Как найти силу электрического тока в проводнике

Как разными способами найти силу тока

Содержание

  • 1 Зачем нужно находить силу тока
  • 2 Вычисление тока, если известны мощность и напряжение
  • 3 Определение мощности прибора
  • 4 Вычисление тока при известных значениях напряжения и сопротивления
  • 5 Использование мощности и сопротивления
  • 6 Непосредственное измерение силы тока
  • 7 Видео по теме

Знание силы тока в электрической цепи является в некоторых случаях необходимым. Ее определяют не только с помощью непосредственного измерения, но и расчетов. В последнем случае нужную информацию можно получить на основе технических характеристик оборудования.

Зависимости между основными электрическими величинами

Зависимости между основными электрическими величинами

Зачем нужно находить силу тока

Любое вещество состоит из атомов, которые включают в себя положительно заряженное ядро и вращающиеся вокруг него электроны. При отсутствии электрического поля движение этих частиц является хаотичным. Но как только проводник становится частью электрической цепи, подключённой к источнику питания, электроны начинают двигаться по направлению к положительному полюсу.

Ток проявляется через заряд. Каждый электрон несёт в себе элементарный отрицательный электрический заряд. Сила тока — это количество электронов, проходящих через поперечное сечение проводника за какой-то отрезок времени. Следовательно, можно сделать вывод, что рассматриваемый параметр определяют заряд и время.

Электроток выраженный через заряд и время

Электроток, выраженный через заряд и время

Найти силу тока в проводнике можно только в том случае, когда электрическая цепь подключена к источнику питания. Например, это может быть включение бытового прибора в электросеть с переменным напряжением, равным 220 В. Разным приборам для работы нужна разная мощность. В некоторых случаях даже выключенное оборудование может потреблять небольшое количество электричества, если оставить его вилку в розетке. Поэтому рассчитать силу тока в цепи можно через мощность и напряжение.

Слишком интенсивный электроток способен создавать проблемы. Он может, например, привести к перегреву деталей или к их разрушению. Если большой ток пройдёт через человека, то это нанесет серьёзный вред его здоровью или даже станет опасным для жизни. Для нормального и безопасного функционирования оборудования важно, чтобы электроток соответствовал установленным нормативам. Определение силы тока по мощности и напряжению позволяет проверить, насколько она соответствует требованиям.

Вычисление тока, если известны мощность и напряжение

Есть простой способ, как узнать ток, зная мощность и напряжение. В данном случае рассчитать постоянный ток можно по формуле:

Вычисление электротока при известных значениях напряжения и мощности

Расчет для переменного тока через мощность усложняется, поскольку его величина и направление постоянно меняются. Это обстоятельство нужно учитывать при расчетах. Если питание однофазное, то используется такая формула:

Формула электротока для однофазной сети

Чтобы определить силу переменного тока в трехфазной сети, следует воспользоваться формулой:

Расчет для трехфазной сети

При рассмотрении переменного тока нужно учитывать не только активную, но и реактивную мощность. Первая связана с активным сопротивлением, а вторая — с реактивным (ёмкостным и индуктивным). Соотношение между различными видами отражается с помощью cos φ.

Косинус угла «фи» обычно указывают в технической документации прибора. Если эту информацию нельзя получить из документации, то в расчетах очень мощных устройств принимают значение 0.8. Для большинства обычных бытовых приборов в вычислениях используют 0.95.

Подставив в формулу, применяемую для определения силы тока на участке цепи, значения напряжения U = 220 В для однофазной цепи и 380 В для трехфазной, а также cos φ = 0.95, получим следующие выражения:

Вычисление силы тока для однофазной и трехфазной сети

Как видим, сила тока в трехфазной и однофазной сети при одинаковой нагрузке будет разной. В однофазной она втрое больше, чем в трехфазной.

Определение мощности прибора

Перед тем как найти силу электрического тока, нужно определить величину используемой мощности:

  • Ее значение должно указываться в технической документации. Однако она не всегда доступна. В частности, документация может быть утеряна.
  • На задней панели приборов часто имеется наклейка, на которой приведены важнейшие характеристики устройства. В числе прочих обычно указывают мощность.

Задняя панель прибора с указанием основных данных

Задняя панель прибора с указанием основных данных

  • Можно воспользоваться таблицей с указанием средних значений мощности для различных видов устройств.

Мощность разных приборов

Мощность разных приборов

При вычислениях необходимо помнить, что пусковая мощность может превышать рабочую. Расчёт силы тока должен учитывать обе этих величины. Когда пусковая мощность вызывает резкое мгновенное увеличение силы тока, оно не должно превышать допустимой величины. Для бытовой техники пусковую мощность указывают редко. Поэтому перед тем как рассчитать силу тока, необходимо обратиться к соответствующим справочникам, чтобы найти определенное значение мощности. Для получения ее точной величины следует провести измерение ваттметром.

Вычисление тока при известных значениях напряжения и сопротивления

Если известно напряжение и сопротивление, то сила тока вычисляется по формуле, вытекающей из закона Ома:

Вычисление электротока согласно закону Ома

Если известны значения ЭДС, внутреннего сопротивления и нагрузки, то можно найти силу тока, используя закон Ома для полной цепи:

Определение электротока через эдс

Использование мощности и сопротивления

Как известно, мощность можно находить по формуле.

Определение мощности

Применив в данном выражении закон Ома, можно привести его к следующему виду:

Преобразованная формула мощности

Теперь силу тока можно выразить так:

Вычисление электротока если известны мощность и сопротивление

Следовательно, вычислить силу тока можно разными способами.

Непосредственное измерение силы тока

Величину силы тока можно не только рассчитывать, но и измерять, используя такие приборы, как амперметр или мультиметр. Любой из них при измерениях должен стать частью электрической цепи. Поэтому прибор нужно подключать последовательно.

Использование амперметра и вольтметра

Если нет большой нужды измерять силу тока амперметром, то лучше вычислить этот параметр, используя формулы, даже если для этого придется измерить напряжение. Вольтметром эта процедура осуществляется без разрыва электроцепи, чего нельзя сделать при использовании амперметра.

Также применяется магнитометрический способ. Примером его использования являются токовые клещи. Перед тем как определить силу электротока, их устанавливают так, чтобы они охватывали провод. Поскольку вокруг проводника при протекании тока образуется магнитное поле, которое клещи улавливают, то по его характеристикам прибор определяет силу тока в цепи.

Видео по теме

Расчет электрических параметров необходим для правильных построений цепей. Поскольку целью использования электричества в электротехнике является задача по выполнению током работы, то встает вопрос о том, как найти силу тока. Данный параметр используют при вычислениях мощности и в расчетах потребления электрической энергии.

Существуют разные способы определения этого важного параметра, которые мы рассмотрим в данной статье.

Формулами

Параметры электрического тока всегда взаимосвязаны. Например, изменение величины нагрузки отображается на показателях других величин. Причем эти изменения подчиняются соответствующим законам, которые выражаются через формулы. Поэтому на практике для нахождения силы тока часто используют соответствующие формулы.

Через заряд и время

Вспомним определение (рис.1): электричество – это величина заряда, движимого силами электрического поля, преодолевающего за единицу времени условную плоскость проводника, называемую поперечным сечением проводника.

Определение понятия сила тока

Рис. 1. Определение понятия сила тока

Таким образом, если известен электрический заряд, прошедший через проводник за определенное время, то не трудно найти величину этого заряда прошедшего за единицу времени, то есть: I = q/t

Через мощность и напряжение

В паспорте электроприбора обычно указывается его номинальная мощность и параметры электрической сети, для работы с которой он предназначен. Имея в распоряжении эти данные, можно вычислить силу тока по формуле: I = P/U.

Данное выражение вытекает из формулы для расчета мощности: P = IU.

Через напряжение или мощность и сопротивление

Силу электричества на участке цепи определяют по закону Ома. Для этого необходимо знать следующие параметры: сопротивление и напряжение на этом участке. Тогда I = U/R. Если известна мощность нагрузки, то ее можно выразить через квадрат силы тока умноженной на сопротивление участка: P = I2R, откуда

Ток через мощность и сопротивление

Для полной цепи эту величину вычисляют по закону Ома, но с учетом параметров источника питания.

Через ЭДС, внутреннее сопротивление и нагрузку R

Применяя закон Ома, адаптированный для полной цепи, вы можете вычислить максимальный ток по формуле I = ε / (R+r′), если известны параметры:

  • внешнее сопротивление проводников (R);
  • ЭДС источника питания (ε);
  • внутреннее сопротивление источника, обладающего ЭДС (r′).

Примечание! Реальные источники питания обладают внутренним сопротивлением. Поскольку в электрической цепи
показатель силы тока может уменьшаться в связи с возрастанием сопротивления источника питания или в результате падения ЭДС. Именно из-за роста внутреннего сопротивления садится аккумулятор и ослабевает ЭДС элементов питания.

Закон Джоуля-Ленца

Казалось бы, что расчет силы тока по количеству тепла, выделяющегося в результате нагревания проводника, не имеет практического применения. Однако это не так. Рассмотрим это на примере.

Пусть требуется найти силу тока во время работы электрочайника. Для этого доведите до кипения 1 кг воды и засеките время в секундах. Предположим, начальная температура составляла 10 ºС. Тогда Q = Cm(τ – τ0) = 4200 Дж/кг× 1 кг (100 – 10) = 378 000 Дж.

Закон Джоуля-Ленца

Рис. 2. Закон Джоуля-Ленца

Из закона Джоуля-Ленца (изображение на рис. 2) вытекает формула:

Ток из закона джоуля ленца

Измерив сопротивление электроприбора и подставив значения в формулу, получим величину потребляемого тока.

Измерительными приборами

Если под руками имеются измерительные приборы, то с их помощью довольно просто найти силу тока. Необходимо лишь соблюдать правила измерений и не забывать о правилах безопасности.

Амперметром

Пользуясь приборами для измерения ампеража, следует помнить, что они подключаются в цепи последовательно. Внутреннее сопротивление амперметра очень маленькое, поэтому прибор легко выводится из строя, если проводить измерения пределами значений, для которых он рассчитан.

Схема подключения амперметра показана на рисунке 3. Обратите внимание на то, что на участке измеряемой электрической цепи обязательно должна быть нагрузка.

Схема подключения амперметра

Рис. 3. Схема подключения амперметра

Большинство аналоговых амперметров, например, таких, как на рисунке 4, предназначены для измерений параметров в цепях с постоянными токами.

Аналоговый амперметр

Рис. 4. Аналоговый амперметр

Обратите внимание распределение шкалы амперметра. Цена первого деления 50 А, а всех последующих – 10 А. Максимальная величина, которую можно измерить данным амперметром не должна превышать 300 А. Для измерений электрической величины в меньших либо в больших пределах следует применять соответствующие приборы, предназначенные для таких диапазонов. В этом смысле универсальность амперметра ограничена.

При измерениях постоянных токов необходимо соблюдать полярность щупов при подключении амперметра. Для подключения прибора требуется разрывать цепь. Это не всегда удобно. Иногда вычисление силы тока по формуле является предпочтительней, особенно если приходится проводить измерения в сложных электротехнических схемах.

Мультиметром

Преимущество мультиметра в том, что этот прибор многофункциональный. Современные мультиметры цифровые. У них есть режимы для измерений в цепях постоянных и переменных токов. В режиме измерения силы тока этот измерительный прибор подключается в цепь аналогично амперметру.

Перед включением мультиметра в цепь, всегда проверяйте режим измерений, а пределы измерения выбирайте заведомо большие предполагаемой силы тока. После первого измерения можно перейти в режим с меньшим диапазоном.

Для работы с переменным напряжением переводите прибор в соответствующий режим. Считывайте значения с дисплея после того, как цифры перестанут мелькать.

Примеры

Покажем на простых примерах, как решать задачи на вычисление силы тока по формуле.

Задача 1.

На участке цепи имеются три параллельно включенных резистора (см. рис. 5). Значения сопротивлений резисторов: R1 = 5 Ом; R2 = 25 Ом; R3 = 50 Ом. Требуется рассчитать силу тока для каждого резистора и на всём участке, если на нем поддерживается постоянное напряжение 100 В.

Пример 1

Рис. 5. Пример 1

Решение: При параллельном соединении нагрузочных элементов U  = const, то есть, напряжение одинаково на всех резисторах и составляет 100 В. Тогда, по закону Ома I = U/R

  • I1 = U/R1 =100/5 = 20 А;
  • I2 = U/R2 =100/25 ≈ 4 А;
  • I3 = U/R3 =100/50 = 2 А.

Для вычисления искомого параметра на всем участке цепи, нам необходимо знать общее сопротивление этого участка. Учитывая тот факт, что при параллельном соединении нагрузочных элементов в цепи их общее сопротивление равно:

Паралельное соединение резисторов

Имеем: 1/R= 1/5 + 1/25 + 1/50 = 13/50; R = 50/13 ≈ 3.85 (Ом)

Тогда: I = U/R = 100 В/3,85 Ом ≈26 А.

Ответ:

  • Сила тока на сопротивлениях:  I1 =20 А; I2 = 4А; I3 = 2 А.
  • Сила тока, поступающего на рассматриваемый участок цепи равна 26 А.

Задача 2.

Мощность электрочайника 2 кВт. Чайник работает от городской сети под напряжением 220 В. Сколько электричества потребляет этот электроприбор?

Решение:

Воспользуемся формулой для нахождения силы тока, включающей напряжение и мощность: I = P/U.

  • 2 кВт преобразим в ватты: 2 кВт = 2000 Вт.
  • Подставляем данные: I = 2 000 Вт/ 220 В ≈ 9 А
  • Ответ: Нагревательный элемент электрочайника рассчитан на 9 А.

Задача 3.

Вычислить силу тока в цепи, если известно, что сопротивление составляет 5 Ом, ЭДС источника питания 6 В, а его внутреннее сопротивление составляет 1 Ом.

Решение.

Применяя закон Ома для полной цепи, запишем: I = ε / (R+r′)

I = 6 В / (5 Ом + 1 Ом) = 1 А.

Ответ: сила тока 1 А.

Задача 4.

Сколько энергии потребляет электроплита за 2 часа работы, если сопротивление нагревательного элемента 40 Ом?

Решение:

За время t электричество выполнит работу A = U*I*t.

Напряжение сети известно – оно составляет 220 В.Силу тока находим по формуле: I = U/R, тогда A = (U2/R)*t или

A = ((220 В)2 / 40 Ом) * 2 ч = 2420 Втч = 2,42 кВтч

Ответ: За 2 часа работы электроплита потребляет 2,42 кВт часов электроэнергии.

Применяя формулы для вычисления параметров электричества, пользуясь фундаментальными законами физики можно находить неизвестные данные для составных элементов цепей и электроприборов с целью оценки их состояния. В каждом отдельном случае необходимо определить известные параметры тока, которые можно использовать в дальнейших вычислениях. Обычно, это напряжение, мощность или сопротивление нагрузки.

Если можно обойтись без измерений амперметром – лучше прибегнуть к вычислениям, даже если при этом потребуется измерить напряжение. Такое измерение можно проводить без разрыва электрической цепи, чего нельзя сделать при помощи амперметра.

Как найти силу тока — формула в физике через мощность и напряжение, при смешанном соединении, в резисторе, проводнике

Чтобы правильно построить электрические цепочки в физике необходим расчёт параметров электроэнергии. Поскольку цель использования электрического тока в электротехнической технике – выполнение током работы, то появляется вопрос о поиске значения силы тока.

Однако, помимо этого следует понимать различие между разными видами электрической мощности, а также знать несколько способов для их вычисления.

Содержание

Определения

Сила тока – физическая величина, являющаяся одной из главных характеристик электрического тока. Она определяется таким понятием как: направленное движение электрических частиц. Другими словами, сила тока равна заряду, который за одну единицу времени прошёл через сечение проводника. Обозначается сила тока: [ I ] и исчисляется в Амперах (А).

Электрическая мощность — физическая величина, которая показывает с какой скоростью преобразуется или передаётся энергия электричества. Данная величина – характеристика производительности прибора. Обозначается: [ P ] и измеряется в Ватт (Вт).

Интересно! Впервые «Ватт» стали использоваться только в 1882 году. Ранее данный термин заменялся «лошадиными силами» (которые, в некоторых сферах, таких как автомобилестроение, используются и сейчас).

Формулы

Для нахождения силы тока

Сила тока рассчитывается по следующим формулам:

I = q/t

  • q – заряд, который проходит через сечение проводника,
  • t – время в секундах.

Закон Ома:

I = P/U

  • P – электрическая мощность,
  • U – электрическое напряжение.

I = U/R

  • U – электрическое напряжение,
  • R – электрическое сопротивление.

Следствие закона Джоуля-Ленца:

I = корень из Q/Rt

  • R – электрическое сопротивление,
  • Q – количество теплоты,
  • t – время.

Для мощности электрического тока

P = A/t

  • A – работа, которую выполняет электроприбор,
  • t – время.

P = UxI

  • U – электрическое напряжение,
  • I – сила тока.

P = U2/R

  • U – электрическое напряжение,
  • R – электрическое сопротивление.

Нахождение силы тока при помощи приборов

Помимо формул, в некоторых случаях, гораздо удобнее использовать вычислительные приборы. Самое главное: правильно их использовать. При измерении следует соблюдать определенные правила и помнить о технике безопасности.

Амперметр

Амперметр – самый распространённый прибор для применения его в электрической цепи.

Единственным недостатком данного прибора является его собственное маленькое сопротивление, из-за чего он может сгореть или просто выключиться, если ему придется измерять силу тока, на которую он не рассчитан. Именно поэтому считается, что универсальность амперметра сильно ограничена.

Если появляется необходимость измерить постоянный ток, то для измерения прибором придется разорвать цепь, а также не забыть про полярность подключения. Данный процесс не всегда удобен и как следствие иногда вычисление по формулам является более предпочтительным.

Существует несколько видов амперметров, каждый из которых используется локально, то есть в определенных электрических цепочках. Наиболее популярными стали: тепловой, электромагнитный, магнитноэлектрический, электродинамический и индукционный амперметр.

Правила при работе с амперметром

  1. Клемму амперметра, на которой изображен «плюс» – соединяем с проводом, который идет от положительного полюса. Клемма с «минусом» – наоборот.
  2. Подключать амперметр в электрическую цепь, при отсутствии потребителя тока, нельзя.
  3. Подключается амперметр в цепи последовательно.

Мультиметром

Мультиметр является многофункциональным прибором, то есть он может измерять ток и постоянных, и переменных токов. Его подключение аналогично амперметру (при условии измерения силы тока).

Прежде чем включить мультиметр внутри цепи, важно проверить режим измерения, а также выбрать пределы измерения гораздо больше силы, которую Вы ожидаете увидеть (современные мультиметры имеют цифровое табло).

При нахождении значения переменного тока переключите прибор на нужный режим и записывайте значения только после того, как цифры на дисплее перестанут мигать.

Единицы измерения на практике

Единицы измерения, приведенные в формулах, порой могут оказаться неудобным на практике, и оттого считаются «теоретическими». Например, в паспортах различных электроприборах (лампочек, телевизоров) Вы не увидите электрическую мощность в Ваттах. Это связано с тем, что если преобразовать формулу, то мы получим, что один Ватт – это 1 Джоуль/1 секунду.

И такое выражение крайне неудобное, ведь электроприборы потребляют ток в течение долгого времени: несколько минут, часов, дней, а расчет электричества по электросчетчику проводится раз в месяц!

Такие расчеты не оправданы и, как следствие, на практике время стали выражать не в секундах, а в часах, из-за чего электрический ток больше не выражается в Ваттах, а в ватт-час (ВтхЧ) или киловатт-час (кВтхЧ).

Из-за введения разных терминов (единиц измерения) мощности, следует разобраться как отличать килоВатт от килоВатт в час. Понятие первое показывает непосредственную мощность электротехники. Другими словами, в виде числа показывает способность прибора преобразовывать энергию электричества. КилоВатт в час – это то, сколько килоВатт за единицу времени (один час) может потребить, например, лампочка.

Сама мощность прибора никак не зависит от времени, однако то, какую мощность он может потребить – напрямую зависит от времени.

Узнать мощность электротехники, без использования формул или специальных приборов, можно взглянув на паспорт (инструкцию) выбранного объекта или на наклейку на нем.

  • Телевизор в среднем потребляет до 200 Вт.
  • Компьютер – 550 Вт.
  • Электрический чайник – 1200 Вт.
  • Тостер – 1200 Вт.
  • Электрообогреватель – 1400 Вт.
  • Микроволновая печь (СВЧ) – 1800 Вт.
  • Электроплита – 2500 Вт.

Связь мощности тока с действием тока в электрической цепи

Определить нагрузку на прибор в электрической цепи можно с помощью сравнения мощности тока и номинальной мощности электротехники.

В случае, если мощность самого тока меньше, то его недостаточно или он в целом не проявляется. Это значит, что, если подключить мощный прибор – работать он не начнет.

Обратная ситуация, если сила тока слишком велика, то слабые приборы просто сгорят.

С помощью приведенных выше формул можно находить неизвестные переменные, которые используются в вычислительных задачах, связанных с электричеством. Самые распространенные величины в таких задачах: сопротивление, мощность, напряжение.

Каждый электроприбор имеет свою электрическую мощность и рассчитан на определенную силу тока. При избытке – прибор может сломаться, а при недостатке – не будет работать.

Иногда удобней будет использовать вычислительные «помощники», такие, как амперметр и мультиметр. Они изобретены для того, чтобы измерить силу тока в цепи, однако важно помнить об особенностях их использования.

Фото определения силы тока

Об авторе: Эксперт в области электричества, общих вопросов

Задать вопрос

Как найти силу тока — какую формулу использовать, через мощность и напряжение, в резисторе, проводнике, при смешанном соединении

В развитии нашего уровня жизни физика занимает далеко не самое последнее место, поэтому знать элементарные вещи этой науки необходимо важно.

В этой статье мы поговорим о такой величине как сила тока. Как найти силу тока?

Содержание

Значение силы тока в жизни человека

Любые аспекты физики рано или поздно встречаются нам в жизни. И сила тока не является исключением.

С током мы встречаемся в повседневной жизни.

Когда включаем чайник для горячей кружечки кофе с утра, включая компьютер посреди рабочего дня, и даже перед сном, ставя телефон на зарядку и включая ночник.

Поэтому ее изучают еще в начале курса физики. Ведь довольно страшно жить среди приборов, о скрытых опасностях которых вы ничего не знаете.

Сила тока —это скалярная величина в физике, показывающая заряд, прошедший сквозь проводник за одну единицу времени.

Интересный факт, что удар молнии также является примером проводника тока с определенной силой, которая выше нескольких десятков тысяч вольт.

Единицы измерения и формулы

Сила тока измеряется в амперах, это название пошло от самого имени автора этого открытия — Андре-Мари Ампера.

В Основном ученый трудился в области электродинамики, как и стал автором самого термина и не только.

За всю свою жизнь, а именно 61 год, Ампер сделал множество открытий и находок в научной сфере.

Установил закон Ампера (про взаимодействие токов электричества). Открыл эффект катушки с током. Создал понятие «кинематика».

Разработал такие приборы как: электромагнитный телеграф и коммуникатор.

И это только одни из немногих открытий, без которых наша жизнь не стала такой развитой, как сейчас. Что касательно нашей темы, ученый создал несколько законов и формул.

Основная и самая популярная формула силы тока изображена таким образом:

  • I = q/t
  • Где I – Сама сила тока, q –электрический заряд, t-время.

Эту формулу можно использовать только тогда, когда электрическая цепь имеет источник питания. Например, тот же чайник и зарядка телефона.

Но каждый прибор использует свою определенную мощность для функционирования.

Поэтому силу тока также можно рассчитать также через напряжение и мощность.

Получается, если вам известны такие величины (мощность, напряжение) силу тока вы можете рассчитать через данную формулу:

  • I = P/U
  • I – сила тока, P-мощность, U-напряжение, что собственно логично, ведь иных данных у нас нет).

Мощность же, находится по формуле:

  • P=U*I
  • P- мощность, U- напряжение, I – снова же, сила тока, она так обозначается в большинстве и почти всех случаях.

Измерение силы тока

Измерение силы тока также возможно при помощи определенных приборов. Мы рассмотрим способ измерения через самые популярные — амперметр и мультиметр.

Мультиметр, более распространенный как вольтомметр, представляет из себя портативный тестер.

Он используется с целью измерения таких величин как сила тока, сопротивление, электрическое напряжение и других подобных.

Мультиметры делятся на два вида: аналоговые и цифровые.

Пользу от них можно найти практически везде: в простых тестах, например, когда нужно измерить напряжение батареи и до сложной диагностики высокоточного оборудования.

Электрики предпочитают использовать этот инструмент при починке таких неполадок как в двигателях, цепях, не обходится и без источников питания.

Да и всех приборах связанных с электрическим током, вернее, способных его проводить.

Использование мультиметра

Функции мультиметра будут идентичны в главных операциях и функциях любого его вида, то есть, как для аналоговых так и для цифровых. У тестера есть 2 вывода: черный и красный, а также 3 порта:

  • Красный провод вы можете подключить к любому порту, в зависимости от функции, которую вы желаете использовать. Но не к общему порту, куда подключается черный.
  • После того, как подключили провода, в центре тестера нужно повернуть ручку, это поможет вам подобрать нужную функцию и надлежащий диапазон.
  • Касания заостренными концами каждого провода к проверяемой клемме или проводу. Нужно вам значение, например напряжение будет показано на тестере.
  • Важно знать что безопасная эксплуатация мультиметра происходит только в той цепи, где ток или напряжение не превосходит максимальное значение тестера.
  • Помимо этого никогда нельзя касаться тех заостренных концов тестера в то время, когда вы используете прибор, иначе можете получить удар током.

Функции и возможности мультиметра

Возможное количество показаний, которое он может считать, зависит от модели мультиметра. Обычно это сопротивление, сила тока и напряжение.

Новейшие же приборы могут считывать следующие значения:

  • Напряжение и сила переменного тока (переменного тока)
  • Сопротивление (Ом)
  • Емкость (фарады)
  • Напряжение постоянного тока (постоянный ток) и сила тока, децибелы
  • Частота (Гц)
  • Индуктивность (Генри)
  • Рабочий цикл Температура по Цельсию или по Фаренгейту
  • Электропроводность (Сименс).

Существуют мультиметры, позволяющие к себе присоединить дополнительные датчики или аксессуары.

С их помощью вы сможете получать такие показания как уровень освещенности, скорость ветра, щелочность, относительная влажность, кислотность. Что является недавним новшеством изобретения.

Амперметр

Это специальный прибор, помогающий измерить силу тока в единицах Ампер.

Если вы проходили практические занятия по физике в большинстве школьных советов, опыты, основанные на электричестве, были бы частью уроков.

И, вы, должно быть, видели амперметр в действии.

Он также входит в большинство учебников по электричеству для школьных классов с 10 по 12. Сегодня мы расскажем вам, что такое амперметр, как он работает, сколько стоит и сколько их видов.

В одном вы можете быть уверены: амперметры являются неотъемлемой частью любого электронного или физического лабораторного оборудования.

Чтобы понять, что имеется ввиду под словом «амперметр», вспомните, что ток в электрической цепи измеряется в единицах ампер.

Поэтому прибор, используемый для измерения тока, называется амперметром.

У прибора должно происходить низкое сопротивление при логическом (последовательном) сопряжении в электрической цепи.

Так электрический ток сможет просто протекать через нее, а прибор станет показывать правильное измерение.

Как работает амперметр?

Вспомним, что прибор способен измерить ток только при низком сопротивлении набора катушек электрической цепи. Также важно, чтобы это сопротивление являлось индуктивным:

  • После логического подключения прибор вызывает очень небольшое падение напряжения из-за своего низкого сопротивления, этим же позволяет току проходить сквозь него и измеряться.
  • Существует множество амперметров для измерения постоянного или переменного тока, но все они зависят от амперметра, имеющего очень низкое внутреннее сопротивление.
  • Внутри амперметра имеется шунт, подключенный параллельно устройству, называемому гальванометром.
  • Шунт представляет собой сопротивление, которое позволяет измеряемому току протекать через амперметр и обеспечивает полное показание. Гальванометр является чувствительным детектором тока.
  • Показания электрических токов в амперметре обычно даются в миллиамперах в электрических цепях, имеющих в качестве источника питания аккумуляторные батареи.

В случаях переменного тока, например, дома, амперметр будет показывать большие значения, которые будут обозначаться в амперах.

Что делает амперметр в цепи?

Амперметр способен измерять два вида токов: электрический постоянный и электрический переменный.

В цепи протекание электрического тока происходит через внутренние части прибора, заставляя его стрелку отклоняться.

Тем самым показывает измерение, а именно силу, с которой трок проходит в основной части всей цепи.

Закон Ома

Еще один способ найти силу тока – воспользоваться законом, описывающим зависимость между силой тока и напряжением.

Формула закона Ома: = I х R, R = V / I, I = V / R, где V – напряжение, I – сила тока, R – сопротивление. Подставив имеющиеся у вас данные, вы сможете вычислить силу тока.

В каких случаях не используется закон Ома?

Между током и напряжением закон Ома не представляет собой универсальную связь. Поэтому закон может не соблюдаться при некоторых случаях, а именно:

  • В случае низкой температуры, а также при высоких частотах, в то время как скорость изменения эл. поля так огромна, что запрещено пренебрегать инерцией касательно носителей заряда.

В этой статье мы разобрали несколько вариантов, как найти силу тока, а именно через формулы, законы и специальные приборы.

Пользуйтесь этими способами в зависимости от возможностей, которые у вас имеются.

Но помните, что работа с электрическим током может быть опасна, и работу с приборами лучше выполнять под наблюдением опытных людей или профессионалов.

Фото определения силы тока

Об авторе: Эксперт в направлениях электричества, ремонтных работ

Задать вопрос

Сила тока с точки зрения гидравлики

Думаю, вы не раз слышали такое словосочетание, как «сила тока«. А для чего нужна сила? Ну как для чего? Чтобы совершать полезную или бесполезную работу. Главное, чтобы что-то делать.  Каждый из нас обладает какой-либо силой. У кого-то сила такая, что он может одним ударом разбить кирпич в пух и в прах, а другой не сможет поднять даже соломинку. Так вот, дорогие мои читатели, электрический ток тоже обладает силой.

Представьте себе шланг, с помощью которого вы поливаете свой огород

дети поливают огород

Давайте теперь проведем аналогию. Пусть шланг  — это провод, а вода в нем — электрический ток. Мы чуть-чуть приоткрыли краник и вода сразу же побежала по шлангу. Медленно, но все-таки побежала. Сила струи очень слабая.

Сила тока

А давайте теперь откроем краник на полную катушку. В результате струя хлынет с такой силой, что можно даже полить соседский огород.

Сила тока

В обоих случаях диаметр шланга одинаков.

А теперь представьте, что вы наполняете ведро. Напором воды из какого шланга вы его быстрее наполните? Разумеется из зеленого, где напор воды очень сильный. Но почему так происходит? Все дело в том, что объем воды за равный промежуток времени из желтого и зеленого шланга выйдет тоже разный. Или иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.

Разберем еще один интересный пример. Давайте допустим, что у нас есть большая труба, и к ней заварены две другие, но одна в два раза меньше диаметром, чем другая.

сила потока

Из какой трубы объем воды будет выходить больше за секунду времени? Разумеется с той, которая толще в диаметре, потому что площадь поперечного сечения S2 большой трубы больше, чем площадь поперечного сечения S1 малой трубы. Следовательно, сила потока через большую трубу будет больше, чем через малую, так как объем воды, который протекает через поперечное сечение трубы S2, будет  в два раза больше, чем через тонкую трубу.

Что такое сила тока?

Итак, теперь давайте все что мы тут пописали про водичку применим к электронике. Провод — это шланг. Тонкий провод — это тонкий в диаметре шланг, толстый провод — это толстый в диаметре шланг, можно сказать — труба. Молекулы воды — это электроны. Следовательно, толстый провод при одинаковом напряжении можно протащить больше электронов, чем тонкий. И вот здесь мы подходим вплотную к самой терминологии силы тока.

img

Сила тока — это количество электронов, прошедших через площадь поперечного сечения проводника за какое-либо определенное время.

Все это выглядит примерно вот так. Здесь я нарисовал круглый проводок, «разрезал» его и получил ту самую площадь поперечного сечения. Именно через нее и бегут электроны.

сила тока попереченое сечение проводника

За период времени берут 1 секунду.

Формула силы тока

Формула для чайников будет выглядеть вот так:

формула сила тока

где

I — собственно сила тока, Амперы

N — количество электронов

t — период времени, за которое эти электроны пробегут через поперечное сечение проводника, секунды

Более правильная (официальная) формула выглядит вот так:

сила тока формула

где

Δq  — это заряд за какой-то определенный промежуток времени, Кулон

Δt — тот самый промежуток времени, секунды

I — сила тока, Амперы

В чем прикол этих двух формул? Дело все в том, что электрон обладает зарядом приблизительно 1,6 · 10-19 Кулон. Поэтому, чтобы сила тока была в проводе (проводнике) была 1 Ампер, нам надо, чтобы через поперечное сечение прошел заряд в 1 Кулон = 6,24151⋅1018 электронов. 1 Кулон = 1 Ампер · 1 секунду.

Итак, теперь можно официально сказать, что если через поперечное сечение проводника за 1 секунду пролетят 6,24151⋅1018 электронов, то сила тока в таком проводнике будет равна 1 Ампер! Все! Ничего не надо больше придумывать! Так и скажите своему преподавателю по физике).

Если преподу не понравится ваш ответ, то скажите типа что-то этого:

Сила тока  — это физическая величина, равная отношению количества заряда прошедшего через поверхность (читаем как через площадь поперечного сечения) за какое-то время. Измеряется как Кулон/секунда. Чтобы сэкономить время и по другим морально-эстетическим нормам,  Кулон/секунду договорились называть Ампером, в честь французского ученого-физика.

Сила тока и сопротивление

Давайте еще раз глянем на шланг с водой и зададим себе вопросы. От чего зависит поток воды? Первое, что приходит в голову — это давление. Почему молекулы воды движутся в рисунке ниже слева-направо? Потому, что давление слева, больше чем справа. Чем больше давление, тем быстрее побежит водичка по шлангу — это элементарно.

сила тока аналогия с гидравликой

Теперь такой вопрос: как можно увеличить количество электронов через площадь поперечного сечения?

Первое, что приходит на ум — это увеличить давление. В этом случае скорость потока воды увеличится, но ее много не увеличишь, так как шланг порвется как грелка в пасти Тузика.

Второе — это поставить шланг бОльшим диаметром. В этом случае у нас количество молекул воды через поперечное сечение будет проходить больше, чем в тонком шланге:

сила тока в проводнике

Все те же самые умозаключения можно применить и к обыкновенному проводу. Чем он больше в диаметре, тем больше он сможет «протащить» через себя силу тока. Чем меньше в диаметре, то желательно меньше его нагружать, иначе его «порвет», то есть он тупо сгорит. Именно этот принцип заложен в плавких предохранителях. Внутри такого предохранителя тонкий проводок. Его толщина зависит от того, на какую силу тока он рассчитан.

плавкий предохранитель

плавкий предохранитель

Как только сила тока через тонкий проводок  предохранителя превысит силу тока, на которую рассчитан предохранитель, то плавкий проводок перегорает и размыкает цепь. Через перегоревший предохранитель ток уже течь не может, так как проводок в предохранителе в обрыве.

перегоревший плавкий предохранитель

сгоревший плавкий предохранитель

Поэтому, силовые кабели,  через которые «бегут» сотни и тысячи ампер, берут большого диаметра и стараются делать из меди, так как ее удельное сопротивление очень мало.

Сила тока в проводнике

Очень часто можно увидеть задачки по физике с вопросом: какая сила тока в проводнике? Проводник, он же провод, может иметь различные параметры: диаметр, он же площадь поперечного сечения; материал, из которого сделан провод; длина, которая играет также важную роль.

Да и вообще, сопротивление проводника рассчитывается по формуле:

сопротивление проводника

формула сопротивления проводника

Таблица с удельным сопротивлением из разных материалов выглядит вот так.

удельное сопротивление материалов

таблица с удельным сопротивлением веществ

Для того, чтобы найти силу тока в проводнике, мы должны воспользоваться законом Ома для участка цепи. Выглядит он вот так:

формула закона Ома

закон Ома

Задача

У нас есть медный провод длиной в 1 метр и его площадь поперечного сечения составляет 1 мм2 . Какая сила тока будет течь в этом проводнике (проводе), если на его концы подать напряжение в 1 Вольт?

сила тока в проводнике

задача на силу тока в проводнике

Решение:

решение задачи сила тока в проводнике

Как измерить силу тока?

Для того, чтобы измерить значение силы тока, мы должны использовать специальные приборы — амперметры. В настоящее время силу тока можно измерить с помощью цифрового мультиметра, который  может измерять и силу тока, и напряжение и сопротивление и еще много чего. Для того, чтобы измерить силу тока, мы должны вставить наш прибор в разрыв цепи вот таким образом.

как измерить силу тока

Более подробно как это сделать, можете прочитать в этой статье.

Также советую посмотреть обучающее видео, где очень умный преподаватель объясняет простым языком, что такое «сила тока».

Добавить комментарий