Как найти силу гравитационного взаимодействия земли

Содержание

  1. Как найти силу гравитационного взаимодействия земли
  2. Что такое гравитационное взаимодействие
  3. Как найти силу гравитационного взаимодействия земли
  4. Заключение
  5. Как найти силу гравитационного взаимодействия земли
  6. Что такое сила гравитации?
  7. Как найти силу гравитационного взаимодействия земли?
  8. Как влияет сила гравитации на жизнь на земле?
  9. Заключение
  10. Как найти силу гравитационного взаимодействия земли
  11. 1. Использование закона тяготения Ньютона
  12. 2. Измерение ускорения свободного падения
  13. 3. Использование весовых измерений
  14. Итог

Как найти силу гравитационного взаимодействия земли

Гравитационное взаимодействие является одной из основных сил, воздействующих на нашу планету. Оно отвечает за силу притяжения, обеспечивая устойчивость Земли и ее орбиту вокруг Солнца. Но как найти силу гравитационного взаимодействия земли? В этой статье мы исследуем этот вопрос и предоставим ответы.

Что такое гравитационное взаимодействие

Гравитационное взаимодействие — это сила, с которой масса притягивается к другой массе. Она обуславливается силой притяжения между любыми двумя телами во Вселенной. Силу притяжения можно выразить через закон Ньютона:

Сила притяжения = G * (масса 1 * масса 2 / расстояние ^ 2)

где G — гравитационная постоянная, масса 1 и масса 2 — массы двух тел, а расстояние — расстояние между центрами масс двух тел.

Как найти силу гравитационного взаимодействия земли

Чтобы найти силу гравитационного взаимодействия земли, нам необходимо узнать ее массу, расстояние между землей и другим телом, а также массу этого тела. Рассмотрим пример солнца, как другим телом, находящимся на определенном расстоянии от Земли.

  • Масса земли — 5,97 * 10 ^ 24 кг (это можно найти в интернете)
  • Масса солнца — 1,99 * 10 ^ 30 кг (это также можно найти в интернете)
  • Расстояние между землей и солнцем — 149,6 млн км (это также можно найти в интернете)
  • Гравитационная постоянная — 6,67384 * 10 ^ -11 Н * м ^ 2 / кг ^ 2 (известная физическая константа)

Используя эти значения, мы можем использовать закон Ньютона, чтобы найти силу притяжения:

Сила притяжения Земли и Солнца = G * (масса Земли * масса Солнца / расстояние ^ 2)

Сила притяжения Земли и Солнца = 6,67384 * 10 ^ -11 * (5,97 * 10 ^ 24 * 1,99 * 10 ^ 30 / (149,6 * 10 ^ 6 * 1000) ^ 2)

Сила притяжения Земли и Солнца = 3,52 * 10 ^ 22 Н

Это означает, что сила притяжения между Землей и Солнцем равна 3,52 * 10 ^ 22 Н.

Заключение

Поэтому, чтобы найти силу гравитационного взаимодействия земли с другими телами, необходимо знать значение их массы, расстояние между ними и гравитационную постоянную. Используя закон Ньютона, мы можем рассчитать силу притяжения между двумя телами во Вселенной. Это простой, но важный показатель, который помогает лучше понять нашу планету и ее место во Вселенной.

Как найти силу гравитационного взаимодействия земли

Сила гравитационного взаимодействия земли является одной из фундаментальных сил, которая определяет физические свойства нашей планеты. Она играет важную роль в нашей жизни, влияет на движение небесных тел, на океанские течения и т.д. Поэтому ее изучение имеет большое значение.

Что такое сила гравитации?

Сила гравитации (или тяготения) — это взаимодействие, которое происходит между любыми двумя объектами во Вселенной. Каждый объект обладает массой и притягивает другой объект силой, пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними.

Силой гравитации, которую земля действует на тело, можно измерить с помощью формулы:

Fg = G*(m1*m2)/r2

Здесь Fg — сила гравитации между двумя телами, G — гравитационная постоянная, m1 и m2 — массы двух тел и r — расстояние между ними.

Как найти силу гравитационного взаимодействия земли?

Для того чтобы найти силу гравитационного взаимодействия земли, необходимо знать массу этой планеты и расстояние от нее до объекта, на который мы хотим рассчитать эту силу.

Масса земли равна примерно 5,97*1024 кг. Расстояние от земли до объекта может быть измерено с помощью спутниковой навигации, геодезических измерений и других методов.

Используя формулу, мы можем рассчитать силу гравитации, которую земля действует на объект.

Как влияет сила гравитации на жизнь на земле?

Несмотря на то, что сила гравитации земли является постоянной, она играет важную роль в нашей жизни. Она обеспечивает устойчивость нашей планеты, контролирует движение небесных тел, течение океанов, формирование погоды и климатических условий.

Кроме того, гравитация позволяет нам жить на земле. Без нее мы бы просто отвалились в космическое пространство. Гравитация также оказывает влияние на наш здоровье. Она влияет на циркуляцию крови, давление и другие физиологические процессы.

Заключение

Сила гравитации является одной из важнейших физических сил нашей планеты. Ее изучение помогает понять многие процессы на земле и за ее пределами. Рассчитать силу гравитации можно с помощью формулы, основанной на массе земли и расстоянии до объекта. Гравитация влияет на многие аспекты нашей жизни и является неотъемлемой частью нашей планеты.

Как найти силу гравитационного взаимодействия земли

Гравитационное взаимодействие земли играет важную роль в жизни людей. Оно позволяет нам оставаться на поверхности планеты и определяет силу притяжения между различными объектами в космосе. Но как же мы можем найти силу этого взаимодействия? В этой статье мы рассмотрим несколько способов для определения этой величины.

1. Использование закона тяготения Ньютона

Согласно закону тяготения Ньютона, сила гравитационного взаимодействия между двумя телами пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними.

Формула для расчета гравитационной силы F: F = G * (m1 * m2) / r^2

Здесь F — сила гравитационного взаимодействия, G — гравитационная постоянная, m1 и m2 — массы двух тел и r — расстояние между ними.

Для расчета силы гравитационного взаимодействия земли с другим объектом, вам понадобится знать массу земли и расстояние между ней и объектом.

Масса земли составляет примерно 5,97 * 10^24 кг, а расстояние между землей и другим объектом может быть определено с помощью различных методов, включая наблюдения за астрономическими объектами и спутниками.

2. Измерение ускорения свободного падения

Другой способ определить силу гравитационного взаимодействия земли — измерить ускорение свободного падения на поверхности земли. Ускорение свободного падения является результатом действия силы тяжести на объекты во время свободного падения.

Согласно закону Ньютона, сила тяжести направлена вниз и равна массе объекта, умноженной на ускорение свободного падения. Следовательно, зная массу объекта и ускорение свободного падения на земле, можно определить силу гравитационного взаимодействия.

Значение ускорения свободного падения на земле составляет примерно 9,8 м/с^2. Оно может быть измерено с помощью устройств, таких как гравитационные метры и устройства, использующие свободное падение объектов.

3. Использование весовых измерений

Вес — это сила, с которой земля притягивает объект. Зная массу объекта и его вес, можно определить силу гравитационного взаимодействия.

Вес можно измерить с помощью обычных весов. Однако, для того, чтобы получить точный результат, необходимо учитывать множество факторов, включая силу атмосферного давления и местоположение объекта на поверхности земли.

Итог

Сила гравитационного взаимодействия земли — важная величина, которая оказывает огромное влияние на различные процессы в природе и человеческой жизни. Её можно определить с помощью закона тяготения Ньютона, измерения ускорения свободного падения и весовых измерений. Каждый из этих методов имеет свои особенности и может быть использован в зависимости от ситуации и доступных ресурсов.

Гравитационное взаимодействие

Земля — это большой магнит. Причем на самом деле магнит, с настоящим магнитным полем. Но сейчас речь пойдет о другом явлении — явлении притяжения тел к Земле, от прыгающего с дерева котика до летящего мимо астероида. Называется это явление гравитацией.

Возьмем два тела — одно с большой массой, другое с маленькой. Натянем гигантское полотно ткани и положим на него тело с большей массой. После чего положим туда тело с массой поменьше. Мы будем наблюдать примерно такую картину:

Гравитационное взаимодействие

Маленькое тело начнет притягиваться к тому, что больше, — это и есть гравитация. По сути, Земля — это большой шарик, а все остальные предметы — маленький (даже если это вовсе не шарики).

Гравитационное взаимодействие универсально. Оно справедливо для всех видов материи. Гравитация проявляется только в притяжении — отталкивание тел гравитация не предусматривает.

Из всех фундаментальных взаимодействий гравитационное — самое слабое. Хотя гравитация действует между всеми элементарными частицами, она настолько слаба, что ее принято не учитывать. Все дело в том, что гравитационное взаимодействие зависит от массы объекта, а у частиц она крайне мала. Эту зависимость впервые сформулировал Исаак Ньютон.

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Узнай, какие профессии будущего тебе подойдут

Пройди тест — и мы покажем, кем ты можешь стать, а ещё пришлём подробный гайд, как реализовать себя уже сейчас

Узнай, какие профессии будущего тебе подойдут

Закон всемирного тяготения

В 1682 году Исаак Ньютон открыл закон всемирного тяготения. Он звучит так: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.

Формула силы тяготения согласно этому закону выглядит так:

Закон всемирного тяготения

F — сила тяготения [Н]

M — масса первого тела (часто планеты) [кг]

m — масса второго тела [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 · 10−11м3 · кг−1 · с−2

Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше примерно в шесть раз.

Закон всемирного тяготения используют, чтобы вычислить силы взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними.

Если мы возьмем два шара, то для них можно использовать этот закон вне зависимости от расстояния между ними. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.

Задачка раз

Две планеты с одинаковыми массами обращаются по круговым орбитам вокруг звезды. У первой из них радиус орбиты вдвое больше, чем у второй. Каково отношение сил притяжения первой и второй планеты к звезде?

Решение

По закону всемирного тяготения сила притяжения планеты к звезде обратно пропорциональна квадрату радиуса орбиты. Таким образом, в силу равенства масс отношение сил притяжения к звезде первой и второй планет обратно пропорционально отношению квадратов радиусов орбит:

По условию, у первой планеты радиус орбиты вдвое больше, чем у второй, то есть R1 = 2R2.

Это значит, что:

Ответ: отношение сил притяжения первой и второй планет к звезде равно 0,25.

Онлайн-уроки физики в Skysmart не менее увлекательны, чем наши статьи!

Задачка два

У поверхности Луны на космонавта действует сила тяготения 144 Н. Какая сила тяготения действует со стороны Луны на того же космонавта в космическом корабле, движущемся по круговой орбите вокруг Луны на расстоянии трех лунных радиусов от ее центра?

Решение

По закону всемирного тяготения сила притяжения космонавта со стороны Луны обратно пропорциональна квадрату расстояния между ним и центром Луны. У поверхности Луны это расстояние совпадает с радиусом спутника. На космическом корабле, по условию, оно в три раза больше. Таким образом, сила тяготения со стороны Луны, действующая на космонавта на космическом корабле, в 9 раз меньше, чем у поверхности Луны, то есть:

144 : 9 = 16 Н

Ответ: на расстоянии трех лунных радиусов от центра сила притяжения космонавта будет равна 16 Н.

Важный нюанс!

Правильно говорить не «на тело действует сила тяготения», а «Земля притягивает тело с силой тяготения».

Ускорение свободного падения

Чтобы математически верно и красиво прийти к ускорению свободного падения, нам необходимо сначала ввести понятие силы тяжести.

Сила тяжести — сила, с которой Земля притягивает все тела.

Сила тяжести

F = mg

F — сила тяжести [Н]

m — масса тела [кг]

g — ускорение свободного падения [м/с2]

На планете Земля g = 9,8 м/с2, но подробнее об этом чуть позже. 😉

На первый взгляд сила тяжести очень похожа на вес тела. Действительно, в состоянии покоя на поверхности Земли формулы силы тяжести и веса идентичны. Вес тела в состоянии покоя численно равен массе тела, умноженной на ускорение свободного падения, разница состоит лишь в точке приложения силы.

Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.

Также важно понимать, что сила тяжести зависит исключительно от массы и планеты, на которой тело находится. А вес зависит еще и от ускорения, с которым движется тело или опора.

Например, в лифте вес зависит от того, куда и с каким ускорением двигаются его пассажиры. А силе тяжести все равно, куда и что движется — она не зависит от внешних факторов.

На второй взгляд сила тяжести очень похожа на силу тяготения. В обоих случаях мы имеем дело с притяжением — значит, можем сказать, что это одно и то же. Практически.

Мы можем сказать, что это одно и то же, если речь идет о Земле и каком-то предмете, который к ней притягивается. Тогда мы можем даже приравнять эти силы и выразить формулу для ускорения свободного падения:

Приравниваем правые части:

Делим на массу тела левую и правую части:

Это и будет формула ускорения свободного падения. Ускорение свободного падения для каждой планеты уникально.

Закон всемирного тяготения

g — ускорение свободного падения [м/с2]

M — масса планеты [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 · 10−11м3 · кг−1 · с−2

Ускорение свободного падения характеризует то, как быстро увеличивается скорость тела при свободном падении.

Свободное падение — это ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести.

Но разве это не зависит еще и от массы предмета?

Нет, не зависит. На самом деле все тела падают одинаково вне зависимости от массы. Если мы возьмем перо и мяч, то перо, конечно, будет падать медленнее, но не из-за ускорения свободного падения. Просто из-за небольшой массы пера сопротивление воздуха оказывает на него большее воздействие, чем на мяч. А вот если бы мы поместили перо и мяч в вакуум, они бы упали одновременно.

Третий закон Ньютона

Третий закон Ньютона обобщает огромное количество опытов, которые показывают, что силы — результат взаимодействия тел.

Он звучит так: тела действуют друг на друга с силами, равными по модулю и противоположными по направлению.

Если попроще — сила действия равна силе противодействия.

Если вам вдруг придется объяснять физику во дворе, то можно сказать и так: на каждую силу найдется другая сила. 🙈

Третий закон Ньютона

F1 — сила, с которой первое тело действует на второе [Н]

F2 — сила, с которой второе тело действует на первое [Н]

Так вот, для силы тяготения третий закон Ньютона тоже справедлив. С какой силой Земля притягивает тело, с той же силой тело притягивает Землю.

Задачка для практики

Земля притягивает к себе подброшенный мяч с силой 5 Н. С какой силой этот мяч притягивает к себе Землю?

Решение

Согласно третьему закону Ньютона, сила, с которой Земля притягивает мяч, равна силе, с которой мяч притягивает Землю.

Ответ: мяч притягивает Землю с силой 5 Н.

Поначалу это кажется странным, потому что мы ассоциируем силу с перемещением: мол, если сила такая же, то на то же расстояние подвинется Земля. Формально это так, но у мяча масса намного меньше, чем у Земли. И Земля смещается на такое крошечное расстояние, притягиваясь к мячу, что мы его не видим, в отличие от падения мяча.

Если каждый брошенный мяч смещает Землю на какое-то расстояние, пусть даже крошечное, возникает вопрос — как она еще не слетела с орбиты из-за всех этих смещений. Но тут как в перетягивании каната: если его будут тянуть две равные по силе команды, канат никуда не сдвинется. Так же и с нашей планетой.

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,658
  • гуманитарные
    33,653
  • юридические
    17,917
  • школьный раздел
    611,962
  • разное
    16,905

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Все тела взаимодействуют друг с другом. Так, две материальные точки, обладающие массой, притягиваются друг к другу с некоторой силой, которую называют гравитационной, или силой всемирного тяготения.

Сила всемирного тяготения — сила, с которой все тела притягиваются друг к другу.

Закон всемирного тяготения

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними.

F — сила всемирного тяготения, m1 и m2 — массы двух притягивающихся друг к другу тел, R — расстояние между этими телами, G — гравитационная постоянная (G = 6,67∙10–11 Н ∙ м2/кг2).

Сила всемирного тяготения направлена по линии, соединяющей центры двух тел.

Гравитационная постоянная численно равна силе притяжения между двумя точечными телами массой 1 кг каждое, если расстояние между ними равно 1 м. Если R = 1 м, m1 = 1 кг и m2 = 1 кг, то F = G.

G = 6,67∙10–11 Н ∙ м2/кг2.

Сила тяжести

Согласно закону всемирного тяготения, все тела притягиваются между собой. Так, Земля притягивает к себе падающий на нее мяч, а мяч притягивает к себе Землю.

Сила тяжести — сила, с которой Земля притягивает к себе тела.

Сила тяжести действует на все тела, находящиеся в поле притяжения Земли. Она всегда направлена к центру нашей планеты.

Расчет силы тяжести на Земле

Силу тяжести можно рассчитать с помощью закона всемирного тяготения. Тогда одна из масс будет равна массе земли. Обозначим ее большой буквой M. Вторая масса будет принадлежать телу, притягивающемуся к Земли. Обозначим его m. В качестве R будет служить радиус Земли. В таком случае сила тяжести будет определяться формулой:

Вывод формулы ускорения свободного падения

Согласно второму закону Ньютона, сила, которая действует на тело, сообщает ему ускорение. Поэтому силу тяжести также можно выразить через это ускорение. Обозначим его g — ускорение свободного падения.

Пример №1. Мальчик массой 50 кг прыгнул под углом 45 градусов к горизонту. Найти силу тяжести, действующую на него во время прыжка.

Сила тяжести зависит только от массы тела и ускорения свободного падения. Направлена она всегда к центру Земли, и от характера движения тела не зависит. Поэтому:

Мы получили две формулы для вычисления силы тяжести: одну — исходя из закона всемирного тяготения, вторую — исходя из второго закона Ньютона. Приравняем правые части формул и получим:

Отсюда:

Формула расчета ускорения свободного падения

Вместо массы и радиуса Земли можно взять массы и радиусы любых планет. Так можно рассчитать ускорение свободного падения для любого космического тела.

Пример №2. Рассчитать ускорение свободного падения на Луне. Считать, что радиус Луны равен 1736 км, а ее масса — 7,35∙1022 кг.

Переведем километры в метры: 1736 км = 1736000 м.

Первая космическая скорость

Исаак Ньютон смог доказать, что причиной падения тел на Землю, движения Луны вокруг Земли и движения Земли вокруг Солнца является сила тяготения. Если камень бросить в горизонтальном направлении, его траектория будет отклонена от прямой линии под действием земной силы тяжести. Если же придать этому камню большую скорость, камень приземлится на большем расстоянии. Значит, существует такая скорость, при которой камень не приземлится, а начнет бесконечно вращаться вокруг Земли.

ОпределениеПервая космическая скорость — минимальная (для заданной высоты над поверхностью планеты) горизонтальная скорость, которую необходимо придать объекту, чтобы он совершал движение по круговой орбите вокруг планеты.

Вывод формулы первой космической скорости

Когда тело массой m вращается на некоторой высоте h, расстояние между ним и центром Земли равно сумме этой высоты и радиуса Земли. Поэтому сила тяготения между этим телом и Землей будет равна:

Движение тела вокруг планеты — частный случай движения тела по окружности с постоянной по модулю скоростью. Мы уже знаем, что такое тело движется с центростремительным ускорением, направленным к центру окружности. В данном случае центростремительное ускорение будет направлено к центру Земли. Это ускорение сообщает телу сила тяготения.

Так как тело движется на некоторой высоте h от поверхности Земли, центростремительное ускорение будет определяться формулой:

Подставив это ускорение в формулу второго закона Ньютона, получим силу, с которой Земля притягивает к себе тело массой m:

Приравняем правые части формул, следующих из закона всемирного тяготения и второго закона Ньютона, и получим:

Отсюда скорость, с которой должно тело массой m бесконечно вращаться вокруг Земли на высоте h, равна:

Скорость бесконечно вращающегося вокруг Земли тела не зависит от его массы. Она зависит только от высоты, на которой оно находится. Чем выше высота, тем меньше скорость его вращения.

Тело, вращающееся вокруг планеты, называется ее спутником. Чтобы любое тело стало спутником Земли, нужно сообщить ему некоторую скорость на поверхности планеты в горизонтальном направлении. Высота h в этом случае равна 0. Тогда эта скорость будет равна:

8 км/с — первая космическая скорость Земли.

Пример №3. Рассчитать первую космическую скорость для Венеры. Считать, что масса Венеры равна 4,87∙1024 кг, а ее радиус равен 6052 км.

Задание EF18521

Сила гравитационного притяжения между двумя шарами, находящимися на расстоянии 2 м друг от друга, равна 9 нН. Какова будет сила притяжения между ними, если расстояние увеличить до 6 м? Ответ выразите в наноньютонах (нН).


Алгоритм решения

  1. Записать исходные данные.
  2. Записать закон всемирного тяготения.
  3. Установить зависимость между силой гравитационного притяжения и расстоянием между телами.
  4. На основании вывода о зависимости двух величин вычислить гравитационное притяжение между двумя шарами при изменении расстояния между ними.

Решение

Запишем исходные данные:

  • Расстояние между двумя шарами в первом случае: R1 = 2 м.
  • Расстояние между двумя шарами во втором случае: R2 = 6 м.
  • Сила гравитационного притяжения между двумя шарами в первом случае: F1 = 9 нН.

Запишем закон всемирного тяготения:

Из формулы видно, что сила гравитационного притяжения обратно пропорционально квадрату расстояния между телами массами m1 и m2.

R2 больше R1 втрое (6 больше 2 в 3 раза). Следовательно, расстояние между шарами тоже увеличилось втрое. В таком случае сила гравитационного притяжения между ними уменьшится в 32 раз, или в 9 раз. Так как в первом случае эта сила была равна 1 нН, то во втором она составит в 9 раз меньше, или 1 нН.

Ответ: 1

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17569

Две звезды одинаковой массы m притягиваются друг к другу с силами, равными по модулю F. Чему равен модуль сил притяжения между другими двумя звёздами, если расстояние между их центрами такое же, как и в первом случае, а массы звёзд равны 3m и 4m?

а) 7F

б) 9F

в) 12F

г) 16F


Алгоритм решения

1.Записать закон всемирного тяготения.

2.Применить закон всемирного тяготения для первой и второй пары звезд.

3.Из каждого выражения выразить расстояние между звездами.

4.Приравнять правые части уравнений и вычислить силу притяжения между второй парой звезд.

Решение

Закон всемирного тяготения выглядит так:

Примерим этот закон для первой и второй пары звезд:

Выразим квадраты радиусов, так как они в обоих случаях одинаковые:

Приравняем правые части выражений и выразим силу притяжения во втором случае:

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18678

Высота полёта искусственного спутника над Землёй увеличилась с 400 до 500 км. Как изменились в результате этого скорость спутника и его потенциальная энергия?

Для каждой величины определите соответствующий характер изменения:

1) увеличилась
2) уменьшилась
3) не изменилась

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Скорость

спутника

Потенциальная энергия спутника

Алгоритм решения

1.Записать закон всемирного тяготения и формулу центростремительного ускорения для движения тела по окружности с постоянной по модулю скоростью.

2.Установить зависимость скорости от высоты спутника над поверхностью Земли.

3.Записать формулу потенциальной энергии и установить, как она зависит от высоты.

Решение

На спутник действует сила притяжения Земли, которая сообщает ему центростремительное ускорение:

F=maц=GmM(R+h)2

Отсюда центростремительное ускорение равно:

aц=GM(R+h)2

Но центростремительное ускорение также равно:

aц=v2(R+h)

Приравняем правые части выражений и получим:

GM(R+h)2=v2(R+h)

v2=MG(R+h)(R+h)2=MG(R+h)

Квадрат скорости спутника обратно пропорционален радиусу вращения. Следовательно, при увеличении высоты увеличивается радиус вращения, а скорость уменьшается.

Потенциальная энергия спутника определяется формулой:

Ep = mgh

Видно, что потенциальная энергия зависит от высоты прямо пропорционально. Следовательно, при увеличении высоты потенциальная энергия спутника тоже увеличивается.

Верная последовательность цифр в ответе: 21.

Ответ: 21

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17578

Искусственный спутник обращается вокруг планеты по круговой орбите радиусом 4000 км со скоростью 3,4 км/с. Ускорение свободного падения на поверхности планеты равно 4 м/с2. Чему равен радиус планеты? Ответ запишите в километрах.


Алгоритм решения

1.Записать исходные данные. Перевести единицы измерения в СИ.

2.Записать формулу ускорения свободного падения и выразить через нее радиус планеты.

3.Записать формулу, раскрывающая взаимосвязь между линейной скоростью и радиусом окружности, по которой движется тело.

4.Записать закон всемирного тяготения применительно к спутнику.

5.Вывести формулу для расчета радиуса планеты.

6.Подставить известные данные и произвести вычисление.

Решение

Запишем исходные данные:

 Линейная скорость спутника: v = 3,4 км/с, или 3,4∙103 м/с.

 Радиус орбиты спутника: Rо = 4000 км, или 4∙106 м.

 Ускорение свободного падения у поверхности планеты: g = 4 м/с2.

Ускорение свободного падения определяется формулой:

Отсюда радиус равен:

Линейная скорость и радиус орбиты связываются формулой:

Используя закон всемирного тяготения, запишем силы, с которой притягивается спутник к планете:

Согласно второму закону Ньютона, сила — это произведение массы на ускорение тела. Следовательно:

Отсюда:

Поделим обе части выражения на массу спутника и радиус его орбиты. Получим:

Из этой формулы выразим массу планеты:

Подставим массу планеты в формулу для нахождения ее радиуса:

Подставляем известные данные и вычисляем:

Этот радиус соответствует 3400 км.

Ответ: 3400

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 17.9k

Характер и особенности расчета силы притяжения известны еще с древних времен. На основании имеющихся знаний, переданных современному научному сообществу великими исследователями, человек познает не только его окружающий мир, но и Вселенную.

Формула силы притяжения

Со времен Древней Греции философов интересовали явления притяжения тел к земле и свободного падения. К примеру, по утверждениям Аристотеля, из двух камней, брошенных с одинаковой высоты, быстрее достигнет земной поверхности тот, чья масса больше. В IV веке до нашей эры единственными методами научных изысканий служили наблюдения и анализ. К проверке гипотез опытным путем великие мыслители не прибегали. По истечению столетий физик из Италии Галилео Галилей проверил утверждения Аристотеля, используя практические методы исследований.

Итоги проведенных Галилеем опытов были опубликованы в «Беседах и математических доказательствах, касающихся двух новых наук». Ученый использовал псевдоним Сагредо: «пушечное ядро не опередит мушкетной пули при падении с высоты двухсот локтей». Формулировка закона всемирного тяготения была представлена в 1666 году Исааком Ньютоном. В ней фиксировались основные тезисы теоремы Галилея.

Смысл заключался в том, что тела, которые обладают разными массами, падают на землю с одинаковыми ускорениями.  Одно тело притягивает другое и, наоборот, с силой, которая прямо пропорциональна их массам и обратно пропорциональна отрезку пути между ними. Согласно определению гравитации от Ньютона, тела, характеризующиеся массой, обладают свойством, благодаря которому притягиваются друг к другу.

Понятие и определение

Силы взаимного притяжения – это силы, которые притягивают любые тела, обладающие массами.

Корректность выводов Ньютона неоднократно подтверждалась путем практических испытаний. Но в начале ХХ века перед учеными-физиками остро стоял вопрос о природе и характере взаимодействия крупных астрономических тел, включая разные виды планетарных систем и галактик в вакууме. Ньютоновского закона уже было недостаточно, чтобы решить эти задачи. Исключить недочеты позволила новая теория, разработанная Альбертом Эйнштейном в начале ХХ столетия. Общая теория относительности объясняет гравитацию не в качестве силы, а представляет ее в виде искривления пространства и времени в четырех измерениях, которое зависит от массы тел, создающих его.

Эйнштейн

Источник: i.ytimg.com

Гравитация представляет собой свойство тел, которые характеризуются массой, притягивать друг друга. Данное физическое явление можно объяснить, как поле, оказывающее дистанционное воздействие на предметы, не связанные между собой никаким другим способом.

Достижение Эйнштейна не противоречит теоретическому объяснению гравитации от Ньютона. Общая теория относительности рассматривает закон всемирного тяготения, как частный случай, применимый для сравнительно небольших расстояний. Данная закономерность в настоящее время также активно используется для поиска решений задач на практике.

Единицы измерения силы притяжения

В разных системах измерений можно встретить несколько отличающиеся обозначения. Единицы измерения силы притяжения следующие:

  • система СИ: ([F]=H);
  • система СГС: ([F]=дин).

Формула силы притяжения между телами в космосе

Закономерность гравитации, которую обнаружил Ньютон, можно представить в виде математической формулы. Вычисления выглядят следующим образом:

(F=(Gtimes m1times m2times r)/2),

где (m1,m2) – массы объектов, которые притягиваются друг к другу под действием силы (F),

(r) – расстояние, на которое удалены тела,

(G) – т.н. гравитационная постоянная величина, константа, равная 6,67.

Солнечная система

Источник: avatars.mds.yandex.net

Гравитационное взаимодействие объектов будет слабеть, если тела удаляются друг относительно друга. Сила гравитации пропорциональна величине расстояния в квадрате. При этом для нахождения искомой величины расстояние измеряется от центров тяжести тел, а не от поверхностей.

Гравитация в определенных моментах напоминает другие физические явления. Исходя из зависимости интенсивности силы от расстояния в квадрате, гравитацию можно сравнить с электромагнитным взаимодействием сильного и слабого характера.

Формула силы гравитационного притяжения между двумя телами

Квадратичная связь силы, с которой тела притягиваются друг к другу, с расстоянием между ними объясняет тот факт, что люди, находящиеся на поверхности планеты Земля не притягиваются к Солнцу, хотя масса его велика и превышает земную в миллион раз. Земля и центр Солнечной системы удалены примерно на 150 миллионов километров. Дистанция достаточно велика, чтобы ощущаться человеком. Однако эту силу можно зарегистрировать, используя высокоточные приборы. В рамках планеты Земля сила, с которой тела к ней притягиваются, то есть их вес, измеряется следующим образом:

(P=mtimes g),

где (m) – масса тела, на которое воздействует сила притяжение,

(g) – ускорение свободного падения около Земли (если рассматривать систему в условиях любой другой планеты, данная величина будет отличаться).

На разных географических широтах величина ускорения свободного падения может незначительно отличаться. Производя расчеты, данный показатель принимается за 9,81 метров в секунду в квадрате.

В физике понятия массы и веса тел отличаются. Весом называется сила, определяющее притяжение объекта к планете. Масса представляет собой меру инертности вещества. На нее не влияют другие тела, расположенные рядом.

Формула для силы притяжения тел произвольной формы

Расчеты определяются некоторыми условиями. К ним относятся характеристики исследуемых объектов.

Сила притяжения тел

Источник: img2.goodfon.ru

Если сила притяжения измеряется между телами, которые обладают произвольной формой, их считают материальными точками:

(dtimes m1=rho1times dV1)

(dtimes m2=rho2times dV2)

где (rho1, rho2) – обозначают плотность веществ материальных точек, характерных для первого и второго объектов,

(dV1 ,dV2) – элементарные объемы выделенных материальных точек.

Исходя из этого, сила притяжения (doverline F), с которой взаимодействуют объекты, равна:

  (doverline F=-Gtimes frac{rho _{1}timesrho _{2}times dtimes V_{1}times dtimes V_{2}}{r_{12}^{3}} bar{r_{12}})

Таким образом, сила притяжения первого тела вторым рассчитывается следующим образом:

(bar{F}_{12}=-Gtimesint_{V_{1}}^{rho _{1}times dtimes V_{1}}int_{V_{2}}^{frac{rho _{2}}{r_{12}^{3}}times bar{r}_{12}times dtimes V_{2}})

где интегрирование выполняется по всему объему первого ((V1)) и второго ((V2)) тел. Если тела обладают однородностью, то формула корректируется, таким образом:

(bar{F}_{12}=-Gtimesrho1timesrho2timesint_{V_{1}}^{dtimes V_{1}}int_{V_{2}}^{frac{bar{r}_{12}}{r_{12}^{3}}times dtimes V_{2}})

Формула для силы притяжения твердых тел шарообразной формы

В условиях, когда сила притяжения измеряется между телами, представленных в форме шара или близкой к нему, с плотностью, зависящей лишь от удаленности их центров тяжести, применяется следующая формула:

(bar{F}_{12}=-Gtimes(m1times m2)/R^3times R12)

где (m1,m2) – массы шаров,  (R )– радиус – вектор, соединяющий центры шаров.

Сила притяжения твердых тел

Источник: printer-plotter.ru

Пример применения формулы для расчета

Задача. Необходимо рассчитать силу притяжения между двумя идентичными однородными шарами, масса которых составляет по 1 килограмму. При этом их центры тяжести удалены на 1 метр друг от друга.

Решение будет выглядеть следующим образом:

Используя формулу для подсчета силы притяжения между двумя объектами шарообразной формы, получается:

(F_g=6.67times 10^{-11}times frac{1times 1}{1^{2}})

Ответ: (F_g=6.67times 10^{-11})

Выполнить расчет силы притяжения достаточно просто, если правильно выбрать формулу, подходящую под конкретные условия, в которых находятся тела. Если в процессе решения задач по физике или другим дисциплинам возникают проблемы, всегда можно обратиться за помощью к компетентным специалистам портала Феникс.Хелп.

Добавить комментарий