помощью этих действий можно выполнить действие деление.

Рассмотрим их на примере: 345 разделить на 69.

Деление двух чисел при помощи сложения

Чтобы узнать при помощи сложения, сколько раз число 69 содержится в 345, нужно складывать последовательно 69 до тех пор, пока не получим нужного нам числа:

(textcolor{red} {69+69=138}) ;      (textcolor{red} {138+69=207});      (textcolor{red} {207+69=276});      (textcolor{red} {276+69=345}).

Число 69 было слагаемым всего 5 раз, значит, (textcolor{red} {345div 69=5}) .

Деление двух чисел при помощи вычитания

Аналогично предыдущему способу, мы можем узнать, сколько раз в числе 345 содержится число 69, вычитанием. Для этого мы будем последовательно вычитать из 345 число 69 до тех пор, пока не получим нуль, и считать количество действий:

(textcolor{red} {345-69=276});      (textcolor{red} {276-69=207});      (textcolor{red} {207-69=138});    
(textcolor{red} {138-69=69});      (textcolor{red} {69-69=0}).

То есть, 69 от 345 можно отнять 5 раз, поэтому (textcolor{red} {349div 69=5}).

Деление двух чисел при помощи умножения

При помощи умножения узнать ответ на наш вопрос можно перебирая множитель числа 69 до тех пор, пока не получим заданное нам 345:

(textcolor{red} {69cdot 2=138});     (textcolor{red} {69cdot 3=207});      (textcolor{red} {69cdot 4=276});     (textcolor{red} {69cdot 5=345}).

Искомое частное равно полученному множителю числа 69, то есть, 5.

Но эти три способа очень
громоздки, особенно если частное представляет собой очень большое число. Их
нужно знать только для того, чтобы понимать суть действия деления, суть тех
задач, которые решаются посредством него.

Общий принцип деления в столбик

Если частное от деления двух чисел является многозначным числом, нахождение его происходит путем деления в столбик. Еще его называют деление уголком.

Решим пример (textcolor{red} {295383div 34}).

Прежде всего, нужно узнать количество цифр в частном и первое неполное делимое; как их находить, я подробно расписал в этой статье. В нашем случае первое неполное делимое равно 295 тысяч, а в частном будет 4 цифры.

Далее записываем известные
компоненты деления следующим образом:

Деление столбиком

и начинаем вычисление:

1. Берем первое неполное делимое
и пытаемся его разделить на делитель.

Вот тут нам и пригодится способ нахождения однозначного частного. Воспользовавшись им, находим, что в 295 тысячах делитель 34 содержится целиком 8 тысяч раз.

Записываем в частное первую найденную цифру
разряда тысяч, а под неполным делимым пишем результат произведения неполного
частного и делителя. И сразу же находим остаток от этого действия, т.е.
вычитаем из неполного частного результат этого произведения.

В результате умножения первой найденной цифры частного на делитель у нас получилось (textcolor{red} {8cdot 37=272}). Записываем его под 295 и находим разницу: (textcolor{red} {295-272=23}). Значит, 23 тысячи у нас остаются неразделенными.

Деление в столбик

В качестве еще одного действия самопроверки нужно сравнить полученную разницу с делителем. Если она меньше делителя, то мы на правильном пути, если же разница равна или больше делителя, то мы или неправильно нашли цифру частного, или допустили ошибку при умножении на делитель либо при нахождении остатка.

2. Оставшиеся неразделенные 23 тысячи представляют собой 230 сотен. Прибавляем к ним те 3 сотни, которые содержатся в делимом (говорят: сносим пять) и получаем второе неполное делимое 233 сотни.

деление уголком

Находим результат деления второго неполного делимого на делитель. 233 сотни разделить на 34 будет 6 сотен. Значит, в разряде сотен частного будет цифра 6. Умножаем ее на делитель 34, получаем 204 и еще 29 сотен неразделенных.

как делить числа

3. 29 неразделенных сотен – это 290 десятков. Добавляем (сносим) к ним 8 десятков делимого, получаем третье неполное делимое 298 десятков.

Деление уголком

При делении второго неполного делимого 298 десятков на делитель 34 получается 8 десятков, и еще 26 десятков неразделенных (как и в предыдущих действиях, я умножил 8 на 34 и результат отнял от 298). Поэтому, в частном, в разряде десятков записываем цифру 8.

разделить числа

4. И наконец, 26 десятков – это 260 простых единиц. Добавляем (сносим) к ним 3 единицы делимого и получаем четвертое неполное делимое 263 единицы.

Найти остаток от деления

Разделив 263 единицы на 34, получаем 7 полных единиц и 25 неразделенных. Записав в частном последнюю цифру разряда единиц, получаем окончательный ответ действия (textcolor{red} {295383div 34=8687}) и 25 в остатке.

уроки математики

Рассмотрим еще один пример. (textcolor{red} {25326div 63}).

Первое неполное делимое будет 253 сотни, количество цифр в частном – 3.

Делим 253 сотни на 63, получается 4 полных сотни и неразделенная 1 сотня в остатке.

деление чисел

1 сотня = 10 десятков, добавляем (сносим) 2 десятка из делимого, получаем второе неполное делимое 12 десятков.

как поделить числа

Но 12 не делится нацело на 63 части, то есть, нет ни одного целого десятка в каждой части. Значит, мы в частном в разряде десятков должны записать 0, поскольку все 12 десятков оказались неразделенными. А к этим 12 десяткам (т.е. 120 сотням) добавить (снести) 6 единиц делимого.

деление уголком

Итак, запомните, что
каждое неполное делимое образует в частном одну цифру соответствующего разряда
и что даже если неполное делимое меньше делителя, то в частном все равно нужно
записать нулевой результат этого действия.

126 единиц делим на 63, получается 2 единицы без остатка. Теперь мы можем записать окончательный ответ деления (textcolor{red} {25326div 63=402}).

запись деления чисел

Итак, в общем виде алгоритм деления в столбик выглядит так:
1. Находим первое неполное делимое и количество цифр в частном.
2. Делим неполное делимое на делитель. Цифру, полученную в результате деления записываем ниже черты под делителем.
3. Умножаем полученную цифру на делитель, результат записываем под неполным делимым.
4. Ставим между ними знак минус и выполняем действие.
5. К полученной разнице сносим цифру следующего разряда (если она есть) и получаем второе неполное делимое.
6. Выполняем пункты 2-5 до тех пор, пока в делимом не останется ни одной неснесенной цифры.
7. Если неполное делимое невозможно разделить на делитель, то в частном ставится 0 и к этому неполному делимому сносится следующая цифра.

Деление на числа, заканчивающиеся нулями

Как и в случае с
умножением, деление чисел облегчается, если делитель заканчивается одним или
несколькими нулями. Рассмотрим два возможных случая:

  • частный – когда делитель является единицей с нулями
  • общий – когда делитель любое число, оканчивающееся нулями.

Рассмотрим первый случай.

Деление на единицу с любым количеством
нулей

Единица с любым количеством нулей – это не что иное как единица соответствующего разряда. Например, 10 – это 1 единица разряда десятков, 1000 – это одна единица разряда тысяч, 100000001 единица разряда десятков миллионов и т.д.

Следовательно, разделить число, к примеру, на 10, 1000, 10000000 и т.д. – это значит определить, сколько в нем содержится десятков, тысяч, десятков миллионов. А как узнать, сколько в каком-либо числе содержится единиц любого разряда я уже рассказывал в уроке разряды и классы. Для завершения действия деления нужно лишь записать в остаток число, которое получается из отбрасываемых нами цифр.

Например:

(textcolor{red} {75427916div 10=7542791}) (остаток 6);
(textcolor{red} {75427916div 1000=75427}) (остаток 916);
(textcolor{red} {75427916div 10000000=7}) (остаток 5427916).

Запишите:
Чтобы разделить какое-нибудь число на единицу с любым количеством нулей, нужно отсчитать в делимом справа столько цифр, сколько нулей содержится в делителе; тогда все цифры, находящиеся слева от разделения, составят частное, а те, что справа – будут остатком.

Деление на число, оканчивающееся нулями

Рассмотрим на примере (textcolor{red} {284556div 2800}).

Делитель здесь не что иное как 28 сотен. Логично предположить, что эти 28 сотен могут хотя бы один раз содержаться только в сотнях делимого. Значит, нам нужно определить, сколько в делимом всего единиц разряда сотен, и разделить их на 28 единиц разряда сотен делимого. А отброшенные цифры десятков и простых единиц добавятся к остатку.

В числе 284556 всего 2845 сотен да еще 56 единиц. Разделим 2845 сотен на 28 сотен, получим частное 101 и 17 сотен неразделенными. Прибавив к неразделенным 17 сотням 56 единиц из делимого, получим 1756. В этом числе делитель 2800 не помещается ни один раз, значит, 1756 – это остаток: (textcolor{red} {284556div 2800=101}) (остаток 1756).

как поделить столбиком

Запишите:
Чтобы разделить какое-нибудь число на число, заканчивающееся нулями, нужно отбросить мысленно нули в делителе, в делимом тоже отбросить мысленно такое же количество цифр, как и нулей в делителе. Получившееся число в делимом разделить на получившееся число в делителе, а к остатку прибавить (снести) те цифры делимого, которые отбросили ранее.

Проверка деления

Так как делимое – это
делитель, умноженный на частное и плюс остаток, что следует из определения
деления, то результат выполнения деления можно проверить умножением.

Например:

проверка деления

После того, как мы умножили частное 241 на делитель 33, а к полученному произведению прибавили остаток 9, мы получили число 7962, что равно делимому. Значит, можно с большой уверенностью сказать, что действие деление выполнено верно.

Если в результате
действия деления не получилось остатка, то деление можно проверить и делением.
Действительно, если делимое – это произведение делителя и частного, то разделив
делимое на частное (один из сомножителей), мы должны получить второй
сомножитель, то есть, делитель.

 Например:

проверить деление

Свойства деления

Свойства деления я
представлю двумя группами:

  • действия с
    единицей и нулем;
  • распределительные
    свойства деления.

Давайте рассмотрим каждую
группу подробнее.

Действия деления с единицей и нулем

При делении числа на единицу получается то же самое число.

Действительно, разделить
число на единицу означает узнать, сколько единиц содержится в данном числе. А
количество единиц в числе – это не что иное, как само это число.

И ли вот, например, если 10 яблок нужно раздать одному человеку (10 поделить на 1), то ему все эти 10 яблок и достанутся, правда?

При деление одинаковых чисел (числа на равное число) в результате будет 1 (единица).

В самом деле, если все единицы какого-то числа разделить на количество частей, равное количеству единиц этого числа, то в каждая часть получит по 1 единице.

Например, если 20 яблок раздать 20 школьникам, то каждому достанется по 1 яблоку.

При делении нуля на любое число, отличное от нуля, в результате будет нуль.

Разделить нуль на число
означает найти такое число, умножив которое на данный делитель, мы получим в
результате нуль. А такое число только одно – это нуль.

На нуль делить нельзя, то есть, нуль не может выступать в роли делителя.

При делении каких угодно
чисел делителем может быть любое число, кроме нуля.

Рассмотрим два случая:
когда нулём является только делитель, и когда делимое и делитель оба нули.

Пусть делимое равно какому угодно числу, отличному от нуля, например, 12. Разделить число 12 на нуль – это значит найти такое число, которое при умножении на 0 дало бы в результате число 12. Но как известно, если любое число умножить на 0, то и получим тоже нуль. Следовательно, такого числа, какое нам нужно, не существует.

Допустим, что делимое и делитель оба являются нулями. В этом случае нам нужно отыскать такое число, которое при умножении на 0 дало бы в результате 0. А поскольку какое бы мы ни взяли число, при умножении его на 0, получим тоже нуль, то частным может выступать любое число из бесконечного множества чисел, следовательно, какого-то определенного результата от такого деления быть не может.

Распределительные свойства деления

Чтобы найти частное от деления суммы на число, нужно поделить каждое слагаемое на это число, и найти сумму полученных частных.
(textcolor{red} {(a+b+c)div d=adiv d+bdiv d+cdiv d}).
При этом подразумевается, что все действия деления получаются без остатка.

Например, чтобы найти результат деления суммы (textcolor{red} {24+16+48}) на 8, то есть, определить, какое количество восьмерок находится в сумме этих чисел, мы узнаем, сколько раз восьмерка содержится отдельно в каждом из чисел, а потом складываем полученные результаты.

Так, в 24 находится 3 восьмерки, в 16 – две, в 48 – шесть, итого (textcolor{red} {3+2+6=11}). А если мы сперва найдем значение всей суммы (textcolor{red} {24+16+48=88}), и поделим ее на 8, то ответ будет также (textcolor{red} {88div 8=11}).

Чтобы найти частное от деления разности на число, нужно поделить на это число отдельно сперва уменьшаемое, а потом вычитаемое, после чего найти разность первого частного и второго.
(textcolor{red} {(a-b)div c=adiv c-bdiv c})
При этом также предполагается, что при делениях уменьшаемого и вычитаемого на число не получается остатков.

Например: [textcolor{red} {(36-24)div 6=36div 6-24div 6=6-4=2}] Число 36 состоит из 6 шестерок, а 24 – из 4 шестерок, а забрав у 6 шестерок 4 шестерки, получим 2 шестерки. Такой же итог будет и если мы сперва у 36 отнимем 24 единицы (останется 12), а потом найдем, сколько в этой разнице содержится шестерок: (textcolor{red} {12div 6=2}).

Чтобы найти частное от деления произведения на число, нужно поделить на него только один из сомножителей, а результат умножить на неизмененные остальные.
(textcolor{red} {(acdot bcdot c)div d=adiv dcdot bcdot c=bdiv dcdot acdot c=cdiv dcdot acdot b}).

В самом деле, разделить, к примеру, (textcolor{red} {20cdot 25cdot 35}) на 5 означает уменьшить произведение в 5 раз. А так как если уменьшить один из сомножителей в определенное количество раз, то и произведение уменьшится в это же количество раз, тогда нам достаточно разделить любое из чисел 20, 25 или 35 на 5, чтобы получить ответ:
(textcolor{red} {(20cdot 25cdot 35)div 5=20div 5cdot 25cdot 35=3500}).

Чтобы найти частное от деления числа на произведение, нужно это число поделить на первый сомножитель, результат деления поделить на второй сомножитель, полученное частное – на третий и так далее.
(textcolor{red} {adiv (bcdot ccdot dcdot e)=adiv bdiv cdiv e}).
При этом предполагается, что при всех этих делениях не получается остатков.

Допустим, нужно поделить 30 на произведение (textcolor{red} {2cdot 3}). Мы знаем, что деление – это разложение числа на равные части. Значит, разделив 30 единиц на 2, мы находим, что в каждой из 2 равных частей содержится по 15 единиц. После этого мы эти 15 единиц делим на 3 равные части, и узнаем, что каждая из них содержит по 5 единиц.

деление числа на произведение

На рисунке наглядно видно, что в итоге после применения этого правила, число 30 получилось разделенным на 6 равных частей.

Изменение частного при изменении
делимого и делителя

При рассмотрении
изменений частного в результате изменений делимого и делителя предполагается,
что действие деление происходит без остатка. В противном случае изменения могут
быть не такими, о которых идет речь ниже.

При увеличении делимого в определенное количество раз, частное увеличится в это же количество раз, а при уменьшенииуменьшится.

Если мы в примере (textcolor{red} {24div 4=6}) делимое увеличим, к примеру, в 3 раза, то мы можем переписать это выражение в виде (textcolor{red} {(24+24+24)div 4}). Используя свойство деления суммы на число, мы увидим, что теперь нам нужно сложить три слагаемых, каждое из которых равно начальному выражению: (textcolor{red} {24div 4+24div 4+24div4}). Отсюда очевидно, что результат будет больше начального в 3 раза.

Если мы в этом же примере (textcolor{red} {24div 6}) уменьшим делимое в 3 раза, то есть, разделим его на три равные части, то очевидно, что результат деления одной части на 6 будет в 3 раза меньше, чем результат деления трех таких же частей. Посмотрите сами. Начальное выражение (textcolor{red} {24div 6}) можно записать в виде: (textcolor{red} {(8+8+8)div 6=8div 6+8div 6+8div 6}), а уменьшенное в 3 раза делимое даст нам только одно из трех таких слагаемых: (textcolor{red} {8div 6}).

При увеличении делителя в определенное количество раз, частное уменьшится в это же количество раз, а при уменьшенииувеличится.

Действительно, изменение
делителя означает, что делимое необходимо разделить на большее или меньшее
количество равных частей. Соответственно, если нужно разделить на большее число
частей, то каждая часть будет меньше, чем изначально, а если делить на меньшее
число частей, то каждая часть будет крупнее.

В случае одновременного изменения делимого и делителя, частное может вести себя по-разному, или же вообще оставаться без изменений. Если нужно узнать, станет оно больше или меньше, нужно сперва посмотреть, как частное изменится после изменения делимого, а потом – как изменится после изменения делителя.

При увеличении или уменьшении делимого и делителя в одинаковое количество раз, частное не меняется.

Попробуйте самостоятельно
доказать справедливость этого утверждения. Пишите в комментариях, получилось
это, или нет.

Как найти неизвестный множитель, делимое, делитель

В уравнении х ∙ 10 = 20 неизвестен первый множитель, в выражении 20 : х = 10 неизвестен делитель, а в уравнении х : 2 = 10 неизвестно делимое.

Чтобы решить данные уравнения, нужно найти неизвестное число в каждом из них. В этом уроке научимся находить неизвестный множитель, делимое, делитель.

Найдем значения выражений 4 ∙ 9, 36 : 4, 36 : 9.

Вычислим сначала первое выражение 4 ∙ 9 = 36.

4 – это первый множитель, 9 – это второй множитель, 36 – значение произведения.

Найдем значение второго выражения 36 : 4 = 9.

36 – значение произведения первого выражения, 4 – первый множитель первого выражения, 9 – второй множитель первого выражения.

Таким образом, мы значение произведения разделили на первый множитель, и в результате получился второй множитель.

Найдем значение третьего выражения 36 : 9 = 4.

В данном случае мы значение первого произведения разделили на второй множитель и получили первый множитель.

Решим уравнение х ∙ 10 = 20. В нем неизвестен первый множитель.

Чтобы его найти, нужно значение произведения 20 разделить на второй известный множитель 10, 20 : 10 = 2, х = 2.

Итак, чтобы найти неизвестный множитель, нужно значение произведения разделить на известный множитель.

Теперь перейдем к определению связи между элементами деления. Для этого найдем значения выражений 56 : 8, 56 : 7, 8 ∙ 7.

Вычислим первое выражение 56 : 8 = 7.

56 – это делимое, 8 – это делитель, 7 – значение частного.

Найдем значение второго выражения 56 : 7 = 8.

В данном случае делимое первого выражения 56 разделили на значение частного первого выражения 7, получился делитель первого выражения.

Решим уравнение 20 : х = 10. В уравнении неизвестен делитель. Чтобы его найти, нужно делимое 20 разделить на значение частного 10.

20: 10 = 2, х = 2.

Таким образом, чтобы найти неизвестный делитель, нужно делимое разделить на значение частного.

Вычислим и рассмотрим третье выражение 8 ∙ 7 = 56. В этом случае делитель первого выражения 8 умножили на значение частного первого выражения 7, получилось делимое первого выражения 56.

Решим еще одно уравнение.

Х : 2 = 10

В нем неизвестное число является делимым.

Чтобы его найти, нужно делитель 2 умножить на значение частного 10, получится делимое 20, х = 20.

Вывод: чтобы найти неизвестное делимое, нужно делитель умножить на значение частного.

Используя полученные в этом уроке правила, Вы сможете находить неизвестный множитель, делитель и делимое.

Деление чисел довольно непростая операция как в освоении, так и в использовании. Рекомендуем набраться терпения, чтобы осилить этот урок до конца.

Что такое деление?

Деление это действие, позволяющее что-либо разделить.

Деление состоит из трёх параметров: делимого, делителя и частного.

Делимое это то что делят;
Делитель это число, показывающее на сколько частей нужно разделить делимое.
Частное это собственно результат.

Пусть у нас имеются 4 яблока:

четыре яблока

Разделим их поровну на двоих друзей. Тогда деление покажет сколько яблок достанется каждому. Нетрудно увидеть, что каждому достанется по два яблока:

четыре яблока на двоих

Процесс деления четырех яблок на двоих друзей можно описáть следующим выражением:

четыре яблока на двоих выражение

В этом примере роль делимого играют яблоки. Роль делителя играют двое друзей, показывающих на сколько частей нужно разделить 4 яблока. Роль частного играют два яблока, показывающие сколько досталось каждому.

Говоря о делении, можно рассуждать и по-другому. Вернёмся к предыдущему выражению 4 : 2 = 2. Можно посмотреть на делитель 2 и задать вопрос «сколько двоек в четвёрке?» и ответить: «две двойки». Действительно, если сложить две двойки, то получится число 4

два плюс два равно четыре обобщение деления

В ситуации с четырьмя яблоками можно задать вопрос «сколько раз два яблока содержатся в четырёх яблоках» и ответить: «два раза».

сколько раз два яблока содержится в четырех яблоках

Чтобы научиться делить, нужно хорошо знать таблицу умножения. Почему же умножения? Ведь мы говорим о делении. Дело в том, что деление это действие, обратное умножению. Данную фразу можно понимать в прямом смысле. Например, если 2 × 5 = 10, то 10 : 5 = 2.

vzaimno-obratnye-operatsii-umnozhenie-i-delenie

Видно, что второе выражение записано в обратном порядке. Если у нас имеются два яблока и мы захотим увеличить их в пять раз, то запишем 2 × 5 = 10. Получится десять яблок. Затем, если мы захотим обратно уменьшить эти десять яблок до двух, то запишем 10 : 5 = 2

Знак деления выглядит в виде двоеточия : но также можно встретить знак двоеточия и тире ÷ 

На письме разумнее использовать двоеточие, поскольку оно выглядит аккуратнее.


Деление с остатком

Остаток — это то что осталось от действия деления неразделённым.

Например, пять разделить на два будет два и один в остатке:

5 : 2 = 2 (1 в остатке)

Можно проверить это умножением:

(2 × 2) + 1 = 5

Допустим, имеются пять яблок:

пять яблок

Разделим их поровну на двоих друзей. Но разделить поровну пять целых яблок не полýчится. Тогда данное деление покажет, что каждому достанется два яблока, а одно яблоко будет в остатке:

пять яблок деление с остатком


Деление уголком

Когда требуется разделить большое число, то прибегают к такому методу как деление уголком.

Прежде чем делить уголком, человек должен знать:

  • обычное деление маленьких чисел;
  • деление с остатком;
  • умножение в столбик;
  • вычитание в столбик.

Рассмотрим деление уголком на простом примере. Пусть требуется найти значение выражения 9 : 3. Уголком это выражение записывается  следующим образом:

delenie risunok 4

Это простой пример. Все знают, что девять разделить на три будет три. Ответ (частное) записывается под правым углом:

delenie risunok 3

Чтобы проверить есть ли остаток от деления, нужно частное умножить на делитель и полученный ответ записать под делимым. Частное в данном случае это 3, делитель тоже 3. Перемножаем эти два числа: 3 × 3 = 9. Получили 9. Записываем эту девятку под делимым:

delenie risunok 2

Теперь от делимого вычитаем девятку, которую мы под ним написали: 9 − 9 = 0. Остаток равен нулю. Проще говоря, остатка нет. На этом деление успешно завершено:

delenie risunok 1


Пример 2. Найти значение выражения 8 : 3

Восемь на три просто-так не разделится. Таблица умножения тоже не поможет. В данном случае будет присутствовать остаток от деления.

Сначала запишем данное выражение уголком:

delenie risunok 8

Теперь надо задать вопрос: «сколько троек в восьмёрке?» В восьмёрке содержится две тройки. Это можно увидеть даже воочию, если мы представим восьмёрку как восемь палочек:

8 группирока по три

В школе частное подбирается методом подбора. Все мы слышали такие фразы как «берём по одному» , «берём по два» или «берём по три». У нас сейчас как раз такой случай. Мы взяли по два, ответив что в восьмёрке две тройки. Записываем двойку в правом уголке:

delenie risunok 7

Теперь вынимаем остаток. Для этого умножаем частное на делитель (2 на 3) и записываем полученное число под делимым:

delenie risunok 56

Далее из 8 вычитаем 6. Полученное число и будет остатком:

delenie risunok 5

8 : 3 = 2 (2 в остатке)

Проверка:

(2 × 3) + 2 = 6 + 2 = 8


Деление многозначного числа на однозначное

Данная тема с первого раза может показаться непонятной. Не спешите отчаиваться и забрасывать обучение. Понимание придёт в любом случае. Если не сразу, то немного позже. Главное не сдаваться и продолжать упорно изучать.

В предыдущих примерах мы делили однозначное число на однозначное, и это не доставляло нам лишних проблем. Сейчас мы займёмся тем, что будем делить многозначное число на однозначное.

Если непонятно, что такое однозначные и многозначные числа, советуем изучить предыдущий урок, который называется умножение.

Чтобы разделить многозначное число на однозначное, нужно сначала посмотреть на первую цифру этого многозначного числа, и проверить больше ли она делителя. Если больше, то её надо разделить на делитель, а если нет, то проверить больше ли делителя первые две цифры многозначного числа. Если первые две цифры больше делителя, то надо разделить их  на делитель, а если нет, то проверить больше ли первые три цифры многозначного числа. И так до тех пор, пока не будет выполнено первое деление.

Сложно? Ни чуть, если мы разберём несколько примеров.

Пример 1. Найти значение выражения 25 : 3

25 это многозначное число, а 3 — однозначное. Применяем правило. Смóтрим на первую цифру многозначного числа. Первая цифра это 2. Два больше, чем три? Нет. Поэтому смóтрим первые две цифры многозначного числа. Первые две цифры образуют число 25. Двадцать пять больше чем три? Да. Поэтому выполняем деление числа 25 на 3. Записываем уголком данное выражение и начинаем делить:

25 на 3 шаг 1

Сколько троек в числе 25? Если с первого раза ответить сложно, можно заглянуть в таблицу умножения на три. Там необходимо отыскать произведение, которое меньше 25, но очень близко к нему или равно ему. Если найдём такое произведение, то необходимо забрать оттуда множитель, который дал такое произведение:

333

Это таблица умножения на три. В ней необходимо найти произведение, которое меньше 25, но очень близко к нему или равно ему. Очевидно, что это произведение 24, которое выделено синим. Из этого выражения необходимо забрать множитель, который дал такое произведение. Это множитель 8, который закрашен красным.

Данная восьмёрка и отвечает на вопрос сколько троек в числе 25. Записываем её в правом уголке нашего примера:

25 на 3 шаг 2

Теперь вынимаем остаток. Для этого умножаем частное на делитель (8 на 3) и полученное число записываем под делимым:

2533Теперь из делимого вычитаем число 24, получим 1. Это и будет остатком:

2534

25 : 3 = 8 (1 в остатке)

Проверка:

(8 × 3) + 1 = 24 + 1 = 25

Последний остаток всегда меньше делителя. Если последний остаток больше делителя это означает, что деление не завершено.

В приведённом примере последним остатком было число 1, а делителем число 3. Единица меньше чем три, поэтому деление завершено. Последний остаток мéньший делителя говорит о том, что он не содержит чисел равных делителю.

В нашем примере, если задать вопрос «сколько троек в единице?», то ответом будет «нисколько», потому что единица не содержит троек.


Пример 2. Разделить 326 на 4.

Смóтрим на первую цифру числа 326. Первая цифра это 3. Она больше делителя 4? Нет. Тогда проверяем две цифры делимого. Две цифры делимого образуют число 32. Больше ли оно делителя 4? Да. Значит можно выполнять деление.

Записываем уголком данное выражение:

324

Теперь задаём вопрос: «сколько четвёрок в числе 32. В числе 32 восемь четвёрок. Это можно увидеть в таблице умножения на четыре:

4

Данная восьмёрка, которая выделена красным отвечает на вопрос сколько четвёрок в числе 32. Записываем её в правом уголке нашего примера:

3248Теперь умножаем 8 на 4, получаем 32 и записываем это число под делимым. Далее вычитаем это число из 32. Получим 0. Поскольку решение ещё не завершено, ноль не записываем:

32481Первое число 32 разделили. Осталось разделить оставшуюся 6. Для этого сносим эту шестёрку:

32482

Теперь делим 6 на 4. Для этого задаём вопрос: «сколько четвёрок в шестёрке?» В шестёрке одна четвёрка, это можно увидеть воочию, если представить шестёрку как шесть палочек:

6 группировка по 4

Записываем единицу в правом уголке нашего ответа:

32483Теперь умножаем нашу единицу на делитель (1 на 4) и записываем полученное число под шестёркой:

32484

Затем из 6 вычитаем 4, получаем число 2, которое является остатком:

32485

Получили 326 : 4 = 81 (2 в остатке)

Проверка: (81 × 4) + 2 = 324 + 2 = 326

Процедура, в которой мы ищем первое число для деления, сравнивая больше ли оно делителя или меньше, называется нахождением первого неполного делимого.

Вернёмся к предыдущему примеру 326 : 4. Первое неполное делимое в данном выражении было число 32, поскольку его мы разделили в первую очередь.

А в примере 25 : 3 первое неполное делимое было 25.


Пример 3. Найти значение выражения 384 : 5

Записываем данное выражение в уголком:

3845

Сначала находим первое неполное делимое. Первая цифра меньше делителя, поэтому проверяем две цифры. Две цифры вместе образуют число 38, которое больше делителя. Это число будет первым неполным делимым. Его и будем в первую очередь делить на делитель:

38452

Сколько пятёрок в числе 38? Если сразу ответить сложно, то можно посмотреть в таблицу умножения на пять и найти произведение, которое меньше 38, но очень близко к нему или равно ему. Найдя такое произведение, нужно забрать оттуда множитель, который будет отвечать на наш вопрос:

5

Это таблица умножения на пять. Находим произведение, которое меньше 38, но очень близко к нему или равно ему. Очевидно, что это произведение 35, которое выделено синим. Из этого выражения забираем множитель, который дал такое произведение. Это множитель 7, который выделен красным.

Данная семёрка отвечает на вопрос сколько пятёрок в числе 38. Записываем эту семёрку в правом уголке нашего примера:

38453Умножаем 7 на 5, получаем 35 и записываем его под 38:

38454

Теперь из 38 вычитаем 35, получим 3:

38455

Эта тройка является остатком, которая осталась неразделённой в результате деления 38 на 5. Но видно, что ещё надо разделить и 4. Эту 4 мы снесём и разделим вместе с тройкой:

38456

Видно, что после того, как мы снесли четвёрку, она вместе с тройкой  образовала число 34. Это число 34 мы будем делить на 5. Для этого опять задаем вопрос: «сколько пятёрок в числе 34. Можно снова глянуть в таблицу умножения на пять и найти произведение, которое меньше 34, но очень близко к нему или равно ему:

52

Видно, что в таблице умножения на пять число 30 меньше нашего 34, но близко к нему. Из этого выражения забираем множитель 6, который отвечает на наш вопрос. Записываем эту шестёрку в правом уголке нашего примера:

38457

Теперь умножаем 6 на 5, получаем 30 и записываем это число под 34:

38458

Теперь из 34 вычитаем 30, получаем 4. Эта четвёрка будет остатком от деления 384 на 5

38459

384 : 5 = 76 (и 4 в остатке)

Проверка:

(76 × 5) + 4 = 380 + 4 = 384


Пример 4. Найти значение выражения 8642 : 4

Этот пример немного посложнее. Записываем уголком данное выражение:

86424

Первая цифра 8 больше делителя. Эта восьмёрка будет первым неполным делимым. Делим 8 на 4, получаем 2

864242Теперь умножаем 2 на 4, получаем 8. Записываем эту восьмёрку под первым неполным делимым:

864243

Вытаскиваем остаток: 8 − 8 = 0. Остаток от деления 8 на 4 это ноль. Ноль не записываем, поскольку решение примера не завершено.

Далее сносим цифру 6 и делим её на делитель, получаем 1

864244Умножаем 1 на 4, получаем 4. Записываем эту четвёрку под снесённой шестёркой. Затем вынимаем остаток, отняв от шести четыре:

864245

Получили остаток 2. Это остаток, который остался от деления 6 на 4.

Теперь сносим следующую цифру из делимого. Это цифра 4. Эта четвёрка вместе с предыдущим остатком 2 образует число 24. Его делим на делитель. Получим 6

864246

Умножаем 6 на 4, получаем 24. Записываем это число под 24

864247

Вытаскиваем остаток: 24 − 24 = 0. Ноль это остаток от деления 24 на 4. Ноль, как мы уже договорились, не записываем. Далее сносим последнюю цифру 2

864248

Здесь начинается самое интересное. Двойка это последняя цифра, которую мы снесли и которую надо разделить на делитель 4. Но дело в том, что двойка меньше четвёрки, а ведь делимое должно быть больше делителя. Если мы зададим вопрос «сколько четвёрок в двойке?«, то ответом будет ноль, поскольку двойка меньше четвёрки и не может содержать в себе число, бóльшее себя самогó.

Поэтому два разделить на четыре это ноль:

864249Умножаем 0 на 4, получаем 0. Пишем этот 0 под двойкой:

8642410

Теперь находим остаток: 2 − 0 = 2. Двойка это остаток от деления 8642 на 4. Таким образом, пример завершён:

8642411

8642 : 4 = 2160 (2 в остатке)

Проверка: (2160 × 4) + 2 = 8640 + 2 = 8642


Деление чисел, у которых на конце 0

Чтобы разделить число, у которого на конце ноль, нужно временно отбросить этот ноль, выполнить обычное деление, и дописать этот ноль в ответе.

Например, разделим 120 : 3

1203

Сколько троек в числе 120? Чтобы ответить на этот вопрос, временно отбрасываем ноль на конце у 120 и делим 12 на 3, получаем 4. И дописываем этот ноль в частном. В итоге получаем 40:

12032

Теперь умножаем частное на делитель (40 на 3), получаем 120. Далее находим остаток: 120 − 120 = 0. Остаток равен нулю. Пример завершён.

1204

120 : 3 = 40

Проверка 40 × 3 = 120.

Такие простые примеры не нуждаются в том, чтобы их решали уголком. Достаточно знать таблицу умножения. Далее просто дописывать нули на конце. Например:

12 : 3 = 4 (делимое без нулей на конце)

120 : 3 = 40 (здесь у делимого один ноль)

1200 : 3 = 400 (здесь у делимого два нуля)

12000 : 3 = 4000 (здесь у делимого три нуля)

В этом способе есть небольшой подвох. Если вы заметили, деля такие числа, мы ссылаемся на таблицу умножения. А представьте, что надо разделить 400 на 5.

Можно рассуждать по старому — отбросить временно все нули и разделить обычные числа. А что будет если отбросить все нули в числе 400? Мы обнаружим, что делим 4 на 5, что недопустимо. В этом случае, надо отбрасывать только один ноль, и делить 40 на 5, а не 4 на 5

4005Завершаем этот пример, как обычно умножая частное на делитель, и выводя остаток:

40052Этот способ работает только в том случае, если удаётся гладко применить таблицу умножения. В остальных случаях, придётся искать обходные пути, вычисляя уголком или собирая частное подобно детскому конструктору.

Например, найдём значение выражения 1400 : 5. Здесь отбрасывание нулей нам ничего не даст. Этот пример надо решать уголком или собрать ответ, подобно конструктору. Давайте рассмотрим второй способ.

Что такое 1400? Вспоминаем разряды чисел. 1400 это одна тысяча и четыре сотни:

1000 + 400 = 1400

Можно по-отдельности разделить 1000 на 5 и 400 на 5:

1000 : 5 = 200

400 : 5 = 80

и сложить полученные результаты:

200 + 80 = 280

Итого: 1400 : 5 = 280

Решим этот же пример уголком:

140050


Деление многозначного числа на многозначное

Здесь придётся хорошенько напрячь свой мозговой аппарат и выжать из него по максимуму, потому что разделить многозначное число на многозначное не так-то просто.

Принцип деления остаётся тем же что и раньше. Здесь так же надо находить первое неполное делимое. Здесь так же могут присутствовать остатки от деления.

Для начала введём новое понятие — круглое число. Круглым будем называть число, которое оканчивается нулём. Например, следующие числа являются круглыми:

10, 20, 30, 500, 600, 1000, 13000

Любое число можно превратить в круглое. Для этого первую цифру, образующую самый старший разряд, оставляют без изменений, а остальные цифры заменяют нулями.

Например, превратим число 19 в круглое число. Первая цифра этого числа 1 образует старший разряд (разряд десятков) — эту цифру оставляем как есть, а оставшуюся 9 заменяем на ноль. В итоге получаем 10

Превратим число 125 в круглое число. Первая цифра 1 образует старший разряд (разряд сотен) — эту цифру оставляем без изменений, а оставшиеся цифры 25 заменяем нулями. В итоге получаем 100.

Превратим число 2431 в круглое число. Первая цифра 2 образует старший разряд (разряд тысяч) — эту цифру оставляем без изменений, а остальные цифры 431 заменяем нулями. В итоге получаем 2000.

Превратим число 13735 в круглое число. Первая цифра 1 образуют старший разряд (разряд десятков тысяч) — эту цифру оставляем без изменений, а остальные цифры заменяем нулями. В итоге получаем 10000.

Внимание! В дальнейшем понятия круглого числа и перевод любого числа в круглое будут рассмотрены более подробно.

Возвращаемся к делению многозначных чисел на многозначные. Сложность деления таких чисел заключается в том, что частное надо находить методом подбора. Для этого прибегают к различным техникам, например, превращают делимое и делитель в круглые числа.

Пример 1. Найти значение выражения 88 : 12

Записываем данное выражение уголком:

8812Задаём вопрос сколько чисел 12 в числе 88? С первого раза ответить сложно. Придётся рассуждать.

Со школы мы помним, что частное подбиралось методом угадывания, говоря «берем по два» или «берем по три».

Давайте попробуем угадать частное. К сожалению, его просто так с неба взять нельзя. Это частное должно быть таким, чтобы при его умножении на делитель, получалось число которое меньше делимого, но очень близко к нему или равно ему.

Давайте предположим, что частное равно 2. Умножаем это частное на делитель 12

88122

Что это нам дало? Полученное число меньше делимого, но близко к нему? Нет. Оно конечно же меньше делимого 88, но очень далеко от него. Значит двойка как частное не подходит.

Пробуем следующее число. Допустим частное равно 5

88123

Полученное число конечно меньше, но оно не близко к делимому 88. Значит пятёрка как частное тоже не подходит.

Попробуем сразу взять по 8

88124

На этот раз полученное число превзошло делимое. А оно должно быть меньше делимого, но очень близким к нему или равным ему. Значит восьмёрка как частное тоже не подходит Попробуем тогда взять по 7

88125

Наконец-то нашли подходящее частное! Умножив частное 7 на делитель 12, мы получили 84, которое меньше делимого, но близко к нему. Теперь находим остаток от деления. Для этого из 88 вычитаем 84, получаем 4.

88126

88 : 12 = 7 (4 в остатке)

Проверка: (12 × 7) + 4 = 84 + 4 = 88

Как видно из примера, на подбор частного уходит драгоценное время. Если мы будем сидеть на контрольной или на экзамене, где каждая минута очень дорогá, этот метод нам явно не поможет.

Чтобы сэкономить время, можно делимое и делитель превратить в круглые числа, а затем осуществить деление этих круглых чисел. Делить круглые числа намного проще и удобнее.

Например, чтобы разделить 90 на 10, достаточно отбросить нули у обоих чисел и разделить 9 на 1. В итоге получим 90 : 10 = 9.

Количество отбрасываемых нулей должно быть строго одинаковым. К примеру, если мы делим 900 на 90, то отбрасываем по нулю от каждого числа, поскольку у числа 900 два нуля, а у 90 только один. Отбросив по нулю от каждого числа, мы получим выражение 90 : 9 = 10. В итоге получаем 900 : 90 = 10.

В делении круглых чисел также нет ничего сложного. Постарайтесь понять это. Если непонятно, изучите этот момент несколько раз. Это очень важно.

Ниже приведено несколько примеров, где делятся круглые числа. Отбрасываемые нули закрашены серым цветом:

800 : 10 = 80 (отбросили по нулю и разделили 80 на 1, получили 80)

800 : 80 = 10 (отбросили по нулю и разделил 80 на 8, получили 10)

900 : 10 = 90 (отбросили по нулю и разделили 90 на 1, получили 90)

400 : 50 = 8 (отбросили по нулю и разделили 40 на 5, получили 8)

320 : 80 = 4 (отбросили по нулю и разделили 32 на 8, получили 4)

Заметно, что всё в конечном итоге свóдится к таблице умножения. Именно поэтому в школе требуют знать её наизусть. Мы тоже этого требуем, хоть и не принуждаем.

Теперь давайте решим предыдущий пример 88 : 12 где мы бились, находя частное методом угадывания.

Для начала превращаем делимое и делитель в круглые числа.

Круглым числом для 88 будет число 80.

А круглым числом для 12 будет число 10.

Теперь делим полученные круглые числа:

8812280 разделить 10 будет 8. Эту восьмёрку мы пишем в частном:

88123

Теперь проверяем, верно ли подобралось частное. Для этого умножаем частное на делитель (8 на 12). Восьмёрку как частное мы уже проверяли, когда решали этот пример методом угадывания. Она нам не подошла, поскольку после её умножения на делитель, получилось число 96, которое больше делимого. Зато подошло частное 7, которое меньше восьмёрки всего-лишь на единицу.

Отсюда можно сделать вывод, что в выражении 88 : 12 частное, полученное путём превращения делимого и делителя в круглые числа, больше лишь на единицу. Наша с вами задача уменьшить это частное на единицу.

Так и сделаем — уменьшим 8 на единицу: 8 − 1 = 7. Семёрка это частное. Записываем её в правом уголке нашего примера:

88126

Как видно, этим способом мы решили этот пример намного быстрее.


Пример 2. Найти значение выражения 1296 : 144

Записываем уголком данное выражение. Сразу же находим первое неполное делимое. Его образуют все четыре цифры делимого:

1296144Это деление многозначного числа на многозначное. Давайте применим только что изученный метод. Превратим делимое и делитель в круглые числа, а затем разделим их.

Для делимого 1296 круглым числом будет 1000. А для делителя 144 круглым числом будет 100.

Делим 1000 на 100, получим 10. Проверим полученную десятку, умножив её на делитель 144

12961441

Десятка не подходит, поскольку при умножении получается число, которое больше делимого.

Попробуем взять по 9, уменьшив десятку на единицу.

12961442

Проверяем девятку. Для этого умножаем её на делитель:

12961443

Красота! Полученное число оказалось не только ближе к делимому, но и равным ему. Это значит, что деление выполнилось без остатка. Завершаем данный пример, вычитая из 1296 полученное число 1296

129614441296 : 144 = 9

Проверка: 144 × 9 = 1296


Пример 3. Попробуем решить большой и сложный пример 227 492 : 331

Записываем уголком данное выражение. Сразу же определяем первое неполное делимое. Его образуют первые четыре цифры делимого 2274. Значит сначала будем делить 2274 на 331. Их же превратим в круглые числа.

Для числа 2274 круглым числом будет 2000. А для 331 круглым числом будет 300

12961443Получили 6. Проверим верно ли подобралась эта шестёрка. Для этого, умножим её на делитель 331:

12963311Шестёрка подошла, потому что она отвечает на вопрос сколько чисел 331 в числе 2274. Если бы мы взяли по семь, то получилось бы следующее:

22743317Если бы мы взяли по 7 и проверили эту семёрку, то получили бы 2317, которое больше делимого, а это недопустимо.

Продолжаем решать наш пример. Вычитаем из 2274 число 1986, получаем 288:

12963312

288 это остаток от деления 2274 на 331. Далее, чтобы продолжить деление, нужно снести девятку:

129633123

Теперь надо разделить 2889 на 331. Превращаем их в круглые числа и делим их. Сразу же проверяем полученное таким способом частное:

12961445Умножив 6 на 331, мы снова получили 1986. Это число должно быть меньше делимого 2889, но близким к нему или равным ему. Но 1986 очень далеко от него. Значит шестёрка, как частное не подходит. Проверим тогда семёрку. Это первый случай, когда нам не помог второй способ, который экономил нам время. Дальнейшее решение придётся проводить методом угадывания частного:

12961446Проверили семёрку. Снова получили число, которое далеко от делимого 2889. Значит семёрка тоже не подходит. Проверим восьмёрку:

12961447

Восьмёрка подошла. Она отвечает на вопрос сколько чисел 331 в числе 2889. Если бы мы взяли по девять, то при умножении на делитель, получили бы число 2979, а это уже больше делимого 2889.

Теперь вынимаем остаток от деления 2889 на 331. Для этого от 2889 вычитаем 2648 и получаем 241

12961448

241 это остаток от деления 2889 на 331. Чтобы продолжить деление, нужно снести 2 из главного делимого:

12961449

Теперь делим 2412 на 331. Возьмём по 7

129614410

Теперь находим последний остаток. Для этого из 2412 вычитаем 2317, получаем 95. На этом пример завершается:

129614411

227 492 : 331 = 687 (95 в остатке)

Проверка: (331 × 687) + 95= 227 397 + 95 = 227 492

На этом данный урок можно завершить. Не расстраивайтесь, если сразу не научитесь делить числа уголком. Этот навык нарабатывается со временем в сочетании с интенсивными тренировками. Ошибки дело не страшное. Самое главное — понимать.

Отметим, что в данном уроке рассмотрено только деление с остатком. Деление без остатка мы рассмотрим в следующих уроках. Сделано это с целью не усложнять обучение. Как говорится, всему своё время.


Задания для самостоятельного решения

Задание 1. Выполните деление:

Решение:

Задание 2. Выполните деление:

Решение:

Задание 3. Выполните деление:

Решение:

Задание 4. Выполните деление:

Решение:

Задание 5. Выполните деление:

Решение:

Задание 6. Выполните деление:

Решение:

Задание 7. Выполните деление:

Решение:

Задание 8. Выполните деление:

Решение:

Задание 9. Выполните деление:

Решение:

Задание 10. Выполните деление:

Решение:

Задание 11. Выполните деление:

Решение:

Задание 12. Выполните деление:

Решение:

Задание 13. Выполните деление:

Решение:

Задание 14. Выполните деление:

Решение:

Задание 15. Выполните деление:

Решение:

Задание 16. Выполните деление:

Решение:

Задание 17. Выполните деление:

Решение:

Задание 18. Выполните деление:

Решение:

Задание 19. Выполните деление:

Решение:

Задание 20. Выполните деление:

Решение:

Задание 21. Выполните деление:

Решение:

Задание 22. Выполните деление:

Решение:

Задание 23. Выполните деление:

Решение:

Задание 24. Выполните деление:

Решение:


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже


В этой статье мы рассмотрим правила и алгоритмы деления натуральных чисел. Сразу отметим, что здесь мы смотрим только на деление нацело, то есть без остатка. О делении натуральных чисел с остатком читайте в нашем отдельном материале.

Перед тем, как формулировать правило деления натуральных чисел, нужно понять связь деления с умножением. После того, как мы установим эту связь, последовательно рассмотрим самые простые случаи: деление натурального числа на себя и на единицу. Далее разберем деление с помощью таблицы умножения, деление методом последовательного вычитания, деление на числа, кратные числу 10, различные степени числа 10.

Для каждого случая приведем и подробно рассмотрим примеры. В конце статьи покажем, как проводить проверку результата деления.

Связь деления с умножением

Чтобы проследить связь между делением и умножением, вспомним, что деление представляется, как разбиение исходного делимого множества на несколько одинаковых множеств. Умножение связано с объединением нескольких одинаковых множеств в одно. 

Деление – действие, обратное умножению. Что это значит? Приведем аналогию. Представим, что у нас есть b множеств, в каждом из которых – по с предметов. Общее количество предметов во всех множествах равно a. Умножение – это объединение всех множеств в одно. Математически оно запишется так:

b·c=a.

Обратный процесс разбиения полученного общего множества на b множеств по с предметов в каждом соответствует делению:

a÷b=c.

На основе сказанного можно перейти к следующему утверждению:

Если произведение натуральных чисел c и b равно a, то частное чисел a и b равно c. Перепишем в буквенном виде. 

Если b·c=a, то a÷b=c

Пользуясь переместительным свойством умножения, можно записать:

c·b=a

Отсюда также следует, что a÷с=b. 

На основании сказанного можно сформулировать общий вывод. Если произведение чисел c и b равно a, то соответственно частные a÷b и a÷c равны c и b.

Подытожим все изложенное выше и дадим определение деления натуральных чисел.

Деление натуральных чисел

Деление – нахождение неизвестного множителя по известному произведению и другому известному множителю.

Это определение станет базой, на основе которой мы будем строить правила и методы деления натуральных чисел.

Деление методом последовательного вычитания

Только что мы говорили о делении в контексте умножения. На основе этого знания можно проводить операцию деления. Однако, существует еще один, достаточно простой и достойный внимания подход – деление методом последовательного вычитания. Этот способ понятен интуитивно, поэтому рассмотрим его на примере, не приводя теоретических выкладок.

Заголовок

Сколько будет 12 разделить на 4?

Иными словами данную задачу можно сформулировать так: имеется 12 предметов (например, апельсинов), и их нужно разделить на равные группы по 4 предмета (разложить в коробки по 4 штуки). Сколько будет таких групп или коробок по четыре апельсина в каждой?

Шаг за шагом будем отнимать от исходного количества по 4 апельсина и формировать группы по 4 до того момента, пока апельсины не закончатся. Количество шагов, которые нам придется сделать, и будет ответом на изначальный вопрос.

Из 12 апельсинов откладываем первую четверку в коробку. После этого в исходной куче апельсинов остается 12-4=8цитрусовых. Из этих восьми в другую коробку забираем еще 4. Теперь в исходной куче апельсинов осталось 8-4=4штуки. Из этих четырех штук как раз можно сформировать еще одну, отдельную третью коробку, после чего в исходной куче останется 4-4=0 апельсинов.

Итак, мы получили 3 коробки, по 4 предмета в каждой. Иными словами, мы разделили 12 на 4, и получили в результате 3. 

Работая с числами, не нужно каждый раз проводить аналогию с предметами. Что мы делали с делимым и делителем? Последовательно вычитали делитель из делимого, пока не получили нуль в остатке.

Важно!

При делении методом последовательного вычитания количество операций вычитания до получения нулевого остатка и есть частное от деления.

Для закрепления рассмотрим еще один, более сложный пример.

Пример 1. Деление последовательным вычитанием

Вычислим результат деления числа 108 на 27 методом последовательного вычитания.

Первое действие: 108-27=81.

Второе действие: 81-27=54.

Третье действие: 54-27=27.

Четвертое действие: 27-27=0.

Более действий не требуется. Мы получили ответ:

108÷27=4

Отметим, что данный метод удобен только в случаях, когда необходимое количество последовательных вычитаний невелико. В остальных случаях целесообразно применять правила деления, которые мы рассмотрим ниже.

Деление равных натуральных чисел

Согласно свойствам натуральных чисел, сформулируем правило, как делить равные натуральные числа.

Деление равных натуральных чисел

Частное от деления натурального числа на равное ему натуральное число равно единице!

aa=1.

Например:

1÷1=1; 141÷141=1; 2589÷2589=1; 100000000÷100000000=1.

Деление на единицу

Основываясь на свойствах натуральных чисел, можно также сформулировать правило деление натурального числа на единицу.

Деление натурального числа на единицу

Частное от деления любого натурального числа на единицу равно самому делимому числу.

a1=a.

Например: 

1÷1=1; 141÷1=141; 2589÷1=2589; 100000000÷1=100000000.

Деление с помощью таблицы умножения

Таблица умножения – удобный инструмент, который позволяет найти произведения однозначных натуральных чисел. Однако, ее можно использовать и для деления.

Деление с помощью таблицы умножения

Таблица умножения позволяет находить не только результат произведения множителей, но и множитель по известному произведению и другому множителю. Как мы выяснили ранее, деление – это как раз и есть нахождение неизвестного множителя по известному произведению и еще одному множителю. 

С помощью таблицы умножения можно проводить деление любого числа на желтом фоне на любое однозначное натуральное число. Покажем, как это делать. Есть два способа, применение которых мы будем рассматривать на примерах.

Разделим 48 на 6.

Способ первый.

Деление с помощью таблицы умножения

В столбце, верхняя ячейка которого содержит делитель 6, находим делимое 48. Результат деления при этом находится в крайней левой ячейке строки, содержащей делимое. Он обведен синей окружностью.

Способ второй. 

Деление с помощью таблицы умножения

Сначала в строке с делителем 6 находим делимое 48. Результат деления при этом находится в крайней верхней ячейке столбца, содержащем делимое. Он обведен синей окружностью.

Итак, мы разделили 48 на 6 и получили 8. Результат был найден по таблице умножения двумя способами. Оба способа абсолютно идентичны.

Для закрепления рассмотрим еще один пример. Разделим 7 на 1. Приведем рисунки, иллюстрирующие процесс деления.

Деление с помощью таблицы умножения

Деление с помощью таблицы умножения

В результате деления числа 7  на  1, как вы уже догадались, получается число 7. В делении с помощью таблицы умножения очень важно знать эту таблицу наизусть, так как не всегда можно иметь ее под рукой.

Настоятельно рекомендуем выучить таблицу умножения!

Деление на 10, 100, 1000 и т.д.

Сразу сформулируем правило деления на натуральных чисел на 10, 100, 1000 и т.д. Сразу будем считать, что деление без остатка возможно.

Деление на 10, 100, 1000 и т.д.

Результатом деления натурального числа на 10, 100, 1000 и т.д. является такое натуральное число, запись которого получается из записи делимого если справа от него отбросить 1, 2, 3 и т.д. нулей.

Отбрасывается столько нулей, сколько из есть в записи делителя!

Например, 30÷10=3. От числа 30 мы отбросили один нуль.

Частное 120000÷1000 равно 120 – от числа 120000 отбрасываем справа три нуля, именно столько их содержится в делителе.

Обоснование правила строится на правиле умножения натурального числа на 10, 100, 1000 и т.д. Приведем пример. Пусть нужно разделить 10200 на 100.

10200=102·100

10200÷100=102·100100=102.

Представление делимого в виде произведения

При делении натуральных чисел не стоит забывать о свойстве деления произведения двух чисел на натуральное число. Иногда делимое можно представить в виде произведения, один из множителей в котором делится на делитель. 

Рассмотрим типичные случаи.

Пример 2. Представление делимого в виде произведения

Разделим 30 на 3.

Делимое 30 можно представить в виде произведения30=3·10.

Имеем: 30÷3=3·10÷3

Воспользовавшись свойством деления произведения двух чисел, получаем:

3·10÷3=3÷3·10=1·10=10

30÷3=10

Приведем еще несколько аналогичных примеров.

Пример 3. Представление делимого в виде произведения

Вычислим частное 7200÷72.

Представляем делимое в виде 7200=72·100. При этом, результат деления будет следующим:

7200÷72=72·100÷72=72÷72÷100=100

Пример 4. Представление делимого в виде произведения

Вычислим частное: 1600000÷160.

1600000=160·10000

1600000÷160=160·10000÷160=160÷160·10000=10000

В более сложных примерах удобно пользоваться таблицей умножения. Проиллюстрируем это.

Пример 5. Представление делимого в виде произведения

Разделим 5400 на 9.

Таблица умножения подсказывает нам, что 54 делится на 9, поэтому делимое целесообразно представить в виде произведения:

5400=54·100.

Теперь закончим деление:

5400÷9=54·100÷9=54÷9·100=6·100=600

Для закрепления данного материала рассмотрим еще один пример, уже без подробных словесных пояснений.

Пример 6. Представление делимого в виде произведения

Посчитаем, сколько будет 120 разделить на 4.

120=12·10

120÷4=12·10÷4=12÷4·10=3·10=30

Деление натуральных чисел, оканчивающихся на нуль

При делении чисел, записи которых оканчиваются цифрой 0, полезно помнить свойство деления натурального числа на произведение двух чисел. При этом, делитель представляется в виде произведения двух множителей, после чего указанное свойство находит применение в совокупности с таблицей умножения.

Как всегда, поясним это на примерах.

Пример 7. Деление натуральных чисел, оканчивающихся на 0

Разделим 490 на 70.

Запишем 70 в виде:

70=7·10.

Используя свойство деления натурального числа на произведение, можно записать:

490÷70=490÷7·10=490÷10÷7.

Деление на 10 мы уже разобрали в предыдущем пункте.

490÷10÷7=49÷7=7

490÷70=7.

Для закрепления разберем еще один, более сложный пример.

Пример 8. Деление натуральных чисел, оканчивающихся на 0

Возьмем числа 54000 и 5400 и разделим их.

54000÷5400=?

Представим 5400 в виде 54·100 и запишем:

54000÷5400=54000÷54·100=54000÷100÷54=540÷54.

Теперь делимое 540 представляем в виде 54·10 и записываем:

540÷54=54·10÷54=54÷54·10=10

54000÷5400=10.

Подведем итог по изложенному в данном пункте.

Важно!

Если в записях делимого и делителя справа присутствуют нули, то нужно избавиться от одинакового количества нулей как в делимом, так и в делителе. После этого выполнить деление получившихся чисел.

Например, деление чисел 64000 и 8000 сведется к делению чисел 64 и 8.

Метод подбора частного

Прежде чем рассматривать этот способ деления, введем некоторые условия.

Пусть числа a и b делятся друг на друга, причем произведение b·10 дает число, большее, чем a. В таком случае частное a÷b является однозначным натуральным числом. Иными словами, это число от 1 до 9. Это типичная ситуация, когда метод подбора частного удобен и применим. Последовательно умножая делитель на 1, 2, 3, .. , 9 и сравнивая результат с делимым, можно найти частное.

Рассмотрим пример.

Пример 9. Подбор частного

Разделим 108 на 27.

Легко заметить, что 27·10=270; 270>108. 

Начнем подбор частного.

27·1=2727·2=5427·3=8127·4=108

Бинго! Частное найдено методом подбора:

108÷27=4.

Отметим, что в случаях, когда b·10>a частное также удобно находить методом последовательного вычитания.

Представление делимого в виде суммы

Еще один способ, который может помочь найти частное – это представить делимое в виде суммы нескольких натуральных чисел, каждое из которых легко делится на делитель. После этого нам пригодится свойство деления суммы натуральных чисел на число. Вместе с примером рассмотрим алгоритм и ответим на вопрос: в виде каких слагаемых представлять делимое?

Пусть делимое равно 8551, а делитель равен 17.

  1. Вычислим, на сколько в записи делимого больше знаков, чем в записи делителя. В нашем случае делитель содержит два знака, а делимое – четыре. Значит в записи делимого на два знака больше. Запоминаем число 2.
  2. Справа в делителе дописываем два нуля. Почему два? В предыдущем пункте мы как раз и определили это число. Однако, если записанное в результате число окажется больше делителя, из числа, полученного в предыдущем пункте, нужно вычесть 1. В нашем примере, дописав нули к делителю, мы получили число 1700<8551. Таким образом, отнимать единицу из двойки, полученной в первом пункте, не нужно. В памяти так же оставляем число 2.
  3. К числу 1 справа приписываем нули в количестве, определенном числом из предыдущего пункта. Тем самым мы получаем рабочую единицу разряда, с которым будем оперировать далее. В нашем случае, к единице приписываются два нуля. Рабочий разряд – сотни. 
  4. Проводим последовательное умножения делителя на 1, 2, 3 и т.д. единицы рабочего разряда до того момента, пока не получим число, большее, чем делимое. 17·100=1700; 17·200=3400; 17·300=5100; 17·400=6400; 17·500=8500; 17·600=10200Нас интересует предпоследний результат, так как следующий после него результат произведения больше делимого. Число 8500, которое получено на предпоследнем шаге при умножении, и является первым слагаемым. Запоминаем равенство, которое мы будем использовать далее: 8500=17·500.
  5. Вычисляем разность между делимым и найденным слагаемым. Если она не равна нулю, возвращаемся к первому пункту и начинаем поиск второго слагаемого, используя вместо делимого уже полученную разность. Повторяем пункты до тех пор, пока в результате не получим нуль. В нашем примере разность равна 8551-8500=51. 51≠0, поэтому, переходим к пункту 1.

Повторяем алгоритм:

  1. Сравниваем количество знаков в новом делимом 51 и делителе 17. В обоих записях по две цифры, разность количества знаков равно нулю. Запоминаем число 0.
  2. Так как мы запомнили число 0, в записи делителя не нужно дописывать дополнительных нулей.
  3. К единице также не будем добавлять нулей. Опять же, потому что в первом пункте мы запоминали число 0. Таким образом, нашим рабочим разрядом являются единицы
  4. Последовательно умножаем 17 на 1, 2, 3,.. и т.д. Получаем: 17·1=17; 17·2=34; 17·3=51.
  5. Очевидно, на третьем шаге мы получили число, равное делителю. Это и есть второе слагаемое. Так как 51-51=0, на этом этапе останавливаем поиск слагаемых – он завершен.

Теперь осталось найти частное. Делимое 8551 мы представили в виде суммы 8500+51. Запишем:

8500+51÷17=8500÷17+51÷17.

Результаты делений в скобках известны нам из проведенных ранее действий.

8500+51÷17=8500÷17+51÷17=500+3=503.

Результат деления: 8551÷17=503.

Рассмотрим еще несколько примеров, уже не комментируя каждое действие столь детально.

Пример 10. Деление натуральных чисел

Найдем частное: 64÷2.

1. В записи делимого на один знак больше, чем в записи делителя. Запоминаем цифру 1.

2. Справа у делителя приписываем один нуль.

3. К числу 1 приписываем один нуль и получаем единицу рабочего разряда – 10. Рабочий разряд, таким образом – десятки.

4. Начинаем последовательное умножение делителя на единицы рабочего разряда. 2·10=20; 2·20=40; 2·30=60; 2·40=80; 80>64.

Первое найденное слагаемое – число 60.

Равенство 60÷2=30 ещё пригодится нам в будущем.

5. Ищем второе слагаемое. Для этого вычисляем разность 64-60=4. Число 4 делится на 2 без остатка, очевидно, это и есть второе слагаемое.

Теперь находим частное:

64÷2=60+4÷2=60÷2+4÷2=30+2=32.

Пример 11. Деление натуральных чисел

Решим: 1178÷31=?

1. Видим, что в записи делимого на два знака больше, чем в делителе. Запоминаем число 2.

2. К делителю справа добавляем два нуля. Получаем число 3100. 

3100>1178, поэтому запомненное число 2 из первого пункта нужно уменьшить на единицу. 

2-1=1.

3. К единице справа добавляем один нуль и получаем рабочий разряд – десятки.

4. Умножаем 31 на 10, 20, 30, .. и т.д.

31·10=310; 31·20=620; 31·30=930; 31·40=1240

1240>1178, следовательно, первым слагаемым является число 930.

5. Вычисляем разность 1178-930=248. С числом 248 на месте делимого начинаем искать второе слагаемое.

1. В записи числа 248 на один знак больше, чем в числе 31. Запоминаем цифру 1. 

2. К 31 прибавляем справа один нуль. Так как 310>248, уменьшаем полученную в предыдущем пункте единицу, и в итоге имеем число 0. 

3. Так как мы запомнили число 0, то к единице не нужно приписывать дополнительных нулей, и разряд единиц – рабочий разряд.

4. Последовательно умножаем 31 на 1, 2, 3, .. и т.д., сравнивая результат c делимым.

31·1=31; 31·2=62; 31·3=93; 31·4=124; 31·5=155; 31·6=186; 31·7=217; 31·8=248

Таким образом, именно число 248 и является вторым слагаемым, которое делится на 31.

5. Разность 248-248 равна нулю. Заканчиваем поиск слагаемых, запоминаем соотношение 248÷31=8 и находим частное.

1178÷31=930+248÷31=930÷31+248÷31=30+8=38.

Постепенно увеличиваем сложность примеров.

Пример 12. Деление натуральных чисел

Разделим 13984 на 32.

В данном случае описанный выше алгоритм нужно будет применить три раза. Не будем приводить все выкладки, просто укажем, в виде каких слагаемых будет представлен делитель. Вы можете проверить себя, и провести вычисления самостоятельно.

Первое слагаемое равно 12800. 

12800÷32=400.

Второе слагаемое равно 960.

960÷32=30.

Третье слагаемое равно 224. 

224÷32=7.

Результат:

13984÷32=12800+960+224÷32=12800÷32+960÷32+224÷32=400+30+7=437.

Казалось бы, мы рассмотрели практически все возможные способы деления натуральных чисел. На этом, тему можно считать закрытой. Однако, есть способ, который в ряде случаев позволяет провести деление быстрее и рациональнее.

Рассмотрим его напоследок.

Представление делимого в виде разности натуральных чисел

Иногда делимое проще и удобнее представлять в виде разности, а не суммы. Это может значительно ускорить и облегчить процесс деления. Как именно? Покажем на примере.

Пример 13. Деление натуральных чисел

Разделим 594 на 6.

Если воспользоваться алгоритмом из предыдущего пункта, мы получим в результате:

594÷6=540+54÷6=540÷6+54÷6=90+9=99.

Однако, если число 594 представить в виде разности 600-6, все становится гораздо очевиднее. Оба числа 600 и 6) делятся на 6. По свойству деления разности натуральных чисел, мы получаем:

594÷6=600-6÷6=600÷6-6÷6=100-1=99

Результат тот же, но действия объективно легче и проще.

Решим еще один пример тем же методом. Отметим, что важно уметь правильно заметить, какую манипуляцию сделать с числами, чтобы провести деление легко. Скажем даже, что в этом присутствует некоторый элемент искусства.

Пример 14. Деление натуральных чисел

483÷7=?

Вспоминаем таблицу умножение и понимаем: число 483 удобно представить в виде 483=490-7.

490÷7=707÷7=1

Проводим деление:

483÷7=(490-7)÷7=490÷7-7÷7=70-1=69.

Проверка результата деления

Проверка никогда не бывает лишней, особенно, если мы делили большие числа. Как проверять, правильно ли выполнено деление натуральных чисел? При помощи умножения!

Проверка результата деления

Чтобы проверить правильно ли выполнено деление, нужно частное умножить на делитель. В результате должно получится делимое.

Если выходит иначе, можно сделать вывод о том, что где-то закралась ошибка.

Смысл этого действия очень прост. Например, у нас было a предметов, и эти a предметов мы разложили на b кучек. В каждой кучке оказалось по с предметов. Математически это выглядит так:

a÷b=c.

Теперь объединим обратно все b кучек по с предметов. В результате должно получится та же совокупность предметов a.

b·c=a.

Рассмотрим проведение проверки на двух примерах.

Пример 15. Проверка результата деления натуральных чисел

Число 475 разделили на 19. В результате получилось 25. Правильно ли выполнено деление?

Умножим частное 25 на делитель 19 и выясним, верно ли разделили числа.

25·19=475.

Число 475 равно делимому, значит, деление выполнено верно.

Пример 16. Проверка результата деления натуральных чисел

Разделите и проверьте результат:

1024÷32=?

Будем представлять делимое в виде суммы слагаемых и осуществлять деление.

1024÷32=960+64÷32=960÷32+64÷32=30+2=32.

Проверим результат:

32·32=1024.

Вывод: деление выполнено верно.

Проверка результата деления чисел делением

Рассмотренный выше способ проверки основан на умножении. Существует также проверка делением. Как ее проводить?

Проверка результата деления

Чтобы проверить верно ли найдено частное, нужно делимое разделить на полученное частное. В результате должен получится делитель.

Если выходит иначе, можно сделать вывод о том, что где-то закралась ошибка.

Правило основано на той же связи между делимым, делителем и частным, что и правило из предыдущего пункта.

Рассмотрим примеры.

Пример 17. Проверка результата деления натуральных чисел

Верно ли равенство:

104÷13=8.

Разделим делимое на частное:

104÷8=80+24÷8=80÷8+24÷8=10+3=13.

В результате получился делитель, значит, деление выполнено верно.

Пример 18. Проверка результата деления натуральных чисел

Вычислим и проверим: 240÷15=?

Представляя делимое в виде суммы, получаем:

240÷15=150+90÷15=150÷15+90÷15=10+6=16.

Проверяем результат:

240÷16=?

240÷16=160+80÷16=160÷16+80÷16=10+5=15.

Деление выполнено верно.

Добавить комментарий