Как найти середину окружности по координатам

Найти центр и радиус окружности

Если окружность задана уравнением вида

найти центр (a;b) и радиус R такой окружности несложно.

Определить по уравнению окружности координаты её центра и радиуса:

Таким образом, центр данной окружности — точка (3;7), радиус R=2.

a=-2, b=5, R²=1. Окружность с центром в точке (-2;5) и радиусом 1.

Центр окружности — (0;-3), радиус R=3.

Центр — в точке (6;0), радиус R=√5.

Это уравнение задаёт окружность с центром в начале координат. Центр — O(0;0), радиус R=√11.

Чтобы найти центр и радиус окружности, заданной уравнением вида

нужно дополнить его до полных квадратов, чтобы привести к привычному виду.

Для этого сначала сгруппируем слагаемые

затем прибавим и вычтем квадрат второго слагаемого из формулы квадрата разности (2ax- удвоенное произведение первого слагаемого на второе. Первое — x, второе — a)

При a²+b²-c>0 это уравнение задаёт окружность с радиусом

При a²+b²-c=0 уравнению удовлетворяют координаты единственной точки (a;b).

При a²+b²-c

Выделяем в уравнении полные квадраты. В первых скобках удвоенное слагаемое 10x представляем как 10x=2·a·5 (чтобы получить 2ab для формулы a²+2ab+b²=(a+b)²). Получается, что b=5. Если прибавить и вычесть b², результат не изменится:

Центром этой окружности является точка (-5;3), радиус R=7.

Центр окружности — точка (2,5;0), радиус R=1,5.

Нахождение центра и радиуса окружности по общему уравнению окружности

Этот калькулятор проверяет, является ли введенное уравнение общим уравнением окружности, и вычисляет координаты центра и радиуса окружности, если это возможно. Описание способа решения подобных задач находится под калькулятором

Нахождение центра и радиуса окружности по общему уравнению окружности

Уравнение НЕ является общим уравнением окружности

Приведение общего уравнения окружности к стандартному виду

Калькулятор выше можно применять для решения задач на уравнение окружности. Чаще всего вы имеете дело с уравнением окружности, выраженном в так называемом стандартном виде

Из этого уравнения достаточно легко найти центр окружности – это будет точка с координатами (a,b), и радиус окружности – это будет квадратный корень из правой части уравнения.

Однако, если возвести в квадрат выражения в скобках и перенести правую часть налево, то уравнение станет выглядеть примерно так:

Это – уравнение окружности в общем виде. Здесь радиус и центр окружности уже не выделены явно, и в задачах обычно просят их найти именно по общему виду уравнения окружности.

Способ решения такого рода задач следующий:

Перегруппируем слагаемые уравнения

  • Для каждой скобки применим метод выделения полного квадрата (подробнее смотри тут – Метод выделения полного квадрата), то есть заменим выражение вида на выражение вида . С учетом того, что коэффициенты при квадратах равны единице, а свободный член можно принять за ноль, формула для вычисления h и k упрощаются.
  • Как видим, выражение в конце это уравнение окружности в стандартном виде, из которого уже легко получить и координаты центра окружности и ее радиус. Если же справа получилось отрицательное число – значит заданное вначале уравнение не является уравнением окружности (бывают задачи и на такую проверку). Калькулятор тоже проверяет это условие.

    Для решения обратной задачи – нахождения общего уравнения окружности по координатам центра и радиусу – можно использовать калькулятор Уравнение окружности по заданному центру и радиусу в различных формах

    Планиметрия (прямая и окружность)

    Планиметрия изучется в начальном курсе геометрии и зачастую сводится к решению практических задач без изучения теоретической базы.
    В данной статье приводятся альтернативные (подсказкам) решения задач из первого раздела (кроме 1.5) приложения Euclidea (геометрические построения с помощью циркуля и линейки).

    Решения задач 1.1, 1.2 и 1.3 основаны на том, что с помощью циркуля и линейки можно построить равносторонний треугольник.

    1.1 Построить угол 60° с заданой стороной

    1.2 Построить серединный перпендикуляр к отрезку

    На данной ограниченной прямой построить равносторонний треугольник

    1.3 Середина отрезка

    всё, что можно построить с помощью циркуля и линейки, может быть построено с помощью одного циркуля.

    Из точки В радиусом АВ описываем окружность.
    По этой окружности откладываем от точки А расстояние АВ три раза: получаем точку С, очевидно, диаметрально противоположную А. Расстояние АС представляет собой двойное рассрастояние АВ. Проведя окружность из С радиусом ВС, мы можем таким же образом найти точку,
    диаметрально противоположную В и, следовательно, удаленную от А на
    тройное расстояние АВ, и т. д.

    любое построение, выполнимое на плоскости циркулем и линейкой, можно выполнить одной линейкой, если нарисована хотя бы одна окружность и отмечен её центр.

    Проведем прямые PA и PB и отметим точки D и C их пересечения прямой b. Пусть О — точка пересечения прямых AC и BD. Тогда, согласно предыдущей лемме, прямая PO пересечёт отрезок AB в его середине M.

    Решением задачи 1.3 по методу Штейнера-Понеселе будет:

    1.4 Окружность, вписанная в квадрат

    Из точки A, лежащей вне данной полуокружности, опустить на её диаметр перпендикуляр, обходясь при этом без циркуля. Положение центра полуокружности не указано.

    Нам пригодится здесь то свойство треугольника, что все его высоты пересекаются в одной точке. Соединим A с B и C; получим точки D и E. Прямые BE и CD, очевидно, — высоты треугольника ABC. Третья высота — искомый перпендикуляр к BC — должна проходить через пересечение двух других, т.е. через точку M. Проведя по линейке прямую через точки A и M, мы выполним требованиек задачи, не прибегая к услугам циркуля.

    И опустив перпендикуляр из точки пересечения диагоналей квадрата на ребро, найдём середину ребра.
    Это же построение можно использовать для решения задачи 2.9 Окружность, касающаяся прямой

    1.6 Найти центр окружности

    Плоский угол, опирающийся на диаметр окружности, — прямой.

    Определение: касательной к окружности называется прямая, имеющая с окружностью одну общую точку. Касательная к окружности перпендикулярна радиусу, проведённому в точку касания.

    Рассмотрим задачу 2.8
    2.8 Касательная к окружности в точке
    Возвращаясь к предыдущей задаче, эту задачу можно решить построив угол, опирающийся на диаметр окружности по теореме Фалеса

    Далее, построив перпендикуляр к касательной, найдём диаметр окружности, и, разделив его пополам, найдём центр окружности.

    Ещё об одном способе построения касательной к окружности можно узнать из лекции 1.5 курса «Геометрия и группы» А. Савватеева ссылка

    1.7 Квадрат, вписанный в окружность

    Задача Наполеона

    Решим задачу методом Мора-Маскерони.
    Построим три окружности радиусом r и две окружности радиусом

    В приложении нет такой операции, как перенос раствора циркуля (равного MO), поэтому необходимо использовать дополнительные построения.
    Для того, чтобы построить касательную к исходной окружности, параллельную МО, необходимо произвести построения, которые были приведены выше (построить три окружности радиусом r и две окружности радиусом ), но вместо исходной окружности взять окружность, обозначенную на рисунке синим цветом

    Т.о. мы перенесли раствор циркуля (равный МО) в точку А.
    Далее из точки А необходимо провести окружность c радиусом МО

    [spoiler title=”источники:”]

    http://planetcalc.ru/9507/

    http://habr.com/ru/post/478410/

    [/spoiler]

    Если окружность задана уравнением вида

        [{(x - a)^2} + {(y - b)^2} = {R^2},]

    найти центр (a;b) и радиус R такой окружности несложно.

    Примеры.

    Определить по уравнению окружности координаты её центра и радиуса:

        [1){(x - 3)^2} + {(y - 7)^2} = 4;]

        [2){(x + 2)^2} + {(y - 5)^2} = 1;]

        [3){x^2} + {(y + 3)^2} = 9;]

        [4){(x - 6)^2} + {y^2} = 5;]

        [5){x^2} + {y^2} = 11.]

    Решение:

        [1){(x - 3)^2} + {(y - 7)^2} = 4;]

    a=3, b=7, R²=4.

    Таким образом, центр данной окружности — точка (3;7), радиус R=2.

        [2){(x + 2)^2} + {(y - 5)^2} = 1;]

    a=-2, b=5, R²=1. Окружность с центром в точке (-2;5) и радиусом 1.

        [3){x^2} + {(y + 3)^2} = 9;]

    a=0, b=-3, R²=9.

    Центр окружности — (0;-3), радиус R=3.

        [4){(x - 6)^2} + {y^2} = 5;]

    a=6, b=0, R²=5.

    Центр — в точке (6;0), радиус R=√5.

        [5){x^2} + {y^2} = 11.]

    Это уравнение задаёт окружность с центром в начале координат. Центр — O(0;0), радиус R=√11.

    Чтобы найти центр и радиус окружности, заданной уравнением вида

        [{x^2} + {y^2} - 2ax - 2by + c = 0,]

    нужно дополнить его до полных квадратов, чтобы привести к привычному виду.

    Для этого сначала сгруппируем слагаемые

        [({x^2} - 2ax) + ({y^2} - 2by) + c = 0,]

    затем прибавим и вычтем квадрат второго слагаемого из формулы квадрата разности (2ax- удвоенное произведение первого слагаемого на второе. Первое — x, второе — a)

        [({x^2} - 2ax + {a^2}) - {a^2} + ({y^2} - 2by + {b^2}) - {b^2} + c = 0.]

    Отсюда

        [{(x - a)^2} + {(y - b)^2} + c - {a^2} - {b^2} = 0,]

        [{(x - a)^2} + {(y - b)^2} = {a^2} + {b^2} - c.]

    При a²+b²-c>0 это уравнение задаёт окружность с радиусом

        [R = sqrt {{a^2} + {b^2} - c} .]

    При a²+b²-c=0 уравнению удовлетворяют координаты единственной точки (a;b).

    При a²+b²-c<0 нет ни одной точки, удовлетворяющей этому уравнению.

    Примеры.

    Найти координаты центра и радиус окружности:

        [1){x^2} + {y^2} + 10x - 6y - 15 = 0;]

        [2){x^2} + {y^2} - 5x + 4 = 0;]

        [3)3{x^2} + 3{y^2} - 4x - 9y + 4 = 0.]

    Решение:

        [1){x^2} + {y^2} + 10x - 6y - 15 = 0]

    Группируем слагаемые

        [({x^2} + 10x) + ({y^2} - 6y) - 15 = 0]

    Выделяем в уравнении полные квадраты. В первых скобках удвоенное слагаемое 10x представляем как 10x=2·a·5 (чтобы получить 2ab для формулы a²+2ab+b²=(a+b)²). Получается, что b=5. Если прибавить и вычесть b², результат не изменится:

        [{x^2} + 10x = ({x^2} + 2 cdot x cdot 5 + {5^2}) - {5^2}.]

    Аналогично

        [{y^2} - 6y = ({y^2} - 2 cdot y cdot 3 + {3^2}) - {3^2}.]

    Таким образом,

        [({x^2} + 2 cdot x cdot 5 + {5^2}) - {5^2} + ({y^2} - 2 cdot y cdot 3 + {3^2}) - {3^2} - 15 = 0]

        [{(x + 5)^2} + {(y - 3)^2} - 25 - 9 - 15 = 0]

        [{(x + 5)^2} + {(y - 3)^2} = 49]

    Центром этой окружности является точка (-5;3), радиус R=7.

        [2){x^2} + {y^2} - 5x + 4 = 0]

        [({x^2} - 5x) + {y^2} + 4 = 0]

        [({x^2} - 2 cdot x cdot 2,5 + {2,5^2}) - {2,5^2} + {y^2} + 4 = 0]

        [{(x - 2,5)^2} + {y^2} + 4 - 6,25 = 0]

        [{(x - 2,5)^2} + {y^2} = 2,25]

    Центр окружности — точка (2,5;0), радиус R=1,5.

        [3)3{x^2} + 3{y^2} - 4x - 9y + 4 = 0]

    Разделим обе части уравнения на 3:

        [{x^2} + {y^2} - frac{4}{3}x - 3y + frac{4}{3} = 0]

    Далее — аналогично

        [({x^2} - frac{4}{3}x) + ({y^2} - 3y) + frac{4}{3} = 0]

        [({x^2} - 2 cdot x cdot frac{2}{3} + {(frac{2}{3})^2}) - {(frac{2}{3})^2} + ({y^2} - 2 cdot y cdot frac{3}{2} + {(frac{3}{2})^2}) - ]

        [ - {(frac{3}{2})^2} + frac{4}{3} = 0]

        [{(x - frac{2}{3})^2} + {(y - frac{3}{2})^2} - frac{{{4^{backslash 4}}}}{9} - frac{{{9^{backslash 9}}}}{4} + frac{{{4^{backslash 12}}}}{3} = 0]

        [{(x - frac{2}{3})^2} + {(y - frac{3}{2})^2} = frac{{49}}{{36}}]

    Центр этой окружности лежит в точке

        [(frac{2}{3};frac{3}{2}),R = frac{7}{6}.]

    Содержание:

    Декартовы координаты на плоскости:

    Изучая материал этой лекции, вы расширите свои знания о координатной плоскости.

    Вы научитесь находить длину отрезка и координаты его середины, зная координаты его концов.

    Сформируете представление об уравнении фигуры, выведете уравнения прямой и окружности.

    Ознакомитесь с методом координат, позволяющим решать геометрические задачи средствами алгебры.

    Расстояние между двумя точками с заданными координатами. Координаты середины отрезка

    В 6 классе вы ознакомились с координатной плоскостью, то есть с плоскостью, на которой изображены две перпендикулярные координатные прямые (ось абсцисс и ось ординат) с общим началом отсчета (рис. 8.1). Вы умеете отмечать на ней точки по их координатам и наоборот, находить координаты точки, отмеченной на координатной плоскости.

    Декартовы координаты на плоскости - определение и примеры с решением

    Договорились координатную плоскость с осью Декартовы координаты на плоскости - определение и примеры с решением

    Координаты точки на плоскости Декартовы координаты на плоскости - определение и примеры с решением называют декартовыми координатами в честь французского математика Рене Декарта (см. рассказ на с. 103).

    Декартовы координаты на плоскости - определение и примеры с решением

    Вы знаете, как находить расстояние в между двумя точками, заданными своими координатами на координатной прямой. Для точек Декартовы координаты на плоскости - определение и примеры с решением (рис. 8.2) имеем:

    Декартовы координаты на плоскости - определение и примеры с решением

    Научимся находить расстояние между точками Декартовы координаты на плоскости - определение и примеры с решениемзаданными на плоскости Декартовы координаты на плоскости - определение и примеры с решением

    Рассмотрим случай, когда отрезок Декартовы координаты на плоскости - определение и примеры с решением не перпендикулярен ни одной из координатных осей (рис. 8.3).

    Через точки Декартовы координаты на плоскости - определение и примеры с решением проведем прямые, перпендикулярные координатным осям. Получим прямоугольный треугольник Декартовы координаты на плоскости - определение и примеры с решением в котором Декартовы координаты на плоскости - определение и примеры с решением Отсюда Декартовы координаты на плоскости - определение и примеры с решениемДекартовы координаты на плоскости - определение и примеры с решением

    Тогда формулу расстояния между точками Декартовы координаты на плоскости - определение и примеры с решением можно записать так:

    Декартовы координаты на плоскости - определение и примеры с решением

    Докажите самостоятельно, что эта формула остается верной и для случая, когда отрезок Декартовы координаты на плоскости - определение и примеры с решением перпендикулярен одной из осей координат.

    Пусть Декартовы координаты на плоскости - определение и примеры с решением — точки плоскости Декартовы координаты на плоскости - определение и примеры с решением Найдем координаты Декартовы координаты на плоскости - определение и примеры с решением точки Декартовы координаты на плоскости - определение и примеры с решением — середины отрезка Декартовы координаты на плоскости - определение и примеры с решением

    Декартовы координаты на плоскости - определение и примеры с решением

    Рассмотрим случай, когда отрезок Декартовы координаты на плоскости - определение и примеры с решением не перпендикулярен ни одной из координатных осей (рис. 8.4). Будем считать, что Декартовы координаты на плоскости - определение и примеры с решением (случай, когда Декартовы координаты на плоскости - определение и примеры с решениемрассматривается аналогично). Через точки Декартовы координаты на плоскости - определение и примеры с решениемДекартовы координаты на плоскости - определение и примеры с решением проведем прямые, перпендикулярные оси абсцисс, которые пересекут эту ось соответственно в точках Декартовы координаты на плоскости - определение и примеры с решением По теореме Фалеса Декартовы координаты на плоскости - определение и примеры с решением тогда Декартовы координаты на плоскости - определение и примеры с решением Поскольку Декартовы координаты на плоскости - определение и примеры с решениемто можем записать: Декартовы координаты на плоскости - определение и примеры с решением Отсюда Декартовы координаты на плоскости - определение и примеры с решением Аналогично можно показать что Декартовы координаты на плоскости - определение и примеры с решением

    Формулы для нахождения координат середины отрезка остаются верными и для случая, когда отрезок Декартовы координаты на плоскости - определение и примеры с решением перпендикулярен одной из осей координат. Докажите это самостоятельно.

    Пример №1

    Докажите, что треугольник с вершинами в точках Декартовы координаты на плоскости - определение и примеры с решением является равнобедренным прямоугольным.

    Решение:

    Используя формулу расстояния между двумя точками, найдем стороны данного треугольника:

    Декартовы координаты на плоскости - определение и примеры с решением

    Следовательно, Декартовы координаты на плоскости - определение и примеры с решением то есть треугольник Декартовы координаты на плоскости - определение и примеры с решением равнобедренный.

    Поскольку Декартовы координаты на плоскости - определение и примеры с решением то треугольник Декартовы координаты на плоскости - определение и примеры с решением прямоугольный. Декартовы координаты на плоскости - определение и примеры с решением

    Пример №2

    Точка Декартовы координаты на плоскости - определение и примеры с решением — середина отрезка Декартовы координаты на плоскости - определение и примеры с решением Найдите координаты точки Декартовы координаты на плоскости - определение и примеры с решением

    Решение:

    Обозначим Декартовы координаты на плоскости - определение и примеры с решением — координаты точки Декартовы координаты на плоскости - определение и примеры с решениемДекартовы координаты на плоскости - определение и примеры с решением — координаты точки Декартовы координаты на плоскости - определение и примеры с решением — координаты точки Декартовы координаты на плоскости - определение и примеры с решением

    Поскольку Декартовы координаты на плоскости - определение и примеры с решением то получаем: Декартовы координаты на плоскости - определение и примеры с решением

    Аналогично Декартовы координаты на плоскости - определение и примеры с решением

    Ответ: Декартовы координаты на плоскости - определение и примеры с решением

    Пример №3

    Докажите, что четырехугольник Декартовы координаты на плоскости - определение и примеры с решением с вершинами в точках Декартовы координаты на плоскости - определение и примеры с решением является прямоугольником.

    Решение:

    Пусть точка Декартовы координаты на плоскости - определение и примеры с решением — середина диагонали Декартовы координаты на плоскости - определение и примеры с решением Тогда

    Декартовы координаты на плоскости - определение и примеры с решением

    Следовательно, Декартовы координаты на плоскости - определение и примеры с решением

    Пусть точка Декартовы координаты на плоскости - определение и примеры с решением — середина диагонали Декартовы координаты на плоскости - определение и примеры с решением Тогда

    Декартовы координаты на плоскости - определение и примеры с решением

    Следовательно, Декартовы координаты на плоскости - определение и примеры с решением

    Таким образом, точки Декартовы координаты на плоскости - определение и примеры с решением совпадают, то есть диагонали четырехугольника Декартовы координаты на плоскости - определение и примеры с решением имеют общую середину. Отсюда следует, что четырехугольник Декартовы координаты на плоскости - определение и примеры с решением — параллелограмм.

    Найдем диагонали параллелограмма:

    Декартовы координаты на плоскости - определение и примеры с решением

    Следовательно, диагонали параллелограмма Декартовы координаты на плоскости - определение и примеры с решением равны. Отсюда следует, что этот параллелограмм является прямоугольником. Декартовы координаты на плоскости - определение и примеры с решением

    Уравнение фигуры. Уравнение окружности

    Из курса алгебры 7 класса вы знаете, какую фигуру называют графиком уравнения. В этом пункте вы ознакомитесь с понятием уравнения фигуры.

    Координаты Декартовы координаты на плоскости - определение и примеры с решением каждой точки параболы, изображенной на рисунке 9.1, являются решением уравнения Декартовы координаты на плоскости - определение и примеры с решением И наоборот, каждое решение уравнения с двумя переменными Декартовы координаты на плоскости - определение и примеры с решением является координатами точки, лежащей на этой параболе. В этом случае говорят, что уравнение параболы, изображенной на рисунке 9.1, имеет вид Декартовы координаты на плоскости - определение и примеры с решением

    Декартовы координаты на плоскости - определение и примеры с решением

    Определение. Уравнением фигуры Декартовы координаты на плоскости - определение и примеры с решением заданной на плоскости Декартовы координаты на плоскости - определение и примеры с решением называют уравнение с двумя переменными Декартовы координаты на плоскости - определение и примеры с решением обладающее следующими свойствами:

    1. если точка принадлежит фигуре Декартовы координаты на плоскости - определение и примеры с решением то ее координаты являются решением данного уравнения;
    2. любое решение Декартовы координаты на плоскости - определение и примеры с решением данного уравнения является координатами точки, принадлежащей фигуре Декартовы координаты на плоскости - определение и примеры с решением

    Например, уравнение прямой, изображенной на рисунке 9.2, имеет вид Декартовы координаты на плоскости - определение и примеры с решением а уравнение гиперболы, изображенной на рисунке 9.3, имеет вид Декартовы координаты на плоскости - определение и примеры с решением Принято говорить, что, например, уравнения Декартовы координаты на плоскости - определение и примеры с решением задают прямую и гиперболу соответственно.

    Декартовы координаты на плоскости - определение и примеры с решением

    Если данное уравнение является уравнением фигуры Декартовы координаты на плоскости - определение и примеры с решением то эту фигуру можно рассматривать как геометрическое место точек (ГМТ), координаты которых удовлетворяют данному уравнению.

    Пользуясь этими соображениями, выведем уравнение окружности радиуса Декартовы координаты на плоскости - определение и примеры с решением с центром в точке Декартовы координаты на плоскости - определение и примеры с решением

    Пусть Декартовы координаты на плоскости - определение и примеры с решением — произвольная точка данной окружности (рис. 9.4). Тогда Декартовы координаты на плоскости - определение и примеры с решением Используя формулу расстояния между точками, получим:

    Декартовы координаты на плоскости - определение и примеры с решением

    Отсюда

    Декартовы координаты на плоскости - определение и примеры с решением

    Мы показали, что координаты Декартовы координаты на плоскости - определение и примеры с решением произвольной точки Декартовы координаты на плоскости - определение и примеры с решением данной окружности являются решением уравнения Декартовы координаты на плоскости - определение и примеры с решением Теперь покажем, что любое решение уравнения Декартовы координаты на плоскости - определение и примеры с решением является координатами точки, принадлежащей данной окружности.

    Пусть пара чисел Декартовы координаты на плоскости - определение и примеры с решением — произвольное решение уравнения Декартовы координаты на плоскости - определение и примеры с решением

    Тогда Декартовы координаты на плоскости - определение и примеры с решением Отсюда Декартовы координаты на плоскости - определение и примеры с решением

    Это равенство показывает, что точка Декартовы координаты на плоскости - определение и примеры с решением удалена от центра окружности Декартовы координаты на плоскости - определение и примеры с решением на расстояние, равное радиусу окружности, а следовательно, точка Декартовы координаты на плоскости - определение и примеры с решением принадлежит данной окружности.

    Итак, мы доказали следующую теорему.

    Теорема 9.1. Уравнение окружности радиуса Декартовы координаты на плоскости - определение и примеры с решением с центром в точке Декартовы координаты на плоскости - определение и примеры с решением имеет вид

    Декартовы координаты на плоскости - определение и примеры с решением

    Верно и такое утверждение: любое уравнение вида Декартовы координаты на плоскости - определение и примеры с решением где Декартовы координаты на плоскости - определение и примеры с решением некоторые числа, причем Декартовы координаты на плоскости - определение и примеры с решением является уравнением окружности радиуса Декартовы координаты на плоскости - определение и примеры с решением с центром в точке с координатами Декартовы координаты на плоскости - определение и примеры с решением

    Если центром окружности является начало координат (рис. 9.5), то Декартовы координаты на плоскости - определение и примеры с решением В этом случае уравнение окружности имеет вид Декартовы координаты на плоскости - определение и примеры с решением

    Декартовы координаты на плоскости - определение и примеры с решением

    Пример №4

    Составьте уравнение окружности, диаметром которой является отрезок Декартовы координаты на плоскости - определение и примеры с решением если Декартовы координаты на плоскости - определение и примеры с решением

    Решение:

    Поскольку центр окружности является серединой диаметра, то можем найти координаты Декартовы координаты на плоскости - определение и примеры с решением центра Декартовы координаты на плоскости - определение и примеры с решением окружности:

    Декартовы координаты на плоскости - определение и примеры с решением

    Следовательно, Декартовы координаты на плоскости - определение и примеры с решением

    Радиус окружности Декартовы координаты на плоскости - определение и примеры с решением равен отрезку Декартовы координаты на плоскости - определение и примеры с решением Тогда

    Декартовы координаты на плоскости - определение и примеры с решением

    Следовательно, искомое уравнение имеет вид

    Декартовы координаты на плоскости - определение и примеры с решением

    Ответ: Декартовы координаты на плоскости - определение и примеры с решением

    Пример №5

    Докажите, что уравнение Декартовы координаты на плоскости - определение и примеры с решением задает окружность. Найдите координаты центра и радиус этой окружности.

    Решение:

    Представим данное уравнение в виде Декартовы координаты на плоскости - определение и примеры с решением

    Декартовы координаты на плоскости - определение и примеры с решением

    Следовательно, данное уравнение является уравнением окружности с центром в точке Декартовы координаты на плоскости - определение и примеры с решением и радиусом Декартовы координаты на плоскости - определение и примеры с решением

    Ответ: Декартовы координаты на плоскости - определение и примеры с решением

    Пример №6

    Докажите, что треугольник с вершинами в точках Декартовы координаты на плоскости - определение и примеры с решением является прямоугольным, и составьте уравнение окружности, описанной около треугольника Декартовы координаты на плоскости - определение и примеры с решением

    Решение:

    Найдем квадраты сторон данного треугольника:

    Декартовы координаты на плоскости - определение и примеры с решением

    Поскольку Декартовы координаты на плоскости - определение и примеры с решением то данный треугольник является прямоугольным с прямым углом при вершине Декартовы координаты на плоскости - определение и примеры с решением Центром описанной окружности является середина гипотенузы Декартовы координаты на плоскости - определение и примеры с решением — точка Декартовы координаты на плоскости - определение и примеры с решением радиус окружности Декартовы координаты на плоскости - определение и примеры с решениемСледовательно, искомое уравнение имеет вид

    Декартовы координаты на плоскости - определение и примеры с решением

    Ответ: Декартовы координаты на плоскости - определение и примеры с решением

    Уравнение прямой

    В предыдущем пункте, рассматривая окружность как ГМТ, равноудаленных от данной точки, мы вывели ее уравнение. Для того чтобы вывести уравнение прямой, рассмотрим ее как ГМТ, равноудаленных от двух данных точек.

    Декартовы координаты на плоскости - определение и примеры с решением

    Пусть Декартовы координаты на плоскости - определение и примеры с решением — данная прямая. Выберем две точки Декартовы координаты на плоскости - определение и примеры с решением и Декартовы координаты на плоскости - определение и примеры с решением так, чтобы прямая Декартовы координаты на плоскости - определение и примеры с решением была серединным перпендикуляром отрезка Декартовы координаты на плоскости - определение и примеры с решением (рис. 10.1).

    Пусть Декартовы координаты на плоскости - определение и примеры с решением — произвольная точка прямой Декартовы координаты на плоскости - определение и примеры с решением Тогда по свойству серединного перпендикуляра отрезка выполняется равенство Декартовы координаты на плоскости - определение и примеры с решением то есть

    Декартовы координаты на плоскости - определение и примеры с решением

    Мы показали, что координаты Декартовы координаты на плоскости - определение и примеры с решением произвольной точки Декартовы координаты на плоскости - определение и примеры с решением прямой Декартовы координаты на плоскости - определение и примеры с решением являются решением уравнения Декартовы координаты на плоскости - определение и примеры с решением

    Теперь покажем, что любое решение уравнения Декартовы координаты на плоскости - определение и примеры с решением является координатами точки, принадлежащей данной прямой Декартовы координаты на плоскости - определение и примеры с решением

    Пусть Декартовы координаты на плоскости - определение и примеры с решением — произвольное решение уравнения Декартовы координаты на плоскости - определение и примеры с решением Тогда Декартовы координаты на плоскости - определение и примеры с решением Это равенство означает, что точка Декартовы координаты на плоскости - определение и примеры с решением равноудалена от точек Декартовы координаты на плоскости - определение и примеры с решением следовательно, точка Декартовы координаты на плоскости - определение и примеры с решением принадлежит серединному перпендикуляру отрезка Декартовы координаты на плоскости - определение и примеры с решением то есть прямой Декартовы координаты на плоскости - определение и примеры с решением

    Итак, мы доказали, что уравнение Декартовы координаты на плоскости - определение и примеры с решением является уравнением данной прямой Декартовы координаты на плоскости - определение и примеры с решением

    Однако из курса алгебры 7 класса вы знаете, что уравнение прямой выглядит гораздо проще, а именно: Декартовы координаты на плоскости - определение и примеры с решением где Декартовы координаты на плоскости - определение и примеры с решением и Декартовы координаты на плоскости - определение и примеры с решением — некоторые числа, причем Декартовы координаты на плоскости - определение и примеры с решением не равны нулю одновременно. Покажем, что уравнение Декартовы координаты на плоскости - определение и примеры с решением можно преобразовать к такому виду. Возведем обе части уравнения Декартовы координаты на плоскости - определение и примеры с решением в квадрат. Имеем:

    Декартовы координаты на плоскости - определение и примеры с решением

    Раскроем скобки и приведем подобные слагаемые. Получим:

    Декартовы координаты на плоскости - определение и примеры с решением

    Обозначив Декартовы координаты на плоскости - определение и примеры с решением получим уравнение Декартовы координаты на плоскости - определение и примеры с решением

    Поскольку точки Декартовы координаты на плоскости - определение и примеры с решением различны, то хотя бы одна из разностей Декартовы координаты на плоскости - определение и примеры с решением не равна нулю. Следовательно, числа Декартовы координаты на плоскости - определение и примеры с решением и Декартовы координаты на плоскости - определение и примеры с решением не равны нулю одновременно.

    Итак, мы доказали следующую теорему.

    Теорема 10.1. Уравнение прямой имеет вид?

    Декартовы координаты на плоскости - определение и примеры с решением

    где Декартовы координаты на плоскости - определение и примеры с решением — некоторые числа, причем Декартовы координаты на плоскости - определение и примеры с решением не равны нулю одновременно.

    Верно и такое утверждение: любое уравнение вида Декартовы координаты на плоскости - определение и примеры с решением где Декартовы координаты на плоскости - определение и примеры с решением — некоторые числа, причем Декартовы координаты на плоскости - определение и примеры с решением не равны нулю одновременно, является уравнением прямой.

    Если Декартовы координаты на плоскости - определение и примеры с решением то графиком уравнения Декартовы координаты на плоскости - определение и примеры с решением является вся плоскость Декартовы координаты на плоскости - определение и примеры с решениемЕсли Декартовы координаты на плоскости - определение и примеры с решением то уравнение не имеет решений.

    Из курса алгебры 7 класса вы знаете, что уравнение вида Декартовы координаты на плоскости - определение и примеры с решением называют линейным уравнением с двумя переменными. Уравнение прямой является частным видом линейного уравнения. Схема, изображенная на рисунке 10.2, иллюстрирует сказанное.

    Декартовы координаты на плоскости - определение и примеры с решением

    на уроках алгебры в 7 классе мы приняли без доказательства тот факт, что графиком линейной функции Декартовы координаты на плоскости - определение и примеры с решением является прямая. Сейчас мы можем это доказать.

    Перепишем уравнение Декартовы координаты на плоскости - определение и примеры с решением Мы получили уравнение вида Декартовы координаты на плоскости - определение и примеры с решением для случая, когда Декартовы координаты на плоскости - определение и примеры с решением Поскольку в этом уравнении Декартовы координаты на плоскости - определение и примеры с решением то мы получили уравнение прямой.

    А любую ли прямую на плоскости можно задать уравнением вида Декартовы координаты на плоскости - определение и примеры с решениемОтвет на этот вопрос отрицательный.

    Дело в том, что прямая, перпендикулярная оси абсцисс, не может являться графиком функции, а следовательно, не может быть задана уравнением вида Декартовы координаты на плоскости - определение и примеры с решением

    Вместе с тем, если в уравнении прямой Декартовы координаты на плоскости - определение и примеры с решением принять Декартовы координаты на плоскости - определение и примеры с решением то его можно переписать так: Декартовы координаты на плоскости - определение и примеры с решением Мы получили частный вид уравнения прямой, все точки которой имеют одинаковые абсциссы. Следовательно, эта прямая перпендикулярна оси абсцисс. Ее называют вертикальной.

    Если Декартовы координаты на плоскости - определение и примеры с решением то уравнение прямой Декартовы координаты на плоскости - определение и примеры с решением можно записать так:

    Декартовы координаты на плоскости - определение и примеры с решением Обозначив Декартовы координаты на плоскости - определение и примеры с решением получим уравнение Декартовы координаты на плоскости - определение и примеры с решением

    Следовательно, если Декартовы координаты на плоскости - определение и примеры с решением то уравнение прямой Декартовы координаты на плоскости - определение и примеры с решением задает вертикальную прямую; если Декартовы координаты на плоскости - определение и примеры с решением то это уравнение задает невертикальную прямую.

    Уравнение невертикальной прямой удобно записывать в виде Декартовы координаты на плоскости - определение и примеры с решением

    Данная таблица подытоживает материал, рассмотренный в этом пункте.

    Декартовы координаты на плоскости - определение и примеры с решением

    Пример №7

    Составьте уравнение прямой, проходящей через точки:

    Декартовы координаты на плоскости - определение и примеры с решением

    Решение:

    1) Поскольку данные точки имеют равные абсциссы, то прямая Декартовы координаты на плоскости - определение и примеры с решением является вертикальной. Ее уравнение имеет вид Декартовы координаты на плоскости - определение и примеры с решением

    2) Поскольку данные точки имеют разные абсциссы, то прямая Декартовы координаты на плоскости - определение и примеры с решением не является вертикальной. Тогда можно воспользоваться уравнением прямой в виде Декартовы координаты на плоскости - определение и примеры с решением

    Подставив координаты точек Декартовы координаты на плоскости - определение и примеры с решением в уравнение Декартовы координаты на плоскости - определение и примеры с решением получаем систему уравнений:

    Декартовы координаты на плоскости - определение и примеры с решением

    Решив эту систему уравнений, находим, что Декартовы координаты на плоскости - определение и примеры с решением

    Ответ: Декартовы координаты на плоскости - определение и примеры с решением

    Пример №8

    Найдите периметр и площадь треугольника, ограниченного прямой Декартовы координаты на плоскости - определение и примеры с решением и осями координат.

    Решение:

    Найдем точки пересечения данной прямой с осями координат.

    С осью абсцисс: при Декартовы координаты на плоскости - определение и примеры с решением получаем Декартовы координаты на плоскости - определение и примеры с решением

    С осью ординат: при Декартовы координаты на плоскости - определение и примеры с решением получаем Декартовы координаты на плоскости - определение и примеры с решением

    Декартовы координаты на плоскости - определение и примеры с решением

    Следовательно, данная прямая и оси координат ограничивают прямоугольный треугольник Декартовы координаты на плоскости - определение и примеры с решением (рис. 10.3) с вершинами Декартовы координаты на плоскости - определение и примеры с решением Найдем стороны треугольника: Декартовы координаты на плоскости - определение и примеры с решением

    Декартовы координаты на плоскости - определение и примеры с решением Тогда искомые периметр и площадь соответственно равны Декартовы координаты на плоскости - определение и примеры с решением

    Ответ: Декартовы координаты на плоскости - определение и примеры с решением

    Угловой коэффициент прямой

    Рассмотрим уравнение Декартовы координаты на плоскости - определение и примеры с решением Оно задает невертикальную прямую, проходящую через начало координат.

    Покажем, что прямые Декартовы координаты на плоскости - определение и примеры с решением где Декартовы координаты на плоскости - определение и примеры с решением параллельны.

    Точки Декартовы координаты на плоскости - определение и примеры с решением принадлежат прямой Декартовы координаты на плоскости - определение и примеры с решением а точки Декартовы координаты на плоскости - определение и примеры с решением и Декартовы координаты на плоскости - определение и примеры с решением принадлежат прямой Декартовы координаты на плоскости - определение и примеры с решением (рис. 11.1). Легко убедиться (сделайте это самостоятельно), что середины диагоналей Декартовы координаты на плоскости - определение и примеры с решением четырехугольника Декартовы координаты на плоскости - определение и примеры с решением совпадают. Следовательно, четырехугольник Декартовы координаты на плоскости - определение и примеры с решением — параллелограмм. Отсюда Декартовы координаты на плоскости - определение и примеры с решением

    Теперь мы можем сделать такой вывод: если Декартовы координаты на плоскости - определение и примеры с решением то прямые Декартовы координаты на плоскости - определение и примеры с решением параллельны (1).

    Пусть прямая Декартовы координаты на плоскости - определение и примеры с решением пересекает единичную полуокружность в точке Декартовы координаты на плоскости - определение и примеры с решением (рис. 11.2). Угол Декартовы координаты на плоскости - определение и примеры с решением называют углом между данной прямой и положительным направлением оси абсцисс.

    Если прямая Декартовы координаты на плоскости - определение и примеры с решением совпадает с осью абсцисс, то угол между этой прямой и положительным направлением оси абсцисс считают равным Декартовы координаты на плоскости - определение и примеры с решением

    Декартовы координаты на плоскости - определение и примеры с решением Если прямая Декартовы координаты на плоскости - определение и примеры с решением образует с положительным направлением оси абсцисс угол Декартовы координаты на плоскости - определение и примеры с решением то считают, что и прямая Декартовы координаты на плоскости - определение и примеры с решением параллельная прямой Декартовы координаты на плоскости - определение и примеры с решением также образует угол Декартовы координаты на плоскости - определение и примеры с решением с положительным направлением оси абсцисс (рис. 11.3).

    Рассмотрим прямую Декартовы координаты на плоскости - определение и примеры с решением уравнение которой имеет вид Декартовы координаты на плоскости - определение и примеры с решением(рис. 11.2). Если Декартовы координаты на плоскости - определение и примеры с решением Поскольку точка Декартовы координаты на плоскости - определение и примеры с решением принадлежит прямой Декартовы координаты на плоскости - определение и примеры с решением Отсюда Декартовы координаты на плоскости - определение и примеры с решением Таким образом, для прямой Декартовы координаты на плоскости - определение и примеры с решением получаем, что

    Декартовы координаты на плоскости - определение и примеры с решением

    где Декартовы координаты на плоскости - определение и примеры с решением — угол, который образует эта прямая с положительным направлением оси абсцисс. Поэтому коэффициент Декартовы координаты на плоскости - определение и примеры с решением называют угловым коэффициентом этой прямой.

    Если невертикальные прямые параллельны, то они образуют равные углы с положительным направлением оси абсцисс. Тогда тангенсы этих углов равны, следовательно, равны и их угловые коэффициенты. Таким образом,

    если прямые Декартовы координаты на плоскости - определение и примеры с решением параллельны, то Декартовы координаты на плоскости - определение и примеры с решением (2).

    Выводы (1) и (2) объединим в одну теорему.

    Теорема 11.1. Прямые Декартовы координаты на плоскости - определение и примеры с решением параллельны тогда и только тогда, когда Декартовы координаты на плоскости - определение и примеры с решением

    Пример №9

    Составьте уравнение прямой, которая проходит через точку Декартовы координаты на плоскости - определение и примеры с решением и параллельна прямой Декартовы координаты на плоскости - определение и примеры с решением

    Решение:

    Пусть уравнение искомой прямой Декартовы координаты на плоскости - определение и примеры с решением Поскольку эта прямая и прямая Декартовы координаты на плоскости - определение и примеры с решением параллельны, то их угловые коэффициенты равны, то есть Декартовы координаты на плоскости - определение и примеры с решением

    Следовательно, искомое уравнение имеет вид Декартовы координаты на плоскости - определение и примеры с решением Учитывая, что данная прямая проходит через точку Декартовы координаты на плоскости - определение и примеры с решением получаем: Декартовы координаты на плоскости - определение и примеры с решением Отсюда Декартовы координаты на плоскости - определение и примеры с решением

    Искомое уравнение имеет вид Декартовы координаты на плоскости - определение и примеры с решением

    Ответ: Декартовы координаты на плоскости - определение и примеры с решением

    Метод координат

    Мы часто говорим: прямая Декартовы координаты на плоскости - определение и примеры с решением парабола Декартовы координаты на плоскости - определение и примеры с решением окружность Декартовы координаты на плоскости - определение и примеры с решением тем самым отождествляя фигуру с ее уравнением. Такой подход позволяет сводить задачу о поиске свойств фигуры к задаче об исследовании ее уравнения. В этом и состоит суть метода координат.

    Проиллюстрируем сказанное на таком примере.

    Из наглядных соображений очевидно, что прямая и окружность имеют не более двух общих точек. Однако это утверждение не является аксиомой, поэтому его надо доказывать.

    Эта задача сводится к исследованию количества решений системы уравнений

    Декартовы координаты на плоскости - определение и примеры с решением

    где числа Декартовы координаты на плоскости - определение и примеры с решением одновременно не равны нулю и Декартовы координаты на плоскости - определение и примеры с решением

    Решая эту систему методом подстановки, мы получим квадратное уравнение, которое может иметь два решения, одно решение или вообще не иметь решений. Следовательно, для данной системы существует три возможных случая:

    1. система имеет два решения — прямая и окружность пересекаются в двух точках;
    2. система имеет одно решение — прямая касается окружности;
    3. система не имеет решений — прямая и окружность не имеют общих точек.

    С каждым из этих случаев вы встречались, решая задачи 10.17-10.19.

    Метод координат особенно эффективен в тех случаях, когда требуется найти фигуру, все точки которой обладают некоторым свойством, то есть найти геометрическое место точек.

    Отметим на плоскости две точки Декартовы координаты на плоскости - определение и примеры с решением Вы хорошо знаете, какой фигурой является геометрическое место точек Декартовы координаты на плоскости - определение и примеры с решением таких, что Декартовы координаты на плоскости - определение и примеры с решением

    Это серединный перпендикуляр отрезка Декартовы координаты на плоскости - определение и примеры с решением Интересно выяснить, какую фигуру образуют все точки Декартовы координаты на плоскости - определение и примеры с решением для которых Декартовы координаты на плоскости - определение и примеры с решением Решим эту задачу для Декартовы координаты на плоскости - определение и примеры с решением

    Плоскость, на которой отмечены точки Декартовы координаты на плоскости - определение и примеры с решением «превратим» в координатную. Сделаем это так: в качестве начала координат выберем точку Декартовы координаты на плоскости - определение и примеры с решением в качестве единичного отрезка — отрезок Декартовы координаты на плоскости - определение и примеры с решением ось абсцисс проведем так, чтобы точка Декартовы координаты на плоскости - определение и примеры с решением имела координаты Декартовы координаты на плоскости - определение и примеры с решением (рис. 11.6).

    Декартовы координаты на плоскости - определение и примеры с решением

    Пусть Декартовы координаты на плоскости - определение и примеры с решением — произвольная точка искомой фигуры Декартовы координаты на плоскости - определение и примеры с решением Тогда Декартовы координаты на плоскости - определение и примеры с решением Отсюда

    Декартовы координаты на плоскости - определение и примеры с решением

    Следовательно, если точка Декартовы координаты на плоскости - определение и примеры с решением принадлежит фигуре Декартовы координаты на плоскости - определение и примеры с решением то ее координаты являются решением уравнения Декартовы координаты на плоскости - определение и примеры с решением

    Пусть Декартовы координаты на плоскости - определение и примеры с решением — некоторое решение уравнения Декартовы координаты на плоскости - определение и примеры с решением Тогда легко показать, что Декартовы координаты на плоскости - определение и примеры с решением А это означает, что точка Декартовы координаты на плоскости - определение и примеры с решением такова, что Декартовы координаты на плоскости - определение и примеры с решением Тогда Декартовы координаты на плоскости - определение и примеры с решением Следовательно, точка Декартовы координаты на плоскости - определение и примеры с решением принадлежит фигуре Декартовы координаты на плоскости - определение и примеры с решением

    Таким образом, уравнением фигуры Декартовы координаты на плоскости - определение и примеры с решением является уравнение Декартовы координаты на плоскости - определение и примеры с решением то есть фигура Декартовы координаты на плоскости - определение и примеры с решением — это окружность с центром в точке Декартовы координаты на плоскости - определение и примеры с решением и радиусом Декартовы координаты на плоскости - определение и примеры с решением

    Мы решили задачу для частного случая, когда Декартовы координаты на плоскости - определение и примеры с решением Можно показать, что искомой фигурой для любого положительного Декартовы координаты на плоскости - определение и примеры с решением будет окружность. Эту окружность называют окружностью АполлонияДекартовы координаты на плоскости - определение и примеры с решением

    Как строили мост между геометрией и алгеброй

    Идея координат зародилась очень давно. Ведь еще в старину люди изучали Землю, наблюдали звезды, а по результатам своих исследований составляли карты, схемы.

    Во II в. до н. э. древнегреческий ученый Гиппарх впервые использовал идею координат для определения места расположения объектов на поверхности Земли.

    Только в XIV в. французский ученый Николя Орем (ок. 1323-1382) впервые применил в математике идею Гиппарха: он разбил плоскость на клетки (как разбита страница вашей тетради) и стал задавать положение точек широтой и долготой.

    Однако огромные возможности применения этой идеи были раскрыты лишь в XVII в. в работах выдающихся французских математиков Пьера Ферма и Рене Декарта. В своих трудах эти ученые показали, как благодаря системе координат можно переходить от точек к числам, от линий к уравнениям, от геометрии к алгебре.

    Несмотря на то что П. Ферма опубликовал свою роботу на год раньше Р. Декарта, систему координат, которой мы сегодня пользуемся, называют декартовой. Р. Декарт в своей работе «Рассуждение о методе» предложил новую удобную буквенную символику, которой с незначительными изменениями мы пользуемся и сегодня. Вслед за Декартом мы обозначаем переменные последними буквами латинского алфавита Декартовы координаты на плоскости - определение и примеры с решением а коэффициенты — первыми: Декартовы координаты на плоскости - определение и примеры с решениемДекартовы координаты на плоскости - определение и примеры с решением Привычные нам обозначения степеней Декартовы координаты на плоскости - определение и примеры с решением и т. д. также ввел Р. Декарт.

    Декартовы координаты на плоскости - определение и примеры с решением

    Справочный материал

    Расстояние между двумя точками

    Расстояние между точками Декартовы координаты на плоскости - определение и примеры с решением можно найти по формуле Декартовы координаты на плоскости - определение и примеры с решением

    Координаты середины отрезка

    Координаты Декартовы координаты на плоскости - определение и примеры с решением середины отрезка с концами Декартовы координаты на плоскости - определение и примеры с решением можно найти по формулам:

    Декартовы координаты на плоскости - определение и примеры с решением

    Уравнение фигуры

    Уравнением фигуры Декартовы координаты на плоскости - определение и примеры с решением заданной на плоскости Декартовы координаты на плоскости - определение и примеры с решением называют уравнение с двумя переменными Декартовы координаты на плоскости - определение и примеры с решением обладающее следующими свойствами:

    1) если точка принадлежит фигуре Декартовы координаты на плоскости - определение и примеры с решением то ее координаты являются решением данного уравнения;

    2) любое решение Декартовы координаты на плоскости - определение и примеры с решением данного уравнения является координатами точки, принадлежащей фигуре Декартовы координаты на плоскости - определение и примеры с решением

    Уравнение окружности

    Уравнение окружности радиуса Декартовы координаты на плоскости - определение и примеры с решением с центром в точке Декартовы координаты на плоскости - определение и примеры с решением имеет вид Декартовы координаты на плоскости - определение и примеры с решением

    Любое уравнение вида Декартовы координаты на плоскости - определение и примеры с решением где Декартовы координаты на плоскости - определение и примеры с решением — некоторые числа, причем Декартовы координаты на плоскости - определение и примеры с решением является уравнением окружности радиуса Декартовы координаты на плоскости - определение и примеры с решением с центром в точке с координатами Декартовы координаты на плоскости - определение и примеры с решением

    Уравнение прямой

    Уравнение прямой имеет вид Декартовы координаты на плоскости - определение и примеры с решением — некоторые числа, причем Декартовы координаты на плоскости - определение и примеры с решением не равны нулю одновременно. Любое уравнение вида Декартовы координаты на плоскости - определение и примеры с решением — некоторые числа, причем Декартовы координаты на плоскости - определение и примеры с решением не равны нулю одновременно, является уравнением прямой.

    Если Декартовы координаты на плоскости - определение и примеры с решением то уравнение прямой Декартовы координаты на плоскости - определение и примеры с решением задает вертикальную прямую; если Декартовы координаты на плоскости - определение и примеры с решением то это уравнение задает невертикальную прямую.

    Угловой коэффициент прямой

    Коэффициент Декартовы координаты на плоскости - определение и примеры с решением в уравнении прямой Декартовы координаты на плоскости - определение и примеры с решением называют угловым коэффициентом прямой, и он равен тангенсу угла, который образует эта прямая с положительным направлением оси абсцисс.

    Необходимое и достаточное условие параллельности невертикальных прямых

    Прямые Декартовы координаты на плоскости - определение и примеры с решением параллельны тогда и только тогда, когда Декартовы координаты на плоскости - определение и примеры с решением

    • Декартовы координаты в пространстве
    • Геометрические преобразования в геометрии
    • Планиметрия – формулы, определение и вычисление
    • Стереометрия – формулы, определение и вычисление
    • Перпендикулярность прямой и плоскости
    • Взаимное расположение прямых в пространстве, прямой и плоскости
    • Перпендикулярность прямых и плоскостей в пространстве
    • Ортогональное проецирование


    Download Article


    Download Article

    Finding the center of a circle can help you perform basic geometric tasks like finding the circumference or area. There are several ways to find the center point! You can draw crossed lines, you can draw overlapping circles, or you can use a straightedge and ruler.

    Things You Should Know

    • Measure out and draw a set of crossed lines inside of a circle to pinpoint the center.
    • Sketch two separate sets of overlapping circles to identify the exact center point.
    • Draw a square snugly around the circle. Sketch an “X” between all 4 corners of the square to find the circle’s center.
    1. Image titled Find the Center of a Circle Step 1

      1

      Draw a circle. Use a compass, or trace any circular object. The size of the circle does not matter. If you’re finding the center of an existing circle, then you don’t need to draw a new circle.

      • A geometry compass is a tool specifically designed to draw and measure circles. Buy one in a school or office supply store![1]
    2. Image titled Find the Center of a Circle Step 2

      2

      Sketch a chord between two points. A chord is a straight line segment that links any two points along the edge of a curve.[2]
      Name the chord AB.

      • Consider using a pencil to sketch your lines. This way, you can erase the marks once you’ve found the center. Draw with a light touch so that it’ll be easier to erase.

      Advertisement

    3. Image titled Find the Center of a Circle Step 3

      3

      Draw a second chord. This line should be parallel and equal in length to the first chord that you drew. Name this new chord CD.[3]

    4. Image titled Find the Center of a Circle Step 4

      4

      Make another line between A and C. This third chord (AC) should stretch through the center of the circle – but you will need to draw one more line to find the exact center point.

    5. Image titled Find the Center of a Circle Step 5

      5

      Join B and D. Draw one final chord (BD) across the circle between Point B and Point D. This new line should cross over the third chord (AC) that you drew.

    6. Image titled Find the Center of a Circle Step 6

      6

      Find the center. If you have drawn straight and accurate lines, then the center of the circle lies at the intersection of the crossed lines AC and BD.[4]
      Mark the center point with a pen or pencil. If you only want the center point marked, then erase the four chords that you drew.

    7. Advertisement

    1. Image titled Find the Center of a Circle Step 7

      1

      Draw a chord between two points. Use a ruler or straightedge to draw a straight line inside the circle, from one edge to another. The points that you use don’t matter. Label the two points A and B.

    2. Image titled Find the Center of a Circle Step 8

      2

      Use a compass to draw two overlapping circles. The circles should be the exact same size. Make A the center of one circle, and B the center of the other. Space the two circles so that they overlap like a Venn diagram.

      • Draw these circles in pencil, not pen. The process will be simpler if you are able to erase these circles later on.
    3. Image titled Find the Center of a Circle Step 9

      3

      Draw a vertical line through the two points at which the circles intersect. There will be a point at the top and a point at the bottom of the “Venn diagram” space created between the overlap of the circles. Use a ruler to make sure that the line protrudes straight through these points. Finally, label the two points (C and D) at which this new line crosses the rim of the original circle. This line marks the diameter of the original circle.

    4. Image titled Find the Center of a Circle Step 10

      4

      Erase the two overlapping circles. This should clear up your work space for the next step of the process. Now, you should have a circle with two perpendicular lines running through it. Do not erase the center points (A and B) of these circles! You will be drawing two new circles.

    5. Image titled Find the Center of a Circle Step 11

      5

      Sketch two new circles. Use your compass to draw two equal circles: one with the point C at its center, and one with the point D. These circles, too, should overlap like a Venn diagram. Remember: C and D are the points at which the vertical line intersects the main circle.

    6. Image titled Find the Center of a Circle Step 12

      6

      Draw a line through the points at which these new circles intersect. This straight, horizontal line should cut through the overlap space of the two new circles. This line is the second diameter of your original circle, and it should be exactly perpendicular to the first diameter line.

    7. Image titled Find the Center of a Circle Step 13

      7

      Find the center. The intersection point of the two straight diameter lines is the exact center of the circle! Mark this center point for reference. If you want to clean up the page, feel free to erase the diameter lines and the non-original circles.

    8. Advertisement

    1. Image titled Find the Center of a Circle Step 14

      1

      Draw two straight, intersecting tangent lines onto the circle. The lines can be completely random. However, the process will be easier if you make them roughly square or rectangular.[5]

    2. Image titled Find the Center of a Circle Step 15

      2

      Translate both of the lines to the other side of the circle. You will end up with four tangent lines forming a parallelogram or a rough rectangle.

    3. Image titled Find the Center of a Circle Step 16

      3

      Draw the diagonals of the parallelogram. The point where these diagonal lines intersect is the circle’s center.

    4. Image titled Find the Center of a Circle Step 17

      4

      Check the accuracy of the center with a compass. The center should be on target as long as you didn’t slip while translating the lines or when drawing the diagonals. Feel free to erase the parallelogram and diagonal lines.

    5. Advertisement

    Practice Problems and Answers

    Add New Question

    • Question

      How do you find the center of a circle if you’re only given the equation?

      David Jia

      David Jia is an Academic Tutor and the Founder of LA Math Tutoring, a private tutoring company based in Los Angeles, California. With over 10 years of teaching experience, David works with students of all ages and grades in various subjects, as well as college admissions counseling and test preparation for the SAT, ACT, ISEE, and more. After attaining a perfect 800 math score and a 690 English score on the SAT, David was awarded the Dickinson Scholarship from the University of Miami, where he graduated with a Bachelor’s degree in Business Administration. Additionally, David has worked as an instructor for online videos for textbook companies such as Larson Texts, Big Ideas Learning, and Big Ideas Math.

      David Jia

      Academic Tutor

      Expert Answer

    • Question

      How do you find the center of the circle if you’re only given the endpoints of the diameter?

      David Jia

      David Jia is an Academic Tutor and the Founder of LA Math Tutoring, a private tutoring company based in Los Angeles, California. With over 10 years of teaching experience, David works with students of all ages and grades in various subjects, as well as college admissions counseling and test preparation for the SAT, ACT, ISEE, and more. After attaining a perfect 800 math score and a 690 English score on the SAT, David was awarded the Dickinson Scholarship from the University of Miami, where he graduated with a Bachelor’s degree in Business Administration. Additionally, David has worked as an instructor for online videos for textbook companies such as Larson Texts, Big Ideas Learning, and Big Ideas Math.

      David Jia

      Academic Tutor

      Expert Answer

    • Question

      In the first method, what do I do if the chords are of different lengths?

      Community Answer

      It’s not easy to construct parallel chords of equal length. In practice, it would be a process of trial and error until you get the chords you need. But the real goal here is to find the center of a circle, and here’s a way to do it without worrying about equal and parallel chords: (1) draw any two or more chords; (2) perpendicularly bisect each chord (using either a compass or a ruler and right triangle; (3) the perpendicular bisectors will intersect at the circle’s center.

    See more answers

    Ask a Question

    200 characters left

    Include your email address to get a message when this question is answered.

    Submit

    Advertisement

    • You can also find the center of a circle by mathematically “completing the square.”[6]
      This is useful if you are given a circle equation, but you aren’t working with a physical circle.

    • Try using graph paper instead of blank or ruled paper. It might help to have the perpendicular lines and boxes for guidance.

    • If you have right angled square, place the corner anywhere along the circumference. Draw the 2 lines that intersect the circumference. Draw a line between those 2 points. Repeat on any other point on the circle. Where the lines intersect is the centrepoint.

    Advertisement

    • A straightedge is not the same as a ruler. A straightedge can be any straight and even surface, but a ruler shows measurements. You can turn a straightedge into a functional ruler by marking it with inch or centimeter increments.

    • In order to find the true center of a circle, you must use a geometric compass and a straightedge.

    Advertisement

    Things You’ll Need

    • Pencil
    • Paper
    • Straightedge
    • Geometric compass
    • Grid paper

    References

    About This Article

    Article SummaryX

    To find the center of a circle, start by drawing a straight line between 2 points on the circle. Don’t worry about trying to draw the straight line so it’s in the center — anywhere on the circle will do. Then, draw a second straight line that’s parallel to the first line on the opposite side of the circle. Next, draw a diagonal line from the first end of the first line to the opposite end of the second line. Repeat with the other two ends so that you’ve drawn an “X.” The point where the lines intersect is the center of the circle! If you want to learn how to draw overlapping circles to find the center, keep reading the article!

    Did this summary help you?

    Thanks to all authors for creating a page that has been read 752,194 times.

    Reader Success Stories

    • Robert

      “I had a circular piece of wood that was a circular tabletop that I wanted to use for something else. I needed to…” more

    Did this article help you?

    Задачу можно решать многими способами. Например. Рассмотрим векторы образованные центром O(ox,oy) и точками A(ax,ay), B(bx,by). Их сумма по правилу паралеллограмма даст нам направление для биссеткрисы угла
    которая образована AOB. Уравнение биссектрисы будет известно.

    Решаем пересечение этой прямой с окружностью и получаем искомый центр дуги.

    Что в этой задаче плохо. В этой задаче – “ленивый” автор который не удосужился придумать названия для точек и заставил всех придумывать свои нелепые названия или писать словами.

    Что еще плохо. В этой задаче на самом деле не одна а две дуги. Но мы каким-то образом должны догадаться что речь идет о малой дуге. Об этом – тоже надо сообщать. Это раздражает.

    На будущее – оформляй задачи как в задачнике.

    (x – a) ** 2 + (y – b) ** 2 = R ** 2
    a, b координаты середины

    вычислить можно. но сложная формула. наброски: находим уравнение окружности (как система двух уравнений, радиус знаем). далее соединяем красные точки – хорда, середина хорды – среднее арифметическое координат. далее проводим диаметр перпендикулярно хорде. уравнение этой прямой находим по точке и коэффициенту k. находим точку пересечения этой прямой и окружности.
    угол вычислить проще. длина хорды и два радиуса – это равнобедренный треугольник. теорема косинусов

    Знаете 2 точки дуги – знаете длину хорды. Дальше надо на листке нарисовать окружность, хорду и серидинный перпендикуляр. Нарисовать несколько прямоугольных треугольников и найти длину куска от центра хорды до искомой середины. Пусть центр O, исходные точки A,B а искомая точка – M. Середина хорды С. OM = R. OС^2+CB^2=R^2, CM = OM-OC.

    Итого – длина искомого куска CM = R - sqrt(R^2-|AB|^2/4)

    Для нахождения координат M надо взять середину отрезка AB и отложить от нее перпендикулярный AB вектор длины по формуле выше.

    A – начало дуги, B – конец дуги, C – искомый центр.
    длина AC = длина BC = R (известно);
    длину AB вычисляем по теореме Пифагора;
    таким образом, имеем длины всех сторон треугольника ABC;
    по теореме синусов (и по сумме углов) вычисляем все углы треугольника;
    зная угол A, как угол пересечения прямых AB и AC, зная координаты точки A, а также зная уравнение прямой AB, легко построить уравнение прямой AC; остаётся отмерить вектор длиной R вдоль этой прямой, чтобы получить координаты точки C.

    Ещё один вариант – после вычисления всех углов перейти в полярную систему координат с центром A, сложить (с учётом знаков) угол A с коэффициентом наклона прямой AB и сразу получить полярные координаты точки C (ведь R известен); затем обратно перейти в декартову систему координат.

    Добавить комментарий