Как найти секущие плоскости конуса

Сечение конуса

Сечение конуса — задание в инженерной графике, являющееся одной из часто используемых задач на построение. Я опишу более подробно каждый свой шаг, прикладывая рисунки. Также Вы можете посмотреть видео.

  1. У вас есть задание на построение сечения конуса с всеми размерами. ( для примера использовал это задание)Сечение конуса2. Чертим оси и строим 3 вид конуса ( вид слева). Указываем плоскость сечения конуса (зачастую ее располагают под произвольным углом)Сечение конуса_13. Воспользуемся методом вспомогательных секущих плоскостей (они необходимы для детального построения сечения конуса). Расстояние между секущими плоскостями берем произвольно.Сечение конуса_24. Находим вид сечения на нижнем рисунке (виде сверху)Сечение конуса_35. Затем определим точки на виде слева.Сечение конуса_46. Все точки найдены, приступаем обводить полученную фигуру линиями чертежа.Сечение конуса_47. Не забываем пронумеровывать каждую точку полученного сечения.Сечение конуса_5

Просмотрели 1 536


§ 18. Конус

18.1.Определение конуса и его элементов

Определение. Тело, которое образуется при вращении прямоугольного треугольника вокруг прямой, содержащей его катет, называется прямым круговым конусом (рис. 165, 166).

Отрезок оси вращения, заключённый внутри конуса, называется осью конуса.

Круг, образованный при вращении второго катета, называется основанием конуса. Длина этого катета называется радиусом основания конуса или, короче, радиусом конуса. Вершина острого угла вращающегося треугольника, лежащая на оси вращения, называется вершиной конуса. На рисунках 165, б и 166 вершиной конуса является точка Р.

Высотой конуса называется отрезок, проведённый из вершины конуса перпендикулярно его основанию. Длину этого перпендикуляра также называют высотой конуса. Высота конуса имеет своим основанием центр круга — основания конуса — и совпадает с осью конуса.

Отрезки, соединяющие вершину конуса с точками окружности его основания, называются образующими конуса. Все образующие конуса равны между собой (почему?).

Как и в случае с цилиндром, можно рассматривать конус в более широком, чем у нас, понимании, когда в основании конуса может быть, например, эллипс (эллиптический конус), парабола (параболический конус). Мы будем изучать только определённый выше прямой круговой конус (конус вращения), поэтому слова «прямой круговой» мы будем опускать.

Рис. 165

Рис. 166

Рис. 167

Поверхность, полученная при вращении гипотенузы, называется боковой поверхностью конуса, а её площадь — площадью боковой поверхности конуса и обозначается Sбок. Боковая поверхность конуса является объединением всех его образующих.

Объединение боковой поверхности конуса и его основания называется полной поверхностью конуса, а её площадь называется площадью полной поверхности конуса или, короче, площадью поверхности конуса и обозначается Sкон. Из этого определения следует, что

Sкон = Sбок + Sосн.

Если вокруг данной прямой — оси — вращать пересекающую её прямую, то при этом вращении образуется поверхность, которую называют круговой конической поверхностью или конической поверхностью вращения. Уравнение  +  = 0 задаёт коническую поверхность вращения с осью вращения Oz (рис. 167). Из этого уравнения следует, что коническая поверхность является поверхностью второго порядка. (Подробнее о поверхностях второго порядка можно прочитать в «Дополнениях» — в конце этой книги.)

18.2. Сечения конуса

Определение. Сечение конуса плоскостью, проходящей через его ось, называется осевым сечением конуса.

Рис. 168

Рис. 169

Рис. 170

Так как все образующие конуса равны, то его осевым сечением является равнобедренный треугольник, боковыми сторонами которого являются образующие конуса, а основанием — диаметр конуса. При этом все осевые сечения конуса — равные равнобедренные треугольники. На рисунке 168 осевым сечением конуса является треугольник ABP (АР = ВР). Угол АPВ называют углом при вершине осевого сечения конуса.

Конус, в осевом сечении которого правильный треугольник, называется равносторонним конусом.

Если секущая плоскость проходит через вершину конуса, пересекает конус, но не проходит через его ось, то в сечении конуса также получается равнобедренный треугольник (см. рис. 168: DCP).

Так как конус — тело вращения, то любое сечение конуса плоскостью, перпендикулярной его оси (т. е. параллельной основанию конуса), есть круг, а сечение боковой поверхности конуса такой плоскостью — окружность этого круга; центром круга (окружности) является точка пересечения оси конуса и секущей плоскости (рис. 169).

Если секущая плоскость не параллельна плоскости основания конуса и не пересекает основание, то сечением боковой поверхности конуса такой плоскостью является эллипс (рис. 170). Поэтому эллипс называют коническим сечением.

Рис. 171

 Если сечением цилиндрической поверхности плоскостью может быть либо окружность, либо эллипс, либо две параллельные прямые, то сечением конической поверхности плоскостью может быть либо окружность (секущая плоскость перпендикулярна оси конической поверхности вращения и не проходит через её вершину, рис. 171, a), либо эллипс (секущая плоскость не перпендикулярна оси конической поверхности и пересекает все её образующие, рис. 171, б), либо парабола (секущая плоскость параллельна только одной образующей конической поверхности, рис. 171, в), либо гипербола (секущая плоскость параллельна оси конической поверхности, рис. 171, г), либо пара пересекающихся прямых (секущая плоскость проходит через вершину конической поверхности, рис. 171, д). Поэтому невырожденные кривые второго порядка — окружность, эллипс, параболу и гиперболу называют коническими сечениями или коротко  кониками.

О конических сечениях можно прочитать в очерках «Элементарная геометрия», «Проективная геометрия» в конце этой книги. 

ЗАДАЧА (3.047). Высота конуса равна радиусу R его основания. Через вершину конуса проведена плоскость, отсекающая от окружности основания дугу: а) в 60°; б) в 90°. Найти площадь сечения.

Решение. Рассмотрим случай а). Пусть плоскость α пересекает поверхность конуса с вершиной Р по образующим РА и РВ (рис. 172);  АВР — искомое сечение. Найдём площадь этого сечения.

Хорда АВ окружности основания стягивает дугу в 60°, значит,  AOB — правильный и АВ = R.

Рис. 172

Если точка С — середина стороны АB, то отрезок PC  высота треугольника АВР. Поэтому S ABP = АВРC. Имеем: ОР = R (по условию); в AOB: ОС = ; в ОСР: CP =  = .

Тогда S ABP = АВРС = .

Ответ: а) .

18.3. Касательная плоскость к конусу

Определение. Касательной плоскостью к конусу называется плоскость, проходящая через образующую конуса перпендикулярно осевому сечению, проведённому через эту образующую.

Рис. 173

Говорят, что плоскость α касается конуса по образующей РА (рис. 173): каждая точка образующей РА является точкой касания плоскости α и данного конуса.

Через любую точку боковой поверхности конуса проходит только одна его образующая. Через эту образующую можно провести только одно осевое сечение и только одну плоскость, перпендикулярную плоскости этого осевого сечения. Следовательно, через каждую точку боковой поверхности конуса можно провести лишь одну плоскость, касательную к данному конусу в этой точке.

18.4. Изображение конуса

Рис. 174

Для изображения конуса достаточно построить: 1) эллипс, изображающий окружность основания конуса (рис. 174); 2) центр О этого эллипса; 3) отрезок ОР, изображающий высоту конуса; 4) касательные прямые РА и PB из точки Р к эллипсу (их проводят с помощью линейки на глаз).

Для достижения наглядности изображения невидимые линии изображают штрихами.

Необходимо заметить, что отрезок АВ, соединяющий точки касания образующих и окружности основания конуса, ни в коем случае не является диаметром основания конуса, т. е. этот отрезок не содержит центра О эллипса. Следовательно,  АBP — не осевое сечение конуса. Осевым сечением конуса является  ACP, где отрезок AC проходит через точку О, но образующая PC не является касательной к окружности основания.

18.5. Развёртка и площадь поверхности конуса

Пусть l — длина образующей, R — радиус основания конуса с вершиной Р.

Рис. 175

Рис. 176

Поверхность конуса состоит из боковой поверхности конуса и его основания. Если эту поверхность разрезать по одной из образующих, например по образующей PA (рис. 175), и по окружности основания, затем боковую поверхность конуса развернуть на плоскости (рис. 176, a), то получим развёртку поверхности конуса (рис. 176, б), состоящую из: а) кругового сектора, радиус которого равен образующей l конуса, а длина дуги сектора равна длине окружности основания конуса; б) круга, радиус которого равен радиусу R основания конуса. Угол сектора развёртки боковой поверхности конуса называют углом развёртки конуса; его численная величина равна отношению длины окружности основания конуса к его образующей (радиусу сектора развёртки):

α = .

За площадь боковой поверхности конуса принимается площадь её развёртки. Выразим площадь боковой поверхности конуса через длину l его образующей и радиус R основания.

Площадь боковой поверхности — площадь кругового сектора радиуса длины l — вычисляется по формуле

Sбок = αl2,(1)

где α — величина угла (в радианах) сектора — развёртки. Учитывая, что α = , получаем:

Sбок = πRl.(2)

Таким образом, доказана следующая теорема.

Теорема 27. Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую.

Площадь полной поверхности конуса равна сумме площадей его боковой поверхности и основания, т. е.

Sкон = πRl + πR2.(3)

Следствие. Пусть конус образован вращением прямоугольного треугольника ABC вокруг катета АС (рис. 177). Тогда Sбок = πBCАВ. Если D — середина отрезка АВ, то AB = 2AD, поэтому

Sбок = 2 πВСAD.(4)

Рис. 177

Проведём DE  АB ( l = ). Из подобия прямоугольных треугольников ADE и ACB (у них общий угол А) имеем

 = BCAD = DEАС.(5)

Тогда соотношение (4) принимает вид

Sбок = (2πDE)AC,(6)

т. е. площадь боковой поверхности конуса равна произведению высоты конуса на длину окружности, радиус которой равен длине серединного перпендикуляра, проведённого из точки на оси конуса к его образующей.

Это следствие будет использовано в п. 19.7.

18.6. Свойства параллельных сечений конуса

Теоремa 28. Если конус пересечён плоскостью, параллельной основанию, то: 1) все образующие и высота конуса делятся этой плоскостью на пропорциональные части; 2) в сечении получается круг; 3) площади сечения и основания относятся, как квадраты их расстояний от вершины.

Рис. 178

Доказательство. 1) Пусть конус с вершиной Р и основанием F пересечён плоскостью α, параллельной плоскости β основания конуса и расположенной между Р и β (рис. 178).

Проведём высоту РО конуса, где точка О — центр круга F. Так как РО  β, α || β, то α  РО. Значит, в сечении конуса плоскостью α получается круг с центром в точке O1 = α РО.  Обозначим этот круг F1.

Рассмотрим гомотетию с центром P, при которой плоскость β основания данного конуса отображается на параллельную ей плоскость α (при гомотетии плоскость, не проходящая через центр гомотетии, отображается на параллельную ей плоскость).

Так как при гомотетии её центр является неподвижной точкой, прямая, проходящая через центр гомотетии, отображается на себя, а пересечение двух фигур — на пересечение их образов, то гомотетия отображает основание F конуса на его параллельное сечение — круг F1, при этом центр О основания отображается на центр О1 круга F1 (почему?). Кроме того, если РХ — произвольная образующая конуса, где Х — точка окружности основания, то при гомотетии точка X отображается на точку X1 = РX  α. Учитывая, что отношение длин гомотетичных отрезков равно коэффициенту гомотетии, получаем:

 =  = k,(*)

где k — коэффициент гомотетии , т. е. параллельное сечение конуса делит его образующие и высоту на пропорциональные части.

А поскольку гомотетия является подобием, то круг F1, являющийся параллельным сечением конуса, подобен его основанию.

Вследствие того что отношение площадей гомотетичных фигур равно квадрату коэффициента гомотетии и k = PO1 : РО, где РO1 и PO — расстояния соответственно параллельного сечения и основания пирамиды от её вершины, то

Sсечен : Sоснов = k2 = : PO2.

Теорема доказана.

18.7.Вписанные в конус и описанные около конуса пирамиды

Определение. Пирамида называется вписанной в конус, если у них вершина общая, а основание пирамиды вписано в основание конуса. В этом случае конус называется описанным около пирамиды.

Для построения изображения правильной пирамиды, вписанной в конус:

строят изображение основания пирамиды — правильного многоугольника, вписанного в основание конуса;

соединяют отрезками прямых вершину конуса с вершинами построенного многоугольника;

выделяют видимые и невидимые (штрихами) линии изображаемых фигур.

На рисунках 179—182 изображена вписанная в конус пирамида, в основаниях которой лежит:

прямоугольный треугольник (см. рис. 179);

правильный треугольник (см. рис. 180);

квадрат (см. рис. 181);

правильный шестиугольник (см. рис. 182).

Рис. 179

Рис. 180

Рис. 181

Рис. 182

Определение. Пирамида называется описанной около конуса, если у них вершина общая, а основание пирамиды описано около основания конуса. В этом случае конус называют вписанным в пирамиду (рис. 183).

Рис. 183

Рис. 184

ЗАДАЧА (3.080). В равносторонний конус вписана правильная пирамида. Найти отношение площадей боковых поверхностей пирамиды и конуса, если пирамида: а) треугольная; б) четырёхугольная; в) шестиугольная.

Решение. Рассмотрим случай а). Пусть R — радиус основания равностороннего конуса, РАВС — правильная пирамида, вписанная в этот конус (рис. 184); DPE — осевое сечение конуса, CF — медиана АBС. Тогда в АВС (правильный): АВ = R, OF = R; в DPE (правильный): ОР =  = R; в ОРF (∠ FOP = 90°):

PF =  = .

Так как CF — медиана АВС, то PF — высота равнобедренного треугольника АВР. Поэтому

SABP = ABPF = R  = .

Обозначим: S1 — площадь боковой поверхности пирамиды, S2 — площадь боковой поверхности конуса. Тогда

S1 = 3S△ ABP = ,

S

2 = πRPA = πR2R = 2πR2.

Следовательно,

S1 : S2 = : 2πR2 = .

Ответ: а) .


 Во многих пособиях по геометрии за площадь боковой поверхности конуса принимают предел последовательности боковых поверхностей правильных вписанных в конус (или описанных около конуса) п-угольных пирамид при n +. Действительно, Sбок. пов. пирам = aPoсн. пирам, где Рoсн. пирам периметр основания пирамиды, а — апофема боковой грани. Для правильных описанных около конуса пирамид апофема a — постоянная величина, равная образующей l конуса, а предел последовательности периметров правильных многоугольников, описанных около окружности радиуса R основания конуса, равен 2πR — длине этой окружности. Таким образом, мы вновь получаем: Sбок = πRl.

18.8. Усечённый конус

Рис. 185

Пусть дан конус с вершиной Р. Проведём плоскость α, параллельную плоскости основания конуса и пересекающую этот конус (рис. 185). Эта плоскость пересекает данный конус по кругу и разбивает его на два тела: одно из них является конусом, а другое (расположенное между плоскостью основания данного конуса и секущей плоскостью) называют усечённым конусом. Таким образом, усечённый конус представляет собой часть полного конуса, заключённую между его основанием и параллельной ему плоскостью. Основание данного конуса и круг, полученный в сечении этого конуса плоскостью α, называются соответственно нижним и верхним основаниями усечённого конуса. Высотой усечённого конуса называется перпендикуляр, проведённый из какой-либо точки одного основания к плоскости другого. Длину этого перпендикуляра также называют высотой усечённого конуса. (Часто за высоту усечённого конуса принимают отрезок, соединяющий центры его оснований.)

Рис. 186

Рис. 187

Часть боковой поверхности данного конуса, ограничивающая усечённый конус, называется боковой поверхностью усечённого конуса, а отрезки образующих конуса, заключённые между основаниями усечённого конуса, называются образующими усечённого конуса. Так как все образующие данного конуса равны и равны все образующие отсечённого конуса, то равны все образующие усечённого конуса.

Построение изображения усечённого конуса следует начинать с изображения того конуса, из которого получился усечённый конус (рис. 186).

На рисунке 187 показана развёртка усечённого конуса.

Из теоремы 28 следует, что основания усечённого конуса — подобные круги.

Определения усечённой пирамиды, вписанной в усечённый конус и описанной около него, аналогичны определениям пирамиды, вписанной в конус и описанной около него.

Заметим, что построение изображений усечённой пирамиды, вписанной в усечённый конус и описанной около него, следует начинать с изображений того конуса или той пирамиды, из которых получены соответственно усечённые конус и пирамида.

Полной поверхностью усечённого конуса называется объединение боковой поверхности этого конуса и двух его оснований. Иногда полную поверхность усечённого конуса называют его поверхностью, а её площадь — площадью поверхности усечённого конуса. Эта площадь равна сумме площадей боковой поверхности и оснований усечённого конуса.

Усечённый конус может быть образован также вращением прямоугольной трапеции вокруг боковой стороны трапеции, перпендикулярной её основанию.

Рис. 188

На рисунке 188 изображён усечённый конус, образованный вращением прямоугольной трапеции ABCD вокруг стороны CD. При этом боковая поверхность усечённого конуса образована вращением боковой стороны АВ, а основания его — вращением оснований AD и ВС трапеции.

18.9. Поверхность усечённого конуса

Выразим площадь Sбок боковой поверхности усечённого конуса через длину l его образующей и радиусы R и r оснований (R > r).

Рис. 189

Пусть точка Р — вершина конуса, из которого получен усечённый конус; точки О, O1 — центры оснований усечённого конуса; AA1 = — одна из образующих усечённого конуса (рис. 189).

Используя формулу (2) п. 18.5, получаем

Sбок = πRPAπrРA1 =

= πR(РA1 + А1A) – πrPA1 =

= πRA1A + π(Rr)PA1.

Учитывая, что A1A = l, имеем

Sбок = πRl + π(Rr)PA1.(7)

Выразим PA1 через l, R и r. Так как O1A|| OA и OO1 — высота усечённого конуса, то прямоугольные треугольники POA и PO1A1 подобны. Поэтому АО : А1O1 = PA : PA1 или

R : r = (PA1 + A1A) : PA1, откуда

RPA1 = r(PA1 + l) (Rr)PA1 = rl PA1 = .

Подставив это значение РА1 в (7), получаем

Sбок = π(R + r)l.(8)

Таким образом, доказана следующая теорема.

Теорема 29. Площадь боковой поверхности усечённого конуса равна произведению полусуммы длин окружностей оснований на образующую.

Площадь полной поверхности усечённого конуса находится по формуле:

Sполн = π(R + r)l + πR2 + πr2.

Следствие. Пусть усечённый конус образован вращением прямоугольной трапеции ABCD вокруг её высоты AD (рис. 190). Тогда Sбок = π (АВ + DC)ВС. Если KЕ — средняя линия трапеции, то АВ + DC = 2KE, поэтому

Sбок = 2πKEBC.(9)

Рис. 190

Проведём EF  ВС.  Из подобия прямоугольных треугольников ВСН и EFK имеем

BC : EF = BH : KE ⇒ KEBC = EFBH.(10)

Тогда равенство (9) принимает вид

Sбок = (2πEF)ВH,(11)

т. е. боковая поверхность усечённого конуса равна произведению его высоты на длину окружности, радиус которой равен серединному перпендикуляру, проведённому из точки оси конуса к его образующей.

18.10. Объёмы конуса и усечённого конуса

Найдём объём конуса, высота которого равна h и радиус основания — R. Для этого расположим этот конус и правильную четырёхугольную пирамиду, высота которой равна h и сторона основания — R, так, чтобы их основания находились на одной и той же плоскости α, а вершины — также в одной и той же плоскости β, параллельной плоскости α и удалённой от неё на расстояние h (рис. 191).

Рис. 191

Каждая плоскость, параллельная данным плоскостям и пересекающая конус, пересекает также пирамиду; причём площади сечений, образованных при пересечении обоих тел, относятся к площадям оснований этих тел, как квадраты их расстояний от вершин. А так как секущие плоскости для пирамиды и для конуса равноудалены от их вершин, то  = . Тогда  =  =  = π, значит, для объёмов этих тел выполняется:

Vкон : Vпир = π : 1 или Vкон : R2h = π : 1, откуда

Vкон = πR2 h.

Рис. 192

Самостоятельно рассмотрите усечённые конус и пирамиду, расположенные в соответствии с условиями принципа Кавальери. Тогда вы получите формулу вычисления объёма усечённого конуса:

Vус. кон = πh(R2 + rR + r2).

Эту же формулу вы можете вывести, если используете идею подобия так же, как это сделано в случае с выводом формулы площади боковой поверхности усечённого конуса.

Используя принцип Кавальери, докажите, что объём каждого из тел, на которые конус разбивается его сечением плоскостью, проходящей через вершину (рис. 192), может быть вычислен по формуле V = hScегм, где — длина высоты конуса, а Sceгм — площадь соответствующего сегмента основания конуса.

Сечение поверхности конуса плоскостью общего положения

При пересечении прямого кругового конуса с плоскостью могут образовываться следующие кривые второго порядка: окружность, эллипс, гипербола и парабола. Вид этих кривых зависит от угла наклона секущей плоскости к оси конической поверхности.

Ниже мы рассмотрим задачу, в которой требуется построить проекции и натуральную величину сечения конуса ω плоскостью α . Начальные данные представлены на рисунке ниже.

Условие задачи

Содержание

  • Определение высшей и низшей точки сечения. Границы видимости
  • Построение промежуточных точек и проекций эллипса
  • Построение натуральной величины сечения методом совмещения

Определение высшей и низшей точки сечения. Границы видимости

Построение линии пересечения следует начинать с нахождения её характерных точек. Они определяют границы сечения и его видимость по отношению к наблюдателю.

Через ось конической поверхности проведем вспомогательную плоскость γ, параллельную П2. Она пересекает конус ω по двум образующим, а плоскость α по фронтали fγ. Точки 1 и 2 пересечения fγ с образующими являются граничными точками. Они делят сечение на видимую и невидимую части.

Высшие, низшие и граничные точки сечения

Определим высшую и низшую точки линии пересечения. Для этого через ось конуса перпендикулярно h0α введем дополнительную секущую плоскость β. Она пересекает коническую поверхность по образующим SL и SK, а плоскость α по прямой MN. Искомые точки 3 = SL ∩ MN и 4 = SK ∩ MN определяют большую ось эллипса. Его центр находится в точке O, которая делит отрезок 3–4 пополам.

Определение промежуточных точек и построение проекций эллипса

Чтобы построить проекции сечения наиболее точно, найдем ряд дополнительных точек. В случае с эллипсом целесообразно определить величину его малого диаметра. Для этого через центр O проводим вспомогательную горизонтальную плоскость δ. Она пересекает коническую поверхность по окружности диаметром AB, а плоскость α – по горизонтали hδ. Строим горизонтальные проекции окружности и прямой hδ. Их пересечение определяет точки 5′ и 6′ малого диаметра эллипса.

Для построения промежуточных точек 7 и 8 вводим вспомогательную горизонтальную плоскость ε. Проекции 7′ и 8′ определяются аналогично 5′ и 6′, как это показано на рисунке.

Проекции сечения конической поверхности плоскостью

Соединив найденные точки плавной кривой, мы получили контур эллиптического сечения. На рисунке он обозначен красным цветом. Фронтальная проекция контура меняет свою видимость в точках 1 и 2, как это было отмечено выше.

Построение натуральной величины сечения методом совмещения

Чтобы найти натуральную величину сечения, повернем плоскость α до совмещения её с горизонтальной плоскостью. В качестве оси вращения будем использовать след h0α. Его положение в процессе преобразований останется неизменным.

Построение натуральной величины сечения методом совмещения

Построение начинается с определения направления фронтального следа f1α. На прямой f0α возьмем произвольную точку E и определим её проекцию E’. Из E’ опустим перпендикуляр к h0α. Пересечение данного перпендикуляра с окружностью радиусом XαE” определяет положение точки E’1. Через Xα и E’1 проводим f1α.

Строим проекцию горизонтали h’1δ ∥ h0α, как это показано на рисунке. Точки O’1 и 5′1, 6′1 лежат на пересечении h’1δ с прямыми, проведенными перпендикулярно h0α из O’ и 5′, 6′. Аналогично на горизонтали h’1ε находим 7′1 и 8′1.

Строим проекции фронталей f’1γ ∥ f1α, f’3 ∥ f1α и f’4 ∥ f1α. Точки 1′1, 2′1, 3′1 и 4′1 лежат на пересечении этих фронталей с перпендикулярами, восстановленными к h из 1′, 2′, 3′ и 4′ соответственно.

Сечение прямого кругового конуса

В сечении конической поверхности плоскостью получаются кривые второго порядка – окружность, эллипс, парабола и гипербола. В частом случае при определенном расположении секущей плоскости и когда она проходит через вершину конуса (S∈γ), окружность и эллипс вырождаются в точку или в сечении попадает одна или две образующих конуса.

Сечение прямого кругового конуса

Сечение прямого кругового конуса

Сечение прямого кругового конуса дает – окружность, когда секущая плоскость перпендикулярна к его оси и пересекает все образующие поверхности.

Сечение прямого кругового конуса дает – эллипс, когда секущая плоскость не перпендикулярна к его оси и пересекает все образующие поверхности.

Построим эллиптическое сечение прямого кругового конуса ω плоскостью α, занимающей общее положение.

Решение задачи на сечение прямого кругового конуса плоскостью значительно упрощается, если секущая плоскость занимает проецирующее положение.

Сечение прямого кругового конуса

Сечение прямого кругового конуса

Способом перемены плоскостей проекций переведем плоскость α из общего положения в частное – фронтально-проецирующее. На фронтальной плоскости проекций V1 построим след плоскости α и проекцию поверхности конуса ω. Сечение прямого кругового конуса плоскостью дает эллипс, так как секущая плоскость пересекает все образующие конуса. Эллипс проецируется на плоскости проекций в виде кривой второго порядка.

На следе плоскости αV берем произвольную точку 3″ замеряем ее удаление от плоскости проекций H и откладываем его по линии связи уже на плоскости V1, получая точку 3″1. Через нее и пройдет след αV1. Линия сечения конуса ω – точки A”1, E”1 совпадает здесь со следом плоскости. Далее построим вспомогательную секущию плоскость γ3, проведя на фронтальной плоскости проекций V1 ее след γ3V1. Вспомогательная плоскость пересекаясь с конической поверхностью ω даст окружность, а пересекаясь с плоскостью α даст горизонтальную прямую h3. В свою очередь прямая пересекаясь с окружностью дает искомые точки C`и K` пересечения плоскости α c конической поверхностью ω. Фронтальные проекции искомых точек C” и K” построим как точки принадлежащие секущей плоскости α.

Для нахождения точки E(E`, E”) линии сечения, проводим через вершину конуса горизонтально-проецирующую плоскость γ2H, которая пересечет плоскость α по прямой 1-2(1`-2`, 1″-2″). Пересечение 1″-2″ с линией связи дает точку E” – наивысшую точку линии сечения.

Для нахождения точки указывающей границы видимости фронтальной проекции линии сечения, проводим через вершину конуса горизонтально-проецирующую плоскость γ5H и находим горизонтальную проекцию F`искомой точки. Также, плоскость γ5H пересечет плоскость α по фронтали f(f`, f”). Пересечение f” с линией связи дает точку F”. Соединяем полученные на горизонтальной проекции точки плавной кривой, отметив на ней крайнюю левую точку G – одну из характерных точек линии пересечения.

Затем, строим проекции G на фронтальных плоскостях проекций V1 и V.
Все построенные точки линии сечения на фронтальной плоскости проекций V соединяем плавной линией.

Сечение прямого кругового конуса дает – параболу, когда секущая плоскость параллельна одной образующей конуса.

При построении проекций кривых – конических сечений необходимо помнить о теореме: ортогональная проекция плоского сечения конуса вращения на плоскость, перпендикулярную к его оси, есть кривая второго порядка и имеет одним из своих фокусов ортогональную проекцию на эту плоскость вершины конуса.

Рассмотрим построение проекций сечения, когда секущая плоскость α параллельна одной образующей конуса (SD).

Сечение прямого кругового конуса

Сечение прямого кругового конуса

В сечении получится парабола с вершиной в точке A(A`, A”). Согласно теореме вершина конуса S проецируется в фокус S`. По известному [S`A`]=RS` определяем положение директрисы параболы. В последующем точки кривой строятся по уравнению p=R.

Построение проекций сечения, когда секущая плоскость α параллельна одной образующей конуса, может быть выполнено:

Сечение прямого кругового конуса

Сечение прямого кругового конуса

– с помощью вспомогательных горизонтально-проецирующих плоскостей проходящих через вершину конуса γ1H и γ2H.

Сначала определятся фронтальные проекции точек F”, G” – на пересечении образующих S”1″, S”2″ и следа секущей плоскости αV. На пересечении линий связи с γ1H и γ2H определяться F`, G`.

Аналогично могут быть определены и другие точки линии сечения, например D”, E” и D`, E`.

– с помощью вспомогательных фронтально-проецирующих плоскостей ⊥ оси конуса γ3V и γ4V.

Проекциями сечения вспомогательных плоскостей и конуса на плоскость H, будут окружности. Линиями пересечения вспомогательных плоскостей с секущей плоскостью α будут фронтально- проецирующие прямые.

Сечение прямого кругового конуса дает – гиперболу, когда секущая плоскость параллельна двум образующим конуса.

Сечение прямого кругового конуса

Сечение прямого кругового конуса

+

Конические сечения

Рассмотрим пять возможных случаев расположения секущей плоскости относительно оси конуса и его образующих, определяющих форму линии ее пересечения с поверхностью конуса (математические доказательства не приводятся).

1-й случай. Если секущая плоскость проходит через вершину конуса, то эта плоскость пересекает коническую поверхность по двум образующим Конические сечения (фронталь-но-проецирующая плоскость Конические сечения, рис. 7.11).

2-й случай. Если секущая плоскость расположена перпендикулярно оси конуса, то эта плоскость пересекает коническую поверхность по окружности (горизонтальная плоскость Конические сечения рис. 7.11).

Конические сечения

3-й случай. Если секущая плоскость расположена параллельно одной образующей конуса, то эта плоскость пересекает коническую поверхность по параболе (фронтально-проецирующая плоскость Конические сечения параллельна одной образующей Конические сечения рис. 7.12).

4-й случай. Если секущая плоскость расположена параллельно двум образующим конуса, то эта плоскость пересекает коническую поверхность по гиперболе (фронтальная плоскость Конические сечения параллельна двум образующим Конические сечения и Конические сечения, рис. 7.13).

5-й случай. Если плоскость пересекает все образующие конуса под углом, отличным от прямого (или иначе не параллельна ни одной образующей конуса), то эта плоскость пересекает коническую поверхность по эллипсу (фронтально-проецирующая плоскость Конические сечения, рис. 7.14).

Конические сечения

Рассмотрим построение на проекциях конуса линий пересечения для всех пяти случаев сечений. 1-й и 2-й случаи. На рис. 7.11 показано построение проекций прямого кругового конуса с вырезом, образованным сечениями конической поверхности фронтально-проецирующей плоскостью Конические сечения, проходящей через вершину конуса (1-й случай), и горизонтальной плоскостью Конические сечения, расположенной перпендикулярно оси конуса (2-й случай).

Плоскость Конические сечения пересекает поверхность конуса по образующим Конические сечения, горизонтальные и профильные проекции которых строятся с помощью вспомогательной точки Конические сечения, лежащей на основании конуса.

Плоскость Конические сечения пересекает поверхность конуса по окружности радиуса Конические сечения, ограниченной линией 3-3 пересечения плоскостей выреза.

Построение горизонтальной и профильной проекций конуса с вырезом и оформление очерков этих проекций видно из чертежа.

3-й случай. На рис. 7.12 показано построение проекций конуса со срезом фронтально-проецирующей плоскостью Конические сечения, расположенной параллельно одной образующей конуса Конические сечения.

Плоскость Конические сечения пересекает поверхность конуса по параболе, горизонтальная и профильная проекции которой строятся по отмеченным характерным точкам 1, 2 и 3 и промежуточной точке (не обозначена).

Построение проекций этих точек выполнено по их принадлежности: -точка Конические сечения — лежит на проекциях характерной образующей

Конические сечения

-точки Конические сечения — лежат на проекциях характерных образующих Конические сечения и Конические сечения, горизонтальные проекции которых построены с помощью параллели радиусом Конические сечения (алгоритм I);

-точки Конические сечения — лежат на окружности основания конуса: горизонтальные проекции этих точек определяются по линии связи на горизонтальной проекции окружности основания, а их профильные проекции построены по координате Конические сечения

  • проекции промежуточной точки построены по ее принадлежности соответствующей параллели (профильные проекции — по координате Конические сечения).

Оформление очерков проекций видно из чертежа.

4-й случай. На рис. 7.13 показано построение проекций конуса со срезом фронтальной плоскостью Конические сечения, расположенной параллельно двум образующим конуса Конические сечения и Конические сечения.

Плоскость Конические сечения пересекает поверхность конуса по гиперболе, фронтальная проекция которой строится по отмеченным точкам 2 и 3 по их принадлежности параллелям (обратный алгоритм I), а профильная проекция гиперболы проецируется в вертикальную линию и совпадает с вырожденной проекцией плоскости среза Конические сечения

Оформление очерков проекций видно из чертежа

На рис. 7.13 на профильной проекции конуса показано положение секущей плоскости Конические сечения под углом Конические сечения к оси конуса. При Конические сечения плоскость пересекает поверхность конуса также по гиперболе.

Конические сечения

5-й случай. На рис. 7.14 показано построение проекций конуса со срезом фронтально-проецирующей плоскостью Конические сечения, пересекающей все образующие конуса под углом Конические сечения к оси, отличным от прямого.

Плоскость Конические сечения пересекает поверхность конуса по эллипсу, горизонтальная и профильная проекции которого построены по проекциям отмеченных характерных точек 1, 2, 4 я промежуточных точек 3, взятых на середине отрезка 1-4, который является совпадающей проекцией эллипса и его большой оси. Точки 3 определяют проекции малой оси эллипса и построены на горизонтальной проекции конуса по радиусу параллели, а на профильной проекции по координате Конические сечения (алгоритм 1).

Конические сечения

Оформление очерков проекций видно из чертежа. !!! Количество взятых промежуточных точек должно быть минимальным, но достаточным, чтобы построить на проекциях конуса формы кривых второго порядка (параболы, гиперболы и эллипса), которые выполняют на чертеже по построенным характерным и промежуточным точкам с помощью лекала.

Построение проекций прямого конуса со срезами плоскостями частного положения

На рис. 7.15 показан пример построения проекций прямого кругового конуса со срезами фронтально-проецирующей плоскостью Конические сечения и профильной плоскостью Конические сечения

Для построения проекций конуса со срезами следует выполнить графический алгоритм, определяющий порядок действий при решении всех подобных задач.

Конические сечения

Графический алгоритм: 1-е действие. Построить на чертеже тонкими линиями по заданному радиусу основания Конические сечения и высоте Конические сечения фронтальную, горизонтальную и профильную проекции конуса без срезов, а затем выполнить на его фронтальной проекции заданные срезы фронтально-проецирующей плоскостью Конические сечения и профильной плоскостью Конические сечения. 2-е действие. Обозначить на фронтальной проекции характерные точки пересечения плоскостей срезов с образующими и основанием конуса и выполнить графический анализ сечений.

2.7. Фронтально-проецирующая плоскость Конические сечения параллельна одной образующей конуса Конические сечения и пересекает его поверхность по участку параболы Конические сечения, которая проецируется в отрезок и ограничена вырожденной в точку фронтально-проецирующей линией пересечения Конические сечения плоскостей срезов Конические сечения и Конические сечения.

2.2. Профильная плоскость Конические сечения параллельна двум образующим конуса Конические сечения и Конические сечения и пересекает его поверхность по участку гиперболы Конические сечения, которая проецируется в отрезок и ограничена вырожденными в точки фронтально-проецирующими линиями пересечения плоскостей срезов Конические сечения и Конические сечения и плоскости Конические сечения с основанием конуса (4-4).

3-е действие. Достроить горизонтальную проекцию конуса со срезами, построив проекции плоскостей срезов по горизонтальным проекциям обозначенных точек и определить видимость плоскостей срезов:

3.1. Плоскость среза а определяет видимая горизонтальная проекция участка параболы Конические сечения, построенной по горизонтальным проекциям обозначенных точек:

-точка Конические сечения лежит на образующей Конические сечения;

-точки Конические сечения и Конические сечения построены по принадлежности соответствующим параллелям (алгоритм I).

3.2. Плоскость среза Конические сечения определяет вертикальный видимый отрезок 4′-4′ вырожденной в линию проекции профильной плоскости, точки 4(4′) которой лежат на очерковой окружности основания конуса.

!!! Поскольку горизонтальная проекция имеет вертикальную симметрию, точки обозначены на одной ее половине (нижней).

4-е действие. Выполнить графический анализ построенной горизонтальной проекции конуса для определения ее очерка и внутреннего контура.

4.1. Горизонтальный очерк определяют участок окружности и отрезок Конические сечения.

4.2. Внутренний контур определяет видимый участок параболы Конические сечения.

5-е действие. Достроить профильную проекцию конуса со срезами, построив проекции плоскостей срезов по профильным проекциям обозначенных точек, и определить видимость плоскостей срезов.

5.1. Плоскость среза а определяет видимый участок параболы Конические сечения, построенный по профильным проекциям обозначенных точек:

-точки Конические сечения — лежат соответственно на характерных образующих Конические сечения и Конические сечения;

5.2. Плоскость среза Конические сечения определяют видимые участки гиперболы Конические сечения, ограниченные видимым отрезком Конические сечения (построен) и видимым отрезком Конические сечения, точки которого построены по координате Конические сечения.

6-е действие. Выполнить графический анализ построенной профильной проекции конуса для определения ее очерка и внутреннего контура.

6.1. Профильный очерк определяют:

6.2. Внутренний контур определяют:

7-е действие. Оформить чертеж конуса выполнив толстыми сплошными линиями очерки и видимый внутренний контур каждой его проекции (оставить сплошными тонкими линиями полные очерки проекций и линии построения).

Эта теория взята со страницы лекций для 1 курса по предмету «начертательная геометрия»:

 Начертательная геометрия для 1 курса

Возможно эти страницы вам будут полезны:

Добавить комментарий