Как найти силу движущегося электрона

Сила Лоренца

Сила Лоренца действующая на электрон

В частном случае носителем заряда является электрон. Тогда в формулу (5) в качестве Q следует подставить

[ е = – 1.602 cdot 10^{-19} enspace Кл. ]

При определении направления движения электронов с помощью правила левой руки следует учитывать, что направление движения электронов противоположно техническому направлению тока.

Сила Лоренца действующая на электрон и протон

Сила Лоренца действующая на электрон и протон

Величина и направление силы Лоренца определяются соотношением

[ vector{F_{L}}= e vector{v} × vector{B} ]

где $vector{v}$, $vector{B}$ и $vector{F}$ образуют правую систему.

Для электронов, движущихся перпендикулярно магнитному полю, формула упрощается:

[ F_{L} = e v B ]

Так как сила действует перпендикулярно скорости и направлению поля, она создает центростремительное ускорение, т.е. изменяет направление скорости, не меняя ее величины.
Поэтому электрон движется в магнитном поле по окружности.

Вычислить, найти силу Лоренца действующую на электрон или протон

Радиус траектории электрона в магнитном поле

Для определения радиуса круговой траектории электрона приравняем силу Лоренца и центростремительную силу.

Если

r радиус круговой траектории электрона, метр
me 9,11 · 10-31 кг — масса электрона, кг
e 1,602 · 10-19 Кл — элементарный электрический заряд, Кулон
v скорость электрона, м/с
B магнитная индукция, Тесла

то, приравнивая обе силы, получаем

[ evB = frac{m_{e} v^{2}}{r} ]

и, следовательно,

[ r = frac{m_{e} v}{eB} ]

Сила Лоренца действующая на протон

Электрический заряд протона равен по модулю заряду электрона, но имеет положительный знак.

[ p = + 1.602 cdot 10^{-19} enspace Кл. ]

При определении направления движения протонов с помощью правила левой руки направление движения протонов совпадает с техническим направлением тока и с картинкой.

Таким образом электрон и протон влетая в магнитное поле в одном направлении будут отклоняться в разные стороны.

Сила Лоренца действующая на протон

Сила Лоренца действующая на протон

Величина силы действующая на электрон и на протон будет одинакова (определяется формулой №3), но поскольку протон гораздо тяжелее электрона, радиус закручивания для протона будет больше.

Радиус траектории протона в магнитном поле

Если

r радиус круговой траектории протона, метр
mp 1,67 · 10-27 кг — масса протона, кг
p 1,602 · 10-19 Кл — элементарный электрический заряд, Кулон
v скорость протона, м/с
B магнитная индукция, Тесла

Радиус траектории для протона будет вычисляться по аналогичной формуле

[ r = frac{m_{p} v}{p B} ]

Из этой формулы видно что при одинаковых скоростях электрона и протона радиус траектории протона будет значительно больше, чем у электрона пропорционально отношению масс этих частиц

Сила Лоренца

стр. 667

Сила Лоренца

Сила Лоренца действующая на электрон

В частном случае носителем заряда является электрон. Тогда в формулу (5) в качестве Q следует подставить

При определении направления движения электронов с помощью правила левой руки следует учитывать, что направление движения электронов противоположно техническому направлению тока.

Величина и направление силы Лоренца определяются соотношением

где $vector$, $vector$ и $vector$ образуют правую систему.

Для электронов, движущихся перпендикулярно магнитному полю, формула упрощается:

Так как сила действует перпендикулярно скорости и направлению поля, она создает центростремительное ускорение, т.е. изменяет направление скорости, не меняя ее величины. Поэтому электрон движется в магнитном поле по окружности.

Вычислить, найти силу Лоренца действующую на электрон или протон

Радиус траектории электрона в магнитном поле

Для определения радиуса круговой траектории электрона приравняем силу Лоренца и центростремительную силу.

r радиус круговой траектории электрона, метр
me 9,11 · 10 -31 кг — масса электрона, кг
e 1,602 · 10 -19 Кл — элементарный электрический заряд, Кулон
v скорость электрона, м/с
B магнитная индукция, Тесла

то, приравнивая обе силы, получаем

При больших значениях скорости (выше примерно 2 · 10 7 м/с) в расчетах нельзя использовать массу покоя электронов me, а необходимо учитывать релятивистское увеличение массы.

Сила Лоренца действующая на протон

Электрический заряд протона равен по модулю заряду электрона, но имеет положительный знак.

При определении направления движения протонов с помощью правила левой руки направление движения протонов совпадает с техническим направлением тока и с картинкой.

Таким образом электрон и протон влетая в магнитное поле в одном направлении будут отклоняться в разные стороны.

Величина силы действующая на электрон и на протон будет одинакова (определяется формулой №3), но поскольку протон гораздо тяжелее электрона, радиус закручивания для протона будет больше.

Радиус траектории протона в магнитном поле

r радиус круговой траектории протона, метр
mp 1,67 · 10 -27 кг — масса протона, кг
p 1,602 · 10 -19 Кл — элементарный электрический заряд, Кулон
v скорость протона, м/с
B магнитная индукция, Тесла

Радиус траектории для протона будет вычисляться по аналогичной формуле

Из этой формулы видно что при одинаковых скоростях электрона и протона радиус траектории протона будет значительно больше, чем у электрона пропорционально отношению масс этих частиц

Аналогично при больших значениях скорости (выше примерно 2 · 10 7 м/с) в расчетах нельзя использовать массу покоя протонов mp, а необходимо учитывать релятивистское увеличение массы.

Сила Лоренца – основные понятия, формулы и определение с примерами

Содержание:

Сила Лоренца:

Центростремительное (нормальное) ускорение появляется при криволинейном движении тела и характеризует скорость изменения направления скорости с течением времени. Оно вычисляется по формуле

Согласно закону Ампера на проводник с током в магнитном поле действует сила, которую можно рассматривать как результат действия магнитного поля на все движущиеся в проводнике заряды. Отсюда можно сделать вывод, что магнитное поле оказывает силовое действие на каждый движущийся заряд.

По закону Ампера на проводник длиной

Поскольку электрический ток — направленное движение заряженных частиц, то силу тока можно представить в виде

где q — величина заряда одной частицы, n — концентрация заряженных частиц (число частиц в единице объема проводника), — средняя скорость упорядоченного движения заряженных частиц, S — площадь поперечного сечения проводника.

Тогда

где — число заряженных частиц, упорядоченно движущихся во всем объеме проводника длиной

Разделив модуль силы F на число частиц N, получим модуль силы, действующей на один движущийся заряд со стороны магнитного поля:

где v — модуль скорости движущегося заряда.

Выражение для силы, с которой магнитное поле действует на движущийся заряд, в 1895 г. впервые получил голландский физик Хендрик Антон Лоренц. В его честь эта сила называется силой Лоренца:

Как определить направление силы Лоренца

Направление силы Лоренца определяется по правилу левой руки (рис. 153):
если левую руку расположить так, чтобы перпендикулярная к скорости составляющая вектора индукции магнитного поля входила в ладонь, а четыре вытянутых пальца указывали направление движения положительно заряженной частицы, то отогнутый на 90° большой палец укажет направление силы Лоренца действующей на частицу со стороны магнитного поля. Для отрицательно заряженной частицы (например, для электрона) направление силы будет противоположным.

Поскольку сила Лоренца перпендикулярна вектору скорости, то она не может изменить модуль скорости, а изменяет только ее направление и, следовательно, работы не совершает.

Таким образом, если поле однородно, то при движении частицы перпендикулярно к магнитной индукции поля ее траекторией будет окружность (рис. 154, а), плоскость которой перпендикулярна к магнитному полю.

Ускорение частицы (R — радиус окружности) направлено к центру окружности. Используя второй закон Ньютона, можем найти период обращения частицы по окружности

и радиус окружности


описываемой частицей в магнитном поле.

Если скорость направлена под углом к индукции магнитного поля, движение заряда можно представить в виде двух независимых движений (рис. 154, б):

В результате сложения обоих движений возникает движение по винтовой линии, ось которой параллельна магнитному полю (см. рис. 154, б). Период этого движения определяется по формуле

Действие силы Лоренца широко применяется в различных электротехнических устройствах:

  1. электронно-лучевых трубках телевизоров и дисплеев;
  2. ускорителях заряженных частиц (циклотронах);
  3. масс-спектрометрах — приборах, определяющих отношение зарядов частиц к их массе по радиусу окружности, описываемой ими в магнитном поле;
  4. магнитогидродинамических генераторах ЭДС (МГД-генератор — устройство для генерации электрических токов, использующее проводящие жидкости, движущиеся в магнитном поле).

Что такое сила Лоренца

Силой Лоренца FЛ называют силу, действующую на электрически заряженную частицу, двигающуюся в электромагнитном поле, определяя действия на нес электрической» и магнитного полей одновременно. Это выражается формулой:

где – электрическая составляющая силы Лоренца, описывающая взаимодействие движущейся частицы и равная – магнитная составляющая силы Лоренца, определяющая взаимодействие заряженной частицы с магнитным полем.

Сила Лоренца действует на движущуюся электрически заряженную частицу в электромагнитном поле.

Для упрощения рассмотрим случай, когда , а сила Лоренца равна магнитной составляющей.

Выясним, как можно рассчитать силу, действующую на движущуюся заряженную частицу в магнитном поле. Как известно, электрический ток в проводнике – это упорядоченное движение заряженных частиц. Согласно электронной теории сила тока рассчитывается по формуле:

где I – сила тока; е – заряд частицы; — концентрация частиц в проводнике; V – объем; – скорость движения частиц; S площадь поперечного сечения проводники.

Действие магнитного поля на проводник с током является действием магнитного поля на все движущиеся заряженные частицы. Поэтому формулу силы Ампера можно записать с учетом выражения силы тока в электронной теории:

Если учесть, то

Если сила Ампера является равнодействующей всех сил, действующих на N частиц, то на одну частицу будет действовать сила в N раз меньше:

Это и есть формула для расчета магнитной составляющей силы Лоренца:

Магнитная составляющая силы Лоренца

Анализ этой формулы позволяет сделать выводы, что:

  1. магнитная составляющая силы Лоренца действует только на движущуюся частицу (≠ 0);
  2. магнитная составляющая не действует на движущуюся частицу, которая движется вдоль линии магнитной индукции (а = 0).

Направление магнитной составляющей силы Лоренца, как и силы Ампера, определяется по правилу левой руки. При этом необходимо учитывать, что это справедливо для положительно заряженных частиц. Если определять направление силы Лоренца, действующей на электрон или другую отрицательно заряженную частицу, то, применяя правило левой руки, нужно мысленно изменять направление движения на противоположное.

Сила Лоренца направлена всегда под некоторым углом к скорости частицы, поэтому она придает ей центростремительное ускорение (рис. 2.15).

Для случая, если


Рис. 2.15. Сила Лоренца придает частице центростремительное ускорение

Таким образом, заряженная частица, попадая в магнитной поле, начинает двигаться по дуге окружности. При иных значениях α ≠ О траектория движения частицы в магнитном поле приобретает форму спирали.

Наблюдать действие силы Лоренца можно с помощью электронно-лучевой трубки, которая есть во многих осциллографах (рис. 2.16), Если включить питание осциллографа, то на его экране можно увидеть светлое пятно, появившееся в месте падения электронов на экран. Если теперь сбоку поднести к трубке постоянный магнит, то пятно сместится, что подтверждает действие магнитного поля на движущиеся электроны.


Рис. 2.16. Магнитное поле смещает электронный пучок в трубке осциллографа

Действие силы Лоренца применяется во многих приборах и технических установках. Так, смещение электронного луча, который «рисует» изображение на экране вакуумного кинескопа телевизора или дисплея компьютера, совершается магнитным полем специальных катушек, в которых проходит электрический ток, изменяющийся во времени по определенному закону,
В научных исследованиях применяют так называемые циклические ускорители заряженных частиц, в них магнитное поле мощных электромагнитов удерживает заряженные частицы на круговых орбитах.

Весьма перспективными для развития электроэнергетики являются магнито-гидродипамические генераторы (МГД-генераторы) (рис. 2.17). Поток высокотемпературного газа (плазмы), который образуется при сгорании органического топлива и имеет высокую концентрацию ионов обоих знаков, пропускается через магнитное ноле.


Puc. 2.17. Схема, объясняющая действие МГД-генератора

Вследствие действия силы Лоренца ионы отклоняются от прежнего направления движения и оседают на специальных электродах, сообщая им определенный заряд. Полученную при этом разность потенциалов можно использовать для получения электрического тока. Такие установки в будущем могут существенно повысить КПД тепловых «электростанций за счет выработки дополнительной электроэнергии при прохождении газов, которые после выхода из топки имеют довольно высокую температуру и высокую ионизацию, через MГД-генераторы.

Пример решения задачи

Электрон влетает в однородное магнитное поле с индукцией 10 -4 Тл перпендикулярно к линиям магнитной индукции. Его скорость 1.6 . 10 6 м/с. Найти радиус окружности, по которой движется электрон.

Отсюда

Подставим значения физических величин:

Ответ: электрон будет двигаться по круговой орбите, радиус которой 9,1 ∙ 10 -2 м.

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Правило Буравчика в физике
  • Шунт и добавочное сопротивление
  • Электродвижущая сила
  • Электрические измерительные приборы
  • Закон Ома для полной цепи
  • Закон Ома для цепи переменного тока с последовательным соединением сопротивлений
  • Сила и закон Ампера
  • Закон взаимодействия прямолинейных параллельных проводников с током

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Сила Лоренца .

Сила Лоренца действует на заряженную частицу, движущуюся в магнитном поле.

( F_л=Bqv cdot sin alpha )

(B) -магнитная индукция, единица измерения Тесла [Тл]

(q) – заряд частицы, единица измерения Кулон [Кл] )

(v) – скорость частицы

( alpha )- угол между вектором магнитной индукции ( vec ) и вектором скорости частицы ( vec )

Направление силы Лоренца, действующей на положительно заряженную частицу .

Если вектор магнитной индукциии входит в ладонь левой руки, а четыре пальца сонаправлены с направлением вектора скорости положительно заряженной частицы, то отогнутый на ( 90^0 ) большой палец показывает направление силы Лоренца действующей на эту частицу.

Задача 1. (Сила Лоренца)


Пылинка, имеющая заряд (q=10^ <-6> Кл) движется в магнитном поле с индукцией (B=20 Тл) . Скорость пылинки перпендикулярна линиям магнитной индукции и равна (100 м/с ) Вычислить значение силы Лоренца, действующей на пылинку со стороны магнитного поля. Дать ответ в миллиньютонах.

[spoiler title=”источники:”]

http://www.evkova.org/sila-lorentsa

http://kornev-school.ru/f11_Lorentz_force.html

[/spoiler]

Сила Ампера. Сила Лоренца. Взаимодействие упорядоченно движущихся электронов в проводнике с атомами металла

Для школьников (в помощь желающим лучше понять физику).

Сила Ампера

Сила Ампера – это сила, с которой магнитное поле действует на проводник с током.

Опытным путём найдено, что на прямой провод с током со стороны магнитного поля действует сила:

Сила Ампера. Сила Лоренца. Взаимодействие упорядоченно движущихся электронов в проводнике с атомами металла

Из формулы видно, что сила Ампера пропорциональна индукции магнитного поля, току в проводнике, длине проводника и зависит от расположения проводника в магнитном поле:

Или действие магнитного поля на проводник определяется лишь перпендикулярной составляющей индукции магнитного поля.

Когда проводник расположен вдоль поля, сила Ампера равна нулю.

Для нахождения направления силы Ампера удобно пользоваться правилом л е в о й р у к и: левую руку располагаем так, чтобы силовые линии магнитного поля входили в ладонь, четыре вытянутых пальца направляем по току, тогда отставленный большой палец покажет направление силы Ампера.

На рисунке ниже показан проводник с током, помещённый в однородное магнитное поле, направленное к нам. Тогда, согласно правилу левой руки, сила Ампера, действующая на проводник с током, направлена вправо.

Сила Ампера. Сила Лоренца. Взаимодействие упорядоченно движущихся электронов в проводнике с атомами металла

Сила Лоренца

Сила Лоренца – это сила, с которой магнитное поле действует на движущийся заряд.

Выражение для силы Лоренца (как и для силы Ампера) получено опытным путём:

Сила Ампера. Сила Лоренца. Взаимодействие упорядоченно движущихся электронов в проводнике с атомами металла

Опять представим ток в прямом проводе. Воспользуемся тем же рисунком, на котором показана сила Ампера.

Ток в проводнике есть направленное движение свободных электронов.

На рисунке ток по проводнику течёт вверх, а свободные электроны, под действием сил электрического поля внутри проводника, двигаются вниз.

На каждый электрон действует сила Лоренца.

Направление силы Лоренца тоже находится по правилу л е в о й р у к и: левую руку располагаем так, чтобы силовые линии магнитного поля входили в ладонь, четыре вытянутых пальца направляем против скорости движения электрона или по направления тока в проводе (так как за направление тока условились принимать направленное движение положительных зарядов), тогда большой отогнутый палец покажет направление силы Лоренца, действующей на каждый свободный электрон в проводе. Её направление совпадает с направлением сила Ампера.

Сложение сил Лоренца, действующих на каждый электрон в отдельности, даёт силу Ампера (видим, как выражения для этих сил похожи друг на друга).

Чтобы представить свободные электроны и их движение в металлическом проводнике, надо вспомнить строение металла.

А именно, металлический проводник имеет кристаллическое строение. В узлах кристаллической решётки металла находятся ионы (атомы, от которых оторвались валентные электроны).

Если по металлу проходит ток, то свободные электроны двигаются между ионами упорядоченно, взаимодействуя с ними.

Сила Ампера. Сила Лоренца. Взаимодействие упорядоченно движущихся электронов в проводнике с атомами металла

Магнитное поле, в котором находится проводник с током или движущийся заряд, создаётся или постоянным магнитом, или электромагнитом, или током.

Т а к и м о б р а з о м, силы взаимодействия между током в проводе и магнитным полем сводятся к силам Лоренца.

Возникающие силы Лоренца действуют на весь проводник, так как движущиеся в проводнике электроны взаимодействуют с атомами проводника (возникает своего рода “трение” между ними).

Наличие этого взаимодействия (“трения”) между упорядоченно движущимися электронами и атомами твёрдого металла, демонстрируется следующим опытом.

Сила Ампера. Сила Лоренца. Взаимодействие упорядоченно движущихся электронов в проводнике с атомами металла

Между полюсами подковообразного магнита 2 может вращаться медный диск 1, кромка которого погружена в жёлоб с ртутью 3, служащий для подведения тока от батареи к кромке диска. Второй полюс батареи соединён с осью диска.

При замыкании ключа, благодаря “трению”, диск начинает вращаться. При изменении направления тока или направления магнитного поля направление вращения диска изменится на обратное. Как это происходит?

При прохождении тока электроны двигаются вдоль радиуса диска между центром диска и точкой соприкосновения диска с ртутью.

Сила Лоренца стремится отклонить электроны в перпендикулярном направлении. Вследствие “трения” между электронами и атомами металла весь диск приходит во вращение.

Направление вращения можно установить, пользуясь правилом левой руки.

Задачи

Задача 1.

По проводнику течёт ток, сила которого равна 10 А. Площадь поперечного сечения проводника 5 квадратных сантиметров, а число свободных электронов в одном кубическом сантиметре проводника составляет 10 в двадцать третьей степени. Определить направленную скорость электронов, считая её одинаковой для всех электронов.

Решение

Сила Ампера. Сила Лоренца. Взаимодействие упорядоченно движущихся электронов в проводнике с атомами металла

За 1 с через поперечное сечение А проводника пройдут все те электроны, которые содержатся в показанном на рисунке объёме, равном произведению площади поперечного сечения проводника на длину части проводника, равную произведению скорости на 1 с.

Следовательно, сила тока равна произведению указанного объёма на концентрацию электронов и на заряд одного электрона

Сила Ампера. Сила Лоренца. Взаимодействие упорядоченно движущихся электронов в проводнике с атомами металла

Ответ: найдена скорость направленного движения электронов в проводнике.

Можно было бы продолжить решение этой задачи, представив, что рассмотренный в задаче проводник с током силой

Сила Ампера. Сила Лоренца. Взаимодействие упорядоченно движущихся электронов в проводнике с атомами металла

находится в магнитном поле.

Зная магнитную индукцию этого поля, могли бы найти силу Ампера, действующую на участок проводника с током, изображённом на рисунке выше.

Затем, разделив силу Ампера на число электронов участка провода

Сила Ампера. Сила Лоренца. Взаимодействие упорядоченно движущихся электронов в проводнике с атомами металла

смогли бы найти силу, действующую на один движущийся электрон, то есть смогли бы найти силу Лоренца.

Задача 2.

Электрический ток в металлических проводниках представляет собой движение свободных электронов, сталкивающихся с ионами, из которых построена кристаллическая решётка металла, и отдающих при этом ионам ту энергию, которую они приобрели до соударения. Почему же металлический проводник, по которому идёт ток, не испытывает никаких механических сил в направлении движения электронов?

Ответ.

Электрическое поле в металле, вызывающее движение электронов, действует с одинаковой силой и на электроны и на ионы решётки, но силы эти направлены в противоположные стороны. Сила, действующая на электроны, вызывает их ускоренное движение. Под действием поля электроны приобретают энергию, которую они при столкновении отдают ионам. При этом средняя сила, с которой электроны действуют на проводник, сталкиваясь с ионами решётки, равна той силе, с которой электрическое поле действует непосредственно на ионы решётки, но противоположна ей по направлению. Поэтому металлический проводник, по которому идёт ток, не испытывает никаких механических сил в направлении движения электронов.

Таким образом, рассмотрев теорию и задачи к ней, мы убедились, что взаимодействие тока в проводнике с магнитным полем сводится к силам Лоренца.

Действие силы Лоренца на свободно движущуюся заряженную частицу, влетающую в магнитное поле, подробно рассмотрено с решением ряда задач в Занятии 67 и в статье “Поведение электрона в электрическом и магнитном полях”

К.В. Рулёва, к. ф.-м. н., доцент. Подписывайтесь на канал. Ставьте лайки. Спасибо.

Для школьников предлагаются подборки материала по темам:

!. Механика. Кинематика. Равномерное прямолинейное движение.

2. Равнопеременное прямолинейное движение.

Предыдущая запись: Действие магнитного поля на контур с током.

Следующая запись: Зарядка конденсатора. Зарядный и разрядный ток проводимости.

Ссылки на занятия до электростатики даны в Занятии 1 .

Ссылки на занятия (статьи), начиная с электростатики, даны в конце Занятия 45 .

Ссылки на занятия (статьи), начиная с теплового действия тока, даны в конце Занятия 58.

Ссылки на занятия, начиная с переменного тока, даны в конце Занятия 70 .

Как определить силу действующую на электрон и радиус окружности по которой он движется?

Настенка Климанчук



Ученик

(135),
на голосовании



10 лет назад

Электрон движется в вакууме с индукцией 2 мТл, его скорость равна 20 х 10 в третей степени км/с и направлена под углом 90 градусов.
Определите силу действующую на электрон и радиус окружности по которой он движется.

Голосование за лучший ответ

Максим Купцов

Профи

(500)


10 лет назад

R=vm/Bq=0,0569375 м -это радиус окружности
Сила Лоренца: F=Bqvsin(a)=64*10^(-22) Н=6,4 зептоНьютонов (ну это легче написать) . Расчеты были проведены бегло, если что-пересчитай.

ЭЛЕКТРОН В МАГНИТНОМ ПОЛЕ

На электрон, движущийся в магнитном поле (рис.2.9), действует элек- тромагнитная сила. Эта сила возникает в результате взаимодействия даного магнитного поля с полем, которое образуется в результате движения элек -трона. Она называется силой Лоренца и определяется отношением:

F0 = q B v sin α (2.11)

Где: v – скорость движения электронов; α – угол между направлениями маг- нитного поля и электронного тока. Направление силы определяется по прави- лу левой руки: левую руку следует расположить так, чтобы магнитное поле входило в ладонь, вытянутые четыре пальца располагаются по направлению тока; тогда отогнутый под прямым углом большой палец покажет направление силы. Необходимо помнить, что ток, вызванный движением электрона, напра- влен в сторону противоположную этому ДВИЖСНИЮ.

Рис. 2.9

Добавить комментарий