Как найти силу а термодинамика

Физическая дисциплина «Термодинамика», имеющая дословный перевод с греческого как θέρμη — «тепло», δύναμις — «сила», занимается изучением общих характеристик макросистем и обращения энергии внутри них. Эту науку относят к феноменологическому типу, хотя опирается она на факты, полученные опытным путем.

Термодинамическая система, рассматриваемая в данном ракурсе, имеет конкретные характеристики, не применимые к единичным атомам и молекулам. К ним относят температуру, энергию, объем, концентрацию растворов, давление.

Определение таких параметров происходит по формулам термодинамики.

Основные формулы

Источник: en.ppt-online.org

Основные формулы термодинамики

Особенностью термодинамики является то, что ее постулаты не касаются взаимодействия отдельных единиц (атомов, молекул), как в молекулярной физике. Предметом изучения предстают общие взаимопревращения энергии, образование теплоты, теплопередача и совершение работы.

Исходя из этого, выделяют основные формулы термодинамики, к которым относятся:

  1. Уравнение Менделеева-Клайперона: (PV=(m/M)*RT). Его смысл — в изменениях трех входящих величин, которые направлены на характеристику состояния идеального газа.
  2. Количество вещества, обозначаемое буквой (ν). (nu=N/NA=m/mu)

    Величина, выражающая, сколько одинаковых структурных компонентов (единиц) находится в веществе.

  3. Закон Дальтона: давление смеси газов на стенку сосуда равно сумме давлений каждого входящего в смесь элемента: (p=p1+p2+…pn.)
  4. Главное уравнение МКТ (молекулярно-кинетической теории): (p=2n/3<varepsilon>n=N/V). Выражает математическое соотношение таких параметров, как давление газа и микропараметров: массы молекул, их скорости движения, концентрации.
  5. Средняя кинетическая энергия поступательного движения молекулы газа. Для обозначения применяется (E_k),  выражается через формулу: (E_k=E_{моля}/NA=3/2ast RT/NA). Ее мерой является абсолютная температура идеального газа, поскольку потенциальная энергия (вследствие взаимодействия молекул друг с другом) равна нулю. Зная, что R/NA=k, получается формула: (E_k=3/2ast kT).
  6. Давление идеального газа прямо пропорционально концентрации и его температуре: (P=nkT.)
  7. Скорость молекул определяется по формулам:
    (V=surd(2kT/m_o)=surd(2RT/mu)) — наиболее вероятная;
    (<V>=surd(8kT/pi m_o)=surd(8RT/pimu)) — среднеарифметическая;
    (<Vкв>surd(3kT/m_o)=surd(3RT/mu)) — средняя квадратичная.
  8. Сумма кинетических энергий всех молекул определяет внутреннюю энергию всего идеального газа. Математически выражение выглядит так: (U=i/2ast(m/mu)ast RT.)
  9. Формула для определения работы, которую совершает идеальный газ при расширении:( A=P(V_2-V_1).)
  10. Формула первого закона термодинамики: (Q=Delta U+A.)
  11. Для определения удельной теплоемкости вещества применяется математическое выражение: (С=Delta Q/mdT.)
  12. Кроме удельной теплоемкости, существует понятие молярной теплоемкости. Для ее определения применяется формула: (C=cmu). Для изохорного процесса правильная формула принимает вид: (C_v=1/2ast R), для изобарного: (C_p=((i+2)/2)ast R).

Первое начало термодинамики

Согласно первому закону термодинамики, (Q) (количество внутренней теплоты), которое получил газ извне, расходуется на совершение работы (А) и изменение внутренней энергии (U). Формула закона: (Q=Delta U+A).

Первый закон термодинамики

Источник: obrazovaka.ru

На практике газ может быть нагрет либо охлажден. Однако в данном случае рассматривается изотермический процесс, в котором один из характеризующих параметров остается неизменным.

Если процесс изотермичен, в химии включается закон Бойля-Мариота. В нем говорится, что давление газа соотносится к изначальному объему, при стабильной температуре, обратно пропорционально.

(Q=A)

Когда процесс происходит при неизменном объеме, говорят об изохорности. Здесь вступает в действие закон Шарля. В обозначенных условиях то тепло, которое поступило к газу, расходуется на изменение внутренней энергии. Другими словами, (P) пропорционально (T).

(Q=Delta U)

Протекание процессов в идеальном газе при неизменном давлении носит характер изобарного. Здесь действует закон Гей-Люссака, который выражается уравнением:

(Q=Delta U=pDelta V)

Полная формулировка закона гласит: полученное тепло при изобарном процессе расходуется на совершение работы газом, а также изменяет его внутреннюю энергию.

Часть процессов происходят изолированно от внешней среды. Газ не получает дополнительной энергии. Такая ситуация носит название адиабатной и математически записывается: (Q=0). Работа (А) в таком случае выражается: (A=-Delta U.)

Уравнение идеального газа в термодинамике

Молекулы идеального газа постоянно движутся. От того насколько велика скорость их движения, зависит общее состояние газа, а также величина его воздействия, например, на стенки сосуда. Поэтому одним из основных уравнений термодинамики является Клайперона-Менделеева:

(PV=(m/M)ast RT)

В уравнении (m) — единица массы газа, (M) — его молекулярная масса, (R) — универсальная величина, называемая газовой постоянной. Ее значение = 8,3144598. Измеряется в Дж/(моль*кг).

В основе термодинамики лежат и другие газовые постоянные, например, число Авогадро, постоянная Больцмана. Таким образом, (R=kNA.)

Из уравнения Клайперона-Менделеева можно также вычислить массу. Она будет равна произведению плотности на объем: (m=rho V).

Основное уравнение молекулярно-кинетической теории (МКТ)

Решение части задач зависит от знания особенностей взаимосвязи между давлением газа и характеристикой кинетической энергии его молекул. Математическое выражение такой зависимости носит название основного уравнения МКТ:

(p=2/3ast nE)

В данном выражении кинетическая энергия обозначена буквой (Е), а концентрация молекул — (n). Каждую из этих величин физики можно найти исходя из соответствующих формул, после чего уравнение для молекулярно-кинетической теории (МКТ) приобретает вид:

(p=nkT)

Куб

Источник: encrypted-tbn0.gstatic.com

Формула теплоемкости и главная формула КПД в термодинамике

Когда теплообмен проявляется передачей телу определенного количества теплоты, его энергия, как и температура, меняются.

То количество теплоты, обозначаемое (Q), которое понадобится для того, чтобы 1 кг определенного вещества нагреется на 1 К, носит определение теплоемкости вещества и обозначается с.

Математическое выражение относительно переданного количества теплоты выглядит формулой:

(Q=cm(t_2-t_1)=cmDelta t)

Измеряется величина в Дж/(кг∙К).

При t2⟩t1, количество теплоты со знаком плюс, следовательно, вещество нагревается. Если наоборот, то Q — со знаком минус, и вещество остывает.

В физике, характеризуя свойства вещества, говорят о его теплоемкости. Это имеет значение, например, при выборе стройматериалов или сырья для изготовления нагревательных приборов. Теплоемкость равна произведению массы на удельную теплоемкость данного тела:

(C=cm)

Учитывая, что в величине теплоемкости уже отражена масса, то сокращенная формула для определения (Q) выглядит так:

 (Q=C(t_2-t_1))

С другой стороны, то количество теплоты, которое отдает источник, можно высчитать по формуле: 

(Q=Pt.)

В выражении буквой (P) обозначается мощность нагревателя, а (t) — время их контакта.

Конструкция, состоящая из нагревателя, тела-реципиента теплоты и охладителя, носит название тепловой машины. В качестве примера рассматривается двигатель внутреннего сгорания. Как и любой механизм, она имеет такую характеристику, как КПД — коэффициент полезного действия. Для его расчета применяется формула:

(eta=(Q_н-Q_x)/Q_н)

Внутренняя энергия одноатомного и двухатомного идеального газа

Характерной особенностью идеального газа является отсутствие у его составляющих частей потенциальной энергии. Вся внутренняя энергия — это сумма кинетических энергий всех молекул. Она является величиной, прямо пропорциональной температуре идеального газа:

(mw2/2=alpha T)

В этом уравнении:

(alpha T=3Rmu/2Nmu)

Исходя из приведенных формул, величина кинетической энергии поступательного движения идеального газа должна определяться исходя из выражения:

(mv2/2=(3Rmu/2Nmu)ast T)

Поступательное движение характеризуется тремя степенями свободы. На каждую из них приходится одна треть общей кинетической энергии.

Внутренняя энергия газа

Источник: cf.ppt-online.org

Двух- и более атомные молекулы газа характеризуются степенями свободы, касающимися вращательного движения.

Если обозначить число молекул в одном киломоле за (Nμ), то внутренняя энергия идеального газа будет измеряться по формуле:

(Umu=1/2(Rmu Ti))

В формуле (i) — число степеней свобод.

Если газ одноатомный, (i=3), двуатомный — 5, трех- и более — 6.

Внутренняя энергия газа 2

Источник: uslide.ru

Задачи на термодинамику характеризуют распространенные физические процессы, поэтому часть включаются в программы экзаменов. Если для их решения не хватает времени, можно обратиться за помощью в Феникс.Хелп. На профильном сайте вам помогут справиться с любой, даже запутанной задачей, экономя ваши время и силы.

Обобщенное
дифференциальное уравнение переноса
(100)
весь­ма
примечательно, ибо оно в самом общем
виде описывает процесс
распространения любого вещества, в том
числе метри­ческого
и хронального, которые имеют отношение
к простран­ству и времени. Но вопрос
о пространстве и времени требует особого,
более глубокого рассмотрения. Поэтому
в настоящей главе
мы ограничимся лишь приведением уравнения
(100)
к
общепринятому виду, в котором пространство
и время играют роль
неких вспомогательных, опорных, эталонных
характери­стик.

Чтобы
иметь возможность перейти к традиционной
записи уравнения
(100), необходимо
вначале ввести понятия термо­динамических
потока и «силы», как это делается в
термоди­намике
необратимых процессов. Для практических
целей в
работе [17,
с.37-53]
рекомендуются
восемь различных основных
вариантов выбора потоков и сил. Из них
здесь рас­сматриваются
четыре наиболее употребительных. В
случае распространения
метрического и хронального веществ
при­ходится
принимать во внимание также некоторую
их специ­фику
(см. параграфы 1
и
2
гл.
XV).

Термодинамический
поток
,
или просто поток,
пропорциона­лен
количеству перенесенного вещества,
характеризуемого экстенсором dE
.
Наибольший
практический интерес представ­ляют
два весьма характерных выражения для
потока. В первом случае количество
вещества dE
относится к единице
площади поверхности dF
и единице времени
dt
. Такой
удельный поток обычно
обозначается буквой J
. Имеем

J = dE/(dFdt) (107)

Во втором случае количество вещества
относится только к
единице времени и обозначается буквой
I
. Получаем

I
= dE/dt
(108)

Потоки J
и I ,
характеризующие конкретные условия
пе­реноса, широко
применяются на практике: первый поток
на­иболее
известен в теории теплопроводности,
второй –
в элек­тротехнике,
где именуется силой тока.

Термодинамическая
сила
, или
просто сила,
ответственная за перенос вещества,
пропорциональна разности интенсиалов
(об этом уже
говорилось). Применительно к силе тоже
пре­дусмотрены
два характерных варианта, отражающих
конкрет­ные
условия переноса. В первом случае сила
обозначается через
X
, она
представляет собой напор интенсиала
δΡ
, опре­деляемый
формулой (96).
Имеем

Х = – Р
= – (Р
с
– Р
п) (109)

Вторая конкретная сила, обозначаемая
буквой Υ
, пред­ставляет собой градиент
интенсиала dР/dх
, то есть

Y = – dP/dx (110)

Знак минус в правых
частях равенств (109)
и (110)
сви­детельствует
о том, что вещество распространяется
от боль­шего
значения интенсиала к меньшему, при
этом разности Р
и dP
оказываются
отрицательными. Но потоки веществ J
и I
, а следовательно,
и силы X
и Υ
должны быть
положи­тельными.
Поэтому знак минус компенсирует
отрицательные значения
разностей δΡ
и dP
.

Заметим, что термин
«термодинамическая сила», или «сила»,
является общепринятым в термодинамике
необрати­мых
процессов. Однако он ничего общего не
имеет с истин­ным
понятием силы. Именно поэтому упомянутый
термин был
заключен нами в кавычки. В дальнейшем
кавычки опу­скаются,
но нужно не забывать об имеющейся в этом
тер­мине
условности. Теперь мы располагаем уже
тремя сход­ными по названию
понятиями: сила, специфическая сила
(интенсиал) и
термодинамическая сила (разность или
гра­диент
интенсиала). Только первое понятие
является силой в истинном смысле
этого слова, два других понятия –
это условные
силы, они связаны с истинной силой
соотношениями (94)
и (97).
Еще более
условный смысл имеет понятие сила тока
в электротехнике. Отметим также, что в
принятых ра­венствах (107)-(110)
по традиции в качестве опорных,
эталонных использованы
следующие пространственные и вре­менные
характеристики: площадь F
, протяженность
х
и время t
[ТРП,
стр.141-142].

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Основные формулы термодинамики и молекулярной физики, которые вам пригодятся. Еще один отличный день для практических занятий по физике. Сегодня мы соберем вместе формулы, которые чаще всего используются при решении задач в термодинамике и молекулярной физике.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Итак, поехали. Попытаемся изложить законы и формулы термодинамики кратко.

Идеальный газ

Идеальный газ – это идеализация, как и материальная точка. Молекулы такого газа являются материальными точками, а соударения молекул – абсолютно упругие. Взаимодействием же молекул на расстоянии пренебрегаем. В задачах по термодинамике реальные газы часто принимаются за идеальные. Так гораздо легче жить, и не нужно иметь дела с массой новых членов в уравнениях.

Итак, что происходит с молекулами идеального газа? Да, они движутся! И резонно спросить, с какой скоростью? Конечно, помимо скорости молекул нас интересует еще и общее состояние нашего газа. Какое давление P он оказывает на стенки сосуда, какой объем V занимает, какая у него температура T.

Для того, чтобы узнать все это, есть уравнение состояния идеального газа, или уравнение Клапейрона-Менделеева

Уравнение Клапейрона-Менделеева

Здесь m – масса газа, M – его молекулярная масса (находим по таблице Менделеева), R – универсальная газовая постоянная, равная 8,3144598(48) Дж/(моль*кг).

Универсальная газовая постоянная может быть выражена через другие константы (постоянная Больцмана и число Авогадро)

Универсальная газовая постоянная

Массу, в свою очередь, можно вычислить, как произведение плотности и объема.

Масса

Основное уравнение молекулярно-кинетической теории (МКТ)

Как мы уже говорили, молекулы газа движутся, причем, чем выше температура – тем быстрее. Существует связь между давлением газа и средней кинетической энергией E его частиц. Эта связь называется основным уравнением молекулярно-кинетической теории и имеет вид:

Уравнение МКТ

Здесь n – концентрация молекул (отношение их количества к объему), E – средняя кинетическая энергия. Найти их, а также среднюю квадратичную скорость молекул можно, соответственно, по формулам:

Формулы термодинамики

Подставим энергию в первое уравнение, и получим еще один вид основного уравнения МКТ

Уравнение МКТ

Первое начало термодинамики. Формулы для изопроцессов

Напомним Вам, что первый закон термодинамики гласит: количество теплоты, переданное газу, идёт на изменение внутренней энергии газа U и на совершение газом работы A. Формула первого закона термодинамики записывается так:

Первое начало термодинамики

Как известно, с газом что-то происходит, мы можем сжать его, можем нагреть. В данном случае нас интересуют такие процессы, которые протекают при одном постоянном параметре. Рассмотрим, как выглядит первое начало термодинамики в каждом из них.

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы

Изотермический процесс протекает при постоянной температуре. Тут работает закон Бойля-Мариотта: в изотермическом процессе давление газа обратно пропорционально его объёму. В изотермическом процессе:

Изотермический процесс

Изохорный процесс протекает при постоянном объеме. Для этого процесса характерен закон Шарля: При постоянном объеме давление прямо пропорционально температуре. В изохорном процессе все тепло, подведенное к газу, идет на изменение его внутренней энергии.

Изохорный процесс

Изобарный процесс идет при постоянном давлении. Закон Гей-Люссака гласит, что при постоянном давлении газа его объём прямо пропорционален температуре. При изобарном процессе тепло идет как на изменение внутренней энергии, так и на совершение газом работы.

Изобарный процесс

Адиабатный процесс. Адиабатный процесс – это такой процесс, который проходит без теплообмена с окружающей средой. Это значит, что формула первого закона термодинамики для адиабатного процесса выглядит так:

Адиабатный процесс

Внутренняя энергия одноатомного и двухатомного идеального газа

Внутренняя энергия

Теплоемкость

Удельная теплоемкость равна количеству теплоты, которое необходимо для нагревания одного килограмма вещества на один градус Цельсия.

Теплоемкость газа

Помимо удельной теплоемкости, есть молярная теплоемкость (количество теплоты, необходимое для нагревания одного моля вещества на один градус) при постоянном объеме, и молярная теплоемкость при постоянном давлении. В формулах ниже, i – число степеней свободы молекул газа. Для одноатомного газа i=3, для двухатомного – 5.

Молярная теплоемкость

Тепловые машины. Формула КПД в термодинамике

Тепловая машина, в простейшем случае, состоит из нагревателя, холодильника и рабочего тела. Нагреватель сообщает тепло рабочему телу, оно совершает работу, затем охлаждается холодильником, и все повторяется вновь. Типичным примером тепловой машины является двигатель внутреннего сгорания.

Коэффициент полезного действия тепловой машины вычисляется по формуле

КПД

Вот мы и собрали основные формулы термодинамики, которые пригодятся в решении задач. Конечно, это не все все формулы из темы термодинамика, но их знание действительно может сослужить хорошую службу. А если возникнут вопросы  – помните о студенческом сервисе, специалисты которого готовы в любой момент прийти на выручку.

Содержание:

Термодинамические системы и макропараметры состояния вещества:

Термодинамический подход основывается на понятии термодинамической системы, которая представляет собой любое макроскопическое тело или совокупность таких тел. Состояние термодинамической системы определяется ее внутренними параметрами, например состоянием движения микрочастиц, из которых состоит тело. Тепловое состояние тела, которое характеризуется температурой, тесно связано со скоростью движения атомов и молекул – чем больше скорость их движения, тем выше температура тела.

Температура тела зависит от скорости движения атомов и молекул, из которых оно состоит, – чем больше скорость, тем выше температура.

Внутреннее состояние тела очень сложно определить через параметры движения микрочастиц, потому что их очень много. Поэтому, чтоб упростить описание состояния термодинамической системы, его связывают с физическими величинами, которые характеризуют тело в целом, независимо от его молекулярного строения. К таким величинам принадлежат, в частности, масса, объем, плотность, давление, температура и т. п.
Их называют макропараметрами системы. Фактически они являются усредненными значениями данных физических величин на протяжении длительного времени.

Температура – один из основных макропараметров термодинамической системы, характеризующий состояние ее теплового или термодинамического равновесия. Сущность данного понятия объясняется течением тепловых явлений и процессов.

Например, из собственного опыта нам известно, что более нагретые тела отдают теплоту менее нагретым, вследствие чего со временем их температуры станут одинаковыми. Если, к примеру, кусочек льда бросить в стакан с теплой водой (рис. 5.1), то лед будет таять, а вода в стакане охлаждаться, отдавая определенное количество теплоты тающему льду. Кроме того, стакан с водой и лед пребывают в состоянии теплообмена с окружающей средой. Поэтому со временем температуры всех этих тел станут одинаковыми.

Термодинамика - основные понятия, формулы и определения с примерами

Тела с более высокой температурой отдают тепловую энергию телам с более низкой температурой; теплообмен происходит до тех пор, пока их температуры не станут одинаковыми.

Следовательно, со временем вследствие теплообмена в термодинамических системах наступает состояние термодинамического равновесия, когда температуры всех тел становятся одинаковыми и теплообмен между ними прекращается. Значение температуры характеризует вполне определенное состояние теплового равновесия термодинамической системы, в котором она пребывает в данный момент. Он может быть изменен в результате термодинамического процесса.

Термодинамика - основные понятия, формулы и определения с примерами

 Если, например, на поршень в цилиндре с газом положить груз (рис. 5.2), то объем газа будет изменяться до тех пор, пока давление не сравняется с внешним давлением. Т. е. термодинамическая система «цилиндр – газ» перейдет в иное состояние, характеризующееся новыми значениями макропараметров – давлением Термодинамика - основные понятия, формулы и определения с примерами объемом Термодинамика - основные понятия, формулы и определения с примерами температурой Термодинамика - основные понятия, формулы и определения с примерами плотностью Термодинамика - основные понятия, формулы и определения с примерами Такой переход термодинамической системы из одного состояния в другое, в результате которого параметры системы изменяются, называется термодинамическим процессом.

Термодинамика рассматривает в основном состояния термодинамического равновесия и процессы, которые происходят достаточно медленно, и поэтому каждое новое их состояние можно считать равновесным. В состоянии термодинамического равновесия между макропараметрами системы существуют определенные функциональные зависимости, отображаемые уравнениями состояния термодинамической системы.

Карта основ термодинамики:

Термодинамика - основные понятия, формулы и определения с примерами

Термодинамическая система

Раздел физики, изучающий тепловые явления в макроскопических системах, называется термодинамикой. В основе термодинамики лежат термодинамические законы, опирающиеся на большое количество экспериментальных фактов. Эти законы отвечают на вопрос “как?”, например, как изменяется состояние тела (твердого тела, жидкости или газа) при нагревании (или охлаждении), в каком направлении и как передается тепло, как изменяется температура газа при его расширении и другие. Объектами исследования термодинамики являются термодинамические системы.

Любое макроскопическое тело или система макроскопических тел называется термодинамической системой. Состояние термодинамической системы характеризуется макроскопическими или термодинамическими параметрами (масса, плотность, объем, давление, температура).

Внутренняя энергия

Величины, определяющие состояние термодинамической системы в данный момент времени, то есть соответствующие этому состоянию макроскопические параметры, называются функциями состояния. Основной среди этих величин является внутренняя энергия.

Внутренняя энергия – это сумма кинетических энергий различных видов, движения частиц системы и потенциальных энергий взаимодействия этих частиц (см.: таблица 7.1).

Термодинамика - основные понятия, формулы и определения с примерами

Внутренняя энергия термодинамической системы является функцией температуры и объема, определяющих состояние системы: Термодинамика - основные понятия, формулы и определения с примерами

Внутренняя энергия одноатомного идеального газа

Газ, молекулы которого состоят из одного атома, называют одноатомным газом. Внутренняя энергия одноатомного газа равна сумме кинетических энергий поступательного движения частиц и потенциальных энергий их взаимодействия: 

Термодинамика - основные понятия, формулы и определения с примерами

Однако внутренняя энергия идеального газа данной массы равна сумме средних кинетических энергий хаотического движения частиц:

Термодинамика - основные понятия, формулы и определения с примерами

Средняя кинетическая энергия одной частицы одноатомного идеального газа определяется выражением Термодинамика - основные понятия, формулы и определения с примерами следовательно, внутренняя энергия такого газа зависит только от температуры:

Термодинамика - основные понятия, формулы и определения с примерами

Это выражение является формулой закона Джоуля:

Внутренняя энергия идеального газа зависит от ее массы, рода (молярной массы) и температуры. Даже если давление и объем газа изменятся, при постоянной температуре его внутренняя энергия не изменится.

Сопоставив формулу (7.1) с выражением Менделеева-Клапейрона, получим:

Термодинамика - основные понятия, формулы и определения с примерами

Способы изменения внутренней энергии

Для изменения внутренней энергии термодинамической системы необходимо изменить или среднюю кинетическую энергию теплового движения молекул системы, или потенциальную энергию их взаимодействия, или же изменить обе энергии одновременно. Из многочисленных опытов было определено, что существует два способа изменения внутренней энергии: теплопередача и совершение работы.

Изменение внутренней энергии системы происходит двумя способами: передачей количества теплоты Термодинамика - основные понятия, формулы и определения с примерами и совершением работы Термодинамика - основные понятия, формулы и определения с примерами

Термодинамика - основные понятия, формулы и определения с примерами

Если внутренняя энергия изменяется только в результате теплообмена, то изменение внутренней энергии равно полученному (или отданному) системой количеству теплоты. Например, при нагревании и охлаждении тела изменение его внутренней энергии определяется так:

Термодинамика - основные понятия, формулы и определения с примерами

Изменение внутренней энергии в процессе плавления твердого тела или кристаллизации жидкости происходит за счет изменения потенциальной энергии взаимодействия молекул тела. Изменение внутренней энергии при этих процессах численно равно теплоте плавления (кристаллизации):

Термодинамика - основные понятия, формулы и определения с примерами

Где Термодинамика - основные понятия, формулы и определения с примерами – удельная теплота плавления.

Изменение внутренней энергии тела в процессе парообразования и конденсации также равно затраченному во время этого процесса количеству теплоты:

Термодинамика - основные понятия, формулы и определения с примерами

Где Термодинамика - основные понятия, формулы и определения с примерами — удельная теплота парообразования.

Изменение внутренней энергии одноатомного идеального газа определяется изменением его температуры:

Термодинамика - основные понятия, формулы и определения с примерами

Где Термодинамика - основные понятия, формулы и определения с примерами и Термодинамика - основные понятия, формулы и определения с примерами – соответственно, значения внутренней энергии одноатомного газа в начальном и конечном состояниях.

Внимание. Изменение внутренней энергии термодинамической системы зависит не от вида процесса, а от его начального и конечного состояния.

Работа в термодинамике

Если изменение внутренней энергии происходит только в результате совершения механической работы, то это изменение равно или работе внешних сил над системой Термодинамика - основные понятия, формулы и определения с примерами или работе системы против внешних сил Термодинамика - основные понятия, формулы и определения с примерами

Термодинамика - основные понятия, формулы и определения с примерами

Работа в термодинамике — это одна из мер изменения внутренней энергии термодинамической системы.

Работа газа

Предположим, что в толстостенном цилиндре находится газ, сжимаемый поршнем. При сжатии поршень передает часть своей кинетической энергии молекулам газа, в результате чего увеличивается внутренняя энергия газа и повышается его температура — внешние силы совершают работу над газом. При расширении, наоборот, молекулы газа, передавая часть своей кинетической энергии поршню, уменьшают свою скорость и газ охлаждается – он совершает работу над внешними силами (b).

Термодинамика - основные понятия, формулы и определения с примерами

Таким образом, работа, совершенная газом над внешними силами, в результате расширении газа данной массы при постоянном давлении равна:

Термодинамика - основные понятия, формулы и определения с примерами

или

Термодинамика - основные понятия, формулы и определения с примерами

Работа же, совершенная внешними силами над газом равна :

Термодинамика - основные понятия, формулы и определения с примерами

Где Термодинамика - основные понятия, формулы и определения с примерами — сила, с которой газ действует на поршень, Термодинамика - основные понятия, формулы и определения с примерами — смещение поршня, Термодинамика - основные понятия, формулы и определения с примерами — давление газа, Термодинамика - основные понятия, формулы и определения с примерами — площадь поперечного сечения цилиндра, Термодинамика - основные понятия, формулы и определения с примерами — изменение объема газа. Совершенная работа численно равна площади фигуры, образованная графиком в системе координат Термодинамика - основные понятия, формулы и определения с примерами при расширении газа (т.е. при увеличении объема газа) Термодинамика - основные понятия, формулы и определения с примерами или Термодинамика - основные понятия, формулы и определения с примерами при сжатии же газа (т.е. при уменьшении объема газа) Термодинамика - основные понятия, формулы и определения с примерами или Термодинамика - основные понятия, формулы и определения с примерами (с).

Если в процессе совершения работы газ через некоторое время возвращается в первоначальное состояние, то такой процесс называется замкнутым или циклическим процессом.

Если стрелки, показывающие направление циклического процесса, совпадают с направлением вращения часовых стрелок, то работа газа положительна, а работа внешних сил отрицательна (d). Если же стрелки, определяющие направление процесса, направлены против вращения часовых стрелок, то работа газа отрицательна, а работа внешних сил положительна.

Термодинамика - основные понятия, формулы и определения с примерами

Что такое термодинамическая система

Полную энергию физической системы можно представить как алгебраическую сумму её механической энергии и внутренних энергий тел, образующих систему. Убыль механической энергии системы в ряде случаев происходит при самопроизвольном переходе её части во внутреннюю энергию тел системы. Так, например, режущие инструменты заметно нагреваются при заточке. При скольжении конькобежца под коньками тает лёд, что обеспечивает хорошее скольжение. В этих примерах тела при трении нагреваются, и интенсивность теплового движения их молекул возрастает, что приводит к увеличению внутренней энергии тел. Как же определить внутреннюю энергию термодинамической системы? И что понимают под термодинамической системой?

В термодинамике физические тела и их модели называют термодинамическими системами. Для их описания используют параметры системы, такие, как давление, объём, температура (макропараметры), а не физические характеристики молекул (микропараметры). Макропараметры можно непосредственно измерить, используя приборы, или выразить через другие величины, которые можно измерить на опыте. Мы рассмотрим простейшие термодинамические системы, состояние которых определяют, используя только давление, объём и температуру.

Тела, образующие термодинамическую систему, могут обмениваться с окружающей средой энергией, а также веществом. Если этого не происходит, то термодинамическую систему называют замкнутой или изолированной.

Что такое внутренняя энергия

Рассматривая полную энергию макроскопического тела, необходимо учитывать не только его механическую энергию (кинетическую и потенциальную), но также и энергию, заключённую внутри самого тела, — внутреннюю энергию.

Внутренняя энергия макроскопического тела — алгебраическая сумма кинетической энергии теплового движения всех частиц, образующих тело, и потенциальной энергии их взаимодействия.

Внутренняя энергия любой термодинамической системы состоит из внутренних энергий тел, входящих в данную систему, и является одной из основных физических величин, используемых в термодинамике.

В термодинамике представляет интерес не само значение внутренней энергии системы, а её изменение. Поэтому обычно принимают во внимание только те составляющие внутренней энергии, которые изменяются в рассматриваемых процессах.

Термодинамика - основные понятия, формулы и определения с примерами

Рассмотрим переход некоторой массы идеального газа из состояния 1, в котором его внутренняя энергия Термодинамика - основные понятия, формулы и определения с примерами в состояние 3, в котором его внутренняя энергия Термодинамика - основные понятия, формулы и определения с примерами (рис. 62). Смену состояний можно осуществить или при изохорном нагревании, а затем при изобарном расширении (процесс Термодинамика - основные понятия, формулы и определения с примерами), пли при изобарном расширении, а затем при изохорном нагревании (процесс Термодинамика - основные понятия, формулы и определения с примерами). Однако приращение* внутренней энергии газа в обоих случаях одинаково:

Термодинамика - основные понятия, формулы и определения с примерами

Внутренняя энергия зависит от конкретного состояния системы. Это означает, что изменение внутренней энергии при переходе термодинамической системы из одного состояния в другое зависит только от значений параметров этих состояний и не зависит от процесса перехода.

  • * Термодинамика - основные понятия, формулы и определения с примерами — приращение физической величины, т. е. разность между её конечным и начальным значениями;
  • Термодинамика - основные понятия, формулы и определения с примерами— убыль величины, т. е. разность между её начальным и конечным значениями.

Внутренняя энергия идеального одноатомного газа

Определим внутреннюю энергию идеального одноатомного газа, т. е. газа, образованного атомами. Например, одноатомными газами являются инертные газы — гелий, неон, аргон и др.

Из определения понятия «идеальный газ» следует, что его внутренняя энергия является суммой кинетических энергий хаотического движения всех атомов (или молекул) (потенциальная энергия взаимодействия между частицами отсутствует). Следовательно, внутренняя энергия идеального одноатомного газа равна произведению средней кинетической энергии Термодинамика - основные понятия, формулы и определения с примерами теплового движения частиц на их число N, т. е. Термодинамика - основные понятия, формулы и определения с примерами Поскольку

Термодинамика - основные понятия, формулы и определения с примерами

где Термодинамика - основные понятия, формулы и определения с примерами — масса газа, а Термодинамика - основные понятия, формулы и определения с примерами то

Термодинамика - основные понятия, формулы и определения с примерами

С учётом того, что произведение постоянной Больцмана и постоянной Авогадро Термодинамика - основные понятия, формулы и определения с примерами— универсальная газовая постоянная, получим:

Термодинамика - основные понятия, формулы и определения с примерами

или

Термодинамика - основные понятия, формулы и определения с примерами

Из формулы (11.1) следует, что внутренняя энергия данной массы идеального одноатомного газа пропорциональна его абсолютной температуре. Она не зависит от других макроскопических параметров состояния — давления и объёма. Следовательно, изменение внутренней энергии данной массы одноатомного идеального газа происходит только при изменении его температуры:

Термодинамика - основные понятия, формулы и определения с примерами

При определении внутренней энергии реальных газов, жидкостей и твёрдых тел необходимо учитывать потенциальную энергию взаимодействия частиц, которая зависит от расстояния между ними. Поэтому в общем случае внутренняя энергия макроскопических тел зависит не только от абсолютной температуры, но и от объёма.

Изменить внутреннюю энергию термодинамической системы можно двумя способами: используя теплообмен и совершая работу. Процесс теплообмена и совершение работы характеризуют соответственно физическими величинами — количеством теплоты Q и работой А, которые являются мерами изменения внутренней энергии системы.

Термодинамика - основные понятия, формулы и определения с примерами

Пример решения задачи №1

При изобарном охлаждении внутренняя энергия идеального одноатомного газа изменилась на Термодинамика - основные понятия, формулы и определения с примерами Определите давление газа, если его объём изменился на Термодинамика - основные понятия, формулы и определения с примерами

Термодинамика - основные понятия, формулы и определения с примерами

Решение. Приращение внутренней энергии некоторого количества идеального одноатомного газа

Термодинамика - основные понятия, формулы и определения с примерами

Используя уравнение Клапейрона—Менделеева, можно осуществить замену:

Термодинамика - основные понятия, формулы и определения с примерами
Решая совместно уравнения (1) и (2), получим: Термодинамика - основные понятия, формулы и определения с примерамиТермодинамика - основные понятия, формулы и определения с примерами

Ответ: Термодинамика - основные понятия, формулы и определения с примерами

Внутренняя энергия тела

Любое макроскопическое тело обладает энергией, что обусловлено его микросостоянием. Эта энергия называется внутренней (обозначается U). Она равна энергии всех микрочастиц вещества, из которых состоит данное тело. Например, внутренняя энергия идеального газа состоит из кинетической энергии всех его молекул, без учета их потенциальной энергии, поскольку взаимодействием молекул в модели идеального газа пренебрегают.

Модель идеального газа предусматривает, что молекулы пребывают на расстоянии нескольких диаметров друг от друга. Поэтому энергия их взаимодействия намного меньше энергии их движения, следовательно, ею можно пренебречь.

В реальных газах, а также в жидкостях и твердых телах внутреннюю энергию необходимо учитывать, потому что она соизмерима с кинетической энергией и существенно влияет на их свойства. В таком случае их внутренняя энергия состоит из кинетической энергии теплового движения микрочастиц и потенциальной энергии их взаимодействия.

Для того чтобы изменить внутреннюю энергию тела, следует фактически изменить или кинетическую энергию теплового движения микрочастиц, или потенциальную энергию их взаимодействия, или и ту и другую вместе. Многовековой опыт человечества убеждает нас в том, что это можно сделать двумя способами – либо в процессе теплообмена, либо в ходе выполнения работы. В первом случае это произойдет вследствие передачи определенного количества теплоты Q; во втором – в результате выполнения работы А.

Изменение внутренней энергии тела может произойти за счет теплообмена или в результате выполнения работы:

Термодинамика - основные понятия, формулы и определения с примерами

Следовательно, передача количества теплоты и выполнение работы являются факторами, благодаря которым можно изменить внутреннюю энергию тела:

Термодинамика - основные понятия, формулы и определения с примерами

В случае, когда происходит лишь теплообмен, полученное или отданное телом количество теплоты полностью идет на изменение его внутренней энергии, в частности кинетической энергии его атомов и молекул: Термодинамика - основные понятия, формулы и определения с примерами Во время нагревания или охлаждения тела она равна:

Термодинамика - основные понятия, формулы и определения с примерами

В процессе плавления или кристаллизации твердых тел внутренняя энергия изменяется за счет потенциальной энергии взаимодействия микрочастиц, потому что происходит структурная перестройка вещества. В данном случае изменение внутренней энергии равно теплоте плавления (кристаллизации) тела:

Термодинамика - основные понятия, формулы и определения с примерами

где Термодинамика - основные понятия, формулы и определения с примерами – удельная теплота плавления (кристаллизации) твердого тела.

Если изменение внутренней энергии тела происходит вследствие теплообмена, то Термодинамика - основные понятия, формулы и определения с примерами или Термодинамика - основные понятия, формулы и определения с примерами или Термодинамика - основные понятия, формулы и определения с примерами

Испарение жидкости или конденсация пара также ведет к изменению внутренней энергии, которая равна в таком случае теплоте парообразования:
Термодинамика - основные понятия, формулы и определения с примерами
где r – удельная теплота парообразования (конденсации) жидкости.

Изменение внутренней энергии тела вследствие выполнения механической работы (без теплообмена) равно значению работы: Термодинамика - основные понятия, формулы и определения с примерами

Следовательно, с точки зрения молекулярной физики внутренняя энергия тела является суммой кинетической энергии теплового движения атомов, молекул и других частиц, из которых оно состоит, и потенциальной энергии их взаимодействия. Это энергия термодинамической системы, которая зависит от ее внутреннего состояния. Поэтому вычисляют изменение внутренней энергии Термодинамика - основные понятия, формулы и определения с примерами которое происходит в результате теплообмена или выполнения работы, а не само ее значение U.

Работа газа

Вычисление выполненной работы в термодинамике связывают с макропараметрами системы. Рассмотрим газ, находящийся в цилиндре под поршнем площадью S (рис. 5.3).

Пусть на газ действует поршень, вызывая его сжатие. Под действием силы F поршень опускается на высоту Термодинамика - основные понятия, формулы и определения с примерами выполняя работу Термодинамика - основные понятия, формулы и определения с примерами(направление действия силы имеет то же направление, что и перемещение, поэтому cosТермодинамика - основные понятия, формулы и определения с примерами – 1). Если перемещение поршня будет незначительным, то давление газа практически не изменится (р = const). Учитывая, что согласно третьему закону Ньютона сила F по модулю равна силе давления газа Термодинамика - основные понятия, формулы и определения с примерами– это изменение объема газа, получим:

Термодинамика - основные понятия, формулы и определения с примерами

Поскольку Термодинамика - основные понятия, формулы и определения с примерами следовательно, Термодинамика - основные понятия, формулы и определения с примерами то работа внешних сил над газом будет равна:

Термодинамика - основные понятия, формулы и определения с примерами

Термодинамика - основные понятия, формулы и определения с примерами

Если под действием силы давления F’ газ расширяется (рис. 5.4), т. е. он сам выполняет работу Термодинамика - основные понятия, формулы и определения с примерами то ее значение также равно Термодинамика - основные понятия, формулы и определения с примерами Выполненная газом работа в данном случае будет положительной, поскольку Термодинамика - основные понятия, формулы и определения с примерами

Термодинамика - основные понятия, формулы и определения с примерами

Во время незначительных изменений объема и при постоянном давлении формулы (1) и (2) справедливы не только для газов, но и иных термодинамических систем. Поскольку изменение объема при постоянном давлении сопровождается изменением температуры тела, то можно сделать вывод, что выполнение работы в термодинамике вызывает изменение состояния тела, ведь при этом изменяются его температура Т и объем V.

Первый закон термодинамики

Тот факт, что внутреннюю энергию тела можно изменить двумя способами – в результате выполнения работы или за счет теплопередачи, вынуждал ученых искать соотношение между соответствующими величинами. Вначале в 1842 г. немецкий естествоиспытатель Р. Майер теоретически установил, а затем в 1843 г. английский ученый Дж. Джоуль экспериментально измерил эквивалентность значений количества теплоты и работы. В соответствии с полученными результатами ученые сделали обобщения, которые касались сохранения энергии в природе: энергия в природе не возникает из ничего и не пропадает бесследно; она лишь переходит из одного вида в другой.

Позже этот фундаментальный закон природы приобрел логическую форму первого закона термодинамики: переход термодинамической системы из одного состояния в другое характеризуется изменением ее внутренней энергии, равной сумме работы внешних сил и количества теплоты, переданной системе:

Термодинамика - основные понятия, формулы и определения с примерами

В каком бы состоянии не было тело, оно обладает определенной внутренней энергией. Однако нельзя утверждать, что оно содержит определенное количество теплоты либо запас выполненной работы. Независимо от того, каким из этих способов произведено изменение состояния тела, его состояние     однозначно определяется внутренней энергией. Например, газ может быть нагрет за счет передачи ему некоторого количества теплоты либо в результате выполнения внешними силами над ним работы (сжатие газа). Однако невозможно однозначно указать, благодаря какому из этих процессов – выполнению работы или теплопередаче – произошло нагревание газа.

Если система сама выполняет работу (А = -А’), то первый закон термодинамики приобретает другой вид:

Термодинамика - основные понятия, формулы и определения с примерами

т. е. передача термодинамической системе определенного количества теплоты вызывает изменение ее внутренней энергии или выполнение работы, либо то и другое одновременно.
 

Еще в 1775 г. Французская академия наук приняла решение не рассматривать проекты вечных двигателей.

Последняя формулировка первого закона термодинамики важна с точки зрения отрицания возможности создания вечного двигателя: нельзя создать машину, которая бы неограниченно выполняла работу, не получая энергию извне. Ведь, если количество теплоты Q = 0, то А’ = Термодинамика - основные понятия, формулы и определения с примерами т. е. работа выполняется за счет уменьшения внутренней энергии, которая не безгранична по размеру.

Тепловые двигатели

Человечество научилось использовать тепловую энергию, создав тепловые машины и двигатели. В основу их действия положена идея, что выполнение механической работы может осуществляться за счет теплоты, получаемой от какого-либо нагревателя и частично отдаваемой холодильнику.

Принцип действия тепловой машины можно представить схематически (рис. 5.5). Нагреватель передает рабочему телу определенное количество теплоты Термодинамика - основные понятия, формулы и определения с примерами часть которой идет на выполнение работы А’. Рабочим телом в тепловых машинах

может быть газ или пар, выполняющие работу вследствие своего расширения при нагревании. В паровых турбинах это происходит благодаря паровым котлам, в двигателях внутреннего сгорания – в результате сгорания топливной смеси, в реактивных двигателях – за счет большой теплоотдачи топлива во время быстрого его сгорания.
Термодинамика - основные понятия, формулы и определения с примерами

Выполняя работу, рабочее тело отдает определенную часть количества теплоты Термодинамика - основные понятия, формулы и определения с примерами охладителю (специальному устройству или окружающей среде), вследствие чего его температура снижается до значения Термодинамика - основные понятия, формулы и определения с примерами Оно не может использовать всю предоставленную тепловую энергию, поскольку часть ее рассеивается в окружающей среде из-за выбросов отработанного пара или выхлопных газов.

Согласно закону сохранения энергии значение выполненной работы Термодинамика - основные понятия, формулы и определения с примерами По определению коэффициент полезного действия равен:
Термодинамика - основные понятия, формулы и определения с примерами    

Следовательно, коэффициент полезного действия тепловой машины всегда меньше 1 (часто его представляют в процентах). К примеру, у двигателей внутреннего сгорания он равен приблизительно 44 %, у паровых турбин – до 40 %.

Коэффициент полезного действия равен отношению величины выполненной работы к затраченной при этом энергии:

Термодинамика - основные понятия, формулы и определения с примерами

Холодильник также является тепловой машиной. Принцип его действия основан на обратимости цикла тепловой машины. Холодильная машина работает как тепловой насос: она отбирает тепловую энергию у менее нагретого тела и передает ее более нагретому (рис. 5.6). Это не противоречит законам термодинамики, поскольку охлаждение происходит за счет выполнения работы.

Для того чтобы привести в действие холодильную машину, необходимо над рабочим телом выполнить работу. В таком случае нагревателю будет передаваться количество теплоты, превышающее по значению то, которое отбирается у охладителя: Термодинамика - основные понятия, формулы и определения с примерами Следовательно, температура охладителя Термодинамика - основные понятия, формулы и определения с примерами будет еще больше снижаться, а температура нагревателя Термодинамика - основные понятия, формулы и определения с примерами при этом будет повышаться.

Эффективность работы холодильной машины характеризуется отношением количества теплоты Термодинамика - основные понятия, формулы и определения с примерами отобранного у тела, к выполненной при этом работе А: Термодинамика - основные понятия, формулы и определения с примерами Данный коэффициент может быть больше 1. Он зависит от разницы температур нагревателя Термодинамика - основные понятия, формулы и определения с примерами и охладителя Термодинамика - основные понятия, формулы и определения с примерами

Основные определения и формулы

В основу термодинамического подхода положено описание термодинамической системы при помощи легко измеримых макропараметров – температуры (Т), давления (р), объема (V), массы (m) и др.

Внутренняя энергия тела равна энергии всех микрочастиц вещества, из которых оно состоит. Ее можно изменить за счет теплообмена или в результате выполнения работы. Количество теплоты, переданное телу (либо отобранное у него), определяется в зависимости от теплового процесса, который при этом осуществляется:

при нагревании (охлаждении )

Термодинамика - основные понятия, формулы и определения с примерами

при плавлении (кристаллизации )

Термодинамика - основные понятия, формулы и определения с примерами
при парообразовании (конденсации)

Термодинамика - основные понятия, формулы и определения с примерами

Работа газа при постоянном давлении (р = const) равна: Термодинамика - основные понятия, формулы и определения с примерами и изменяет знак на противоположный при выполнении работы внешними силами над газом:

Термодинамика - основные понятия, формулы и определения с примерами

Первый закон термодинамики устанавливает, что количество теплоты, переданное термодинамической системе, вызывает изменение ее внутренней энергии или выполнение работы, либо и той другое одновременно:

Термодинамика - основные понятия, формулы и определения с примерами

Он отражает сущность фундаментального закона сохранения энергии, которым отрицается возможность создания вечного двигателя: нельзя создать машину, которая неограниченно выполняла бы работу, не получая энергию извне.

Законы термодинамики получили широкое практическое применение, в частности, в технике, при конструировании тепловых машин. Все тепловые машины (двигатели внутреннего сгорания, реактивные двигатели, паровые и газовые турбины, холодильные машины и пр.) построены по принципу выполнения механической работы за счет внутренней энергии. Их КПД всегда меньше 1 и равен:

Термодинамика - основные понятия, формулы и определения с примерами

Основы термодинамики

В 9 классе вы узнали, что полная энергия физической системы представляет собой сумму её механической энергии и внутренних энергий тел, образующих систему. Причём изменение механической энергии в ряде случаев происходит в результате перехода её части во внутреннюю энергию тел системы. Режущие инструменты заметно нагреваются при заточке их на точильном камне. При скольжении конькобежца по льду под коньками тает лёд, что обеспечивает хорошее скольжение. В этих примерах тела при трении нагреваются, и интенсивность хаотического движения молекул возрастает, что приводит к увеличению внутренней энергии тел. Как же определить внутреннюю энергию термодинамической системы? И что понимают под термодинамической системой?

Выводы термодинамики основаны на фундаментальных законах, называемых началами термодинамики. Эти законы установлены в результате обобщения многочисленных экспериментальных фактов. Опираясь на них, термодинамика позволяет делать определённые выводы о свойствах исследуемых систем, которые подтверждаются экспериментально. Физические тела и их модели в термодинамике называют термодинамическими системами. Термодинамическую систему характеризуют набором параметров, определяющих её состояние. В отличие от молекулярно-кинетической теории в термодинамике не рассматривают микроскопическое строение тел и для их описания используют не физические характеристики молекул (микропараметры), а параметры системы (макропараметры), такие как давление, объём, температура.

Замкнутая, или же изолированная, термодинамическая система стремится к равновесию, когда все её макропараметры не изменяются с течением времени. Иначе говоря, для каждой изолированной термодинамической системы существует состояние термодинамического равновесия, в которое она переходит самопроизвольно.

Это утверждение называют нулевым началом термодинамики.

Говоря о полной энергии макроскопического тела, необходимо всегда учитывать не только его механическую энергию (кинетическую и потенциальную), но также кинетическую энергию теплового движения его частиц и потенциальную энергию их взаимодействия. В термодинамике под внутренней энергией тела понимают полную энергию, относящуюся к самим частицам, образующим тело. Это кинетическая энергия теплового движения молекул, кинетическая энергия движения атомов внутри молекул, потенциальная энергия взаимодействия между молекулами, энергия электронных оболочек атомов и внутриядерная энергия.

Внутренняя энергия любой термодинамической системы состоит из внутренних энергий тел, входящих в данную систему.

В термодинамике главную роль играет не сама внутренняя энергия, а её изменение, которое происходит при переходе системы из одного состояния в другое. Под приращением (изменением) внутренней энергии понимают разность внутренних энергий в конечном и начальном состояниях:

Термодинамика - основные понятия, формулы и определения с примерами

Например, переход некоторой массы идеального газа из состояния / в состояние 3 (рис. 49) можно осуществить или в ходе процессаТермодинамика - основные понятия, формулы и определения с примерами (при изохорном нагревании, а затем при изобарном расширении), или в ходе процесса Термодинамика - основные понятия, формулы и определения с примерами (при изобарном расширении, а затем при изохорном нагревании). Однако приращение (изменение) внутренней энергии газа и в одном и в другом случае будет одинаковым:

Термодинамика - основные понятия, формулы и определения с примерами

Термодинамика - основные понятия, формулы и определения с примерами

Внутренняя энергия является функцией состояния системы. Это означает, что изменение внутренней энергии при переходе термодинамической системы из одного состояния в другое зависит только лишь от значений параметров этих состояний, а не от процесса перехода.

Внутренняя энергия идеального одноатомного газа:

Определим внутреннюю энергию идеального одноатомного газа, т. е. газа, состоящего из отдельных атомов. Например, к одноатомным газам относят инертные газы — гелий, неон, аргон и др.

Из определения понятия «идеальный газ» следует, что его внутренняя энергия является суммой кинетических энергий хаотического движения всех молекул или атомов (взаимодействие между частицами отсутствует). Следовательно, внутренняя энергия идеального одноатомного газа равна произведению средней кинетической энергии Термодинамика - основные понятия, формулы и определения с примерами теплового движения частиц на их число N,

т. е. Термодинамика - основные понятия, формулы и определения с примерами. Поскольку Термодинамика - основные понятия, формулы и определения с примерами, где m — масса газа, а Термодинамика - основные понятия, формулы и определения с примерами, то

Термодинамика - основные понятия, формулы и определения с примерами
С учётом того, что Термодинамика - основные понятия, формулы и определения с примерами получим:
Термодинамика - основные понятия, формулы и определения с примерами(9.1)
или

Термодинамика - основные понятия, формулы и определения с примерами
Как видно из формулы (9.1), внутренняя энергия данной массы идеального одноатомного газа пропорциональна абсолютной температуре газа. Она не зависит от других макроскопических параметров состояния — давления и объёма. Следовательно, изменение внутренней энергии данной массы идеального одноатомного газа происходит только при изменении его температуры:
Термодинамика - основные понятия, формулы и определения с примерамиТермодинамика - основные понятия, формулы и определения с примерами
При определении внутренней энергии реальных газов, жидкостей и твёрдых тел необходимо учитывать потенциальную энергию взаимодействия частиц, которая зависит от расстояния между ними. Поэтому в общем случае внутренняя энергия макроскопических тел зависит не только от абсолютной температуры, но и от объёма.

При изучении физики в 8 классе вы узнали, что изменить состояние термодинамической системы можно двумя способами: используя теплопередачу и совершая работу. Процесс теплопередачи и совершение работы характеризуют соответственно физическими величинами — количеством теплоты Q и работой А, которые являются мерами изменения внутренней энергии системы.

  1. Физические тела и их модели в термодинамике называют термодинамическими системами. Термодинамическую систему характеризуют набором макронараметров, определяющих её состояние.
  2. Состояние изолированной термодинамической системы, когда все её макропараметры не изменяются с течением времени, называют равновесным.
  3. Под внутренней энергией термодинамической системы понимают сумму кинетической энергии всех частиц системы и потенциальной энергии их взаимодействия.
  4. Изменение внутренней энергии тела при переходе из одного состояния в другое зависит только лишь от значений параметров этих состояний, а не от процесса перехода.
  5. Внутренняя энергия данной массы идеального одноатомного газа зависит только от температуры:

Термодинамика - основные понятия, формулы и определения с примерами

Пример решения задачи №2

На рисунке 51 в координатах (р, V) изображён процесс перехода идеального одноатомного газа определённой массы из состояния 1 в состояние 2. Определите приращение внутренней энергии газа, если давление газа в конечном состоянии Термодинамика - основные понятия, формулы и определения с примерами= 1,5 МПа, а его объём в начальном состоянии Термодинамика - основные понятия, формулы и определения с примерами= 2,0 л.

Термодинамика - основные понятия, формулы и определения с примерами

Решение.

Термодинамика - основные понятия, формулы и определения с примерами

Приращение внутренней энергии идеального одноатомного газа Термодинамика - основные понятия, формулы и определения с примерами Найти массу m газа, его молярную массу M и

изменение температуры Термодинамика - основные понятия, формулы и определения с примерамине представляется возможным. Однако, используя уравнение Клапейрона—Менделеева, для состояний 1 и 2 можно определить значение выражения Термодинамика - основные понятия, формулы и определения с примерами. Из рисунка 51 видно, что в состоянии 1 давление газа Термодинамика - основные понятия, формулы и определения с примерами а его объём Термодинамика - основные понятия, формулы и определения с примерами а в состоянии 2 — Термодинамика - основные понятия, формулы и определения с примерами Тогда уравнение Клапейрона—Менделеева для состояний 1и 2 примет вид:Термодинамика - основные понятия, формулы и определения с примерами

Вычтем из уравнения (2) уравнение (1):Термодинамика - основные понятия, формулы и определения с примерами и получим, что Термодинамика - основные понятия, формулы и определения с примерами. Тогда Термодинамика - основные понятия, формулы и определения с примерами

Термодинамика - основные понятия, формулы и определения с примерами

Ответ:Термодинамика - основные понятия, формулы и определения с примерами

  • Необратимость тепловых процессов
  • Адиабатический процесс
  • Молекулярно-кинетическая теория
  • Работа в термодинамике
  • Освоение космоса – история, этапы и достижения с фотографиями
  • Закон сохранения механической энергии в физике
  • Релятивистская механика в физике
  • Теория относительности Эйнштейна

Статьи

Линия УМК А. В. Грачева. Физика (7-9)

Линия УМК А. В. Грачева. Физика (10-11) (БУ)

Линия УМК Г. Я. Мякишева, М.А. Петровой. Физика (10-11) (Б)

Линия УМК А. Е. Гуревича. Физика (7-9)

Физика

Первый закон термодинамики. Как рассказать просто о сложном?


Термодинамика — раздел физики, в котором изучаются процессы изменения и превращения внутренней энергии тел, а также способы использования внутренней энергии тел в двигателях.

05 июля 2019

1. Определение первого закона термодинамики

Термодинамика — раздел физики, в котором изучаются процессы изменения и превращения внутренней энергии тел, а также способы использования внутренней энергии тел в двигателях. Собственно, именно с анализа принципов первых тепловых машин, паровых двигателей и их эффективности и зародилась термодинамика. Можно сказать, что этот раздел физики начинается с небольшой, но очень важно работы молодого французского физика Николя Сади Карно.

Самым важным законом, лежащим в основе термодинамики является первый закон или первое начало термодинамики. Чтобы понять суть этого закона, для начала, вспомним что называется внутренней энергией. ВНУТРЕННЯЯ ЭНЕРГИЯ тела — это энергия движения и взаимодействия частиц, из которых оно состоит. Нам хорошо известно, что внутреннюю энергию тела можно изменить, изменив температуру тела. А изменять температуру тела можно двумя способами:

  1. совершая работу (либо само тело совершает работу, либо над телом совершают работу внешние силы);
  2. осуществляя теплообмен — передачу внутренней энергии от одного тела к другому без совершения работы.

Нам, также известно, что работа, совершаемая газом, обозначается Аг, а количество переданной или полученной внутренней энергии при теплообмене называется количеством теплоты и обозначается Q. Внутреннюю энергию газа или любого тела принято обозначать буквой U, а её изменение, как и изменение любой физической величины, обозначается с дополнительным знаком Δ, то есть ΔU.

Физика. 10 класс. Базовый уровень. Учебник

Физика. 10 класс. Базовый уровень. Учебник

Большое количество красочных иллюстраций, графиков и схем, разнообразные вопросы и задания, а также дополнительные сведения и любопытные факты способствуют эффективному усвоению учебного материала.

Купить

Сформулируем ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ для газа. Но, прежде всего, отметим, что когда газ получает некоторое количество теплоты от какого-либо тела, то его внутренняя энергия увеличивается, а когда газ совершает некоторую работу, то его внутренняя энергия уменьшается. Именно поэтому первый закон термодинамики имеет вид:

ΔU = Q — Aг

Так как работа газа и работа внешних сил над газом равны по модулю и противоположны по знаку, то первый закон термодинамики можно записать в виде:

ΔU = Q + Aвнеш.

Понять суть этого закона довольно просто, ведь изменить внутреннюю энергию газа можно двумя способами: либо заставить его совершить работу или совершить над ним работу, либо передать ему некоторое количество теплоты или отвести от него некоторое количество теплоты.

2. Первый закон термодинамики в процессах

Применительно к изопроцессам первый закон термодинамики может быть записан несколько иначе, учитывая особенности этих процессов. Рассмотрим три основных изопроцесса и покажем, как будет выглядеть формула первого закона термодинамики в каждом из них.

  1. Изотермический процесс — это процесс, происходящий при постоянной температуре. С учётом того, что количество газа также неизменно, становится ясно, что так как внутренняя энергия зависит от температуры и количества газа, то в этом процессе она не изменяется, то есть U = const, а значит ΔU = 0, тогда первый закон термодинамики будет иметь вид: Q = Aг.
  2. Изохорный процесс — это процесс, происходящий при постоянном объёме. То есть в этом процессе газ не расширяется и не сжимается, а значит не совершается работа ни газом, ни над газом, тогда Аг = 0 и первый закон термодинамики приобретает вид: ΔU = Q.
  3. Изобарный процесс — это процесс, при котором давление газа неизменно, но и температура, и объём изменяются, поэтому первый закон термодинамики имеет самый общий вид: ΔU = Q — Аг.
  4. Адиабатный процесс — это процесс, при котором теплообмен газа с окружающей средой отсутствует (либо газ находится в теплоизолированном сосуде, либо процесс его расширения или сжатия происходит очень быстро). То есть в таком процессе газ не получает и не отдаёт количества теплоты и Q = 0. Тогда первый закон термодинамики будет иметь вид: ΔU = —Аг.

3. Применение

Первое начало термодинамики (первый закон) имеет огромное значение в этой науке. Вообще понятие внутренней энергии вывело теоретическую физику 19 века на принципиально новый уровень. Появились такие понятия как термодинамическая система, термодинамическое равновесие, энтропия, энтальпия. Кроме того, появилась возможность количественного определения внутренней энергии и её изменения, что в итоге привело учёных к пониманию самой природы теплоты, как формы энергии.

Ну, а если говорить о применении первого закона термодинамики в каких-либо задачах, то для этого необходимо знать два важных факта. Во-первых, внутренняя энергия идеального одноатомного газа равна:  а во-вторых, работа газа численно равна площади фигуры под графиком данного процесса, изображённого в координатах pV. Учитывая это, можно вычислять изменение внутренней энергии, полученное или отданное газом количество теплоты и работу, совершённую газом или над газом в любом процессе. Можно также определять коэффициент полезного действия двигателя, зная какие процессы в нём происходят.

4. Методические советы учителям

  1. Обязательно обратить внимание учащихся на знаки работы газа, количества теплоты и изменения внутренней энергии и научить их по графику процесса в координатах рV определять эти знаки, для чего удобно использовать подобную таблицу:

    Процесс

    р

    V

    T

    U

    ΔU

    Aг

    Q

  2. Лучше всего, рассмотреть не только сам вид первого закона термодинамики в различных процессах, но и способы расчёта всех входящих в него величин.
  3. Обязательно на конкретных примерах, как числовых, так и графических, показать применение первого закона термодинамики.
  4. Уделить особое внимание процессу, в котором давление линейно зависит от объёма — с графиками и примерами применения к этому процессу первого закона термодинамики.
  5. Показать примеры на расчёт коэффициента полезного действия по графику циклического процесса с применением первого закона термодинамики и формул работы газа и изменения его внутренней энергии.

#ADVERTISING_INSERT#

Добавить комментарий