Как найти сидерический период планет

Синодическим периодом обращения(S) планеты называется промежуток времени
между ее двумя последовательными
одноименными конфигурациями.

Сидерическим или звездным периодом
обращения
(Т) планеты называется
промежуток времени, в течение которого
планета совершает один полный оборот
вокруг Солнца по своей орбите.

Сидерический период обращения Земли
называется звездным годом (Т).
Между этими тремя периодами можно
установить простую математическую
зависимость из следующих рассуждений.
Угловое перемещение по орбите за сутки
у планеты равно,
а у Земли.
Разность суточных угловых перемещений
планеты и Земли (или Земли и планеты)
есть видимое смещение планеты за сутки,
т.е..
Отсюда для нижних планет

(2.1)

для верхних планет

(2.2)

Эти равенства называются уравнениями
синодического движения.

Непосредственно из наблюдений могут
быть определены только синодические
периоды обращений планет S и сидерический
период обращения Земли, т.е. звездный
год Т. Сидерические же периоды
обращений планет Т вычисляются по
соответствующему уравнению синодического
движения.

Продолжительность звездного года равна
365,26… средних солнечных суток.

7.4. Законы Кеплера

Кеплер был сторонником учения Коперника
и поставил перед собой задачу
усовершенствовать его систему по
наблюдениям Марса, которые на протяжении
двадцати лет производил датский астроном
Тихо Браге (1546-1601) и в течение нескольких
лет — сам Кеплер.

Вначале Кеплер разделял традиционное
убеждение, что небесные тела могут
двигаться только по кругам, и поэтому
он потратил много времени на то, чтобы
подобрать для Марса круговую орбиту.

После многолетних и очень трудоемких
вычислений, отказавшись от общего
заблуждения о кругообразности движений,
Кеплер открыл три закона планетных
движений, которые в настоящее время
формулируются следующим образом:

1. Все планеты движутся по эллипсам, в
одном из фокусов которых (общем для всех
планет) находится Солнце.

2. Радиус-вектор планеты в равные
промежутки времени описывает равновеликие
площади.

3. Квадраты сидерических периодов
обращений планет вокруг Солнца
пропорциональны кубам больших полуосей
их эллиптических орбит.

Как известно, у эллипса сумма расстояний
от какой-либо его точки до двух неподвижных
точек f1и f2, лежащих на его
оси АП и называемых фокусами, есть
величина постоянная, равная большой
оси АП (рис. 27). Расстояние ПО (или ОA), где
О — центр эллипса, называется большой
полуосью,
а отношение— эксцентриситетом эллипса. Последний
характеризует отклонение эллипса от
окружности, у которой е = 0.

Орбиты планет мало отличаются от
окружностей, т.е. их эксцентриситеты
невелики. Наименьший эксцентриситет
имеет орбита Венеры (е = 0,007), наибольший
— орбита Плутона (е = 0,247). Эксцентриситет
земной орбиты
е = 0,017.

Согласно первому закону Кеплера Солнце
находится в одном из фокусов эллиптической
орбиты планеты. Пусть на рис. 27,а это
будет фокус f1(С — Солнце). Тогда
наиболее близкая к Солнцу точка орбиты
П называетсяперигелием, а наиболее
удаленная от Солнца точка A —афелием.
Большая ось орбиты АП называетсялинией
апси
д, а линия f2P, соединяющая
Солнце и планету Р на ее орбите, —радиусом-вектором планеты.

Расстояние планеты от Солнца в перигелии

q = а (1 — е), (2.3)

в афелии

Q = a (l + e). (2.4)

За среднее расстояние планеты от Солнца
принимается большая полуось орбиты

Согласно второму закону Кеплера площадь
СР1Р2, описанная радиусом-вектором
планеты за времяt
вблизи перигелия, равна площади СР3Р4, описанной им за то же времяt
вблизи афелия (рис. 27, б). Так как дуга
Р1Р2больше дуги Р3Р4, то, следовательно, планета вблизи
перигелия имеет скорость большую, чем
вблизи афелия. Иными словами, ее движение
вокруг Солнца неравномерно.

Скорость движения планеты в перигелии

(2.5)

в афелии

(2.6)

где vc— средняя или круговая
скорость планеты при r = а. Круговая
скорость Земли равна 29,78 км/сек = 29,8
км/сек.

Третий закон Кеплера записывается так:

(2.7)

где Т1и T2— сидерические
периоды обращений планет, а1и a2— большие полуоси их орбит.

Если большие полуоси орбит планет
выражать в единицах среднего расстояния
Земли от Солнца (в астрономических
единицах), а периоды обращений планет

в годах, то для Земли а =1 и Т = 1 и
период обращения вокруг Солнца любой
планеты

(2.8)

Соседние файлы в папке Лекции

  • #
  • #
  • #
  • #
  • #
  • #
  • #

Сидери́ческий пери́од обраще́ния (от лат. sidus «звезда»; род. падеж sideris) — промежуток времени, в течение которого какое-либо небесное тело-спутник совершает вокруг главного тела полный оборот относительно удалённых звёзд. Понятие «сидерический период обращения» применяется к обращающимся вокруг Земли телам — Луне (сидерический месяц) и искусственным спутникам, — а также к обращающимся вокруг Солнца планетам, кометам и др.

Сидерический период также называют годом — например, меркурианский год, юпитерианский год и т. п. При этом не следует забывать, что термин год может относиться к разным промежуткам времени. Так, не следует путать земной сидерический год (время одного оборота Земли вокруг Солнца) и год тропический (время, за которое происходит смена всех времён года): тропический год короче сидерического примерно на 20 минут (эта разница обусловлена, главным образом, прецессией земной оси)[1].

Связь со средней долготой[править | править код]

В теориях движения планет и других тел Солнечной системы с сидерическим периодом соотносится средняя гелиоцентрическая долгота[2] тела lambda , которая обычно выражается в виде ряда по степеням времени:

{displaystyle lambda (t)=lambda _{0}+lambda _{1}t+lambda _{2}t^{2}+lambda _{3}t^{3}+dots }

Время, как правило, выражается в юлианских столетиях или тысячелетиях (юлианское столетие равно 36 525 суткам, тысячелетие — 365 250 суткам). Например, для Земли (точнее, для барицентра системы Земля-Луна)[3]

{displaystyle lambda (t)} = 100,466 456 83° + 1 295 977 422,834 29′′ · t2,044 11′′ · t^{2}0,005 23′′ · {displaystyle t^{3}} + …,

где время t выражено в юлианских тысячелетиях и отсчитывается от эпохи J2000.0 (гринвичский полдень 1 января 2000 года).

Сидерический период по определению равен времени, за которое долгота увеличивается на 360°. Отсюда

{displaystyle T_{text{сид.}}={frac {360^{circ }}{dot {lambda }}},}

где {displaystyle {dot {lambda }}={frac {partial lambda }{partial t}}=lambda _{1}+2lambda _{2}t+3lambda _{3}t^{2}+dots } Таким образом, для малых t сидерический период обратно пропорционален коэффициенту lambda _{1}, который фактически представляет собой среднюю угловую скорость тела на гелиоцентрической орбите:

{displaystyle T_{text{сид.}}approx {frac {360^{circ }}{lambda _{1}}}} при {displaystyle tto 0.}

Сидерические периоды тел Солнечной системы[править | править код]

В таблицу включены сидерические периоды для всех планет, а также для Луны (период обращения вокруг Земли), астероидов главного пояса, карликовых планет и Седны. Под сутками в таблице подразумеваются сутки СИ (юлианские сутки), равные точно 86 400 секундам СИ, поскольку действительный период осевого вращения Земли относительно среднего Солнца (средние солнечные сутки) слегка отличается от этого значения и не постоянен (на 2000 год солнечные сутки отличались от юлианских на 0,002 секунды).

Планета Сидерический период
Меркурий 87,97 суток
Венера 224,7 суток
Земля 365,256 363 суток,
или 365 суток 6 часов 9 минут 9,8 секунды,
или 31 558 149,8 с
(1 сидерический год)[4][5]
Луна
(вокруг Земли)
27,322 суток
Марс 686,98 суток (1,88 года)
Пояс астероидов
(в среднем)
4,6 года
Юпитер 11,86 года
Сатурн 29,46 года
Уран 84,02 года
Нептун 164,78 года
Плутон 248,09 года
Хаумеа 285 лет
Макемаке 309,88 года
Эрида 557 лет
Седна 12 059 лет

Возмущения[править | править код]

Продолжительность среднего сидерического периода обращения постепенно изменяется со временем из-за гравитационных и негравитационных взаимодействий с другими телами. Однако эти изменения очень малы. Так, на эпоху J2000.0 средний сидерический период обращения Земли увеличивался примерно на 100 мкс в год (это значение может быть вычислено как {displaystyle {frac {partial T_{text{сид.}}}{partial t}}approx -360^{circ }cdot {frac {2lambda _{2}}{lambda _{1}^{2}}}}). Следует отметить, однако, что периодические возмущения со стороны других тел Солнечной системы, в основном Юпитера и Сатурна, накладываясь на среднее движение тела, значительно сильнее изменяют действительное время обращения по орбите, которое колеблется с небольшой амплитудой вокруг среднего значения (при этом средний сидерический период, как было сказано выше, подвергается монотонным вековым изменениям). Так, средняя долгота барицентра системы Земля-Луна возмущается периодическими колебаниями с амплитудой 7′′ (период 1783 года), 4′′ (период 0,55 года) и рядом других[3]. Отклонение в 4′′ эквивалентно расстоянию в 2900 км вдоль орбиты Земли, это расстояние Земля проходит за ≈100 секунд — таков характерный разброс действительного значения около среднего значения сидерического периода обращения Земли.

См. также[править | править код]

  • Период вращения
  • Синодический период

Примечания[править | править код]

  1. Климишин И. А. Календарь и хронология. — Изд. 3. — М.: Наука. Гл. ред. физ.-мат. лит., 1990. — С. 42—45. — 478 с. — 105 000 экз. — ISBN 5-02-014354-5.
  2. Определение «средняя» означает, что рассматривается не реальное (неравномерное из-за орбитального эксцентриситета) движение планеты, а равномерное движение фиктивной точки. Планета в ходе движения по орбите то отстаёт от этой точки по долготе, то обгоняет её, однако их долго́ты совпадают в моменты прохождения нулевой долготы́.
  3. 1 2 Simon J. L. et al. Numerical expressions for precession formulae and mean elements for the Moon and the planets (англ.) // Astronomy and Astrophysics. — 1994. — Vol. 282. — P. 663—683. — Bibcode: 1994A&A…282..663S.
  4. Astronomical Almanac for the Year 2019 (англ.) / Government Publishing Office. — USA: Government Printing Office, 2018. — P. C2. — 628 p. — ISBN 9780707741925. — ISBN 0707741920.
  5. Аллен К. У. Астрофизические величины. — Москва: Мир, 1977. — 279 с. Архивная копия от 16 апреля 2018 на Wayback Machine Архивированная копия. Дата обращения: 15 апреля 2018. Архивировано 16 апреля 2018 года.

“Небесная механика”, как было принято называть науку о звездах во времена Исаака Ньютона, подчиняется классическим законам движения тел. Одними из важных характеристик этого движения являются различные периоды обращения космических объектов по своим орбитам. В статье пойдет речь о сидерическом и синодическом периодах обращения звезд, планет и их естественных спутников.

Понятие о синодическом и сидерическом временных периодах

Элиптическая орбита

Практически каждый из нас знает, что планеты движутся по эллиптическим орбитам вокруг своих звезд. Звезды, в свою очередь, совершают орбитальные движения вокруг друг друга или вокруг центра Галактики. Иными словами, все массивные объекты космоса имеют определенные траектории движения, включая кометы и астероиды.

Важной характеристикой для всякого космического объекта является время, которое он затрачивает, чтобы совершить один полный оборот по своей траектории. Это время принято называть периодом. Чаще всего в астрономии при изучении Солнечной системы пользуются двумя периодами: синодическим и сидерическим.

Сидерический временной период – это время, которое требуется объекту, чтобы он совершил полный оборот по своей орбите вокруг своей звезды, при этом за точку отчета берется другая удаленная звезда. Этот период также называют реальным, поскольку именно такое значение времени обращения по орбите получит неподвижный наблюдатель, который будет следить за процессом вращения объекта вокруг его звезды.

Синодический период – это время, через которое объект появится в одной и той же точке на небосводе, если смотреть на него с какой-либо планеты. Например, если взять Луну, Землю и Солнце и задаться вопросом о том, через какое время Луна будет находиться в точке на небе, в которой она находится в данный момент, ответом на него будет значение синодического периода Луны. Этот период также называют кажущимся, поскольку от реального орбитального периода он отличается.

Главное отличие между сидерическим и синодическим периодами

Солнечная система

Как уже было сказано, сидерический – это реальный период обращения, а синодический – это кажущийся, однако в чем же главная разница между этими понятиями?

Вся разница заключается в количестве объектов, относительно которых измеряется временная характеристика. Понятие “сидерический период” принимает во внимание всего один относительный объект, например, Марс вращается вокруг Солнца, то есть движение рассматривается только относительно одной звезды. Синодический же временной период – это характеристика, которая учитывает относительное положение двух и более объектов, например, два одинаковых положения Юпитера относительно земного наблюдателя. То есть здесь необходимо учитывать положение Юпитера не только относительно Солнца, но и относительно Земли, которая также вращается вокруг Солнца.

Формула расчета сидерического периода

Орбита Земли

Для определения реального периода обращения планеты вокруг своей звезды или естественного спутника вокруг своей планеты, необходимо воспользоваться третьим законом Кеплера, который устанавливает взаимосвязь между реальным орбитальным периодом объекта и полудлиной его большой оси. В общем случае форма орбиты любого космического тела представляет собой эллипс.

Формула для определения сидерического периода имеет вид: T = 2*pi*√(a3/(G*M)), где pi = 3,14 – число пи, a – полудлина большой оси эллипса, G = 6,674*10-11 м3/(кг*с2) – универсальная гравитационная постоянная, M – масса объекта, вокруг которого осуществляется вращение.

Таким образом, зная параметры орбиты любого объекта, а также массу звезды, можно легко вычислить значение реального периода обращения этого объекта по своей орбите.

Расчет синодического временного периода

Как вычислить? Синодический период планеты или ее естественного спутника можно рассчитать, если знать значение реального ее периода обращения вокруг рассматриваемого объекта и реального периода обращения этого объекта вокруг своей звезды.

Формула, которая позволяет провести подобный расчет, имеет вид: 1/P = 1/T ± 1/S, здесь P – реальный период обращения рассматриваемого объекта, T – реальный период обращения объекта, относительно которого рассматривается движение, вокруг своей звезды, S – неизвестный синодический временной период.

Знаком “±” в формуле следует пользоваться так: если T > S, тогда формула используется со знаком “+”, если же T < S, тогда нужно подставить знак “-“.

Использование формулы на примере Луны

Луна и Земля

Чтобы показать, как правильно пользоваться приведенным выражением, возьмем для примера вращение Луны вокруг Земли и синодический период обращения Луны рассчитаем.

Известно, что наша планета имеет реальный период обращения по орбите вокруг Солнца, равный T = 365,256363 дней. В свою очередь, из наблюдений можно установить, что на небосводе Луна появляется в рассматриваемой точке через каждые S = 29,530556 дня, то есть это ее синодический период. Поскольку S < T, то формулу, связывающую разные периоды, следует брать со знаком “+”, получаем: 1/P = 1/365,256363 + 1/29,530556 = 0,0366, откуда P = 27,3216 дней. Как можно видеть, Луна на 2 дня быстрее совершает свой оборот вокруг Земли, чем земной наблюдатель снова может ее увидеть в отмеченном месте на небосводе.

Сидерический и синодический периоды обращения объектов по своим орбитам

“Небесная механика”, как было принято называть науку о звездах во времена Исаака Ньютона, подчиняется классическим законам движения тел. Одними из важных характеристик этого движения являются различные периоды обращения космических объектов по своим орбитам. В статье пойдет речь о сидерическом и синодическом периодах обращения звезд, планет и их естественных спутников.

Понятие о синодическом и сидерическом временных периодах

Практически каждый из нас знает, что планеты движутся по эллиптическим орбитам вокруг своих звезд. Звезды, в свою очередь, совершают орбитальные движения вокруг друг друга или вокруг центра Галактики. Иными словами, все массивные объекты космоса имеют определенные траектории движения, включая кометы и астероиды.

Важной характеристикой для всякого космического объекта является время, которое он затрачивает, чтобы совершить один полный оборот по своей траектории. Это время принято называть периодом. Чаще всего в астрономии при изучении Солнечной системы пользуются двумя периодами: синодическим и сидерическим.

Сидерический временной период – это время, которое требуется объекту, чтобы он совершил полный оборот по своей орбите вокруг своей звезды, при этом за точку отчета берется другая удаленная звезда. Этот период также называют реальным, поскольку именно такое значение времени обращения по орбите получит неподвижный наблюдатель, который будет следить за процессом вращения объекта вокруг его звезды.

Синодический период – это время, через которое объект появится в одной и той же точке на небосводе, если смотреть на него с какой-либо планеты. Например, если взять Луну, Землю и Солнце и задаться вопросом о том, через какое время Луна будет находиться в точке на небе, в которой она находится в данный момент, ответом на него будет значение синодического периода Луны. Этот период также называют кажущимся, поскольку от реального орбитального периода он отличается.

Главное отличие между сидерическим и синодическим периодами

Как уже было сказано, сидерический – это реальный период обращения, а синодический – это кажущийся, однако в чем же главная разница между этими понятиями?

Вся разница заключается в количестве объектов, относительно которых измеряется временная характеристика. Понятие “сидерический период” принимает во внимание всего один относительный объект, например, Марс вращается вокруг Солнца, то есть движение рассматривается только относительно одной звезды. Синодический же временной период – это характеристика, которая учитывает относительное положение двух и более объектов, например, два одинаковых положения Юпитера относительно земного наблюдателя. То есть здесь необходимо учитывать положение Юпитера не только относительно Солнца, но и относительно Земли, которая также вращается вокруг Солнца.

Формула расчета сидерического периода

Для определения реального периода обращения планеты вокруг своей звезды или естественного спутника вокруг своей планеты, необходимо воспользоваться третьим законом Кеплера, который устанавливает взаимосвязь между реальным орбитальным периодом объекта и полудлиной его большой оси. В общем случае форма орбиты любого космического тела представляет собой эллипс.

Формула для определения сидерического периода имеет вид: T = 2*pi*√(a3/(G*M)), где pi = 3,14 – число пи, a – полудлина большой оси эллипса, G = 6,674*10-11 м3/(кг*с2) – универсальная гравитационная постоянная, M – масса объекта, вокруг которого осуществляется вращение.

Таким образом, зная параметры орбиты любого объекта, а также массу звезды, можно легко вычислить значение реального периода обращения этого объекта по своей орбите.

Расчет синодического временного периода

Как вычислить? Синодический период планеты или ее естественного спутника можно рассчитать, если знать значение реального ее периода обращения вокруг рассматриваемого объекта и реального периода обращения этого объекта вокруг своей звезды.

Формула, которая позволяет провести подобный расчет, имеет вид: 1/P = 1/T ± 1/S, здесь P – реальный период обращения рассматриваемого объекта, T – реальный период обращения объекта, относительно которого рассматривается движение, вокруг своей звезды, S – неизвестный синодический временной период.

Знаком “±” в формуле следует пользоваться так: если T > S, тогда формула используется со знаком “+”, если же T 19 августа, 2018

Уравнение сидерического периода для внутренних планет

§ 11. К онфигурация планет. С инодический период

1. Конфигурация планет и условия их видимости

У словия видимости планет Подробные сведения о положении планет и условиях их видимости даются в «Школьном астрономическом календаре» на каждый учебный год. Эту информацию можно найти и в Интернете. меняются по-разному: если Меркурий и Венеру можно видеть только утром или вечером, то остальные — Марс, Юпитер и Сатурн — бывают видны также и ночью. По временам одна или несколько планет могут быть вовсе не видны, поскольку они располагаются на небе поблизости от Солнца. В этом случае говорят, что планета находится в соединении с Солнцем. Если же планета располагается на небе вблизи точки, диаметрально противоположной Солнцу, то она находится в противостоянии . В этом случае планета появляется над горизонтом в то время, когда Солнце заходит, а заходит она одновременно с восходом Солнца. Следовательно, всю ночь планета находится над горизонтом.

Соединение и противостояние, а также другие характерные расположения планеты относительно Солнца называются конфигурациями . Внутренние планеты (Меркурий и Венера), которые всегда находятся внутри земной орбиты, и внешние, которые движутся вне её (все остальные планеты), меняют свои конфигурации по-разному. Названия различных конфигураций внутренних и внешних планет, которые характеризуют расположение планеты относительно Солнца на небе, приведены в таблице и на рисунке 3.4.

Рис. 3.4. Конфигурации внутренней и внешней планеты

Конфигурации планет, расстояния до тел и их размеры

УРОК 7. КОНФИГУРАЦИИ ПЛАНЕТ,

РАССТОЯНИЯ ДО ТЕЛ И ИХ РАЗМЕРЫ.

1. Основные конфигурации нижних и верхних планет.

2. Сидерический и синодический периоды планет.

3. Определение размеров Земли

4. Определение расстояний до тел.

5. Определение размеров тел.

1. Основные конфигурации внутренних и внешних планет.

Сложное видимое движение планет на небесной сфере обусловлено обращением планет Солнечной системы вокруг Солнца. Само слово “планета” в переводе с древнегреческого означает “блуждающая” или “бродяга”. Траектория движения небесного тела называется его орбитой.

По отношению к орбите Земли планеты разделяются на внутренние (нижние) – Меркурий, Венера, их орбиты расположены внутри земной орбиты, и внешние (верхние) – Марс, Юпитер, Сатурн, Уран, Нептун их орбиты расположены вне орбиты Земли. Внешние планеты всегда повернуты к Земле стороной, освещаемой Солнцем. Внутренние планеты меняют свои фазы подобно Луне. Плоскости орбит всех планет Солнечной системы лежат вблизи плоскости эклиптики, отклоняясь от нее менее, чем на 7°. Скорости движения планет по орбитам различны и убывают с удалением планет от Солнца. Земля движется медленнее Меркурия и Венеры, но быстрее всех остальных планет. Из-за различия скоростей движения планет в определенные моменты времени возникают различные взаимные расположения Солнца и планет.

Особые, геометрически правильные, взаимные расположения Солнца, Земли и планет называются конфигурациями. Одинаковые конфигурации планет происходят в разных точках их орбит, напротив разных созвездий, в разное время года. Конфигурации, которые создаются нижними и верхними планетами различны.

У нижних планет это соединения V1 и V3 (верхнее и нижнее) и элонгации V2 и V4 (восточная и западная). У верхних планет это – квадратуры M2 и М4 (восточная и западная), соединение M1 и противостояние M3.

Что же стоит за этими страшными названиями. Соединения – это расположение Солнца, Земли и планеты на одной прямой, при этом планета находится либо между Солнцем и Землей (нижнее соединение), либо прячется от Земли за Солнцем (верхнее соединение). Единственной конфигурацией, в которой может находиться любая, и нижняя, и верхняя планета, является верхнее соединение, при этом планету естественно нельзя наблюдать. Нижнее соединение присуще только нижним планетам, при этом, хотя и достаточно редко, мы можем наблюдать прохождение Меркурия и Венеры ( в виде черного кружка) на фоне диска Солнца.

Видимое движение нижних планет напоминает колебательное движение около Солнца. Максимальное угловое удаление нижних планет от Солнца называется элонгацией. В случае элонгации Земля планета и Солнце образуют прямоугольный треугольник, при этом в вершине прямого угла находится планета. Наибольшая элонгация Меркурия – 28˚, Венеры – 48˚. С Земли в это время видно не все освещенное Солнцем полушарие планеты, а только его часть, называемая фазой. При восточной элонгации планета видна на западе вскоре после захода Солнца, при западной – на востоке незадолго перед восходом Солнца.

Наиболее удобный момент наблюдения верхних планет – это противостояние. Все три небесных тела, как и при соединении, находятся на одной линии, но Земля в этом случае расположена между Солнцем и планетой и все полушарие планеты освещено Солнцем. Внешняя планета может находиться на любом угловом расстоянии от Солнца от 0˚ до 180˚. Когда угловое расстояние между Солнцем и верхней планетой составляет 90˚, то говорят, что планета находится в квадратуре ( квадратура – угловая четверть круга), соответственно в восточной или западной, как и при элонгации. В этом случае Земля, Солнце и планета так же образуют прямоугольный треугольник, но в вершине прямого угла находится Земля.

Система Земля – Луна – Солнце особая, в ней имеется нижнее соединение, как у внутренних планет, при этом происходит новолуние (Луна между Солнцем и Землей), и противостояние, как у внешних планет, во время полнолуния.

2. Сидерический и синодический периоды планет.

Промежуток времени, в течение которого планета совершает полный оборот вокруг Солнца по орбите, называется сидерическим (или звездным) периодом обращения планеты (Т), а промежуток времени между двумя одинаковыми конфигурациями планеты – синодическим периодом (S). Планеты движутся вокруг Солнца в одном направлении, и каждая из них через промежуток времени, равный ее сидерическому периоду, совершает один полный оборот вокруг Солнца. Пусть планеты находились в определенной конфигурации. За промежуток времени равный сидерическому периоду Земли любая нижняя планета сделает больше одного оборота вокруг Солнца и обгонит Землю, а любая верхняя – меньше полного оборота, и отстанет от Земли. Следовательно, через земной год конфигурация планет не повторится, т. е. синодический период не равен сидерическому. Однако между периодами существует зависимость, которую легко установить. Эта зависимость называется уравнением синодического движения.

Составим уравнение для нижней планеты. За земные сутки планета смещается на угол где Т – сидерический период планеты, а Земля на угол , где – сидерический период Земли. Разность этих углов даст угол опережения α, , на который нижняя планета за сутки опередит Землю. Когда за S суток накопится опережение в 360º (α·S=360º) конфигурация планет повторится. S – в данном случае – синодический период. Окончательно уравнение для нижней планеты выглядит так:

или или

Поскольку верхние планеты движутся медленнее, чем Земля, то для них уравнение принимает вид: или или

Задача. Определите период обращения Марса вокруг Солнца, зная, что противостояния Марса происходят каждые 780 суток?

;

3. Определение размеров Земли.

Представление о Земле как о шаре, который свободно без всякой опоры висит в пространстве, безусловно, является одним из величайших достижений науки древнего мира. И первое точное определение земных размеров было сделано Эратосфеном из Египта. Проделанный им эксперимент относится к одному из десяти самых красивых физических экспериментов, придуманных человечеством. Он решил измерить длину небольшой дуги земного меридиана не в градусах, а в единицах длины, и далее определить, какую часть в градусах полной окружности она составляет. Зная часть, найти длину всей окружности. Затем по длине окружности определить величину радиуса, который и является радиусом земного шара.

Очевидно, что длина дуги меридиана в градусах равна разности географических широт двух пунктов, находящихся на одном меридиане: Δφ=φв – φА. Для того чтобы определить эту разность, Эратосфен сравнил высоту Солнца в кульминации в один и тот же день в пунктах А и В ( Александрия и Асуан). В Асуане в этот день Солнце освещало дно самых глубоких колодцев, т. е. было в зените, а в Александрии отстояло от зенита на 7,2˚, Из простых геометрических построений следовало, разность широт этих городов Δφ=7,2˚. В древних единицах измерения расстояние между Александрией и Асуаном составляло 5000 греческих стадий, современное – 800 км. Обозначив длину меридиана Земли через L, имеем следующую пропорцию: откуда получаем длину меридиана равную 40000 км. Зная длину окружности, легко находим радиус Земли – 6366 км, что отличается от среднего радиуса всего на 5 км.

В какой степени форма Земли отличается от шара, выяснилось только в конце XVIII века в результате работы двух экспедиций в Южной Америке в Перу и в Скандинавии вблизи Северного полярного круга. Измерения показали, что длина в 1˚ дуги меридиана на севере и на юге больше, чем на экваторе. Это означало, что Земля сплюснута у полюсов. Ее полярный радиус на 21 км короче экваториального. Это означает, что сечение Земли по меридиану будет не окружностью, а эллипсом, у которого большая ось проходит в плоскости экватора, а малая совпадает с осью вращения Земли. И уже в ХХ веке выяснилось, что земной экватор также нельзя считать окружностью. Его сплюснутость в 100 раз меньше сплюснутости меридиана, но она все же существует. Точнее всего форму нашей планеты передает фигура, называемая эллипсоидом, у которого любое сечение плоскостью, проходящей через центр Земли, не является окружностью.

4. Определение расстояний до тел.

Определить географическую широту двух пунктов оказывается гораздо проще, чем измерить расстояние между ними, чему могут мешать естественные препятствия. Поэтому используется способ, основанный на явлении параллактического смещения. Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя. Сначала точно вычисляют длину удобно расположенного отрезка ВС, называемого базисом и двух углов В и С в треугольнике АВС. Далее по теореме синусов легко находятся значения АС и АВ. Аналогичным методом пользуются и при определении расстояния до небесных тел. Измерить расстояние от Земли до Солнца впервые удалось лишь в XVIII веке, когда был определен горизонтальный параллакс Солнца. Горизонтальным параллаксом (р) называется угол, под которым со светила, находящегося на горизонте, виден радиус Земли, перпендикулярный лучу зрения. По сути дела, при этом измеряется параллактическое смещение объекта, находящегося за пределами Земли, а базисом является радиус Земли. Единственное отличие в том, что треугольник строится прямоугольный, что упрощает вычисления.

Из треугольника OAS можно выразить величину расстояния SО=D: где RÅ – радиус Земли. Конечно, со светила никто не наблюдает радиус Земли, а горизонтальный параллакс определяют по измерениям высоты светила в момент верхней кульминации из двух точек Земли, находящихся на одном меридиане и имеющих известные широты, по аналогии с методом Эратосфена. Очевидно, что чем дальше расположен объект, тем меньше его параллакс. Наибольшее значение имеет параллакс Луны (рƒ =57΄02΄΄), параллакс Солнца р=8,79′′. Такому значению параллакса соответствует расстояние до Солнца равное км. Это расстояние принимается за одну астрономическую единицу (1а. е.) и используется при измерении расстояний между телами Солнечной системы.

Для малых углов sinpp, при этом р выражен в радианах. Если р выразить в секундах, то формула примет вид: Å, так как в одном радиане 206265′′.

Методом горизонтального параллакса определяли расстояние до объектов вплоть до второй половине 20 века, когда появились новые методы определения расстояний в Солнечной системе – радиолокация и лазерная локация. С помощью этих методов были уточнены расстояния до многих тел с точностью до километра, а лазерная локация Луны позволяет определять расстояния с точностью до сантиметров.

Задача. На каком расстоянии от Земли находится Сатурн, когда его параллакс равен 0,9’’?

5. Определение размеров тел.

Зная расстояние до светила D, можно определить его линейные размеры, если измерить угловой радиус ρ. Угловой радиус это угол, под которым с Земли виден радиус тела. , Подставляя D имеем:Å, а так как углы ρ и р0 малы, то Если расстояние D известно, то , где ρ измеряется в секундах.

Задача. Чему равен диаметр Луны, если она видна с расстояния 400000 км под углом 30′? Переводим 30′ в 1800″. Dƒ =D·ρ= .

Д. з. §7. п.2,3. задачи 8,9 стр.35, § 11. задачи 1, 5, 6 стр.52.

Вопросы экспресс опроса

1. Можно ли наблюдать Меркурий по вечерам на востоке?

2. Что такое соединение?

3. Можно ли наблюдать Венеру утром на востоке, а вечером на западе?

4.Угловое расстояние планеты от Солнца равно 55°.Какая это планета, верх или ниж?

5. Что такое конфигурация?

6. Какие планеты могут пройти на фоне диска Солнца?

7. Во время каких конфигураций хорошо видны нижние планеты?

8. Во время каких конфигураций хорошо видны верхние планеты?

9. Что такое сидерический период планеты?

10. Что такое синодический период?

11. Что такое горизонтальный параллакс?

12. Что называется параллактическим смещением?

13. Когда верхняя планета находится в квадратуре?

14. Что такое элонгация?

15. При каком соединении можно наблюдать внутреннюю планету?

[spoiler title=”источники:”]

http://reader.lecta.rosuchebnik.ru/demo/7934-65/data/chapters/Chapter11/index.xhtml

http://pandia.ru/text/77/481/17199.php

[/spoiler]

Все вы хорошо знаете, что в нашей Солнечной системе, помимо
Земли, принято выделять ещё 7 больших планет: Меркурий, Венеру, Марс, Юпитер,
Сатурн, Уран и Нептун.

Все они, как и наша планета, обращаются вокруг центрального
тела нашей системы — Солнца. Все планеты Солнечной системы принято разделять на
нижние и верхние.

Нижними называются планеты, орбиты которых расположены
ближе к Солнцу, чем орбита Земли (это Меркурий и Венера).

Следовательно, если орбита планеты будет находиться за
орбитой Земли, то она будет называться верхней (это Марс, Юпитер,
Сатурн, Уран и Нептун).

Конечно же из-за разной удалённости от Солнца, а также
различной орбитальной скорости, условия видимости всех планет с Земли меняются
по-разному. Поэтому принято выделять некоторые характерные взаимные
расположения планет, Земли и Солнца, которые называются конфигурациями.

Ясно, что условия видимости планеты в той или иной
конфигурации зависят от её расположения по отношению к Солнцу, которое освещает
планету, и Земли, с которой мы эту планету наблюдаем.

В связи с этим, например, для нижних планет выделяют верхние
и нижние соединения, а также элонгации.

Соединением называется расположение небесных тел, при
котором имеет место совпадение их долгот (обычно планет или планеты и Солнца),
с точки зрения земного наблюдателя.

В нижнем соединении планета находится ближе всего к Земле. А
в верхнем — наиболее удалена от неё.

При соединениях, как правило, планеты не видны, поскольку они
прячутся либо за Солнцем, либо в его лучах.

Элонгацией называется такое положение планеты, при
котором для земного наблюдателя её угловое расстояние от Солнца максимально.

Из-за того, что орбиты планет не являются круговыми, наибольшие
элонгации не имеют постоянного значения. Так у Венеры они колеблются в пределах
от 45о до 48о градусов. А у Меркурия всего от 18о
градусов до 28°. Так как Меркурий и Венера не отходят далеко от Солнца, то ночью
они не видны.

При этом продолжительность их утренней или вечерней видимости
не превышает четырёх часов для Венеры и полутора часов для Меркурия. Иногда Меркурий
и вовсе не виден, так как его время восхода и захода приходится на светлое
время суток.

Также принято различать восточную и западную элонгации.
В восточной элонгации планету можно наблюдать на небе вечером после захода
Солнца, а в западной — утром перед восходом Солнца.

Что касается верхних планет, то для них конфигурация
несколько иная. Так, например, если планета находится вблизи точки,
диаметрально противоположной Солнцу, то такая конфигурация называется противостоянием.

Это наиболее благоприятное время для наблюдения планеты, так
как она располагается ближе всего к Земле и повёрнута к ней своей освещённой стороной.
При этом её верхняя кульминация часто происходит около полуночи.

В верхнем соединении планета наиболее удалена от Земли
и наблюдать её в это время невозможно, так как она теряется в лучах нашей
звезды.

Внешняя планета может находиться на любом угловом расстоянии
от Солнца (в пределах 0—180о). Но если угол между направлениями с
Земли на верхнюю планету и на Солнце составляет 90°, то говорят, что планета
находится в квадратуре.

Как и в случае с элонгацией, принято различать западную
и восточную квадратуры.

В западной квадратуре восход планеты происходит где-то около
полуночи. Соответственно в восточной квадратуре около полуночи планета заходит.

Конечно же из-за обращения всех планет вокруг Солнца их
конфигурации периодически повторяются. А промежуток времени между двумя
последовательными одноименными конфигурациями планеты (например, верхними
соединениями) называется её синодическим периодом. Проще говоря, это
промежуток времени, по истечении которого планета (или другое тело Солнечной
системы) для наблюдателя с Земли возвращается в прежнее положение относительно
Солнца.

Синодические периоды планет были рассчитаны ещё в глубокой
древности, когда считалось, что все тела обращаются вокруг Земли. Однако мы уже
знаем, что Земля не является неподвижным телом, а вместе с остальными планетами
движется вокруг Солнца. Так вот, промежуток времени, в течение которого планета
совершает один полный оборот вокруг Солнца по орбите относительно звёзд,
называется звёздным или сидерическим периодом обращения планеты.

Часто, для простоты, сидерический период называют годом.
К примеру, Земной год, Меркурианский год, Юпитерианский год и так далее.

Сидерический период обращения планеты вокруг Солнца с
движущейся Земли определить невозможно, так как к его окончанию Земля успевает
сместиться в новую точку пространства, и проекция планеты на фон неподвижных
звёзд также оказывается смещённой. Получится, что планета может не дойти либо
перейти ту точку среди звёзд, откуда было замечено начало её движения. Но между
синодическим (то есть видимым) и сидерическим (то есть истинным) периодами
планет существует взаимосвязь. Установим её.

Уравнение синодического движения верхних планет можно
получить аналогичными рассуждениями. Единственное отличие состоит в том, что их
сидерический период обращения больше сидерического периода Земли. Поэтому для
верхних планет уже Земля, забега вперёд, совершает один оборот вокруг Солнца и
догоняет планету.

Полученные нами два уравнения дают средние значения
синодических периодов обращения планет. Не трудно увидеть, что, зная
синодический период планеты, можно определить и её звёздный период обращения
вокруг Солнца.

 Для примера давайте определим звёздный период Меркурия, если
известно, что его нижние соединения повторяются через 116 суток.

Добавить комментарий