Как найти силу ампера правило левой руки

Правило левой руки для силы Ампера


Правило левой руки для силы Ампера

4

Средняя оценка: 4

Всего получено оценок: 77.

4

Средняя оценка: 4

Всего получено оценок: 77.

Из курса физики известно, что на проводник с током, помещенный в магнитное поле, действует сила Ампера. Для определения направления этой силы используется специальное правило, называемое правилом левой руки. Поговорим кратко об этом правиле.

Сила и закон Ампера

На заряд, движущийся в магнитном поле, действует со стороны этого поля сила, называемая силой Лоренца.

Сила Лоренца

Рис. 1. Сила Лоренца.

Если в магнитное поле помещен проводник с током, то силы Лоренца, действующие на движущиеся носители заряда в этом проводнике, складываются в силу, называемую силой Ампера.

Модуль силы Ампера рассчитывается по закону Ампера:

$$F= I |overrightarrow B| Δl sin alpha,$$

где:

  • $F$ — модуль силы Ампера;
  • $I$ — величина тока в проводнике;
  • $B$ — индукция магнитного поля;
  • $Δl$ — длина проводника;
  • $alpha$ — угол между линиями магнитного поля и направлением тока в проводнике.

Сила Ампера

Рис. 2. Сила Ампера.

Направление силы Ампера

Обычно действие сил совпадает с направлением движения тел или с направлением на источник силы. В случае с силой Ампера ситуация иная.

Направление действия силы Ампера не совпадает ни с направлением движения тока, ни с направлением вектора магнитной индукции. Сила Ампера направлена перпендикулярно обоим этим направлениям. То есть, если линии магнитного поля направлены по вертикали, а проводник расположен горизонтально слева направо, то сила Ампера будет направлена вдоль линии «вперед-назад». Причем ее направление также будет зависеть от направлений магнитной индукции и электрического тока в проводнике. «Просто запомнить» все направления невозможно. Поэтому для силы Ампера установили специальное мнемоническое правило левой руки.

Правило левой руки

Формулировка правила левой руки для силы ампера звучит так:

Если расположить левую руку так, чтобы четыре пальца были направлены по направлению движения тока в проводнике, а перпендикулярная составляющая индукции $B_{perp}$ входила в ладонь, то отставленный большой палец покажет направление силы Ампера.

Как пользоваться этим правилом? Разберем примеры.

  • Допустим, проводник расположен горизонтально, и ток по нему идет вперед. Следовательно, четыре пальца левой руки надо вытянуть вперед по этому направлению.
  • Теперь допустим, что линии магнитного поля направлены сверху вниз (сверху «север» подковообразного магнита, снизу — «юг»). Следовательно, левую руку надо повернуть ладонью вверх, чтобы линии магнитного поля входили в ладонь и «прокалывали» ее (четыре пальца по-прежнему должны быть вытянуты вперед).
  • Отставленный большой палец левой руки будет направлен влево. Это и есть направление силы Ампера для данной ситуации.

Другой пример.

  • Пусть проводник расположен вертикально. А магнитное поле направлено справа налево (справа «север» магнита, слева — «юг»).
  • Располагаем левую руку четырьмя пальцами вверх. Ладонь открытой стороной должна «смотреть вправо», чтобы магнитные линии входили и «прокалывали» ее.
  • Отставленный большой палец покажет назад. Именно так и будет направлена сила Ампера в данном случае.

Обратите внимание, что силу Ампера порождает только перпендикулярная составляющая магнитного поля. А значит, руку надо располагать так, чтобы линии магнитного поля всегда входили в нее под углом, максимально близким к прямому.

Особым случаем является ситуация, когда направление тока и магнитной индукции совпадает. В этом случае руку невозможно расположить так, чтобы линии магнитной индукции входили в нее. Следовательно, силы Ампера здесь не возникнет. В самом деле, если линии магнитной индукции параллельны направлению тока, то перпендикулярная составляющая этих линий равна нулю, и значение силы Ампера в вышеприведенной формуле также равно нулю.

Различные случаи применения правила левой руки

Рис. 3. Различные случаи применения правила левой руки.

Заключение

Что мы узнали?

Для определения направления силы Ампера используется специальное мнемоническое правило левой руки. С помощью этого правила можно не только определить направление силы Ампера, но и обнаружить случай, когда сила Ампера равна нулю.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

    Пока никого нет. Будьте первым!

Оценка доклада

4

Средняя оценка: 4

Всего получено оценок: 77.


А какая ваша оценка?

В физике и электротехнике приходится часто решать задачи, где требуется рассчитать электрические показатели магнитной индуктивности, по отношению к электротоку и наоборот. Поля и силы сориентированы определенным образом, поэтому и сформировались правило Буравчика и правило левой руки. С их участием возможно установить курс векторов, влияние магнитных полей и прочие данные, используемые в расчетах.

История открытия правила Буравчика

В 19-м веке была обнаружена связь между магнетизмом и электричеством. В это же время было сформировано понятие магнитного поля. Впервые оно было обнаружено датским ученым-физиком Х. Эрстедом.

После этого открытия, ученые ряда стран провели многочисленные эксперименты, которые установили широкий спектр действия поля, нередко выходящий за рамки исследуемого объекта. Было открыто и его круговое вращение.

В дальнейшем, исследования перешли в сферу изучения вопроса – в каких направлениях действует магнетизм. Выяснилось, что его влияние может быть разносторонним, и меняется от того, каким образом располагаются полюса и силы, оказывающие влияние на проводник.

Правило левой руки: применение правила Буравчика, формулы, примеры задач

По результатам экспериментов было открыто и оформлено правило левой и правой руки. Первым каноном выявляется направленность сил, влияющих на проводящий материал, а вторым – направленность магнитных линий.

С целью полного отображения было принято специальное определение и другие обозначения. Отображение поля выполняется в виде концентрических линий. Чем чаще они расположены относительно друг друга, тем выше сила действующего поля. Каждая из них получается замкнутой и не пересекается с соседними. Если узнать их направленность, можно установить, куда смотрит вектор магнитной индукции. Возможно и обратное действие, поскольку направление вектора будет соприкасаться с каждой точкой этих линий.

Проведенные опыты позволили сформулировать и закон Буравчика. Когда он вкручивается, резьба будет двигаться по часовой стрелке, то есть вправо. В таком же направлении осуществляется движение силовых магнитных линий. Правило левой руки дополняет правило Буравчика, устанавливая направленность силы, действующей на электрический провод.

Правило левой руки

Если определять физические величины по правилу левой руки, то ее ладонь располагается в таком положении, что четыре пальца направлены вперед, а большой отвернут в бок. Прямые пальцы указывают в сторону направления тока, а оттопыренный большой – направление устремления вектора приложенных усилий. При этом, направление индукции заходит и упирается в ладошку сверху под углом девяносто градусов.

Что определяет закон

По итогам выполнения многочисленных экспериментальных опытов было выведено определение, которое впоследствии стало именоваться правилом левой руки. Оно связало между собой направленности электротока и концентрических линий, а также влияние на проводящий материал силы магнетических полей. Живой пример отражен на картинке, где хорошо видно взаимодействие физических составляющих. Направленность силовых линий и функционирующего магнитного поля не совпадают, их действие направлено в совершенно разные места.

Когда направленность электротока и проводника будет совмещаться с линиями, то силовое влияние на проводящий материал в данном случае отсутствует. В результате, указанный постулат перестанет работать.

Сила Лоренца применение и формула

Действие электромагнитных полей порождает возникновение точечной заряженной частицы, на который воздействуют силы электрического и магнитного характера. В скомбинированном виде они получили наименование силы Лоренца.

Таким образом, сила Лоренца воздействует на любую частицу с зарядом, падающую с определенной быстротой в магнетическом поле. Степень влияния связана с электрическим зарядом частицы (q), показателем магнитной индукции (В) и быстротой падения частицы (V).

На основании полученных данных голландским ученым Хендриком Лоренцем была выведена формула: FL = |q|x V x B x sinα. Все условные обозначения приведены на рисунке.

Правило левой руки: применение правила Буравчика, формулы, примеры задач

В практической деятельности сила Лоренца получила применение в следующих областях:

  • Кинескопы – электронно-лучевые или телевизионные трубки. В этих устройствах электроны, летящие в направлении экрана, отклоняются магнитным полем, которое создают специальные катушки.
  • Масс-спектрографы. Определяют массы заряженных частиц, путем разделения их по удельным зарядам. Вакуумная камера помещается в магнитном поле. Заряженный частицы ускоряясь, двигаются по дуге и оставляют след на фотопластинке. Па радиусу траектории вначале определяется удельный заряд, на основании которого вычисляется и масса частицы.
  • Циклотрон. Ускоряет заряженные частицы. Ускорение происходит под действием силы Лоренца, после чего траектория частиц сохраняется за счет магнитного поля. Прибор давно начали использовать в медицинских исследованиях с применением радионуклидных фармацевтических препаратов.
  • Магнетрон. Электронная лампа высокой мощности для генерации микроволн, возникающих при взаимодействии электронного потока и магнитного поля. Используется с современных радиолокационных устройствах.

Сила ампера — формула

Сила Ампера непосредственно воздействует на проводник с током, расположенный внутри поля. Совсем кратко она выражается представленной формулой:

F = I x B x L x sinα, где F является силой Ампера, I – сила тока в проводнике, L – отрезок проводника, находящийся под действием магнитного поля, α – угол между направлением тока и вектором магнитной индукции.

Максимальное значение сила Ампера принимает, когда угол α становится равным 90 градусов. Единицей измерения служит ньютон (Н).

Правило левой руки: применение правила Буравчика, формулы, примеры задач

Определение направления силы Ампера выполняется с помощью правила левой руки. Ладонь смотрит вверх, четыре пальца направлены в сторону вектора движения тока. Вектор магнитной индукции перпендикулярен ладони и входит в нее. Направление силы Ампера совпадает с большим пальцем, отогнутым в сторону.

Направлением электрического тока условно считается движение от заряда с плюсом к заряду с минусом.

Примеры задач в физике электротехнике

В качестве примеров будут рассмотрены задачи, связанные с силой Ампера. Примеры решений специфические, но сам метод решения довольно простой.

Задача № 1

Исходные данные для выполнения: длина проводника – 20 см, сила тока, протекающая в нем – 300 мА, угол между проводником и вектором магнитной индукции – 45о. Величина магнитной индукции – 0,5 Тл.

Требуется найти силу однородного магнитного поля, воздействующую на проводник.

Решение: необходимо применять основную формулу – Fa = B x I x L x sinα.  Подставив нужные значения, получаем: Fa = 0,5 Тл х 0,3А х 0,2 м х (√2/2) = 0,03 Н.

Задача № 2

Исходные данные для решения: Проводник помещен в магнитное поле, индукция которого составляет 10 Тл. Сила действия магнитного поля перпендикулярна проводнику и составляет 20 Н. Сила тока, протекающего в проводнике – 5А.

Требуется вычислить длину отрезка проводника.

Решение: за основу берется формула Fa = B x I x L x sinα. Длина проводника определяется следующим образом: L = Fa/(B x I x sinα). Поскольку sinα = 1, получаем: L = Fa/(B x I). Остается подставить нужные значения и получить результат: L = 20Н/(10Тл х 5А) = 0,4 м.

Существуют аналогичные задачи с использованием силы Лоренца. Наглядно рассматрим два примера, которые решаются просто и понятно.

Задача № 3

Исходные данные для выполнения: в магнитном поле с индукцией 0,3 Тл передвигается заряд величиной 0,005 Кл со скоростью 200 м/с. Угол между направлением заряда и вектором магнитной индукции – 45º.

Определяется: величина силы, воздействующей на заряд.

Решение: используется основная формула FL = |q| x V x B x sinα. Подставляя исходные данные, получаем следующее: FL = 0,005Кл х 200м/с х 0,3Тл х sin 45о = (0,3 х √2)/2 = 0,21Н.

Задача № 4

Исходные данные для решения: заряженная частица величиной 0,5 мКл движется в магнитном поле с индукцией 2 Тл. Сила, действующая на заряд со стороны магнитного поля – 32 Н. Направление движения частицы и вектор магнитного поля расположены под углом 90º.

Требуется определить: скорость движения заряженной частицы.

Решение: изначально берется формула FL = |q| x V x B x sinα. Поскольку sinα = 1, она приобретает следующий вид: FL = |q| x V x B. Для определения скорости нужно: V = FL/(|q| x B). Остается вставить исходные данные: V = 32Н/(5*10-4Кл х 2Тл) = 32000 м/с.

Как связано магнитное поле с Буравчиком и руками

Рассматривая движение полей токовой и магнитной природы, можно легко проследить взаимную связь правила Буравчика с канонами правой и левой руки. Для более качественного сравнения этих понятий, следует рассмотреть, что они представляют собой по отдельности.

Закон Буравчика точно устанавливает направленность напряженности, вызываемой магнитными полями. При этом само поле должно размещаться в прямом направлении по отношению к проводящему материалу с электротоком.

Правило левой руки: применение правила Буравчика, формулы, примеры задач

Для более полного представления берется штопор с правой резьбой и ввинчивается по часовой стрелочке в сторону протекания тока. Направленность магнетических полей соответствует правостороннему движению штопорной рукоятки.

Правило правой руки может рассматриваться в двух вариантах. В одном из них пальцы, согнутые в кулак, охватывают неподвижный токопроводник. Они обозначают, в какую сторону смотрит вектор магнитных линий, который, как и у рукоятки Буравчика, будет по ходу часовой стрелки. Самый крупный палец отступает на 90º и показывает, в какую сторону движется ток.

Если же токопровод движется, то правая рука размещается иным способом. Ладонь устанавливается между северным и южным полюсами так, чтобы она была в перпендикулярности с силовыми линиями, проходящими через нее. Крупный палец фиксируется в вертикальном положении и показывает в сторону направленного движения проводника. Оставшиеся пальцы, протянутые вперед, смотрят в ту же сторону, что и индукционный ток. Эта установка нашла свое применение в расчетах катушечных соленоидов, оказывающих воздействие на физические свойства тока.

Правило левой руки: применение правила Буравчика, формулы, примеры задач

Отделяя друг от друга правило правой и левой руки, их физика показывает, что второй вариант, используемый в расчетах, действует по-другому. Левая ладошка размещается в таком положении, чтобы четыре пальца были направлены в сторону тока, продвигающегося по проводнику. Магнитные линии, перемещаясь от одного полюса к другому, заходят в ладошку под 90 градусов. Оттопыренный крупный палец смотрит в ту же сторону, что и сила, воздействующая на токопроводник.

Магнитное поле в соленоиде

Законы правой и левой руки в физике, разобранные ранее, на сто процентов действуют лишь для прямолинейных токопроводников. Однако, довольно часто провода используются в виде катушек или соленоидов, где все процессы происходят по-другому.

Известно, что под влиянием электротока, проходящего внутри провода, образуется круговое магнитное поле. В катушечных соленоидах провод сворачивается в виде колец и многократно оборачивается вокруг сердечника. Здесь правило Буравчика в чистом виде уже не функционирует, поскольку происходит существенное усиление магнетических полей. Но, его условные линии направлены так же, как и у постоянных магнитов, поэтому в таком случае возможно применение правила правой руки.

Правило левой руки: применение правила Буравчика, формулы, примеры задач

Сначала соленоид охватывается так, чтобы самый крупный палец смотрел в направлении северного магнитного полюса. Он же отображает направление вектора магнитной индукции. Остальные четыре пальчика располагаются в направлении протекания тока.

Возможно частично применить и правило штопора. Его следует установить и закручивать в направлении тока, тогда острие станет перемещаться в направлении электромагнитной индукции. Эта установка действует не только для всей катушки, но и для одиночного витка.

Определение направления тока Буравчиком

Определить, куда движется ток, возможно посредством рук и Буравчика. В последнем случае должно быть известно, куда направляется магнитный поток – вектор В. Зная это направления, остается мысленно крутить штопор по часовой стрелке. Он будет постепенно передвигаться вперед, в ту же сторону, что и электроток. Эта формулировка действует для неподвижного прямого токопроводника.

Что связано с левой рукой

В целях правильного использования физических понятий, нельзя смешивать друг с другом Буравчик и левую руку. В одном случае определяются направленности магнетических линий и электротока, а второй вариант заключается в установлении силы, оказывающей влияние на проводящий материал.

В отдельных случаях не все точно знают, как пользоваться «левой рукой». Но что бы ни говорили, все очень просто. Выпрямленная рука размещается ладонью вверх между двумя полюсами вдоль токопроводника. Магнитные линии условно пронзают открытую ладошку. Все пальцы направлены по ходу течения тока, а оттопыренный самый крупный палец совпадает с направлением вектора силы, которая получила название силы Ампера.

Правило левой руки: применение правила Буравчика, формулы, примеры задач

С помощью левой руки можно определить не только силу Ампера, но и силу Лоренца. В последнем случае – это способ, применяемый к отдельным заряженным частицам. Его смысл состоит в расположении пальцев левой ладони в направлении движения заряда. Когда вектор В будет проходить сквозь ладонь, большой палец будет смотреть в сторону действия силы Ампера. При наличии отрицательного заряда, пальцы должны располагаться в противоположном направлении.

Выводы

Научиться пользоваться всеми способами совсем несложно, главное – знать объяснение физических принципов каждого из них. Мысленное использование Буравчика приносить в процессе обучения определенное облегчение в практическом выполнении расчетов и других действий. Все эти правила успешно применяются специалистами во многих областях электротехники.

Видеоурок

Определение и формула

Экспериментальным путём Ампер установил, что между двумя параллельными проводниками, подключенными к постоянному току, действует притяжение (однонаправленные токи) либо отталкивание (если направления противоположные). Эти силы взаимодействия определяются параметрами токов (прямо пропорциональная зависимость), и расстоянием между проводниками (обратно пропорциональная зависимость).

Расчёт амперовой силы на единицу длины проводника осуществляется по формуле:

Формула расчета амперовой силы

где F – сила, I1, I2 – величина тока в проводниках, а μ – магнитная проницаемость среды, окружающей проводники (см. рис. 1).

Природой взаимодействия является магнитное поле, образованное перемещаемыми по проводникам электрическими зарядами. Под влиянием магнитного поля на электрические заряды возникает сила магнитной индукции, которую обозначают символом B.

Линии, в каждой точке которых касательные к ним совпадают с направлением соответствующих векторов магнитной индукции, получили название линий электромагнитной индукции. Применяя мнемоническое правило буравчика, можно определить ориентацию в пространстве линий магнитной индукции. То есть, при ввинчивании буравчика в сторону, куда направлен вектор электрического тока, движение концов его рукоятки укажет направление векторов индукции.

Из сказанного выше следует, что в проводниках, с одинаково ориентированными токами, направления векторов магнитной индукции совпадают, а значит, векторы сил направлены навстречу друг к другу, что и вызывает притяжение.

Взаимодействие параллельных проводников
Рис. 1. Взаимодействие параллельных проводников

Подобным образом проводники взаимодействуют не только между собой, но и с магнитными полями любой природы. Если такой проводник окажется в магнитном поле, то на элемент, расположенный в зоне действия магнита, будет действовать сила, которую именуют Амперовой:

Амперова сила

Для вычисления модуля этой силы пользуются формулой: dF = IBlsinα , где α – угол, образованный векторами индукции и ориентацией тока.

Рассмотренную нами зависимость описывает закон Ампера, формулировка которого понятна из рисунка 2.

Закон Ампера
Рис. 2. Формулировка закона Ампера

Не трудно сообразить, что когда α = 900, то sinα = 1. В этом случае величина F приобретает максимальное значение: F = B*L*I, где L– длина проводника, оказавшегося под действием магнитного поля.

Таким образом, из закона Ампера вытекает:

  • проводник с током реагирует на магнитные поля.
  • действующая сила находится в прямо пропорциональной зависимости от параметров тока, величины магнитной индукции и размеров проводника.

Обратите внимание, что на данном рисунке 3 проводник расположен под углом 90º к линиям магнитной индукции, что вызывает максимальное действие магнитных сил.

Проводник в магнитном поле
Рис. 3. Проводник в магнитном поле

Направление силы Ампера

Принимая к сведению то, что сила – векторная величина, определим её направление. Рассмотрим случай, когда проводник с током расположен между двумя полюсами магнитов под прямым углом к линиям магнитной индукции.

Выше мы установили, что согласно закону Ампера, действующая на данный проводник сила, равна: F = B*L*I. Направление вектора рассматриваемой силы определяется по результатам векторного произведения:

Амперова сила

Если полюса магнита статичны (неподвижны), то векторное произведение будет зависеть только от параметров электричества, в частности, от того, в какую сторону оно течёт.

Направление силы Ампера определяют по известному правилу левой руки: ладонь располагают навстречу магнитным линиям, а пальцы размещают вдоль проводника, в сторону устремления тока. На ориентацию силы Ампера указывает большой палец, образующий прямой угол с ладонью (см. рис. 4).

Интерпретация правила
Рис. 4. Интерпретация правила

Измените мысленно направление электрического тока, и вы увидите, что направление вектора Амперовой силы изменится на противоположное. Модуль вектора имеет прямо пропорциональную зависимость от всех сомножителей, но на практике эту величину удобно регулировать путём изменения параметров в электрической цепи (например, для регулировки мощности электродвигателя).

Правило левой руки

Если определять физические величины по правилу левой руки, то ее ладонь располагается в таком положении, что четыре пальца направлены вперед, а большой отвернут в бок. Прямые пальцы указывают в сторону направления тока, а оттопыренный большой – направление устремления вектора приложенных усилий. При этом, направление индукции заходит и упирается в ладошку сверху под углом девяносто градусов.

Что определяет закон

По итогам выполнения многочисленных экспериментальных опытов было выведено определение, которое впоследствии стало именоваться правилом левой руки. Оно связало между собой направленности электротока и концентрических линий, а также влияние на проводящий материал силы магнетических полей. Живой пример отражен на картинке, где хорошо видно взаимодействие физических составляющих. Направленность силовых линий и функционирующего магнитного поля не совпадают, их действие направлено в совершенно разные места.

Когда направленность электротока и проводника будет совмещаться с линиями, то силовое влияние на проводящий материал в данном случае отсутствует. В результате, указанный постулат перестанет работать.

Интерпретация для точечного заряда

Заметим, что сформулированное правило справедливо для решения задач по определению ориентации силы Лоренца. Перефразируем правило: если ладонь левой руки поместить в магнитное поле таким образом, чтобы линии индукции перпендикулярно входили в неё, а выпрямленные пальцы направить в сторону движения положительного заряда, тонаправление вектора силы Лоренца совпадёт с отставленным на 90º большим пальцем.

Визуальная интерпретация правила левой руки представлена на рисунке 5. Обратите внимание на то, что алгоритм действий для определения сил Ампера и Лоренца практически одинаков.

Интерпретация правил левой руки
Рис. 5. Интерпретация правил левой руки

Примечание: В случае с отрицательным зарядом вытянутые пальцы направляют в сторону, противоположную движению частицы.

Действие магнитного поля на проводник с током и сила Ампера

Поскольку вокруг проводников с током возникает магнитное поле, естественно предположить, что в магнитном поле на них действует сила.

На проводник с током в магнитном поле действует сила.

Проведем исследование с целью определения, от чего зависит модуль и направление этой силы. Для этого используем установку, в которой прямой проводник подвешен в магнитном поле постоянного магнита так, что его можно включать в электрическую цепь, силу тока в которой можно изменять при помощи реостата. Амперметр будет измерять силу тока в цепи.

Замкнув электрическую цепь, заметим, что проводник отклонится от положения равновесия, а динамометр покажет некоторое значение силы. Увеличим силу тока в проводнике в 2 раза и увидим, что сила, действующая на проводник, также увеличится в 2 раза. Любые другие изменения силы тока будут вызывать соответствующие изменения силы. Сопоставление результатов всех измерений позволяет сделать вывод, что сила F, которая действует на проводник с током, пропорциональна силе тока к нем:
F~I.

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера.

Сила Ампера пропорциональна силе тока в проводнике.

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.9. Установка для изучения действия магнитного поля на проводник с током

Расположим еще один магнит рядом с первым. Длина проводника, находящегося в магнитном поле, увеличится приблизительно в 2 раза. Значение силы, действующей на проводник, в этом случае также увеличится в 2 раза. Таким образом, сила FΔ, действующая на проводник с током в магнитном поле, пропорциональна длине проводника Δl, который расположен в магнитном поле:

F~ΔI.

Сила Ампера пропорциональна длине активной части проводника.

Сила увеличится также тогда, когда применим другой, более мощный магнит с большей магнитной индукцией поля.

Это позволит сделать вывод, что сила Ампера FА зависит от магнитной индукции поля:

F~B.

Опыт позволяет убедиться и в том, что наибольшее значение силы Ампера будет тогда, когда угол между проводником и вектором магнитной индукции будет равен 90°. Если этот угол будет равен нулю, т. е. вектор магнитной индукции будет параллельным проводнику, то сила Ампера также будет равна нулю. Отсюда легко сделать вывод, что сила Ампера зависит от угла между вектором магнитной индукции и проводником.

Окончательно для расчетов имеем формулу Сила и закон Ампера - формулы и определение с примерами

Направление силы Ампера определяется по правилу левой руки (рис. 2.10): если левую руку разместить так, чтобы линии магнитной индукции входили в ладонь, а четыре от. ставленных пальца показывали направление тока в проводнике, то отставленный под углом 90″ большой палец покажет направление силы, действующей на проводник с током в магнитном поле.

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.10. При помощи левой pуκu можно определить направление силы Ампера

Если левую руку разместить так. чтобы линии магнитной индукции входили в ладонь, а четыре отставленных пальца показывали направление тока в проводнике, то отставленный под углом 90° большой палец покажет направление силы, действующей на проводник с током в магнитном поле.

Взаимодействие проводников с током

Взаимодействие проводников с током объясняется действием силы Ампера (рис. 2.11).

Каждый из проводников имеет свое магнитное поле, которое действует на соседний проводник с током и способствует появлению силы Ампера. Так, проводник AA’ по которому проходит ток I1, имеет магнитное поле, модуль индукции B1 которого, как указывалось ранее, равен

Сила и закон Ампера - формулы и определение с примерами

где r – расстояние от проводника до точки наблюдения.

Если проводник CC’ длиной Δl находитсяy на расстоянии r от проводника AA’ и в нем проходит ток I2, то на него действует сила Ампера FА, поскольку он находится в магнитном поле проводника AA’ . Значение этой силы равно Сила и закон Ампера - формулы и определение с примерами

Поскольку проводники параллельны и угол между проводником CC’ и вектором магнитной индукции B1  равен 90°, то sinα = 1.

Подставим в последнюю формулу значение магнитной индукции поля проводника AA’:

Сила и закон Ампера - формулы и определение с примерами

Силу взаимодействия двух параллельных проводников с током можно определить, зная только расстояние между ними и силу тока в них.

Как и при любом взаимодействии, такая сила, согласно третьему закону Ньютона, действует на каждый из проводников. Только направления их противоположны.

Таким образом, два параллельных проводника нзнимодей-ствуют между собой благодаря магнитным полям, которые образуются вокруг проводников, по которым проходит электрический ток.

Пример №2

Определить модуль силы Ампера, которая действует на проводник с током длиной 25 см в магнитном поле с индукцией 0,04 Тл, если между вектором магнитной индукции и направлением тока угол 30° сила тока в проводнике 0,25 А.

Ответ: модуль силы равен 1,25 • 10-3 Н.

Как связано магнитное поле с Буравчиком и руками

Рассматривая движение полей токовой и магнитной природы, можно легко проследить взаимную связь правила Буравчика с канонами правой и левой руки. Для более качественного сравнения этих понятий, следует рассмотреть, что они представляют собой по отдельности.

Закон Буравчика точно устанавливает направленность напряженности, вызываемой магнитными полями. При этом само поле должно размещаться в прямом направлении по отношению к проводящему материалу с электротоком.

Правило левой руки: применение правила Буравчика, формулы, примеры задач

Для более полного представления берется штопор с правой резьбой и ввинчивается по часовой стрелочке в сторону протекания тока. Направленность магнетических полей соответствует правостороннему движению штопорной рукоятки.

Правило правой руки может рассматриваться в двух вариантах. В одном из них пальцы, согнутые в кулак, охватывают неподвижный токопроводник. Они обозначают, в какую сторону смотрит вектор магнитных линий, который, как и у рукоятки Буравчика, будет по ходу часовой стрелки. Самый крупный палец отступает на 90º и показывает, в какую сторону движется ток.

Если же токопровод движется, то правая рука размещается иным способом. Ладонь устанавливается между северным и южным полюсами так, чтобы она была в перпендикулярности с силовыми линиями, проходящими через нее. Крупный палец фиксируется в вертикальном положении и показывает в сторону направленного движения проводника. Оставшиеся пальцы, протянутые вперед, смотрят в ту же сторону, что и индукционный ток. Эта установка нашла свое применение в расчетах катушечных соленоидов, оказывающих воздействие на физические свойства тока.

Правило левой руки: применение правила Буравчика, формулы, примеры задач

Отделяя друг от друга правило правой и левой руки, их физика показывает, что второй вариант, используемый в расчетах, действует по-другому. Левая ладошка размещается в таком положении, чтобы четыре пальца были направлены в сторону тока, продвигающегося по проводнику. Магнитные линии, перемещаясь от одного полюса к другому, заходят в ладошку под 90 градусов. Оттопыренный крупный палец смотрит в ту же сторону, что и сила, воздействующая на токопроводник.

Использование действия силы Ампера

Силу Ампера применяют для преобразования энергии электрического тока в механическую энергию проводника. Такое превращение происходит во многих электротехнических устройствах. Рассмотрим некоторые из них.

Eлектроиэмеритальные приборы магнитоэлектрической системы

Электроизмерительный прибор магнитоэлектрической системы состоит из постоянного магнита и проволочной рамки, расположенной между его полюсами (рис. 2.12). Полюса магнита имеют специальные насадки, создающие однородное магнитное поле, в котором вращение рамки не приводит к изменению угла между магнитной индукцией и проводниками рамки. Этот угол всегда равен 90°.

Сила и закон Ампера - формулы и определение с примерами
Pиc. Устройство электроизмерительного прибора магнитоэлектрической системы

C рамкой соединены две спиральные пружины, которые подводят к рамке электрический ток. Во время прохождения электрического тока по витком рамки возникает сила Ампера, пропорциональная силе тока в рамке. Чем больше сила действует на витки рамки, тем больше закручиваются спиральные пружины, которых возникает сила упругости. Когда сила Ампера и сила упругости станут равными, вращение рамки прекратится.

Стрелка, прикрепленная к рамке, показывает угол поворота рамки. Этот угол пропорционален силе тока в рамке.

Электрический двигатель постоянного тока

Электрический двигатель применяют для преобразования энергии электрического тока в механическую энергию вращения вала двигателя. Принцип его действия подобен принципу действия электроизмерительного прибора магнитоэлектрической системы, описанного выше. Только в его конструкции отсутствует пружина, поэтому рамка может поворачиваться на любой угол. Электрический ток к рамке, размещенной на валу и имеющей стальной сердечник, подается через специальные скользящие контакты-щетки.

Сила и закон Ампера - формулы и определение с примерами
Рис. Устройство двигателя постоянного тока

При замыкании цепи питания двигателя ток проходит по рамке и она взаимодействует с магнитным полем постоянного магнита или электромагнита и поворачивается до тех пор, пока ее плоскость не станет параллельной вектору магнит ной индукции. Чтобы она могла нужно сменить направление силы тока в ней, вследствие чего поменяет направлению сила Ампера, действующая на рамку с током в магнитном поле. В двигателе этот процесс осуществляется с помощью двух неподвижных графитометаллических щеток и двух полуколец на валу, к которым подведены концы рамки.

На рисунке показан момент, когда ток в якоре такого направления, что его полюса отталкиваются от одноименных полюсов статора. После поворачивания на некоторый угол якорь окажется в положении, когда разноименные полюса притягиваются. Вследствие инерции якорь проходит это положение равновесия, а благодаря кольцам, которых касаются токоподводящие щетки, направление тока в якоре изменяется па противоположное и вращение якоря продолжается.

Сила и закон Ампера - формулы и определение с примерами
Pиc. Схемы, которые объясняют действие коллекторного электродвигателя постоянного тока
В промышленных образцах электродвигателей постоянного тока ротор имеет несколько рамок-обмоток. Поэтому и количество пар скользящих контактов в них больше: оно согласуется с количеством обмоток. В целом такое устройство называют коллектором. В новейших моделях двигателей постоянного тока роль коллектора выполняет специальное устройство с электронными приборами.

Таким образом, действие силы Ампера нашло применение в различных технических устройствах: электроизмерительных приборах, электрических двигателях и т. п.

Полезные сведения и советы

  1. Общепринято считать, что направление тока указывает в сторону от плюса к минусу. На самом деле, в проводнике упорядоченное перемещение электронов направлено от негативного полюса к позитивному. Поэтому, если бы перед вами стояла задача вычисления силы Лоренца для отдельного электрона в проводнике, следовало бы учитывать данное обстоятельство.
  2. По умолчанию мы рассматриваем винт (буравчик, штопор) с правой резьбой. Однако не следует забывать о существовании винтов с левой резьбой.
  3. При использовании правила часовой стрелки мы принимаем условие о том, что стрелки совершают движение слева направо. Известно, что в бывшем СССР производились часы с обратным ходом часового механизма. Возможно, такие модели существуют до сегодняшнего дня.

Советы: если вам необходимо определить пространственное расположение момента силы, под действием которой происходит вращение некоего тела – вращайте винт в ту же сторону. Условное врезание винта укажет на ориентацию вектора момента силы. Скорость вращения тела не влияет на направление вектора.

Полезно знать, что при вращении буравчика по ходу вращения тела, траектория его ввинчивания совпадёт с направлением угловой скорости.

Предыдущая

ТеорияЗакон сохранения электрического заряда

Следующая

ТеорияПочему в странах разные розетки?

Содержание:

Сила и закон Ампера:

Действие магнитного поля на проводник с током в 1820 г. исследовал экспериментально Андре Мари Ампер. Меняя форму проводников и их расположение в магнитном поле, Ампер сумел определить силу, действующую на отдельный участок проводника с током (элемент тока). В его честь ее назвали силой Ампера.

Исследуем с помощью динамометра модуль силы Ампера, действующей на участок прямолинейного проводника длиной I с током силой l со стороны магнитного поля индукцией В (рис. 150).

Сила и закон Ампера - формулы и определение с примерами

Согласно экспериментальным данным и результатам вычислений модуль силы:

  • пропорционален длине проводника, находящегося в магнитном поле (F ~ l)
  • пропорционален модулю индукции магнитного поля (F ~ В); пропорционален силе тока в проводнике (F ~ l);
  • зависит от ориентации проводника в магнитном поле, т. е. от угла Сила и закон Ампера - формулы и определение с примерами

Обобщая полученные результаты, запишем выражение для силы Ампера Сила и закон Ампера - формулы и определение с примерами
в виде
Сила и закон Ампера - формулы и определение с примерами
где В — индукция магнитного поля, l — длина участка проводника, находящегося в магнитном поле, I — сила тока в проводнике, Сила и закон Ампера - формулы и определение с примерами — угол, образованный направлением тока и Сила и закон Ампера - формулы и определение с примерами

Закон Ампера

Это выражение называют законом Ампера:

  • модуль силы, с которой магнитное поле действует на находящийся в нем прямолинейный проводник с током, равен произведению индукции В этого поля, силы тока I, длины участка проводника l и синуса угла между направлениями тока и индукции магнитного поля.

Сила Ампера Сила и закон Ампера - формулы и определение с примерами всегда перпендикулярна направлению тока в проводнике и вектору индукции Сила и закон Ампера - формулы и определение с примерами магнитного поля. Для определения направления силы

Правило левой руки

Ампера используют правило левой руки (рис. 151):

Сила и закон Ампера - формулы и определение с примерами
 

если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора индукции магнитного поля входила в ладонь, а четыре вытянутых пальца указывали направление тока, то отогнутый на 90° большой палец укажет направление силы Ампера.

Магнитное взаимодействие проводников с током используется для определения в СИ одной из основных единиц — единицы силы тока — ампера.

Один ампер есть сила постоянного тока, поддерживаемого в каждом из двух прямолинейных параллельных проводниках бесконечной длины и ничтожно малого кругового сечения, расположенных на расстоянии 1 м один от другого в вакууме, который вызывает между этими проводниками силу взаимодействия, равную Сила и закон Ампера - формулы и определение с примерамиН на каждый метр длины проводников.

Магнитное поле

Обобщение учеными результатов теоретических и экспериментальных исследований различных взаимодействий в природе привело к выводу, что материя может существовать не только в форме вещества, по и в форме поля. Изучая физику в предыдущих классах, вы узнали о существовании электрического и магнитного полей, благодаря которым взаимодействуют наэлектризованные тела. Работы Дж. Максвелла, М. Фарадея и других ученых показали, что эти поля взаимосвязаны и фактически являются проявлениями более универсального электромагнитного поля. И только выбор системы отсчета определяет, что мы наблюдаем – электрическое или магнитное поле. Изучить все свойства электромагнитного поля довольно сложно. Поэтому в физике изучают постепенно отдельные проявления этого ноля. Одним из этапов изучения электромагнитного поля является изучение магнитного поля, которое проявляется в случае, когда заряженные частицы или тела в определенной системе отсчета движутся равномерно. В этом разделе рассматриваются не только условия, при которых магнитное поле наблюдается, но и физические величины, которые описывают его свойства, законы, по которым взаимодействуют магнитные поля и вещественные объекты. Знание этих законов позволяет производить важные для практики расчеты результатов взаимодействия магнитного поля с различными физическими телами.

Явления, которые мы называем магнитными, известны человечеству очень давно. Необычные свойства магнетита (разновидности железной руды) использовались в Древнем Китае, а потом и в других странах для изготовления компасов. Магнитам приписывали магические свойства, их действием объясняли непонятные явления природы, пробовали лечить болезни.
Систематизированные исследования магнитов провел английский физик У. Гильберт в XVI в. Он не только исследовал взаимодействие постоянных .магнитов, но и установил, что Земля является большим магнитом.

Учение о магнитах развивалось длительное время обособленно, как отдельная отрасль науки, пока ряд открытий и теоретических исследований в XIX в. не доказали его органическую связь с электричеством.

Одним из фундаментальных доказательств единства электрических и магнитных явлений является опыт Г.Х. Эрстеда, датского физика, который в 1820 г. заметил, что магнитная стрелка изменяет ориентацию вблизи проводника с током (рис. 2.1).

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.1. Опыт Эрстеде

Было вполне очевидно, что причиной изменения ориентации стрелки является электрический ток -направленное движение заряженных частиц в проводнике. C подробным описанием этого опыта вы встречались в 9-м классе.

Магнитное действие движущихся заряженных тел исследовал также американский физик Г. Роуланд в 1878 г. Основная часть его установки представляла собой эбонитовый диск 1, покрытый тонким слоем золота (рис. 2.2). Диск был насажен на вал и мог свободно вместе с ним вращаться между двумя стеклянными пластинами 2. Над эбонитовым диском были укреплены на тонкой нити две намагниченные стальные иголки 3, чувствительные к магнитному полю. Когда диску сообщили некоторый заряд и начали вращать, иголки повернулись на некоторый угол, что свидетельствовало о наличии магнитного поля. При увеличении скорости вращения иголки поворачивались на больший угол.

Сила и закон Ампера - формулы и определение с примерами
Рис. 22. Главная часть установки Роуланда по выявлению магнитного поля движущегося электрически заряженного диска

Опытами Г. Роуланда было подтверждено открытие Эрстеда о связи магнитного поля с движущимися электрически заряженными частицами или телами.

Сила и закон Ампера - формулы и определение с примерами Генри Роуланд (184β-1901) – американский физик; научные работы в области
электродинамики, оптики, спектроскопии и теплоты. Он доказал, что заряженные
тела, если они движутся, вызывают магнитное взаимодействие.

Магнитные явления хотя и связаны с электрическими, но не идентичны им. Это подтверждают опыты.

Если взять два длинных параллельных проводника и присоединить к источнику тока, то заметим, что они взаимодействуют между собой (рис. 2.3) в зависимости от направления тока в них. При токах противоположных направлений проводники отталкиваются (рис. 2.3-а). Если токи одного направления, то проводники притягиваются друг к другу (рис. 2.3-б).

Сила и закон Ампера - формулы и определение с примерами
Pиc. 23. Магнитное взаимодействие проводников с током

Действие проводника с током на магнитную стрелку или другой проводник с током происходит при отсутствии непосредственного контакта между ними, благодаря наличию вокруг проводника магнитного поля.

Магнитное поле имеет свои особенности, которые выделяют его среди других полей:

  1. магнитное поле наблюдается всегда, когда есть движущиеся заряженные частицы или тела;
  2. магнитное поле действует только на движущиеся заряженные тела или частицы.

Другие свойства будут описаны далее.

Магнитная индукция

Наблюдения за магнитными взаимодействиями в лаборатории или в природе показывают, что действия магнитного поля па физические тела или проводники с током при равных условиях могут быть различными.

Интенсивность магнитного взаимодействия может быть различной.

Если для выявления магнитного поля Земли магнитную стрелку компаса приходится устанавливать на специальных опорах, которые существенно уменьшают силы трения, то действие электромагнита, в обмотках которого проходит электрический ток, будет заметным даже тогда, когда стрелка будет просто лежать на столе.

Различным будет и взаимодействие параллельных проводников с током. Сила взаимодействия этих проводников будет изменяться, если будет изменяться сила тока в них или расстояние между ними, – она будет увеличиваться при увеличении силы тока или при уменьшении расстояния.

Для всех таких случаев говорят о «сильном» или «слабом» поле. Аналогичные случаи рассматривались при изучении свойств электрического поля, при рассмотрении действия электрического поля на заряженные тела. Для количественной характеристики электрического поля введена напряженность электрического поля. Для магнитного же поля используется также силовая характеристика и соответствующая ей физическая величина магнитная индукция. Магнитная индукция является векторной величиной и обозначается буквой В. Поскольку для исследования магнитного поля длительное время пользовались магнитной стрелкой на острие, то магнитная индукция как характеристика магнитного поля была связана с действием магнитного поля па магнитную стрелку. Так, направление полюсов стрелки послужило базой для установления направления вектора магнитной индукции изучаемого поля. Условились, что за направление магнитной индукции принимается направление северного полюса стрелки.

Магнитная индукция – векторная величина, имеющая направление.

Исследуем с помощью магнитной стрелки магнитное поле проволочного витка с током.

Замкнув цепь, в которую включен виток, начнем обносить магнитную стрелку на острие вокруг витка. Заметим, что ориентация стрелки при этом будет меняться. В разных точках она будет иметь различную ориентацию. Наиболее ощутимым будет действие поля на стрелку в центре витка (рис. 2.4).

Сила и закон Ампера - формулы и определение с примерами
Puc. 2.4. Продольная ось магнитной стрелки, находящаяся в центре витка с током, перпендикулярна его плоскости

Таким образом, мы установили, что магнитная индукция витка или прямоугольной рамки будет иметь максимальное значение в центре.

Продольная ось магнитной стрелки плоскости витка. Аналогичное явление будет наблюдаться и тогда, когда возьмем прямоугольную рамку или моток провода произвольной формы.

В отличие от напряженности электрического поля магнитная индукция как векторная величина не совпадает по направлению с направлением силы, которая действует на проводник с током. Выясним, как направление вектора магнитной индукции зависит от направления тока в витке.

Магнитная индукция – это силовая характеристика поля. Она определяет силу, которая действует на проводник с током или на движущуюся частицу.

Отметив направление магнитной стрелки при определенном направлении тока в витке, изменим направление последнего на противоположное. Магнитная стрелка развернется на 1800, показывая, что направление магнитной индукции также изменилось. Таким образом, направление магнитной индукции витка с током зависит от направления тока и нем.

Чтобы каждый раз, когда нужно знать направление магнитной индукции, не проводить опыты со стрелкой, пользуются правилом правого винта (буравчика).

Это правило позволяет запомнить связь направления тока в витке с направлением магнитной индукции его поля. Для этого необходимо представить, как будет двигаться правый винт, приставленный перпендикулярно к плоскости витка, при вращении его по направлению тока в витке.

Если направление вращения правого винта, расположенного в центре витка с током, совпадает с направлением тока, то его поступательное движение показывает направление магнитной индукции (рис. 2.5).

Магнитное поле существует и вокруг прямого проводника с током. Для подтверждения этого магнитную стрелку будем обносить вокруг проводника, не изменяя расстояния (рис. 2.6).

Сила и закон Ампера - формулы и определение с примерами

Pиc. 2.5. Определение
направления магнитной
индукции витка с током

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.6. Исследование магнитного
поля прямого проводника с током
при помощи магнитной стрелки

В разных точках ее ориентация будет различной, но ось стрелки всегда будет направлена по касательной к траектории движения.

Соответственно и магнитная индукция проводника с током будет иметь такое ясе направление.
При изменении направления тока в проводнике на противоположное стрелка развернется на 180° и покажет направление магнитной индукции, которое также будет противоположным к прежнему.

Таким образом, направление магнитной индукции прямого проводника зависит от направления тока в нем. Для облегчения его определения, как и в предыдущем случае, на основании анализа результатов эксперимента, сформулировано правило правого винта (рис. 2.7): если направление поступательного движения правого винта совпадает с направлением тока в проводнике, то направление его вращения показывает направление магнитной индукции.

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.7. Определение направления магнитной индукции поля прямого проводника с током при помощи правою винта (буравчика)

Для измерения магнитной индукции применяется специальная единица тесла (Тл). Эта единица названа в честь сербского ученого и изобретателя Николы Теслы.

Сила и закон Ампера - формулы и определение с примерами Никола Тесла (1856-1943) – родился в Сербии, изобретатель и физик.
Известен благодаря своим изобретениям в области электротехники
и электроники; работал инженером на предприятиях Венгрии, Франции, США.

В практике используются долевые величины:

  • 1 миллитесла = 1 мТл = 10-3 Тл,
  • 1 микротесла 1 мкТл 10-6 Тл.

Значения магнитной индукции измеряют специальными приборами, которые называются магнитометрами или индикаторами магнитной индукции (рис. 2.8).

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.8. Лабораторный магнитометр для школьных опытов

Часто вместо прямых измерений пользуются формулами, которые позволяют рассчитать магнитную индукцию на основании параметров проводника. Таким примером может быть расчет модуля магнитной индукции прямого проводника с током. Экспериментально подтверждено, что магнитная индукция поля прямого проводника с током прямо пропорциональна силе тока в проводнике и обратно пропорциональна расстоянию от его оси:

Сила и закон Ампера - формулы и определение с примерами

Магнитная индукция прямого проводника с током пропорциональна силе тока в нем и обратно пропорциональна расстоянию от проводника до точки наблюдения.

Коэффициент пропорциональности в этой формуле зависит от выбора системы единиц измерений. В Международной системе единиц (СИ) он имеет значение Сила и закон Ампера - формулы и определение с примерами

где μ0 – магнитная постоянная, ее числовое значение 1,256 × × 10-6 Н/А2.

Сила и закон Ампера - формулы и определение с примерами

Тогда окончательно для рассчетов модуля магнитной индукции поля прямого проводника с током имеем формулу:

Сила и закон Ампера - формулы и определение с примерами

где μ0 – магнитная постоянная; I – сила тока в проводнике: r – расстояние от проводника до данной точки поля.

Пример №1

Каково значение модуля магнитной индукции в точке поля, удаленной на 3 см от бесконечно длинного проводника, по которому проходит ток 6 А?

Дано:
r = 3 см,
I = 6 А.
Решение
Магнитная индукция прямого проводника
с током рассчитывается по формуле:
Сила и закон Ампера - формулы и определение с примерами
В – ?

Подставив значения физических величин, получим
Сила и закон Ампера - формулы и определение с примерами
Сила и закон Ампера - формулы и определение с примерами

Ответ: магнитная индукция поля прямого проводника с током равна 4 • 10-5 Тл.

Действие магнитного поля на проводник с током и сила Ампера

Поскольку вокруг проводников с током возникает магнитное поле, естественно предположить, что в магнитном поле на них действует сила.

На проводник с током в магнитном поле действует сила.

Проведем исследование с целью определения, от чего зависит модуль и направление этой силы. Для этого используем установку, в которой прямой проводник подвешен в магнитном поле постоянного магнита так, что его можно включать в электрическую цепь, силу тока в которой можно изменять при помощи реостата. Амперметр будет измерять силу тока в цепи.

Замкнув электрическую цепь, заметим, что проводник отклонится от положения равновесия, а динамометр покажет некоторое значение силы. Увеличим силу тока в проводнике в 2 раза и увидим, что сила, действующая на проводник, также увеличится в 2 раза. Любые другие изменения силы тока будут вызывать соответствующие изменения силы. Сопоставление результатов всех измерений позволяет сделать вывод, что сила F, которая действует на проводник с током, пропорциональна силе тока к нем:
F~I.

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера.

Сила Ампера пропорциональна силе тока в проводнике.

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.9. Установка для изучения действия магнитного поля на проводник с током

Расположим еще один магнит рядом с первым. Длина проводника, находящегося в магнитном поле, увеличится приблизительно в 2 раза. Значение силы, действующей на проводник, в этом случае также увеличится в 2 раза. Таким образом, сила FΔ, действующая на проводник с током в магнитном поле, пропорциональна длине проводника Δl, который расположен в магнитном поле:

F~ΔI.

Сила Ампера пропорциональна длине активной части проводника. 

Сила увеличится также тогда, когда применим другой, более мощный магнит с большей магнитной индукцией поля.

Это позволит сделать вывод, что сила Ампера FА зависит от магнитной индукции поля:

F~B.

Опыт позволяет убедиться и в том, что наибольшее значение силы Ампера будет тогда, когда угол между проводником и вектором магнитной индукции будет равен 90°. Если этот угол будет равен нулю, т. е. вектор магнитной индукции будет параллельным проводнику, то сила Ампера также будет равна нулю. Отсюда легко сделать вывод, что сила Ампера зависит от угла между вектором магнитной индукции и проводником.

Окончательно для расчетов имеем формулу Сила и закон Ампера - формулы и определение с примерами

Направление силы Ампера определяется по правилу левой руки (рис. 2.10): если левую руку разместить так, чтобы линии магнитной индукции входили в ладонь, а четыре от. ставленных пальца показывали направление тока в проводнике, то отставленный под углом 90″ большой палец покажет направление силы, действующей на проводник с током в магнитном поле.

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.10. При помощи левой pуκu можно определить направление силы Ампера

Если левую руку разместить так. чтобы линии магнитной индукции входили в ладонь, а четыре отставленных пальца показывали направление тока в проводнике, то отставленный под углом 90° большой палец покажет направление силы, действующей на проводник с током в магнитном поле.

Взаимодействие проводников с током

Взаимодействие проводников с током объясняется действием силы Ампера (рис. 2.11).

Каждый из проводников имеет свое магнитное поле, которое действует на соседний проводник с током и способствует появлению силы Ампера. Так, проводник AA‘ по которому проходит ток I1, имеет магнитное поле, модуль индукции B1 которого, как указывалось ранее, равен

Сила и закон Ампера - формулы и определение с примерами

где r – расстояние от проводника до точки наблюдения.

Если проводник CC’ длиной Δl находитсяy на расстоянии r от проводника AA’ и в нем проходит ток I2, то на него действует сила Ампера FА, поскольку он находится в магнитном поле проводника AA’ . Значение этой силы равно Сила и закон Ампера - формулы и определение с примерами

Поскольку проводники параллельны и угол между проводником CC’ и вектором магнитной индукции B равен 90°, то sinα = 1.

Подставим в последнюю формулу значение магнитной индукции поля проводника AA’:

Сила и закон Ампера - формулы и определение с примерами

Силу взаимодействия двух параллельных проводников с током можно определить, зная только расстояние между ними и силу тока в них.

Как и при любом взаимодействии, такая сила, согласно третьему закону Ньютона, действует на каждый из проводников. Только направления их противоположны.

Таким образом, два параллельных проводника нзнимодей-ствуют между собой благодаря магнитным полям, которые образуются вокруг проводников, по которым проходит электрический ток.

Пример №2

Определить модуль силы Ампера, которая действует на проводник с током длиной 25 см в магнитном поле с индукцией 0,04 Тл, если между вектором магнитной индукции и направлением тока угол 30° сила тока в проводнике 0,25 А.

Дано:
∆l = 25 см.
В = 0,04 Тл,

Сила и закон Ампера - формулы и определение с примерами = 30%
I = 0,25 А.

Решение
На проводник с током в магнитном поле действует сила
Сила и закон Ампера - формулы и определение с примерами

Подставим значения всех величин:
Сила и закон Ампера - формулы и определение с примерами

FA– ?

Ответ: модуль силы равен 1,25 • 10-3 Н.

Использование действия силы Ампера

Силу Ампера применяют для преобразования энергии электрического тока в механическую энергию проводника. Такое превращение происходит во многих электротехнических устройствах. Рассмотрим некоторые из них.

Eлектроиэмеритальные приборы магнитоэлектрической системы

Электроизмерительный прибор магнитоэлектрической системы состоит из постоянного магнита и проволочной рамки, расположенной между его полюсами (рис. 2.12). Полюса магнита имеют специальные насадки, создающие однородное магнитное поле, в котором вращение рамки не приводит к изменению угла между магнитной индукцией и проводниками рамки. Этот угол всегда равен 90°.

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.12. Устройство электроизмерительного прибора магнитоэлектрической системы

C рамкой соединены две спиральные пружины, которые подводят к рамке электрический ток. Во время прохождения электрического тока по витком рамки возникает сила Ампера, пропорциональная силе тока в рамке. Чем больше сила действует на витки рамки, тем больше закручиваются спиральные пружины, которых возникает сила упругости. Когда сила Ампера и сила упругости станут равными, вращение рамки прекратится.

Стрелка, прикрепленная к рамке, показывает угол поворота рамки. Этот угол пропорционален силе тока в рамке.

Электрический двигатель постоянного тока

Электрический двигатель применяют для преобразования энергии электрического тока в механическую энергию вращения вала двигателя. Принцип его действия подобен принципу действия электроизмерительного прибора магнитоэлектрической системы, описанного выше. Только в его конструкции отсутствует пружина, поэтому рамка может поворачиваться на любой угол. Электрический ток к рамке, размещенной на валу и имеющей стальной сердечник, подается через специальные скользящие контакты-щетки (рис. 2.13).

Сила и закон Ампера - формулы и определение с примерами
Рис. 213. Устройство двигателя постоянного тока

При замыкании цепи питания двигателя ток проходит по рамке и она взаимодействует с магнитным полем постоянного магнита или электромагнита и поворачивается до тех пор, пока ее плоскость не станет параллельной вектору магнит ной индукции. Чтобы она могла нужно сменить направление силы тока в ней, вследствие чего поменяет направлению сила Ампера, действующая на рамку с током в магнитном поле. В двигателе этот процесс осуществляется с помощью двух неподвижных графитометаллических щеток и двух полуколец на валу, к которым подведены концы рамки.

На рисунке 2.14-а показан момент, когда ток в якоре такого направления, что его полюса отталкиваются от одноименных полюсов статора. После поворачивания на некоторый угол якорь окажется в положении, когда разноименные полюса притягиваются (рис 2.14-6). Вследствие инерции якорь проходит это положение равновесия, а благодаря кольцам, которых касаются токоподводящие щетки (рис. 2.14-в), направление тока в якоре изменяется па противоположное и вращение якоря продолжается (см. рис. 2.14-а).

Сила и закон Ампера - формулы и определение с примерами
Pиc. 2.14 Схемы, которые объясняют действие коллекторного электродвигателя постоянного тока

В промышленных образцах электродвигателей постоянного тока ротор имеет несколько рамок-обмоток. Поэтому и количество пар скользящих контактов в них больше: оно согласуется с количеством обмоток. В целом такое устройство называют коллектором. В новейших моделях двигателей постоянного тока роль коллектора выполняет специальное устройство с электронными приборами.

Таким образом, действие силы Ампера нашло применение в различных технических устройствах: электроизмерительных приборах, электрических двигателях и т. п.

Сила ампера

Вы узнали, что магнитное поле действует на проводник с током с некоторой силой. А из курса физики 8 класса помните, что сила — это векторная физическая величина, поэтому, чтобы полностью определить силу, нужно уметь рассчитывать ее значение и определять направление. От чего зависит значение силы, с которой магнитное поле действует на проводник с током, как направлена эта сила и почему ее называют силой Ампера, вы узнаете из данного параграфа.

Характеристика силы действующей на проводник с током

Между полюсами подковообразного постоянного магнита подвесим на тонких и гибких проводах прямой алюминиевый проводник (рис. 4.1, а). Если через проводник пропустить ток, проводник отклонится от положения равновесия (рис. 4.1, б). Причина такого отклонения — сила, действующая на проводник с током со стороны магнитного поля. Доказал наличие этой силы и выяснил, от чего зависят ее значение и направление, А. Ампер. Именно потому эту силу называют силой Ампера.

Сила и закон Ампера - формулы и определение с примерами

Рис. 4.1. Опыт, демонстрирующий действие магнитного поля на алюминиевый проводник: при отсутствии тока магнитное поле на проводник не действует (а); если в проводнике течет ток, на проводник действует магнитное поле и проводник отклоняется (б)

Сила Ампера — это сила, с которой магнитное поле действует на проводник с током.

Сила Ампера прямо пропорциональна силе тока в проводнике и длине активной части проводника (то есть части, расположенной в магнитном поле). Сила Ампера увеличивается с увеличением индукции магнитного поля и зависит от того, под каким углом к линиям магнитной индукции расположен проводник.

Значение силы Ампера Сила и закон Ампера - формулы и определение с примерами вычисляют по формуле:

Сила и закон Ампера - формулы и определение с примерами

где Сила и закон Ампера - формулы и определение с примерами — магнитная индукция магнитного поля; Сила и закон Ампера - формулы и определение с примерами — сила тока в проводнике; Сила и закон Ампера - формулы и определение с примерами — длина активной части проводника; Сила и закон Ампера - формулы и определение с примерами — угол между направлением вектора магнитной индукции и направлением тока в проводнике (рис. 4.2).

Обратите внимание! Магнитное поле не будет действовать на проводник с током Сила и закон Ампера - формулы и определение с примерами если проводник расположен параллельно магнитным линиям поля Сила и закон Ампера - формулы и определение с примерами

Сила и закон Ампера - формулы и определение с примерами

Рис. 4.2. Угол Сила и закон Ампера - формулы и определение с примерами — это угол между направлением вектора магнитной индукции и направлением тока в проводнике

Чтобы определить направление силы Ампера, используют правило левой руки:

Если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый на 90° большой палец укажет направление силы Ампера (рис. 4.3).

Сила и закон Ампера - формулы и определение с примерами

Рис. 4.3. Определение направления силы Ампера по правилу левой руки

Формула для определения модуля магнитной индукции

Если проводник расположен перпендикулярно линиям магнитной индукции Сила и закон Ампера - формулы и определение с примерами поле действует на проводник с максимальной силой:

Сила и закон Ампера - формулы и определение с примерами

Отсюда получаем формулу для определения модуля магнитной индукции:

Сила и закон Ампера - формулы и определение с примерами

Обратите внимание! Значение магнитной индукции не зависит ни от силы тока в проводнике, ни от длины проводника, а зависит только от свойств магнитного поля.

Например, если уменьшить силу тока в проводнике, то уменьшится и сила Ампера, с которой магнитное поле действует на проводник, а вот значение магнитной индукции останется неизменным.

В СИ единица магнитной индукции — тесла (Тл), единица силы — ньютон (Н), силы тока — ампер (А), длины — метр (м), поэтому:

Сила и закон Ампера - формулы и определение с примерами

1 Тл — это индукция такого однородного магнитного поля, которое действует с максимальной силой 1 Н на проводник длиной 1 м, в котором течет ток силой 1 А.

  • Заказать решение задач по физике

Пример №3

Докажите, что два параллельных проводника, в которых текут токи одного направления, притягиваются.

Анализ физической проблемы. Около любого проводника с током существует магнитное поле, следовательно, каждый из двух проводников находится в магнитном поле другого. На первый проводник действует сила Ампера со стороны магнитного поля, созданного током во втором проводнике, и наоборот. Определив по правилу левой руки направления этих сил, выясним, как будут вести себя проводники.

Решение

Решая задачу, выполним пояснительные рисунки: изобразим проводники А и В, покажем направления тока в них и т. д.

Выясним направление силы Ампера, которая действует на проводник А, находящийся в магнитном поле проводника В.

  1. С помощью правила буравчика найдем направление линий магнитной индукции магнитного поля, созданного проводником В (рис. 1, а). Выясняется, что вблизи проводника А магнитные линии направлены к нам (обозначено «•»).
  2. Воспользовавшись правилом левой руки, определим направление силы Ампера, действующей на проводник А со стороны магнитного поля проводника В (рис. 1, б).

Сила и закон Ампера - формулы и определение с примерами

Рис. 1

3. Приходим к выводу: проводник А притягивается к проводнику В.

Теперь выясним направление силы Ампера, которая действует на проводник В, находящийся в магнитном поле проводника А.

1) Определим направление линий магнитной индукции магнитного поля, созданного проводником А (рис. 2, а). Выясняется, что вблизи проводника В магнитные линии направлены от нас (обозначено Сила и закон Ампера - формулы и определение с примерами

2) Определим направление силы Ампера, действующей на проводник В (рис. 2, б).

Сила и закон Ампера - формулы и определение с примерами

Рис. 2

3) Приходим к выводу: проводник В притягивается к проводнику А.

Ответ: два параллельных проводника, в которых текут токи одного направления, притягиваются.

Пример №4

Прямой проводник (стержень) длиной 0,1 м и массой 40 г находится в горизонтальном однородном магнитном поле индукцией 0,5 Тл. Стержень расположен перпендикулярно магнитным линиям поля (рис. 3).

Сила и закон Ампера - формулы и определение с примерами

Рис. 3

Ток какой силы и в каком направлении следует пропустить по стержню, чтобы стержень не давил на опору (завис в магнитном поле)?

Анализ физической проблемы. Стержень не будет давить на опору, если сила Ампера уравновесит силу тяжести. Это произойдет при условиях: 1) сила Ампера будет направлена противоположно силе тяжести (то есть вертикально вверх); 2) значение силы Ампера будет равно значению силы тяжести: Сила и закон Ампера - формулы и определение с примерами

Дано:

Сила и закон Ампера - формулы и определение с примерами

Найти:

Сила и закон Ампера - формулы и определение с примерами

Поиск математической модели, решение

1. Определим направление тока. Для этого расположим левую руку так, чтобы линии магнитного поля входили в ладонь, а отогнутый на 90° большой палец был направлен вертикально вверх. Четыре вытянутых пальца укажут направление от нас. Следовательно, ток в проводнике нужно направить от нас.

2. Учитываем, что Сила и закон Ампера - формулы и определение с примерами

Сила и закон Ампера - формулы и определение с примерами где Сила и закон Ампера - формулы и определение с примерами

Следовательно, Сила и закон Ампера - формулы и определение с примерами

Из последнего выражения найдем силу тока: Сила и закон Ампера - формулы и определение с примерами

Проверим единицу, найдем значение искомой величины.

Вспомним: Сила и закон Ампера - формулы и определение с примерами

Ответ: Сила и закон Ампера - формулы и определение с примерами от нас.

Подводим итоги:

Силу, с которой магнитное поле действует на проводник с током, называют силой Ампера. Значение силы Ампера находят по формуле: Сила и закон Ампера - формулы и определение с примерами где В — индукция магнитного поля; I — сила тока в проводнике; Сила и закон Ампера - формулы и определение с примерами — длина активной части проводника; Сила и закон Ампера - формулы и определение с примерами — угол между направлением вектора магнитной индукции и направлением тока в проводнике.

Направление силы Ампера определяют по правилу левой руки: если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый на 90° большой палец укажет направление силы Ампера.

Магнитные свойства веществ и гипотеза Ампера

Наверное, каждый из вас видел магниты и даже исследовал их свойства. Если поднести магнит к кучке мелких предметов, некоторые из них (гвоздики, кнопки, скрепки) притянутся к магниту, а некоторые (кусочки мела, медные и алюминиевые монетки, комочки земли) никак не отреагируют. Почему так? Действительно ли магнитное поле не оказывает никакого влияния на некоторые вещества? Именно об этом пойдет речь в параграфе.

Действия электрического и магнитного полей на вещество

Изучая в 8 классе электрические явления, вы узнали, что под влиянием внешнего электрического поля происходит перераспределение электрических зарядов внутри незаряженного тела (рис. 5.1). В результате в теле образуется собственное электрическое поле, направленное противоположно внешнему, и именно поэтому электрическое поле в веществе всегда ослабляется.

Сила и закон Ампера - формулы и определение с примерами

Рис. 5.1. В результате действия электрического поля отрицательно заряженной палочки ближняя к ней часть проводящей сферы приобретает положительный заряд

Вещество изменяет и магнитное поле. Есть вещества, которые (как в случае с электрическим полем) ослабляют магнитное поле внутри себя. Такие вещества называют диамагнетиками. Многие вещества, наоборот, усиливают магнитное поле — это парамагнетики и ферромагнетики.

Дело в том, что любое вещество, помещенное в магнитное поле, намагничивается, то есть создает собственное магнитное поле, магнитная индукция которого разная для разных веществ.

Слабомагнитные вещества

Вещества, которые намагничиваются, создавая слабое магнитное поле, магнитная индукция которого намного меньше магнитной индукции внешнего магнитного поля (то есть поля, вызвавшего намагничивание), называют слабомагнитными веществами. К таким веществам относятся диамагнетики и парамагнетики.

Диамагнетики (от греч. dia — расхождение) намагничиваются, создавая слабое магнитное поле, направленное противоположно внешнему магнитному полю (рис. 5.2, а). Именно поэтому диамагнетики незначительно ослабляют внешнее магнитное поле: магнитная индукция магнитного поля внутри диамагнетика Сила и закон Ампера - формулы и определение с примерами немного меньше магнитной индукции внешнего магнитного поля Сила и закон Ампера - формулы и определение с примерами

Сила и закон Ампера - формулы и определение с примерами

Сила и закон Ампера - формулы и определение с примерами

Рис. 5.2. Образцы из диамагнетика (а) и парамагнетика (б) во внешнем магнитном поле: красные линии — линии магнитного поля, созданного образцом; синие — магнитные линии внешнего магнитного поля; зеленые — линии результирующего магнитного поля

Если диамагнетик поместить в магнитное поле, он будет выталкиваться из него (рис. 5.3).

Сила и закон Ампера - формулы и определение с примерами

Рис. 5.3. Пламя свечи выталкивается из магнитного поля, так как продукты сгорания — диамагнитные частицы

К диамагнетикам относятся инертные газы (гелий, неон и др.), многие металлы (золото, медь, ртуть, серебро и др.), молекулярный азот, вода и т. д. Тело человека — диамагнетик, так как оно в среднем на 78 % состоит из воды.

Парамагнетики (от греч. para — рядом) намагничиваются, создавая слабое магнитное поле, направленное в ту же сторону, что и внешнее магнитное поле (рис. 5.2, б). Парамагнетики незначительно усиливают внешнее поле: магнитная индукция магнитного поля внутри парамагнетика Сила и закон Ампера - формулы и определение с примерами немного больше магнитной индукции внешнего магнитного поля Сила и закон Ампера - формулы и определение с примерами

Сила и закон Ампера - формулы и определение с примерами

К парамагнетикам относятся кислород, платина, алюминий, щелочные и щелочноземельные металлы и другие вещества. Если парамагнитное вещество поместить в магнитное поле, то оно будет втягиваться в это поле.

Ферромагнетики

Если слабомагнитные вещества извлечь из магнитного поля, их намагниченность сразу исчезнет. Иначе происходит с сильномагнитными веществами — ферромагнетиками.

Ферромагнетики (от лат. ferrum — железо) — вещества или материалы, которые остаются намагниченными и при отсутствии внешнего магнитного поля.

Ферромагнетики намагничиваются, создавая сильное магнитное поле, направленное в ту же сторону, что и внешнее магнитное поле (рис. 5.4, 5.5, а). Если изготовленное из ферромагнетика тело поместить в магнитное поле, оно будет втягиваться в него (рис. 5.5, б).

Сила и закон Ампера - формулы и определение с примерами

Рис. 5.4. Железный гвоздь намагничивается в магнитном поле так, что конец гвоздя, расположенный вблизи северного полюса магнита, становится южным полюсом, поэтому гвоздь притягивается к магниту

Сила и закон Ампера - формулы и определение с примерами

Рис. 5.5. Ферромагнетики создают сильное магнитное поле, направленное в ту же сторону, что и внешнее магнитное поле (а); линии магнитной индукции как будто втягиваются в ферромагнитный образец (б)

К ферромагнетикам относится небольшая группа веществ: железо, никель, кобальт, редкоземельные вещества и ряд сплавов. Ферромагнетики значительно усиливают внешнее магнитное поле: магнитная индукция магнитного поля внутри ферромагнетиков Сила и закон Ампера - формулы и определение с примерами в сотни и тысячи раз больше магнитной индукции внешнего магнитного поля Сила и закон Ампера - формулы и определение с примерами

Сила и закон Ампера - формулы и определение с примерами

Так, кобальт усиливает магнитное поле в 175 раз, никель — в 1120 раз, а трансформаторная сталь (на 96-98 % состоит из железа) — в 8000 раз.

Ферромагнитные материалы условно делят на два типа. Материалы, которые после прекращения действия внешнего магнитного поля остаются намагниченными длительное время, называют магнитожесткими ферромагнетиками. Их применяют для изготовления постоянных магнитов. Ферромагнитные материалы, которые легко намагничиваются и быстро размагничиваются, называют магнитомягкими ферромагнетиками. Их применяют для изготовления сердечников электромагнитов, двигателей, трансформаторов, то есть устройств, которые во время работы постоянно перемагничиваются (о строении и принципе действия таких устройств вы узнаете позже).

Обратите внимание! При достижении температуры Кюри (см. таблицу) ферромагнитные свойства магнитомягких и магнитожестких материалов исчезают — материалы становятся парамагнетиками.

Температура Кюри для некоторых ферромагнетиков

Вещество (или материал) Температура,°С
Гадолиний +19
Железо +770
Кобальт +1127
Неодимовый магнит NdFeB +320
Никель +354

Гипотеза Ампера

Наблюдая действие проводника с током на магнитную стрелку (см. рис. 1.1) и выяснив, что катушки с током ведут себя как постоянные магниты (см. рис. 1.3), А. Ампер выдвинул гипотезу о магнитных свойствах веществ. Ампер предположил, что внутри веществ существует огромное количество незатухающих малых круговых токов и каждый из них, как маленькая катушка, является магнитиком. Постоянный магнит состоит из множества таких элементарных магнитиков, ориентированных в определенном направлении.

Механизм намагничивания веществ Ампер объяснял так. Если тело не намагничено, круговые токи ориентированы беспорядочно (рис. 5.7, а). Внешнее магнитное поле пытается сориентировать эти токи так, чтобы направление магнитного поля каждого тока совпадало с направлением внешнего

Сила и закон Ампера - формулы и определение с примерами

Рис. 5.7. Механизм намагничивания тел согласно гипотезе Ампера: а — круговые токи ориентированы беспорядочно, тело не намагничено; б — круговые токи ориентированы в определенном направлении, тело намагничено

магнитного поля (рис. 5.7, б). У некоторых веществ такая ориентация токов (намагничивание) остается и после прекращения действия внешнего магнитного поля. Таким образом, все магнитные явления Ампер объяснял взаимодействием движущихся заряженных частиц.

Гипотеза Ампера послужила толчком к созданию теории магнетизма. На основе этой гипотезы были объяснены известные свойства ферромагнетиков, однако она не могла объяснить природу диа- и парамагнетизма, а также то, почему только небольшое количество веществ имеет ферромагнитные свойства. Современная теория магнетизма основана на законах квантовой механики и теории относительности А. Эйнштейна.

Подводим итоги:

Любое вещество, помещенное в магнитное поле, намагничивается, то есть создает собственное магнитное поле.

Диамагнетики Парамагнетики Ферромагнетики
Намагничиваются, создавая слабое магнитное поле, направленное противоположно внешнему магнитному полю Намагничиваются, создавая слабое магнитное поле, направленное в сторону внешнего магнитного поля Намагничиваются, создавая сильное магнитное поле, направленное в сторону внешнего магнитного поля; остаются намагниченными после прекращения действия внешнего магнитного поля
Незначительно ослабляют внешнее магнитное поле, выталкиваются из него Незначительно усиливают внешнее магнитное поле, втягиваются в него Усиливают внешнее магнитное поле в сотни и тысячи раз, втягиваются в него
Инертные газы, медь, золото, ртуть, серебро, азот, вода и др. Кислород, платина, алюминий, щелочные металлы и др. Кислород, платина, алюминий, щелочные металлы и др. Железо, никель, кобальт, редкоземельные вещества (например, неодим), ряд сплавов
  • Закон взаимодействия прямолинейных параллельных проводников с током
  • Сила Лоренца
  • Правило Буравчика в физике
  • Шунт и добавочное сопротивление
  • Работа по перемещению заряда в электростатическом поле
  • Закон Ома для однородного участка электрической цепи
  • Закон Ома для полной цепи
  • Закон Ома для цепи переменного тока с последовательным соединением сопротивлений

Во многих задачах, связанных с расчётами электрических величин, важно знать направление линий магнитной индукции относительно электрического тока и наоборот. Сложные расчёты параметров магнитных полей в различных системах также невозможно выполнить без учёта направления векторов.

Для определения ориентации сил и полей на практике часто используют мнемонические правила, одним из которых является правило буравчика, с успехом применяемое в электротехнике.

Определение

В узком понимании, правило буравчика – это мнемонический алгоритм, применяемый для определения пространственного направления магнитной индукции, в зависимости от ориентации электрического тока, возбуждающего магнитное поле.

Данное правило можно сформулировать следующим образом: Если острие буравчика (штопора, винта) направить вдоль вектора тока, то ориентация линий магнитной индукции совпадёт с направлением, в сторону которого вращается ручка буравчика в традиционном исполнении этого инструмента (с правым винтом) [ 1 ] (рис. 1.)

Правило буравчика для прямого проводника

Рис. 1. Правило буравчика для прямого проводника

На рисунке 1 показана схема для простейшего случая: по прямому участку проводника, в сторону от наблюдателя протекает электрический ток (стрелка синего цвета). Условный штопор направлен своим острым концом по вдоль линии по направлению тока. Если представить поступательное движение буравчика вдоль проводника, то направление линий, описываемых рукояткой штопора, совпадут с ориентацией магнитных линий электрического поля.

Главное правило

Рассмотренный нами пример является частным случаем алгоритма буравчика. Существует несколько вариантов формулировок правила, применяемых в различных ситуациях.

Общая, или главная формулировка, позволяет распространить данное правило на все случаи. Это вариант мнемонического правила, используемый для определения ориентации результирующей векторного произведения, называемого аксиальным вектором, а также для выбора связанного с этими векторами правого базиса (трёхмерной системы координат), что позволяет определить знак аксиального вектора.

Примечание: правый базис – условное соглашение, согласно которому выбирается декартовая система координат (положительный базис). Иногда полезно пользоваться зеркальным отражением декартовой системы (левый или отрицательный базис).

Главное правило позволяет определить направление в
пространстве аксиальных векторов, важных для вычислений:

  • угловой скорости;
  • параметров индукционного тока;
  • магнитной индукции.

Хотя
ориентация аксиального вектора является условной, она важна для расчётов: придерживаясь
принятого алгоритма выбора, легче производить вычисления, без риска перепутать
знаки. 

Во многих случаях применяют специальные формулировки, хорошо описывающие частные случаи в конкретной ситуации.

Правило правой руки

В электротехнике очень часто применяют интерпретацию буравчика для правой руки.

Действия можно сформулировать так: «Если отведённый в сторону большой палец правой руки расположить вдоль проводника так, чтобы он совпал с направлением электрического тока, то остальные пальцы будут указывать направление образованных электрическим полем магнитных силовых линий. (см. схему на рис. 2).

Иллюстрация правила правой руки

Рис. 2. Иллюстрация правила правой руки

Сформулированные выше алгоритмы применяются и для соленоидов. Но разница в том, что в случае с соленоидом, рукоятку буравчика вращают так, чтобы это движение совпадало с направлением токов в витках, а продвижение винта буравчика указывает на ориентацию вектора магнитных линий в соленоиде.

При использовании правой руки, пальцами охватывают (условно) катушку так, чтобы направление тока в витках совпадало с пространственным расположением пальцев. Тогда большой палец укажет на ориентацию вектора электромагнитных линий внутри катушки. На рисунке 3 изображены схемы, объясняющие алгоритмы определения направлений векторов для соленоидов.

Иллюстрация правила  правой руки для катушки

Рис. 3. Иллюстрация правила правой руки для катушки

Не трудно догадаться, что данные правила можно применять с целью определения направления тока. Например, если с помощью магнитной стрелки определить устремление линий магнитной индукции, то путём применения правила буравчика (как вариант его формулировки для правой руки), легко определяется, в какую сторону течёт ток.

Специальные правила

Рассмотрим варианты главного правила буравчика для частных случаев. Применение таких правил часто упрощает процесс вычислений.

Для векторного произведения

Расположите векторы так, чтобы их начальные точки совпадали. Для этой ситуации правило буравчика звучит так:

Если один из векторов сомножителей вращать кратчайшим способом до совпадения направлений со вторым вектором, то буравчик, вращающийся подобным образом, будет завинчиваться в сторону, куда указывает векторное произведение.

По циферблату часов

При расположении векторов способом совпадения их начальных точек можно определить направление вектора-произведения с помощью часовой стрелки. Для этого необходимо мысленно двигать кратчайшим путём один из векторов-сомножителей в сторону другого вектора. Тогда, если смотреть со стороны вращения этого вектора по часовой стрелке, то аксиальный вектор будет направлен вглубь циферблата.

Правила правой руки, для произведения векторов

Существует два варианта правила.

Первый вариант:

Если согнутые пальцы правой руки направить в сторону кратчайшего пути для совмещения вектора-сомножителя с другим сомножителем (векторы выходят из одной точки), то отведенный в сторону большой палец укажет направление аксиального вектора.

Второй вариант:

Если правую ладонь расположить таким образом, чтобы получилось совпадение большого пальца с первым вектором-сомножителем, а указательного – со вторым, то отведённый в сторону средний палец совпадёт с направлением вектора произведения.

Для базисов

Перечисленные выше правила применяются также для базисов.

Например, правило буравчика для правого базиса можно записать так:

При вращении ручки буравчика и векторов таким образом, чтобы первый базисный вектор по кратчайшему пути стремился ко второму, то штопор будет завинчиваться в сторону третьего базисного вектора.

Указанные правила универсальны. Их можно переписать для механики с целью определения векторов:

  • механического вращения (определение угловой скорости);
  • момента приложенных сил;
  • момента импульса.

Правила буравчика применяются также для уравнений Максвелла, что усиливает их универсальность.

Правило левой руки

В
электротехнике довольно часто возникают вопросы, связанные с определением силы
Ампера. Для решения задач подобного рода применяется алгоритм, называемый правилом
левой руки (иллюстрация на рис. 4) – мнемоническое правило, описывающее способ
определения направленности Амперовой силы, выталкивающей точечный заряд либо проводник,
по которому протекает электроток.

Алгоритм применения левой руки состоит в следующем: если левую ладонь будут перпендикулярно пронизывать силовые линии, а пальцы расположатся по направлению тока, то действующие на проводник силы будут устремляться в сторону, куда указывает оттопыренный большой палец.

Интерпретация для точечного заряда

Заметим, что сформулированное правило справедливо для решения задач по определению ориентации силы Лоренца. Перефразируем правило: если ладонь левой руки поместить в магнитное поле таким образом, чтобы линии индукции перпендикулярно входили в неё, а выпрямленные пальцы направить в сторону движения положительного заряда, тонаправление вектора силы Лоренца совпадёт с отставленным на 90º большим пальцем.

Визуальная интерпретация правила левой руки представлена на рисунке 5. Обратите внимание на то, что алгоритм действий для определения сил Ампера и Лоренца практически одинаков.

Интерпретация правил левой руки

Рис. 5. Интерпретация правил левой руки

Примечание: В случае с отрицательным зарядом вытянутые пальцы направляют в сторону, противоположную движению частицы.

Полезные сведения и советы

  1. Общепринято считать, что направление тока указывает в сторону от плюса к минусу. На самом деле, в проводнике упорядоченное перемещение электронов направлено от негативного полюса к позитивному. Поэтому, если бы перед вами стояла задача вычисления силы Лоренца для отдельного электрона в проводнике, следовало бы учитывать данное обстоятельство.
  2. По умолчанию мы рассматриваем винт (буравчик, штопор) с правой резьбой. Однако не следует забывать о существовании винтов с левой резьбой.
  3. При использовании правила часовой стрелки мы принимаем условие о том, что стрелки совершают движение слева направо. Известно, что в бывшем СССР производились часы с обратным ходом часового механизма. Возможно, такие модели существуют до сегодняшнего дня.

Советы: если вам необходимо определить пространственное расположение момента силы, под действием которой происходит вращение некоего тела – вращайте винт в ту же сторону. Условное врезание винта укажет на ориентацию вектора момента силы. Скорость вращения тела не влияет на направление вектора.

Полезно знать, что при вращении буравчика по ходу вращения тела, траектория его ввинчивания совпадёт с направлением угловой скорости.

Видео по теме

Добавить комментарий