Как найти середину двух векторов

Середина вектора

Формула

Чтобы найти середину вектора по координатам нужно вычислить сумму координат начала и конца вектора и разделить на два.

Например, пусть на плоскости заданы точки $ A(x_1;y_1) $ и $ B(x_2;y_2) $ вектора $ overline{AB} $. Тогда его середина находится по формуле: $$ O (x;y) = O bigg(frac{x_1+x_2}{2};frac{y_2+y_2}{2}bigg) $$

Если вектор задан в пространстве трёмя координатами $ A (x_1;y_1;z_1),B (x_2;y_2;z_2) $, то середину можно найти по аналогичной формуле: $$ O (x;y,z) = O bigg(frac{x_1+x_2}{2};frac{y_1+y_2}{2}; frac{z_1+z_2}{2} bigg) $$

Откуда выведена формула? Если вектор спроецировать на координатную ось $ Ox $, то можно будет применить формулу для нахождения середины отрезка к самому вектору. По сути вектор это направленный отрезок, который имеет начало и конец.

Примеры решений

Пример
Пусть вектор $ overline{AB} $ задан в пространстве трёмя точками $ A(1,3,5) $ и $ B(3,7,1) $. Найти середину вектора.
Решение

Итак, как найти середину вектора? По правилу мы должны сложить соответствующие координаты точек начала и конца вектора и разделить пополам:

$$ O = bigg (frac{1+3}{2};frac{3+7}{2};frac{5+1}{2} bigg) = (2;5;3) $$

Точка $ O (2;5;3) $ – является серединой вектора $ overline{AB} $

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ O (2;5;3) $$

51. Планиметрия Читать 0 мин.

51.143. Векторы

ОСИ КООРДИНАТ:

Для понимания темы «вектор», надо сначала разобраться с понятием «декартовы координаты».

  • ось x — ось абсцисс;
  • ось y — ось ординат,
  • точка О — начало координат.

Любой точке плоскости сопоставляются два числа:

Эти числа называются декартовыми координатами данной точки.

ВЕКТОР:

Вектор — направленный отрезок прямой. То есть это отрезок, для которого указано, какая из его точек является началом, а какая — концом.

Пусть имеются две точки:

Тогда мы имеем вектор $,overline <!AB,>$, который обозначим за $overline a.$

На примере вектора рассмотрим основные понятия, связанные с векторами.

Во-первых, для каждого вектора можно найти его координаты и модуль.

КООРДИНАТЫ ВЕКТОРА И МОДУЛЬ ВЕКТОРА:

Координаты вектора — разности координат конца и начала вектора. На примере вектора $overline a$ его координатами будут: $(a_x;,a_y).$ Свойства координат вектора:

  • Координаты вектора не изменяются при параллельном переносе.
  • У равных векторов соответствующие координаты равны.

Нахождение координат вектора:

Координаты вектора $overline a;(a_x;,a_y)colon$

То есть, координаты вектора $overline acolon (x_2-x_1;,y_2-y_1;,z_2-z_1).$

Модуль вектора — длина вектора (обозначается ). Находится как квадратный корень из суммы квадратов координат вектора.

Если рассмотреть пространственный вектор, то в эти формулы добавляется третья координата — z.

Координаты вектора $overline a;(a_x;,a_y;,a_z)$:

$begin&a_x = x_2-x_1 \ &a_y = y_2-y_1 \ &a_z = z_2 – z_1end$

То есть, координаты вектора $overline acolon (x_2-x_1;,y_2-y_1;,z_2-z_1).$

Модуль вектора $overline acolon$

СЕРЕДИНА ВЕКТОРА:

Чтобы найти середину вектора по координатам нужно:

1. Вычислить сумму координат начала и конца вектора.

2. Разделить на два.

НА ПЛОСКОСТИ

В ПРОСТРАНСТВЕ

O — середина вектора $,overline <!AB,>$

ВИДЫ ВЕКТОРОВ:

Единичный вектор — вектор, длина которого равна 1.

Нулевой вектор — отдельные точки плоскости. У такого вектора конец и начало совпадают, а его длина (его модуль) равен нулю.

Коллинеарные и компланарные векторы

Коллинеарные векторы — векторы, которые параллельны одной прямой или которые лежат на одной прямой.

Два коллинеарных вектора $|overline a| и |b|$ называются сонаправленными только тогда, когда их направления соответствуют друг другу:

Компланарные векторы — векторы, которые параллельны одной плоскости или которые лежат на общей плоскости.

В любое мгновение существует плоскость одновременно параллельная двум любым векторам, поэтому два произвольных вектора являются компланарными.

АЛГЕБРАИЧЕСКИЕ ДЕЙСТВИЯ НАД ВЕКТОРАМИ:

НА ПЛОСКОСТИ В ПРОСТРАНСТВЕ
Координаты
вектора $overline $
Сложение векторов:
$overline =overline a + overline b$
$x$ $c_x = a_x + b_x$ $c_x = a_x + b_x$
$y$ $c_y = a_y + b_y$ $c_y = a_y + b_y$
$z$ $c_z = a_z + b_z$
Координаты
вектора $overline $
Вычитание векторов:
$overline =overline a – overline b$
$x$ $c_x = a_x – b_x$ $c_x = a_x – b_x$
$y$ $c_y = a_y – b_y$ $c_y = a_y – b_y$
$z$ $c_z = a_z – b_z$
Координаты
вектора $overline $
Умножение вектора на число:
$overline b = lambdaoverline a$
$x$ $overline b_x = lambda a_x$ $overline b_x = lambda a_x$
$y$ $overline b_y = lambda a_y$ $overline b_y = lambda a_y$
$z$ $overline b_z = lambda a_z$
Значение числа $s$ Скалярное умножение векторов:
$s = overline acdotoverline b$
$s=a_x!cdot b_x + a_y!cdot b_y$ $s=a_x!cdot b_x + a_y!cdot b_y + a_z!cdot b_z$

ГЕОМЕТРИЧЕСКОЕ СЛОЖЕНИЕ И ГЕОМЕТРИЧЕСКАЯ РАЗНОСТЬ ВЕКТОРОВ:

СЛОЖЕНИЕ

Сумма двух векторов находится с помощью правила треугольника или правила параллелограмма: $overline = overline a + overline b$.

$<mathbf <Теоремаcolon>>\ Для любых трёх точек A,,B,,C справедливо соотношениеcolon overline<!AB,>+,overline<!BC,>=,overline<!AC,>!.$

$<mathbf <РАЗНОСТЬ>>\Разность двух векторов overline a и overline b;— это вектор overline , который в сумме с вектором overline b даёт вектор overline a \ overline b + overline = overline aquadRightarrowquadoverline = overline a – overline b$

$Вектор overline можно найти также, складывая с вектором overline a вектор bigl(-overline bbigr), противоположный вектору overline bcolon \ overline = overline a + bigl(-overline bbigr)$

Геометрия

А Вы уже инвестируете?
Слышали про акцию в подарок?

Зарегистрируйся по этой ссылке
и получи акцию до 100.000 руб

План урока:

Взаимосвязь координат векторов и его начала и конца

На координатной плоскости любые две точки можно соединить друг с другом. В результате получается отрезок. Если же дополнительно указано, какая из этих точек – начало отрезка, а какая – конец, то в итоге мы уже имеем вектор. Попробуем определить, есть ли связь между координатами вектора и координатами (можно использовать сокращение коор-ты) его граничных точек.

Пусть в прямоугольной системе координат отмечены точки А (хАА) и В(хBB).Тогда можно задать вектор АВ. Также построим ещё два вспомогательных вектора ОА и ОВ, начинающиеся в точке О – начале коор-т:

Вектора ОВ и ОА – это радиус-векторы (так как их начало находится в начале координат), поэтому их коор-ты ОВ и ОА совпадают с коор-тами их концов (В и А соответственно):

Итак, зная коор-ты граничных точек вектора, можно найти и координаты данного вектора:

Например, если вектор начинается в точке А (2; 1), а заканчивается в точке В (6; 3), то коор-ты вектора АВ можно определить так:

Задание. Начало вектора находится в точке М, а конец – в точке К. Определите его коор-ты, если:

Решение. Из коор-т К мы просто вычитаем соответствующие коор-ты М, и в итоге определяем коор-ты вектора:

Задание. От точки H (8; 15) отложили вектор m<5; – 6>. Каковы координаты конца этого вектора?

Решение. Обозначим интересующие нас коор-ты как (хк; ук). Для вектора, начинающегося в точке (8; 15) и заканчивающегося в точке (хк; ук), коор-ты можно вычислить так:

Однако нам даны координаты вектора, то есть величины х и у, поэтому мы можем записать:

Оба равенства представляет собой уравнения, которые можно решить:

В итоге получили, что конец вектора находится в точке (13; 9).

Определение координат середины отрезка

Пусть построен вектор АВ, причем известны коор-ты его начала А (хА; уА) и его конца B (хB; уB). Обозначим буквой С середину отрезка АВ и попытаемся вычислить коор-ты С, которые мы обозначим как (хC; уC):

Рассмотрим вектора АС и СВ. Они имеют одинаковую длину, потому что С разбивает АВ пополам. Также АС и СВ коллинеарны, так как они лежат на одной прямой АВ. При этом они и сонаправлены, а значит, эти вектора равны:

Нам удалось выразить коор-ты С через координаты А и В. В итоге можно сформулировать правило:

Например, пусть необходимо найти координаты середины отрезка HK, при этом известны коор-ты его концов: Н(5; – 2) и К(3; 4). Сначала найдем полусумму коор-т х и получим эту же коор-ту у середины:

Итак, точка середины отрезка имеет коор-ты (4; 1). Для наглядности построим отрезок ОК и продемонстрируем, что его середина действительно находится в точке (4; 1):

Вычисление длины вектора и отрезка

Пусть есть произвольный вектор с коор-тами . Отложим его от точки начала координат, после чего из его конца опустим перпендикуляры ОВ и ОС на координатные оси:

Для простоты рассмотрим случай, когда х и у – положительные числа, то есть точка А находится в первой четверти. Тогда длина ОВ будет равна х:

Так как ОСАВ – прямоугольник, то стороны ОС и АВ одинаковы, причем ОС имеет длину, равную коор-те у:

Теперь изучим ∆ОВА. Он прямоугольный, и ОА в нем – гипотенуза, поэтому можно записать теорему Пифагора:

OA 2 = OB 2 + AB 2

Теперь заменим отрезки ОВ и АВ на х и у:

Осталось извлечь квадратный корень:

Мы вывели формулу для вычисления длины вектора по его координатам. Можно рассмотреть и остальные случаи, когда точка А лежит в другой четверти координатной плоскости или на координатных осях, однако во всех случаях будет получаться одинаковая формула.

Задание. Определите длину вектора с коор-тами:

Решение. Во всех случаях просто возводим каждую коор-ту в квадрат, потом складываем полученные числа и извлекаем из полученной суммы квадратный корень:

Теперь предположим, что имеется две точки с коор-тами (х1; у1) и (х2; у2). Требуется найти длину отрезка, их соединяющего, то есть расстояние между этими двумя точками. Если принять одну из этих точек, например первую, за начало вектора, а вторую за его конец, то задача сведется к вычислению длины этого вектора. Его коор-ты можно будет высчитать так:

Тогда расстояние между точками (обозначим его как d) будет вычисляться по формуле:

Задание. Определите длину отрезка MP, если известны коор-ты его концов:

Простейшие задачи с использованием координатного метода

Выведенные нами формулы являются базовыми для расчетов, связанных с коор-тами. До этого мы решали лишь простейшие задачи на использование этих формул, однако в более сложных задачах надо использовать сразу несколько более сложных формул.

Задание. Известны коор-ты трех вершин параллелограмма АВСD: А(4; 1), В(1; 1), С(3; 5). Определите коор-ты четвертой вершины D.

Сначала найдем коор-ты вектора ВС. Мы можем это сделать, так как нам известны коор-ты его начальной и конечной точки:

Так как в параллелограмме противоположные стороны имеют одинаковую длину и при этом параллельны, то вектора ВС и АD равны, то есть имеют одинаковые коор-ты:

Итак, D имеет коор-ты (6; 5).

Задание. В – середина отрезка АС. Известны коор-ты точек: А(2; 4) и В(0; 18). Найдите коор-ты С.

Для начала будем работать только с коор-той х. Так как В – середина АС, то их абсциссы (напомним, так называют координату х точек) связаны соотношением:

Задание. Отрезок MN имеет длину 13. Даны координаты концов отрезка: M(4; 6) и N (х; 1). Найдите величину переменной х.

Нам по условию известно это расстояние для точек M и N, а также известны 3 и 4 коор-т точек. Поэтому надо просто подставить все известные данные в формулу, получить уравнение и решить его:

Далее извлекаем корень из обеих частей, но при этом появляется два различных корня (так обычно и бывает при решении квадратных уравнений):

Ответ: – 8 или 16.

Задание. Расстояние от точки S(2x; – 2) до точки T (6; 4х) составляет 14. Определите величину х.

Решение. Задача во многом аналогично предыдущей, надо подставить в формулу расстояния между точками данные из условия и решить получившееся уравнение:

Решаем это квадратное уравнение через дискриминант:

Ответ: (– 2,6) или 3.

Задание. Найдите коор-ты точки M на рисунке, если точка А имеет коор-ты (4; 2).

Решение. По рисунку видно, что середина отрезка находится в точке О(0; 0). Коор-ты середины отрезка (то есть точки О) и его граничных точек связаны формулами:

Использование признака коллинеарности векторов

На прошлом уроке мы выяснили, что если вектора коллинеарны, то их коор-ты пропорциональны. Это позволяет определить, лежит ли та или иная точка на указанной прямой.

Задание. Даны точки А(1; 2), В(4; 7) и С (10; 17). Определите, лежит ли точка В на прямой АС.

Решение. Если А, В и С принадлежат одной прямой, то любые два вектора, проведенные через эти точки, окажутся коллинеарными друг другу. Если же они НЕ лежат на одной прямой, то наоборот, любые два таких вектора окажутся неколлинеарными. То есть надо составить два вектора, например, АВ и ВС, и проверить их коллинеарность.

Определим коор-ты АВ:

Напомним, что для проверки векторов на коллинеарность надо поделить их коор-ты друг на друга. Если получится одно и то же число, то вектора коллинеарны:

В обоих случаях получилось одинаковое число, значит, вектора коллинеарны.

Ответ: Да, точка B лежит на прямой AC.

Задание. Проверьте, лежат ли точки А(3; 7), В (8; 12) и С(6; 4) на одной прямой.

Решение. Снова вычисляем коор-ты векторов АВ и ВС:

Получились разные числа, следовательно, вектора АВ и ВС не коллинеарны, а потому точки А, В и С никак не могут лежать на одной прямой.

Ответ: Нет, точки A,B,C не лежат на одной прямой.

Задание. Проверьте, параллельны ли друг другу отрезки АВ и CD, если известны коор-ты: А(1; 1), В(5; 5), С(4; 2), D(6; 4).

Решение. Если отрезки параллельны, то и вектора АВ и CD должны быть коллинеарными. Проверим это также, как мы это делали в двух предыдущих задачах:

Итак, вектора коллинеарны. Означает ли это, что отрезки АВ и CD параллельны? Ещё нет. На самом деле возможно два случая:

1) АВ и CD действительно параллельны;

2) АВ и СD лежат на одной прямой, и тогда их параллельными считать нельзя.

Как же проверить, какой из двух случаев относится к этой задаче? Надо рассмотреть ещё один ВС. Если реализуется второй случай, то он окажется коллинеарен вектору АВ. В первом же случае он будет ему не коллинеарен.

Получили различные числа, значит, АВ и ВС не коллинеарны. Теперь мы можем точно утверждать, что АВ и СD параллельны.

Ответ: Да, отрезки AB и CD параллельны.

Деление отрезка в заданном отношении

Мы уже научились находить коор-ты середины отрезка. Можно сказать, что середина – это точка, которая разбивает отрезок в отношении 1:1, то есть на равные отрезки. А что делать в более сложном случае, если нужно найти точку, разбивающую отрезок в другом отношении, например, в отношении 2:1? Выведем для такого случая формулу.

Пусть точка С разбивает отрезок АВ в некотором отношении так, что отрезок АС в k больше отрезка СВ:

(Примечание. Если отрезок АС меньше СВ, то число k будет меньше единицы.)

Как и обычно, для обозначения коор-т точек используем индексы, совпадающие с обозначением точек: А(xА; уА), В(xВ; уВ) и С(xС; уС).

Нам также потребуются вектора АСАС; уАС> и СВСВ; уСВ>. Так как эти вектора сонаправлены, и АС в k раз длиннее, то

Абсолютно аналогичные образования приведут к такому же выражению для коор-ты у:

Рассмотрим на примерах использование этой формулы.

Задание. На отрезке РM отложена точка K так, что она разбивает РM на отрезки РK и KM в отношении РK:KM = 2:1. Даны коор-ты точек: Р(6; 3) и К (18; 12). Вычислите коор-ты K.

Отношение РК:КМ = 2:1 означает, что отрезок РК в 2 раза длиннее, чем КМ. Это означает, что в формуле

Задание. Точки B (5; – 16) и H(29; 24) соединены отрезком. Точка M на отрезке ВН отмечена так, что ВМ:МН = 3:5. Определите коор-ты точки М.

Решение. Из отношения ВМ:МН = 3:5 вытекает, что ВМ длиннее МН в

то есть фактически ВМ короче МН. То есть при использовании формулы

Рассмотрим ещё несколько более усложненных задач с использованием коор-т.

Задание. Точка K лежит на оси Ох, при этом она равноудалена от точек Е(2; 2) и F(6; 10). Найдите коор-ты К.

Решение. У любой точки, лежащей на оси Ох, коор-та у будет равна нулю, в том числе и у точки К:

Будем обозначать неизвестную коор-ту К как х:

Напомним расстояние между точками можно рассчитать, используя формулу:

Получили иррациональное уравнение. В данном случае можно просто приравнять подкоренные выражения, однако после получения корней надо проверить, нет ли среди них посторонних:

Проверяем, не является ли корень посторонним. Для этого просто подставляем его в уравнение:

Корень действительно подошел, поэтому коор-та х точки К равна 16.

Введение прямоугольной системы координат

Даже если в формулировке задачи коор-ты и вектора прямо не упоминаются, может быть полезным самостоятельно добавить в нее прямоугольную систему координат. Это позволит использовать формулы, используемые в методе коор-т, для решения задачи.

Задание. Докажите, что если в параллелограмме сложить квадраты всех его сторон, то получится то же число, что и при сложении квадратов диагоналей этого параллелограмма.

Решение. Расположим систему коор-т таким образом, одна из сторон параллелограмма находилась на оси Ох, причем одна ее вершина совпадала с началом коор-т, а другая имела положительную коор-ту х:

Пусть вершина А находится в начале коор-т, и тогда она имеет коор-ты (0; 0). Вершина D лежит на Ох, тогда ее ордината равна нулю, а абсциссу обозначим буквой а. Точка В имеет произвольные коор-ты (b; с), коор-ты же точки С можно рассчитать. Сначала заметим, что вектор коор-ты вектора АВ совпадают с коор-тами точки В, так как он является радиус-вектором:

Вектора АВ и DC равны, потому что они лежат на параллельных прямых и имеют одинаковую длину:

Итак, коор-ты С – это (а + b; с).

Теперь мы должны длину каждой стороны параллелограмма и возвести ее в квадрат. Обратите внимание, что если расстояние между точками рассчитывается по формуле

Задание. В равнобедренном треугольнике длина основания составляет 80 см, а опущенная на нее медиана имеет длину 160 см. Вычислите длины двух других медиан.

Решение. Пусть АВС – рассматриваемый в задаче треугольник, причем АВ – его основание. Расположим систему коор-т так, чтобы ее начало совпадало с точкой, в которой медиана пересекается с основанием:

В этом случае вершина, из которой опущена медиана, будет иметь коор-ты (0; 160), а две другие вершины будут иметь коор-ты (– 40; 0) и (40; 0).

Нам надо найти длину двух других медиан АM и BN. Они одинаковы по длине, поэтому достаточно найти длину только одной из них, например, АМ. Для этого сначала найдем коор-ты М, которая является серединой ВС:

Сегодня мы познакомились с важнейшими формулами, используемыми в методе коор-т, и научились решать некоторые простейшие задачи. В будущем мы узнаем о более сложных задачах, в которых будут фигурировать не только отрезки и многоугольники, но и окружности.

Нахождение координат середины отрезка: примеры, решения

В статье ниже будут освещены вопросы нахождения координат середины отрезка при наличии в качестве исходных данных координат его крайних точек. Но, прежде чем приступить к изучению вопроса, введем ряд определений.

Отрезок – прямая линия, соединяющая две произвольные точки, называемые концами отрезка. В качестве примера пусть это будут точки A и B и соответственно отрезок A B .

Если отрезок A B продолжить в обе стороны от точек A и B , мы получим прямую A B . Тогда отрезок A B – часть полученной прямой, ограниченный точками A и B . Отрезок A B объединяет точки A и B , являющиеся его концами, а также множество точек, лежащих между. Если, к примеру, взять любую произвольную точку K , лежащую между точками A и B , можно сказать, что точка K лежит на отрезке A B .

Длина отрезка – расстояние между концами отрезка при заданном масштабе (отрезке единичной длины). Длину отрезка A B обозначим следующим образом: A B .

Середина отрезка – точка, лежащая на отрезке и равноудаленная от его концов. Если середину отрезка A B обозначить точкой C , то верным будет равенство: A C = C B

И далее мы рассмотрим, как же определять координаты середины отрезка (точки C ) при заданных координатах концов отрезка ( A и B ), расположенных на координатной прямой или в прямоугольной системе координат.

Середина отрезка на координатной прямой

Исходные данные: координатная прямая O x и несовпадающие точки на ней: A и B . Этим точкам соответствуют действительные числа x A и x B . Точка C – середина отрезка A B : необходимо определить координату x C .

Поскольку точка C является серединой отрезка А В , верным будет являться равенство: | А С | = | С В | . Расстояние между точками определяется модулем разницы их координат, т.е.

| А С | = | С В | ⇔ x C – x A = x B – x C

Тогда возможно два равенства: x C – x A = x B – x C и x C – x A = – ( x B – x C )

Из первого равенства выведем формулу для координаты точки C : x C = x A + x B 2 (полусумма координат концов отрезка).

Из второго равенста получим: x A = x B , что невозможно, т.к. в исходных данных – несовпадающие точки. Таким образом, формула для определения координат середины отрезка A B с концами A ( x A ) и B ( x B ):

Полученная формула будет основой для определения координат середины отрезка на плоскости или в пространстве.

Середина отрезка на плоскости

Исходные данные: прямоугольная система координат на плоскости О x y , две произвольные несовпадающие точки с заданными координатами A x A , y A и B x B , y B . Точка C – середина отрезка A B . Необходимо определить координаты x C и y C для точки C .

Возьмем для анализа случай, когда точки A и B не совпадают и не лежат на одной координатной прямой или прямой, перпендикулярной одной из осей. A x , A y ; B x , B y и C x , C y – проекции точек A , B и C на оси координат (прямые О х и О y ).

Согласно построению прямые A A x , B B x , C C x параллельны; прямые также параллельны между собой. Совокупно с этим по теореме Фалеса из равенства А С = С В следуют равенства: А x С x = С x В x и А y С y = С y В y , и они в свою очередь свидетельствуют о том, что точка С x – середина отрезка А x В x , а С y – середина отрезка А y В y . И тогда, опираясь на полученную ранее формулу, получим:

x C = x A + x B 2 и y C = y A + y B 2

Этими же формулами можно воспользоваться в случае, когда точки A и B лежат на одной координатной прямой или прямой, перпендикулярной одной из осей. Проводить детальный анализ этого случая не будем, рассмотрим его лишь графически:

Резюмируя все выше сказанное, координаты середины отрезка A B на плоскости с координатами концов A ( x A , y A ) и B ( x B , y B ) определяются как:

( x A + x B 2 , y A + y B 2 )

Середина отрезка в пространстве

Исходные данные: система координат О x y z и две произвольные точки с заданными координатами A ( x A , y A , z A ) и B ( x B , y B , z B ) . Необходимо определить координаты точки C , являющейся серединой отрезка A B .

A x , A y , A z ; B x , B y , B z и C x , C y , C z – проекции всех заданных точек на оси системы координат.

Согласно теореме Фалеса верны равенства: A x C x = C x B x , A y C y = C y B y , A z C z = C z B z

Следовательно, точки C x , C y , C z являются серединами отрезков A x B x , A y B y , A z B z соответственно. Тогда, для определения координат середины отрезка в пространстве верны формулы:

x C = x A + x B 2 , y c = y A + y B 2 , z c = z A + Z B 2

Полученные формулы применимы также в случаях, когда точки A и B лежат на одной из координатных прямых; на прямой, перпендикулярной одной из осей; в одной координатной плоскости или плоскости, перпендикулярной одной из координатных плоскостей.

Определение координат середины отрезка через координаты радиус-векторов его концов

Формулу для нахождения координат середины отрезка также можно вывести согласно алгебраическому толкованию векторов.

Исходные данные: прямоугольная декартова система координат O x y , точки с заданными координатами A ( x A , y A ) и B ( x B , x B ) . Точка C – середина отрезка A B .

Согласно геометрическому определению действий над векторами верным будет равенство: O C → = 1 2 · O A → + O B → . Точка C в данном случае – точка пересечения диагоналей параллелограмма, построенного на основе векторов O A → и O B → , т.е. точка середины диагоналей.Координаты радиус-вектора точки равны координатам точки, тогда верны равенства: O A → = ( x A , y A ) , O B → = ( x B , y B ) . Выполним некоторые операции над векторами в координатах и получим:

O C → = 1 2 · O A → + O B → = x A + x B 2 , y A + y B 2

Следовательно, точка C имеет координаты:

x A + x B 2 , y A + y B 2

По аналогии определяется формула для нахождения координат середины отрезка в пространстве:

C ( x A + x B 2 , y A + y B 2 , z A + z B 2 )

Примеры решения задач на нахождение координат середины отрезка

Среди задач, предполагающих использование полученных выше формул, встречаются, как и те, в которых напрямую стоит вопрос рассчитать координаты середины отрезка, так и такие, что предполагают приведение заданных условий к этому вопросу: зачастую используется термин «медиана», ставится целью нахождение координат одного из концов отрезка, а также распространены задачи на симметрию, решение которых в общем также не должно вызывать затруднений после изучения настоящей темы. Рассмотрим характерные примеры.

Исходные данные: на плоскости – точки с заданными координатами А ( – 7 , 3 ) и В ( 2 , 4 ) . Необходимо найти координаты середины отрезка А В .

Решение

Обозначим середину отрезка A B точкой C . Координаты ее буду определяться как полусумма координат концов отрезка, т.е. точек A и B .

x C = x A + x B 2 = – 7 + 2 2 = – 5 2 y C = y A + y B 2 = 3 + 4 2 = 7 2

Ответ: координаты середины отрезка А В – 5 2 , 7 2 .

Исходные данные: известны координаты треугольника А В С : А ( – 1 , 0 ) , В ( 3 , 2 ) , С ( 9 , – 8 ) . Необходимо найти длину медианы А М .

Решение

  1. По условию задачи A M – медиана, а значит M является точкой середины отрезка B C . В первую очередь найдем координаты середины отрезка B C , т.е. точки M :

x M = x B + x C 2 = 3 + 9 2 = 6 y M = y B + y C 2 = 2 + ( – 8 ) 2 = – 3

  1. Поскольку теперь нам известны координаты обоих концов медианы (точки A и М ), можем воспользоваться формулой для определения расстояния между точками и посчитать длину медианы А М :

A M = ( 6 – ( – 1 ) ) 2 + ( – 3 – 0 ) 2 = 58

Ответ: 58

Исходные данные: в прямоугольной системе координат трехмерного пространства задан параллелепипед A B C D A 1 B 1 C 1 D 1 . Заданы координаты точки C 1 ( 1 , 1 , 0 ) , а также определена точка M , являющаяся серединой диагонали B D 1 и имеющая координаты M ( 4 , 2 , – 4 ) . Необходимо рассчитать координаты точки А .

Решение

Диагонали параллелепипеда имеют пересечение в одной точке, которая при этом является серединой всех диагоналей. Исходя из этого утверждения, можно иметь в виду, что известная по условиям задачи точка М является серединой отрезка А С 1 . Опираясь на формулу для нахождения координат середины отрезка в пространстве, найдем координаты точки А : x M = x A + x C 1 2 ⇒ x A = 2 · x M – x C 1 = 2 · 4 – 1 + 7 y M = y A + y C 1 2 ⇒ y A = 2 · y M – y C 1 = 2 · 2 – 1 = 3 z M = z A + z C 1 2 ⇒ z A = 2 · z M – z C 1 = 2 · ( – 4 ) – 0 = – 8

Ответ: координаты точки А ( 7 , 3 , – 8 ) .

[spoiler title=”источники:”]

http://100urokov.ru/predmety/urok-2-zadachi-v-koordinatah

http://zaochnik.com/spravochnik/matematika/vektory/nahozhdenie-serediny-otrezka/

[/spoiler]

Содержание

  • Как обозначить середину отрезка в геометрии?
  • Как найти середину вектора AB?
  • Как найти координаты середины отрезка 9 класс?
  • Как найти середину между двумя числами?
  • Как обозначить длину отрезка?
  • Как найти координаты середины отрезка в пространстве?

Чтобы найти середину вектора по координатам нужно вычислить сумму координат начала и конца вектора и разделить на два.

Как обозначить середину отрезка в геометрии?

Концы отрезка и его середину обычно обозначают латинскими буквами: A и B — концы, C — середина, C и D — концы, E — середина и т.

Как найти середину вектора AB?

Середина вектора

Чтобы найти середину вектора по координатам нужно вычислить сумму координат начала и конца вектора и разделить на два.

Как найти координаты середины отрезка 9 класс?

Если даны координаты конечных точек отрезка, знания о действиях с векторами и координатами векторов дают возможность определить координаты серединной точки отрезка. Для этого расположим отрезок AB в системе координат. A x 1 ; y 1 , B x 2 ; y 2 — конечные точки отрезка с данными координатами.

Как найти середину между двумя числами?

Чтобы найти число, находящееся между двумя числами на прямой, нужно найти среднее арифметическое двух чисел, то есть их полусумму. Если это числа a и b, то середина между ними это (a + b) / 2.

Как обозначить длину отрезка?

Отрезок можно обозначить двумя заглавными буквами – отрезок АВ. Или можно обозначить отрезок одной строчной буквой – отрезок с. Любой отрезок имеет определённую длину, большую нуля. Длина может быть выражена натуральным или дробным числом.

Как найти координаты середины отрезка в пространстве?

Используйте формулу вычисления расстояния между двумя точками, а именно формулу вычисления координат середины отрезка с концами A(Xa, Ya) b B(Xb, Yb) на плоскости: xc = (xa + xb)/2 и yc = (ya + yb)/2. Если подставите координаты ваших точек М и N, то получите координаты точки k – (-0.5; -3).

Интересные материалы:

Как подобрать карандаш для бровей для русых?
Как подобрать карандаш к губной помаде?
Как подобрать кепку по форме головы?
Как подобрать кисть для пудры?
Как подобрать кисть для румян?
Как подобрать кисти для макияжа?
Как подобрать компрессионное белье?
Как подобрать компрессионный трикотаж?
Как подобрать коврик для йоги?
Как подобрать купальник с животом?

ОСИ КООРДИНАТ:

Для понимания темы «вектор», надо сначала разобраться с понятием «декартовы координаты».

  • ось x — ось абсцисс;
  • ось y — ось ординат,
  • точка О — начало координат.

Любой точке плоскости сопоставляются два числа:

  • абсцисса x0,
  • ордината y0.

Эти числа называются декартовыми координатами данной точки.

ВЕКТОР:

Вектор — направленный отрезок прямой. То есть это отрезок, для которого указано, какая из его точек является началом, а какая — концом.

Пусть имеются две точки:

  • A с координатами $(x_1;,y_1)$
  • B с координатами $(x_2;,y_2)$.

Тогда мы имеем вектор $,overline {!AB,}$, который обозначим за $overline a.$

На примере вектора рассмотрим основные понятия, связанные с векторами.

Во-первых, для каждого вектора можно найти его координаты и модуль.

КООРДИНАТЫ ВЕКТОРА И МОДУЛЬ ВЕКТОРА:

Координаты вектора — разности координат конца и начала вектора. На примере вектора $overline a$ его координатами будут: $(a_x;,a_y).$ Свойства координат вектора:

  • Координаты вектора не изменяются при параллельном переносе.
  • У равных векторов соответствующие координаты равны.

Нахождение координат вектора:

Координаты вектора $overline a;(a_x;,a_y)colon$

$begin{aligned}&a_x=x_2-x_1\&a_y=y_2-y_1end{aligned}$

То есть, координаты вектора $overline acolon (x_2-x_1;,y_2-y_1;,z_2-z_1).$

Модуль вектора — длина вектора (обозначается ). Находится как квадратный корень из суммы квадратов координат вектора.

$|overline a|=sqrt{(a_x)^2+(a_y)^2vphantom{bigl(}}=sqrt{(x_2-x_1)^2+(y_2-y_1)^2vphantom{bigl(}}$

Если рассмотреть пространственный вектор, то в эти формулы добавляется третья координата — z.

Координаты вектора $overline a;(a_x;,a_y;,a_z)$:

$begin{aligned}&a_x = x_2-x_1 \ &a_y = y_2-y_1 \ &a_z = z_2 – z_1end{aligned}$

То есть, координаты вектора $overline acolon (x_2-x_1;,y_2-y_1;,z_2-z_1).$

Модуль вектора $overline acolon$

$|overline a|=sqrt{(a_x)^2+(a_y)^2+(a_z)^2vphantom{bigl(}}=sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2vphantom{bigl(}}$

СЕРЕДИНА ВЕКТОРА:

Чтобы найти середину вектора по координатам нужно:

1. Вычислить сумму координат начала и конца вектора.

2. Разделить на два.

НА ПЛОСКОСТИ

В ПРОСТРАНСТВЕ

O — середина вектора $,overline {!AB,}$

 

$begin{aligned}&A,(x_1;,y_1), B,(x_2;,y_2) \[3pt] &O(x;y)=left(frac{x_1+x_2}{2};,frac{y_1+y_2}{2}right)end{aligned}$

$begin{aligned}&A,(x_1;,y_1;,z_1), B,(x_2;, y_2;, z_2) \[3pt] &O(x;y;z)=left(frac{x_1+x_2}{2};,frac{y_1+y_2}{2};,frac{z_1+z_2}{2}right)end{aligned}$

ВИДЫ ВЕКТОРОВ:

Единичный вектор — вектор, длина которого равна 1.

Нулевой вектор — отдельные точки плоскости. У такого вектора конец и начало совпадают, а его длина (его модуль) равен нулю.

Коллинеарные и компланарные векторы

Коллинеарные векторы — векторы, которые параллельны одной прямой или которые лежат на одной прямой.

Два коллинеарных вектора $|overline a| и |b|$ называются сонаправленными только тогда, когда их направления соответствуют друг другу:

$|overline a|{small uparrowuparrow}|overline b|$

Компланарные векторы — векторы, которые параллельны одной плоскости или которые лежат на общей плоскости.

В любое мгновение существует плоскость одновременно параллельная двум любым векторам, поэтому два произвольных вектора являются компланарными.

АЛГЕБРАИЧЕСКИЕ ДЕЙСТВИЯ НАД ВЕКТОРАМИ:

  НА ПЛОСКОСТИ В ПРОСТРАНСТВЕ
Координаты
вектора $overline {c,}$
Сложение векторов:
$overline {c,}=overline a + overline b$
$x$ $c_x = a_x + b_x$ $c_x = a_x + b_x$
$y$ $c_y = a_y + b_y$ $c_y = a_y + b_y$
$z$ $c_z = a_z + b_z$
Координаты
вектора $overline {c,}$
Вычитание векторов:
$overline {c,}=overline a – overline b$
$x$ $c_x = a_x – b_x$ $c_x = a_x – b_x$
$y$ $c_y = a_y – b_y$ $c_y = a_y – b_y$
$z$ $c_z = a_z – b_z$
Координаты
вектора $overline {b}$
Умножение вектора на число:
$overline b = lambdaoverline a$
$x$ $overline b_x = lambda a_x$ $overline b_x = lambda a_x$
$y$ $overline b_y = lambda a_y$ $overline b_y = lambda a_y$
$z$ $overline b_z = lambda a_z$
Значение числа $s$ Скалярное умножение векторов:
$s = overline acdotoverline b$
$s=a_x!cdot b_x + a_y!cdot b_y$ $s=a_x!cdot b_x + a_y!cdot b_y + a_z!cdot b_z$

ГЕОМЕТРИЧЕСКОЕ СЛОЖЕНИЕ И ГЕОМЕТРИЧЕСКАЯ РАЗНОСТЬ ВЕКТОРОВ:

СЛОЖЕНИЕ

Сумма двух векторов находится с помощью правила треугольника или правила параллелограмма: $overline {c,} = overline a + overline b$.

${mathbf {Теоремаcolon}}\ Для любых трёх точек A,,B,,C справедливо соотношениеcolon overline{!AB,}+,overline{!BC,}=,overline{!AC,}!.$

${mathbf {РАЗНОСТЬ}}\Разность двух векторов overline a и overline b;— это вектор overline {c,}, который в сумме с вектором overline b даёт вектор overline a \ overline b + overline{c,} = overline aquadRightarrowquadoverline{c,} = overline a – overline b$

$Вектор overline {c,} можно найти также, складывая с вектором overline a вектор bigl(-overline bbigr), противоположный вектору overline bcolon \ overline {c,} = overline a + bigl(-overline bbigr)$

Вектор это просто отрезок, у которого задано начало и конец, то есть направление. Иногда это направление что-то значит, иногда нет. Однако то, что вектор задается двумя точками позволяет для его описания указать только координаты этих точек, начала и конца. Если взять проекцию вектора на ось Х например, то мы увидим на ней две точки соответствующие заданным координатам. Найти середину несложно – просто сложить эти координаты и поделить пополам. Точно такая же история наблюдается и двумя остальными осями если вектор задан в пространстве. Тогда получается что координаты центра вектора равны полусумме соответствующих координат начала и конца вектора.

автор вопроса выбрал этот ответ лучшим

Ракит­ин Серге­й
[450K]

8 лет назад 

Координаты середины отрезка (вектора) будут равны середним арифметическим координат концов этого отрезка. Например, есть отрезок АВ, координаты А(1;1), В (10;5). Координаты средней точки М будут ((10+1)/2; (5+1)/2), т.е. (5,5; 3).

Знаете ответ?

Добавить комментарий