Как найти силу насоса

Напор насоса

Напор насоса

Напор насоса – это давление, создаваемое рабочим органом насоса (лопастным колесом, мембраной или поршнем) по средствам передачи энергии от рабочего органа насоса (рабочего колеса, мембраны или поршня) к жидкости, т.е насос фактически толкает жидкость.

Напор является одной из основных характеристик насоса.

Напором называют приращение механической энергии, получаемой каждым килограммом жидкости, проходящей через насос, т.е. разность энергии при выходе из насос и при входе в него.

Содержание статьи

  • Напор: определение и характеристика
  • Напор скважинного и погружного насоса
  • Напор дренажного и поверхностного насоса
  • Напор циркуляционного насоса для отопления
  • Способы увеличения напора насоса

Напор: определение и характеристика

Физическую сущность напора легко понять вспомнив основы гидромеханики. Если к всасывающему патрубку насоса, берущего жидкость из ёмкости, расположенной выше его оси, подключить трубку полного напора, то уровень жидкости в ней будет поднят на некоторую высоту над осью насоса. Эта высота называется полным напором и определяется формулой

Н = p / (ρ*g)

где р – давление в насосе
ρ – плотность среды
g – ускорение свободного падения

На бытовом уровне напором называют давление насоса. И для наглядности давление насоса – это высота, на которую насос может поднять столб жидкости.

Напор имеет линейную размерность – метр.

При подборе насоса напорная характеристика является одной из ключевых, ведь при недостаточном напоре, из крана не будет течь вода, а при слишком высоком напоре может не выдержать водопроводная трасса.

Напор и рабочая точка насоса

Напор и подача, которые создает насос взаимно связаны. Такую взаимосвязь графически изображают в виде кривой которая называется характеристика насоса. По одной оси графика откладывают напор(в метрах) по другой оси – подачу насоса(в м3/ч).

У каждого насоса – своя характеристика и заданная производителем рабочая точка. Рабочая точка – точка в которой уравновешены полезная мощность насоса и мощность потребляемая водопроводной сетью. По мере изменения подачи – меняется и напор.

При уменьшении подачи напор увеличивается, а при увеличении – уменьшается. Найти оптимальную рабочую точку – это основная задача при эксплуатации насоса.

Напор скважинного и погружного насоса

Напор скважинного и погружного насоса

Расчет требуемого напора скважинного насоса определяется по формуле:

H = Hвысота + Hпотери + Hизлив , где

Hвысота – перепад высот между местом, где расположен насос и наивысшей точкой системы водоснабжения;

Hпотери – гидравлические потери в трубопроводе. Гидравлические потери в трубопроводе связаны с трением жидкости о стенки труб, падением давления на поворотах и других фитингах. Такие потери определяются по экспериментальным или расчетным таблицам.

Hизлив – свободный напор на излив, при котором удобно пользоваться сантехническими приборами. Данное значение необходимо брать в диапазоне 15 – 20 м, минимальное значение 5 м, но в этом случае вода будет подаваться тонкой струйкой.

Все описанные выше параметры измеряются в метрах.

Напор дренажного и поверхностного насоса

Напор дренажного и поверхностного насоса

Поверхностный насос предназначен для подачи воды из неглубоких колодцев или скважин. Так же поверхностные самовсасывающие насосы используют для подачи воды из открытых источников или баков. Такие насосы располагаются непосредственно в помещениях, а в источник с водой проводят трубопровод.

1 Вариант: источник с водой расположен выше насоса. Например, какой-то бак или водонапорный резервуар на чердаке дома. Тогда напор насоса определяется по формуле:

H = Hвысота + Hпотери + Hизлив – Hвысота бака , где

Hвысота бака – расстояние (высота) между баком запаса воды и насосом

2 Вариант: насос расположен выше источника воды. Например, насос расположен в доме и тянет воду из колодца или скважины. Тогда напор насоса определяется по формуле:

H = Hвысота + Hпотери + Hизлив + Hисточник, где

Hисточник – расстояние (перепад высот) между источником воды (скважина, колодец) и насосом.

Напор циркуляционного насоса для отопления

Напор циркуляционного насоса для отопления

Циркуляционные насосы используются в системах отопления домов, для обеспечения принудительной циркуляции теплоносителя. Расчет циркуляционного насоса – очень ответственная и сложная задача, которую рекомендуется отдать специализированным учреждениям, так как для расчетов необходимо знать точные теплопотери дома.

Напор циркуляционного насоса для отопления зависит не от высоты здания, а от гидравлического сопротивления трассы.

H = (R * L + Zсумма) / ( p * g ) , где

R – потери на трение в прямом трубопроводе, Па/м. По результатам опытов сопротивление в прямом трубопроводе равно 100 – 150 Па/м.

L – общая длина трубопровода, м.

Zсумма – коэффициенты запаса для элементов трубопровода

Z = 1,3 – для фитингов и арматуры;

Z = 1,7 – для термостатических вентилей;

Z = 1,2 – для смесителей или кранов, предотвращающих циркуляцию.

p – плотность перекачиваемой среды. Для воды = 1000 кг/м3

g – ускорение свободного падения, 9,8 м/с2.

Как видите определить требуемый именно Вам напор не составит большого труда, если отнестись к этой задаче с требуемым терпением и вниманием.

Способы увеличения напора насоса

Смонтировать насос, что может быть проще? Подключаем трубу к всасывающему патрубку, другую к напорному, подаем питание и вот можно пожинать плоды работы.

Давайте рассмотрим самые частые ошибки монтажа, устранение которых способствует увеличению напора насоса

С первого взгляда монтаж не представляет из себя трудоемкий процесс, но если заглянуть глубже, то следует учесть ошибки, которые способны значительно сократить срок службы оборудования.

Наиболее распространенные ошибки монтажа:

указатель  диаметр трубопровода меньше диаметра всасывающего патрубка насоса. В этом случае увеличивается сопротивление во всасывающей магистрали, а как следствие уменьшение глубины всасывания насоса. Уменьшенный, по сравнению со всасывающим патрубком насоса, трубопровод не в состоянии пропустить тот объем жидкости на который рассчитан насос.

указатель  подключение к всасывающей ветке обычного шланга. Этот вариант не настолько критичен, при условии размещения насоса небольшой производительности в нижней точке трассы. В других случаях насос за счет разряжения во всасывающей полости, создаваемого рабочим колесом, сожмет шланг, значительно уменьшив его сечение. Подача насоса значительно уменьшится, а может и совсем прекратиться.

Если вы решили подключить шланг к высокопроизводительному насосу, воспользуйтесь советом производителей насосов – используйте только гофрированный шланг

указатель  провисание трубы на горизонтальном участки или уклон в сторону от насоса на стороне всасывающего участка. При работе центробежного насоса необходимо, чтобы рабочее колесо постоянно работало в воде, т.е. рабочая камера насоса должна быть заполнена перекачиваемой средой. При провисании трубопровода или при отрицательном уклоне труб, жидкость из рабочей камеры выключенного насоса будет стекать в самую низкую точку трассы, а рабочее колесо будет крутиться в воздухе. Таким образом не будет движение среды в трубопроводе, а значит напор упадет до 0.

указатель  большое число поворотов и изгибов в трубопроводе. Такой вариант монтажа приводит к увеличению сопротивления, а следовательно к уменьшению производительности

указатель  плохая герметичность на всасывающем участке трубопровода. Плохая герметичность приводит к подсасыванию воздуха из окружающей среды в трубопровод, снижению напора и излишнему шуму при работе насоса.

В случае определения напора насоса необходимо помнить, что 1 метр напора, который насос создает в вертикальной трассе, равен 10 метрам по горизонтали. Например, если в горизонтальной трассе насос создает напор равный 30 метрам, то максимальный напор этого же насоса в случае монтажа в вертикальную трассу составит 300 метров

Вместе со статьей “Напор насоса это? Как определить напор погружного, поверхностного или циркуляционного насоса.” читают:

Содержание

  1. Давление
  2. Абсолютное и относительное давление
  3. Напор
  4. Давление насоса — описание давления насоса
  5. Уравнение энергии для течения идеальной жидкости
  6. Мощность
  7. Полезная мощность
  8. КПД
  9. NPSH — допускаемый кавитационный запас
  10. Осевая нагрузка
  11. Радиальная нагрузка

Показатели насоса обычно описываются с помощью набора кривых, которые называются характеристиками насоса. В этой части приведено описание таких кривых и методы их анализа.

Характеристики насоса используются заказчиком для выбора насоса, соответствующего требованиям для данного применения.

Заказная спецификация содержит информацию о напоре (H) для разной подачи (Q), см. рисунок 2.1. Требования к напору и подаче определяют габаритные размеры насоса.

Типовые характеристики центробежного насоса Напор

Кроме напора, в заказных спецификациях также приводится потребляемая мощность насоса (P). Потребляемая мощность используется для расчета мощности источника питания насоса. Потребляемая мощность также отображается как функция подачи.

Информация о КПД насоса (η) и NPSH также содержится в заказной спецификации. NPSH — это сокращение термина «допускаемый кавитационный запас» (Net Positive Suction Head). Кривая NPSH показывает напор на входе, который необходим для предотвращения кавитации. Кривая КПД предназначена для выбора самого экономичного насоса в определенном рабочем диапазоне. Пример характеристик в заказной спецификации приведен на рисунке 2.1.

Желаемые характеристики являются важной частью технических условий на проектирование при создании нового насоса. Подобные кривые осевых и радиальных нагрузок используются для расчета подшипников насоса.

Характеристики описывают показатели всей насосной установки, см. рисунок 2.2. Если выбран насос без электродвигателя, то для привода насоса можно использовать стандартный электродвигатель соответствующей мощности, Характеристики могут быть пересчитаны с учетом выбранного двигателя.

Для насосов, которые поставляются как с электродвигателем, так и без него, приводятся характеристики только для проточной части, то есть без электродвигателя и контроллера. Для комплектных изделий характеристики приводятся для изделия в целом.

Характеристики приводятся только для насоса или для комплектной установки, состоящей из насоса, электродвигателя и электроники

Давление

Давление (p) выражает силу, действующую на единицу площади, и делится на статическое и динамическое давление. Сумма этих двух давлений представляет собой полное давление.

Измерение статического давления производится с помощью манометра, исключительно при неподвижной жидкости или с помощью отвода давления, установленного перпендикулярно направлению потока, см. рисунок 2.3.

Для измерения полного давления приемное отверстие отвода давления следует расположить навстречу направлению потока, см. рисунок 2.3. Динамическое давление определяется как разность между полным и статическим давлением. Такое измерение может быть выполнено с помощью трубки Пито.

Динамическое давление зависит от скорости жидкости, Динамическое давление может быть рассчитано по следующей формуле, в которой скорость (V) получена с помощью измерения, а плотность (ρ) жидкости известна:

Динамическое давление может быть преобразовано в статическое, и наоборот. При течении в расширяющейся трубе происходит преобразование динамического давления в статическое, см. рисунок 2.4. Течение в трубе называется потоком в трубе, а участок трубы, в котором диаметр трубы увеличивается, называется диффузором.

Пример преобразования динамического давления в статическое давление в диффузоре

Абсолютное и относительное давление

Давление может быть выражено двумя различными способами — как абсолютное или относительное давление. Абсолютное давление измеряется относительно абсолютного 0 и, таким образом, может иметь только положительное значение. Относительное давление измеряется относительно давления окружающей среды. Положительное относительное давление означает, что давление выше барометрического давления, а отрицательное относительное давление указывает на то, что давление ниже барометрического давления.

Определение абсолютной и относительной величины известно также по измерениям температуры, где абсолютная температура измеряется в Кельвинах (K), а относительная температура измеряется в градусах Цельсия (°C). Температура в Кельвинах всегда положительна и измеряется относительно абсолютного 0. В отличие от этого, температура в градусах Цельсия измеряется относительно точки замерзания воды (соответствует 273,15 K), и поэтому может быть отрицательной.

Барометрическое давление измеряется как абсолютное давление. Барометрическое давление зависит от погоды и высоты. Переход от относительного давления к абсолютному осуществляется добавлением существующего барометрического давления к измеренному относительному давлению.

На практике статическое давление измеряется с помощью манометров трех различных типов.

  • Манометр абсолютного давления, например, барометр, измеряет давление относительно абсолютного 0.
  • Стандартный манометр измеряет давление относительно атмосферного давления. Такой тип манометров используется чаще всего.
  • Дифференциальный манометр измеряет разность давлений между двумя отводами давления независимо от барометрического давления.

Напор

На следующих страницах представлены различные характеристики.

Кривая QH показывает напор (H) как функцию подачи (Q). Подача (Q) — это объем жидкости, проходящей через насос на единицу времени. Подача обычно выражается в кубических метрах в час (м3/ч), но в формулах используются кубические метры в секунду (м3/с). Типичная кривая QH показана на рисунке 2.5.

Построение кривой QH для заданного насоса производится с помощью установки, показанной на рисунке 2.6.

Насос запускается и работает с постоянной частотой вращения. При полном закрытии арматуры Q равно нулю, а H достигает максимального значения. При постепенном открытии арматуры Q увеличивается, а H уменьшается. H — это высота столба жидкости в открытой трубе за насосом. Кривая QH представляет собой последовательность точек, соответствующих парам значений Q и H, см. рисунок 2.5.

В большинстве случаев измеряется давление насоса Dpполн, а напор H рассчитывается по следующей формуле:

Кривая QH будет точно такой же, если опыт, изображенный на рисунке 2.6, провести с жидкостью, плотность которой отличается от плотности воды. Таким образом, кривая QH не зависит от перекачиваемой жидкости. Это можно объяснить с помощью теории, где доказано, что Q и H зависят от геометрии насоса и скорости вращения рабочего колеса, но не от плотности перекачиваемой жидкости.

Повышение давления в насосе можно измерить в метрах водяного столба (м вод. ст.). Метр водяного столба — это единица давления, которую нельзя путать с напором, выраженным в метрах. Как видно из таблицы физических свойств воды, при повышении температуры плотность воды существенно изменяется. Таким образом, необходимо выполнять преобразование давления в напор.

Типичная кривая QH центробежного насоса: при малой подаче напор высокий, при большой подаче напор низкий

Давление насоса — описание давления насоса

Полное давление

Полное давление насоса рассчитывается как сумма трех составляющих:

Статическое давление

Статическое давление может быть измерено непосредственно с помощью датчика дифференциального давления, или можно установить датчики давления на входе и выходе насоса. В этом случае статическое давление может быть найдено по формуле:

Динамическое давление

Динамическое давление (разность динамических давлений между входом и выходом насоса) определяется по следующей формуле:

На практике при испытаниях насоса измерение динамического давления и скорости потока на входе и выходе насоса не производится. Вместо этого динамическое давление определяется расчетным методом на основе расхода жидкости и диаметра трубы на входе и выходе насоса:

Как следует из формулы, динамическое давление равно нулю, если диаметры трубы до и после насоса одинаковы.

Разность барометрических давлений

Разность барометрических давлений в точках установки датчиков давления на входе и выходе насоса может быть определена следующим образом:

где:

Δz — разность высот между точками установки манометра, соединенного с трубой на выходе, и манометра, соединенного с трубой на входе.

Разность барометрических давлений имеет значение, только если Δz не равно нулю. Таким образом, положение отводов давления на трубе не имеет значения при определении разности барометрических давлений.

Если для измерения статического давления используется дифференциальный манометр, то разность барометрических давлений принимается равной нулю.

Уравнение энергии для течения идеальной жидкости

Согласно уравнению энергии для течения идеальной жидкости сумма энергии давления, кинетической энергии и потенциальной энергии является постоянной величиной. Это уравнение называется уравнением Бернулли по имени швейцарского физика Даниэля Бернулли.

Уравнение Бернулли справедливо при следующих условиях:

  • 1. Течение установившееся — не изменяется со временем.
  • 2. Жидкость несжимаема — справедливо для большинства жидкостей.
  • 3. Течение без трения — потери на трение не учитываются.
  • 4. Свободное течение — нет подвода механической энергии.

Формула (2.10) применяется для струйки жидкости или траектории частицы жидкости. Например, с помощью формулы может быть описано течение жидкости в диффузоре (2.10), но не поток через рабочее колесо, так как рабочее колесо подводит к жидкости механическую энергию.

В большинстве применений не все условия для уравнения энергии соблюдаются, Несмотря на это, уравнение может быть использовано для приблизительных вычислений.

Мощность

Кривые мощности показывают потребляемую мощность как функцию подачи, см. рисунок 2.7. Мощность выражается в ваттах (Вт). Следует различать три вида мощности, см. рисунок 2.8.

Передача мощности в насосной установке

  • Мощность насосной установки, передаваемая от внешнего источника к электродвигателю и контроллеру (P1).
  • Мощность насоса, передаваемая электродвигателем на вал (P2).
  • Полезная мощность, передаваемая от рабочего колеса насоса к жидкости (P полезн).

Потребляемая мощность зависит от плотности жидкости. Кривые мощности обычно строятся для стандартной жидкости, имеющей плотность 1000 кг/м3, что соответствует воде при температуре 4°C. Таким образом, мощность, измеренная на жидкости с другой плотностью, должна быть пересчитана.

Обычно в заказных спецификациях P1 приводится для комплектных изделий, в то время как P2 приводится для насосов, поставляемых со стандартным электродвигателем.

Частота вращения

Подача, напор и потребляемая мощность изменяются в зависимости от частоты вращения насоса. Сравнение характеристик насоса возможно только если они построены для одинаковой частоты вращения. Возможно приведение характеристик к одинаковой скорости с использованием уравнений, приведенных ниже.

Регулирование частоты вращения

При регулировании частоты вращения насоса характеристики QH, мощности и NPSH изменяются. Пересчеты характеристик насоса при изменении его частоты вращения выполняются с помощью уравнений подобия.

Парабола подобия на графике QH

Индекс A в уравнениях указывает исходные значения, а индекс В указывает измененные значения.

Эти уравнения позволяют получить когерентные точки на параболе подобия на графике QH. Парабола подобия показана на рисунке 3.11.

На основании соотношения между характеристикой насоса и его частотой вращения могут быть получены различные регулировочные характеристики. Наиболее распространенными методами регулирования являются метод пропорционального регулирования и метод регулирования в режиме поддержания постоянного давления.

Полезная мощность

Полезная мощность (P полезн) — это мощность, передаваемая от насоса к жидкости. Как видно из следующей формулы, полезная мощность рассчитывается по подаче, напору и плотности.

Отдельная кривая полезной мощности обычно не приводится в заказных спецификациях, однако используется для расчета КПД насоса.

КПД

КПД насосной установки (ηполн) — это отношение полезной мощности к мощности насосной установки. На рисунке 2.9 показаны кривые КПД для насоса (ηполезн) и для насосной установки, включающей электродвигатель и контроллер (ηполн).
Гидравлический КПД относится к P2 , а КПД насосной установки — к P1:

Кривые КПД для насоса

КПД всегда меньше 100 %, так как мощность насосной установки всегда больше, чем полезная мощность, вследствие потерь в контроллере, электродвигателе и насосе. КПД насосной установки (контроллер, электродвигатель и насос) является произведением отдельных КПД:

Кривые КПД для насоса

Подача, при которой насос имеет максимальный КПД, называется точкой оптимального режима или точкой наибольшего КПД (QBEP).

NPSH — допускаемый кавитационный запас

Кавитацией называется процесс образования пузырьков пара в областях, где локальное давление падает до значения давления насыщенного пара. Степень кавитации зависит от того, насколько низким будет давление в насосе. При кавитации происходит снижение напора и появление шума и вибрации.

Кавитация вначале возникает в областях наименьшего давления в насосе, чаще всего образуются на кромках лопаток на входе в рабочее колесо, см. рисунок 2.10.

Кавитация

Значение NPSH — абсолютное и всегда положительное. NPSH измеряется в метрах, как напор, см. рисунок 2.11. Так как NPSH измеряется в метрах, нет необходимости учитывать плотность различных жидкостей.

Существуют два различных значения NPSH: NPSHR и NPSHA.

NPSHA обозначает имеющийся NPSH и определяет, насколько близко к парообразованию находится жидкость во всасывающем трубопроводе. NPSHA определяется по формуле:

Кривая NPSH

NPSHR обозначает требуемый NPSH и выражает наименьшее значение NPSH, требуемое для приемлемой работы насоса. Абсолютное давление на входе может быть рассчитано по заданному значению NPSHR и давлению насыщенных паров жидкости путем подстановки в формулу (2.16) NPSHR вместо NPSHA.

Чтобы определить, может ли насос быть безопасно установлен в систему, следует найти NPSHA и NPSHR для наибольших значений подачи и температуры в пределах рабочего диапазона.

Рекомендуется добавить минимальный запас безопасности 0,5 м. В зависимости от применения может понадобиться больший запас безопасности. Например, для применений, чувствительных к шуму, или для мощных насосов, таких как питательные насосы котлов, европейская ассоциация производителей насосов рекомендует применять к значению NPSH3% коэффициент безопасности SA=1,2 – 2,0.

Риск кавитации в системах может быть снижен или исключен с помощью следующих мер:

  • установка насоса ниже по отношению к уровню жидкости в открытых системах;
  • повышение давления в закрытых системах;
  • уменьшение длины линии всасывания для снижения потерь на трение;
  • увеличение площади поперечного сечения всасывающего трубопровода для снижения скорости движения жидкости и, как следствие, уменьшения потерь на трение;
  • исключение локальных падений давления, возникающих вследствие изгибов и других препятствий во всасывающем трубопроводе;
  • снижение температуры жидкости для уменьшения давления паров.

Следующие два примера показывают, как рассчитывается NPSH.

Пример 2.1 Насос для подачи жидкости из колодца

Насос должен подавать жидкость из резервуара, уровень воды в котором на 3 метра ниже уровня насоса. Для расчета значения NPSHA необходимо знать потери на трение во всасывающем трубопроводе, температуру воды и барометрическое давление, см. рисунок 2.12.

Схема работы насоса при подаче жидкости из колодца

Температура воды 40°C

Барометрическое давление 101,3 кПа.

Потери давления во всасывающем трубопроводе при существующей подаче 3,5 кПа.

При температуре воды 40°C давление паров равно 7,37 кПа, а ρ равно 992,2 кг/м3.

Значения взяты из таблицы «Физические свойства воды» в конце статьи.

Для этой системы выражение NPSHA в формуле (2.16) может быть записано в следующем виде:

Hвсас— уровень воды относительно насоса. Hвсас может быть выше или ниже насоса и выражается в метрах. В этой системе уровень воды находится ниже насоса. Таким образом, Hвсас отрицательно, Hвсас = –3 м.
Значение NPSHA для системы:

Насос, предназначенный для работы в рассматриваемой системе, должен иметь значение NPSHR меньше, чем 6,3 м минус запас безопасности 0,5 м. Таким образом, при существующей подаче для насоса требуется значение NPSHR меньшее, чем 6,3 – 0,5 = 5,8 м.

Пример 2.2 Насос в закрытой системе

В закрытой системе отсутствует свободная поверхность воды для использования в качестве плоскости отсчета. Этот пример показывает, как датчик давления, расположенный выше плоскости отсчета, может использоваться для определения абсолютного давления в линии всасывания, см. рисунок 2.13.

Схема закрытой системы

Измеренное относительное статическое давление на стороне всасывания pстат.вх = -27.9 кПа. Таким образом, в точке установки манометра имеется отрицательное давление. Манометр установлен выше насоса. Следовательно, разность между высотой манометра и высотой входа в рабочее колесо имеет положительное значение Hвсас = +3 м. Скорость в трубе, где измеряется давление, создает дополнительное динамическое давление 500 Па.

Барометрическое давление 101 кПа.

Рассчитанные потери на трение в трубах между точкой измерения (pстат.вх.) и насосом Hпотерь труб. = 1м.

Температура системы 80°C.

Давление паров pн.п. = 47.4 кПа, плотность ρ = 973 кг/м3, значения взяты из таблицы «Физические свойства воды».

Для этой системы формула 2.16 для NPSHA имеет следующий вид:

Несмотря на отрицательное давление в системе, значение NPSHA для существующего расхода превышает 4 м.

Осевая нагрузка

Осевая нагрузка является суммой сил, действующих на вал в осевом направлении, см. рисунок 2.14. Осевая нагрузка в основном возникает вследствие
разности давлений на переднем и заднем диске рабочего колеса.

Значение и направление осевой нагрузки может использоваться для определения типоразмера подшипников и конструкции электродвигателя.
Насосы с нагрузкой, направленной вверх, требуют применения фиксированных подшипников. Дополнительно к осевой нагрузке необходимо учесть силы,
действующие на вал вследствие давления в системе. Пример кривой осевой нагрузки представлен на рисунке 2.15.

Радиальная
нагрузка на подшипник

Осевая нагрузка связана с напором и поэтому пропорциональна квадрату скорости.

Радиальная нагрузка

Радиальная нагрузка является суммой сил, действующих на вал в радиальном направлении, см. рисунок 2.16. Гидравлическая радиальная нагрузка возникает
вследствие разности давлений в спиральной камере. Значение и направление изменяются в зависимости от подачи. Силы минимальны при расчетном
режиме, см. рисунок 2.17. Для правильного выбора радиального подшипника важно знать значение радиальной нагрузки.

Выводы

В статье приведено объяснение терминов, применяемых для описания показателей насоса, и приведены кривые напора, мощности, КПД, NPSH и действия нагрузок. Кроме того, два термина — напор и NPSH — были пояснены на примерах расчета.

Физические свойства воды

Литература

Центробежный насос – GRUNDFOS [2012]
www.grundfos.com


Download Article

All the measurements and equations required to determine how much power you need


Download Article

  • Calculating Water Horsepower for a Planned Project
  • |

  • Measuring a Pump’s Water Horsepower
  • |

  • Q&A
  • |

  • Tips
  • |

  • Warnings

A pump is a basic but vital device that supplies the force to move water or other fluids from one location to another. Like any device that transfers energy across a distance, a pump’s effectiveness is measured in power. Although watts and kilowatts are more common units of power measurement, horsepower is still commonly used for high-output electrical devices in the United States. We’ll show you how to calculate the horsepower you need before installing a pump, as well as how to measure the horsepower of an existing pump.

Things You Should Know

  • Water horsepower = {frac  {TDH*Q*SG}{3960}}
  • TDH = Total Dynamic Head = Vertical distance liquid travels (in feet) + friction loss from pipe
  • Q = flow rate of liquid in gallons per minute
  • SG = specific gravity of liquid (this equals 1 if you are pumping water)
  1. Image titled Calculate Water Pump Horsepower Step 1

    1

    Decide on the desired flow rate. The needs of your project determine the necessary flow rate of liquid from the pump. Write this value down in gallons per minute (gpm). You won’t be using this value right away, but it will determine which pumps and pipes you consider.[1]

    • In other words, you need to know how much water you need to move per minute, which will vary by project. Refer to this gpm chart for common flow rate estimates.

      Example: A gardener has an irrigation plan that requires a flow rate of 10 gallons per minute.

  2. Image titled Calculate Water Pump Horsepower Step 2

    2

    Measure the height the water needs to travel. This is the vertical distance from the top of the water table (or the top of the water level in the first tank) to the final destination of the water. Ignore any horizontal distance. If the water level changes over time, use the maximum expected distance. This is the “pumping lift” your pump will need to generate.[2]

    Example: When the gardener’s water tank is nearly empty (the lowest expected level), its water level is 50 feet below the area of the garden that needs watering.

    Advertisement

  3. Image titled Calculate Water Pump Horsepower Step 3

    3

    Estimate friction losses from the pipe. Besides the minimum pressure needed to move water a certain distance, your pump also needs to overcome the force of friction as the water moves through the pipe. The amount of friction depends on the pipe’s material, internal diameter, and length, as well as the type of bends and fittings you use. Look up these values on a pipe friction loss chart such as this one. Multiply the total length of your pipe by the friction loss figure to find the total friction loss per feet of head (meaning the number of feet you “lose” from your pumping lift because of friction).[3]

    • These charts often include an estimate of water velocity as well, based on flow rate and the pipes you use. It’s best to keep velocity below 5 ft / s to prevent “water hammer,” the repeated knocking vibration that can damage your equipment.

      Example: The gardener decides to use 1″ diameter plastic pipes, and needs 75 ft of pipe total (including horizontal lengths). A pipe friction loss chart tells him that 1″ plastic pipes cause a loss of 6.3 ft of head for every 100 ft of pipe length.
      75ft*{frac  {6.3ft_{{head}}}{100ft}}=4.7ft_{{head}}
      He also looks up the friction loss from each fitting in the pipe. For 1″ plastic, one 90º elbow connector and three threaded fittings contribute a total loss of 15 ft.
      Adding this all together, the total friction loss is 4.7 + 15 = 19.7 ft., or about 20 ft.

  4. Image titled Calculate Water Pump Horsepower Step 4

    4

    Add the pumping lift and friction loss together. The vertical distance water needs to travel plus the friction losses from the pipe make the “total dynamic head” or TDH. This is the total pressure load the pump needs to overcome.[4]

    Example: TDH = vertical distance + friction loss = 50 ft + 20 ft = 70 ft.

  5. Image titled Calculate Water Pump Horsepower Step 5

    5

    Look up the specific gravity if you are pumping anything besides water. The basic water horsepower formula assumes you are pumping water. If you are pumping a different fluid, look up its “specific gravity” online or in an engineering reference table. Fluids with a higher specific density are denser, and require more horsepower to push through the pipe.[5]

    Example: Since the gardener is pumping water, he doesn’t need to look anything up. Water’s specific gravity is equal to 1.

  6. Image titled Calculate Water Pump Horsepower Step 6

    6

    Enter these values into the water horsepower formula. The water horsepower, or minimum power required to run the pump, equals {frac  {TDH*Q*SG}{3960}}, where TDH is the total dynamic head in feet, Q is the flow rate in gpm, and SG is the specific gravity (1 for water). Enter all the values you found into this formula to find the water horsepower for your project.[6]

    Example: The garden pump needs to overcome a TDH of 70 ft and produce a flow rate Q of 10 gpm. Since it is pumping water, the SG is equal to 1.
    Water horsepower = {frac  {TDH*Q*SG}{3960}}={frac  {70*10*1}{3960}}= ~0.18 horsepower.

  7. Image titled Calculate Water Pump Horsepower Step 7

    7

    Divide horsepower by pump efficiency. Now you know how much horsepower you need to supply to run your pump. However, no mechanical device is 100% efficient at transferring power. Once you have chosen a pump, check the manufacturer’s info for the pump’s efficiency and write it as a decimal. Divide the water horsepower by this value to find the actual horsepower of the motor you need for your pump.[7]

  8. Advertisement

  1. Image titled Calculate Water Pump Horsepower Step 8

    1

    Check the water level in the base reservoir tank. This is the tank that supplies water for your pump. The water level in the tank will also equal the water level in the pipe, so this is the level the pump is currently drawing from. Read the indicator on your reservoir to find this.[9]

    • If you are pumping from a well, either measure the depth directly or look for an estimate of water table levels in your area (at this time of year). Government agencies such as the USGS can often provide this information.
  2. Image titled Calculate Water Pump Horsepower Step 9

    2

    Empty the destination reservoir. The destination reservoir is a second tank, to which the pump transfers water from the base reservoir. Make sure it is empty and connected properly to the pump.[10]

    • If you do not normally have a tank here, just put down a large bucket to collect the water for this measurement. Use a bucket of known size in gallons.
  3. Image titled Calculate Water Pump Horsepower Step 10

    3

    Measure the vertical distance between the two locations. Using a scale or ruler, measure the vertical distance between the water level in the base reservoir tank and the water input at the destination tank. Write down the distance in feet.[11]

    • For example, say the water level in the first tank is 120 feet lower in elevation than the destination reservoir.
    • For this step, it doesn’t matter how much horizontal distance the water travels.
  4. Image titled Calculate Water Pump Horsepower Step 11

    4

    Time how fast it takes to fill the second reservoir. Switch on the pump to start pumping water. Start a stopwatch at the same time. Observe how long it takes for the second reservoir to fill, and jot down this number, as well as the capacity of the second reservoir.[12]

  5. Image titled Calculate Water Pump Horsepower Step 12

    5

    Measure the flow rate. Once your pump is working, measure the volumetric flow rate: the volume of water transported per unit of time. Note this rate in gallons per minute.

    • For example, your pump takes 30 seconds to fill a 10-gallon container. This means the flow rate is {frac  {10 gallons}{30 seconds}}*60{frac  {seconds}{minute}}=20{frac  {gallons}{minute}}. This is usually written 20 gpm, for “gallons per minute”.
  6. Image titled Calculate Water Pump Horsepower Step 13

    6

    Look up the specific gravity of the fluid. Specific gravity is a measurement of density: the more dense a fluid is, the more power it takes to pump. Water has a specific gravity of 1. If pumping a different fluid, look it up on a specific gravity engineering table.[13]

    • This example will use water, so the specific gravity is 1.
  7. Image titled Calculate Water Pump Horsepower Step 14

    7

    Estimate horsepower from these values. The water horsepower of the pump is roughly equal to {frac  {H*Q*SG}{3960}}, where H is the vertical distance the water travels in feet, Q is the flow rate in gallons per minute, and SG is the specific gravity of the fluid.[14]

    • In this example, the pump is operating at {frac  {120ft*20gpm*1}{3960}}= 0.65 horsepower.
    • In reality, you are likely using more power than this on your pump. Your pump is also overcoming the force of friction in the pipes, and some power is wasted due to the inefficiency of the motor. You can double this result for a rough estimate of power consumption, or track the actual amount of fuel or electricity your motor uses, or refer to the full calculations above.
  8. Advertisement

Add New Question

  • Question

    Are you working in IGPM or USGPM ?

    wikiHow Staff Editor

    This answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.

    wikiHow Staff Editor

    wikiHow Staff Editor

    Staff Answer

    For these equations, we’re working US Gallons per Minute, and all measurements are in imperial units.

  • Question

    How do I find the flow rate of my water pump?

    wikiHow Staff Editor

    This answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.

    wikiHow Staff Editor

    wikiHow Staff Editor

    Staff Answer

    Empty the secondary tank and time how long it takes to fill. The time divided by the seconds it takes to fill the tank is your flow rate.

  • Question

    How much horsepower is needed to pump water at a height of 1 km?

    Wildman5311

    Wildman5311

    Community Answer

    How many people are in your house? It depends on how much water you will need to pump.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

  • Remember that 1 unit of horsepower is equivalent to 746 watts.[15]
    Depending on your circumstances, you may need to convert from one of these measurements to the other.

  • Just like pumps, motors themselves are not 100% efficient either. Be sure to select a motor with output horsepower above the minimum horsepower you calculated (or equivalent watts of electricity) in order to account for inefficiency.[16]

  • Use “3956” instead of “3960” in the horsepower formula for a slightly more accurate result.[17]
    Online water horsepower calculators may give 2 slightly different answers depending on which value they use.

Show More Tips

Thanks for submitting a tip for review!

Advertisement

  • In practice pumps can only draw water up to about 22.5 feet at sea level, and roughly 1 foot less than this for each 1,000 ft of elevation above sea level. Make sure the actual suctioning component of the pump is located within this distance above the water.[18]

  • Powerful pump systems can involve very high pressure and high voltage components. Install them only under experienced supervision.[19]

Advertisement

References

About This Article

Article SummaryX

To calculate the horsepower of a water pump, check the water level in the base reservoir tank to ensure it’s full, and empty the second tank, or the destination reservoir. Measure the vertical distance between the water level in the base reservoir tank and the water input at the destination tank and write down the measurement in feet. Turn on the pump and a stopwatch at the same time. Once the pump is working, measure how many gallons per minute are being pumped and estimate the horsepower based on these values. To learn how to calculate the water horsepower for a specific project, read on!

Did this summary help you?

Thanks to all authors for creating a page that has been read 542,917 times.

Reader Success Stories

  • Jonah Chaguluka

    Jonah Chaguluka

    Sep 21, 2021

    “Ooooh this article has helped me a lot in terms of calculating the size of the pump needed to install in a borehole…” more

Did this article help you?

Совместными

усилиями

к общему успеху

с 1997 года

«Интех ГмбХ»

Основные принципы подбора насосов. Расчет насосов

Инжиниринговая компания ООО «Интех ГмбХ» (LLC «Intech GmbH») с 1997 года осуществляет поставки отдельных узлов конструкций и оборудования, а также комплексно решает инжиниринговые задачи промышленных предприятий различных отраслей и готова разработать и поставить по Вашему индивидуальному техническому заданию различное насосное оборудование и трубопроводную арматуру.

  • Основные принципы подбора насосов
    • Технологические и конструктивные требования
    • Характер перекачиваемой среды
    • Основные расчетные параметры
    • Области применения (подбора) насосов по создаваемому напору
    • Области применения (подбора) насосов по производительности
  • Основные расчетные параметры насосов (производительность, напор, мощность)
  • Расчет производительности для различных насосов. Формулы
    • Поршневые насосы
    • Шестеренчатые насосы
    • Винтовые насосы
    • Центробежные насосы
  • Расчет напора насоса
  • Расчет потребляемой мощности насоса
  • Предельная высота всасывания (для центробежного насоса)
  • Примеры задач по расчету и подбору насосов с решениями
    • расчет объемного коэффициента полезного действия плунжерного насоса
    • расчет необходимой мощности электродвигателя двухпоршневого насоса
    • расчет величины потери напора трехпоршневого насоса
    • расчет объемного коэффициента полезного действия винтового насоса
    • расчет напора, расхода и полезной мощности центробежного насоса
    • расчет целесообразности перекачки воды центробежным насосом
    • расчет коэффициента подачи шестеренчатого (шестеренного) насоса
    • определить, удовлетворяет ли данный насос требованиям по пусковому моменту
    • расчет полезной мощности центробежного насоса
    • расчет предельного повышения расхода насоса

Основные принципы подбора насосов

Выбор насосного оборудования – ответственный этап, от которого будут зависеть как технологические параметры, так и эксплуатационные качества проектируемой установки. При выборе типа насоса можно выделить три группы критериев:

1) Технологические и конструктивные требования

2) Характер перекачиваемой среды

3) Основные расчетные параметры

Технологические и конструктивные требования:

В некоторых случаях выбор насоса может диктоваться какими-либо строгими требованиями по ряду конструктивных или технологических параметров. Центробежные насосы, в отличие от поршневых, могут обеспечивать равномерную подачу перекачиваемой среды, в то время как для выполнения условий равномерности на поршневом насосе приходится значительно усложнять его конструкцию, располагая на коленчатом вале несколько поршней, совершающих возвратно-поступательные движения с определенным отставанием друг от друга. В то же время подача перекачиваемой среды дискретными порциями заданного объема также может являться технологическим требованием. Примером определяющих конструктивных требований может служить использование погружных насосов в тех случаях, когда необходимо или единственно возможно расположить насос ниже уровня перекачиваемой жидкости.

Технологические и конструктивные требования к насосу редко являются определяющими, а диапазоны подходящих типов насосов для различных специфических случаев применения известны исходя из накопленного человечеством опыта, поэтому в доскональном их перечислении нет необходимости.

Характер перекачиваемой среды:

Характеристики перекачиваемой среды часто становятся определяющим фактором в выборе насосного оборудования. Различные типы насосов подходят для перекачки самых разнообразных сред, отличающихся по вязкости, токсичности, абразивности и множеству других параметров. Так винтовые насосы способны перекачивать вязкие среды с различными включениями, не повреждая структуру среды, и могут с успехом применяться в пищевой промышленности для перекачивания джемов и паст с различными наполнителями. Коррозионные свойства перекачиваемой среды определяют материальное исполнение выбираемого насоса, а токсичность – уровень его герметизации.

Основные расчетные параметры:

Требованиям по эксплуатации, предъявляемы различными отраслями, могут удовлетворять несколько типов насосов. В такой ситуации предпочтение отдается тому типу насосов, который наиболее применим при конкретных значениях основных расчетных параметров (производительность, напор и потребляемая мощность). Ниже приведены таблицы, в общих чертах отражающие границы применения наиболее распространенных типов насосов.

Области применения (подбора) насосов по создаваемому напору

Области применения (подбора) насосов по производительности

Только соответствующий всем трем группам критериев насос может гарантировать длительную и надежную эксплуатацию.

Основные расчетные параметры насосов

Несмотря на многообразие машин для перекачки жидкостей и газов, можно выделить ряд основных параметров, характеризующих их работу: производительность, потребляемая мощность и напор.

Производительность (подача, расход) – объем среды, перекачиваемый насосом в единицу времени. Обозначается буквой Q и имеет размерность м3/час, л/сек, и т.д. В величину расхода входит только фактический объем перемещаемой жидкости без учета обратных утечек. Отношение теоретического и фактического расходов выражается величиной объемного коэффициента полезного действия:

Однако в современных насосах, благодаря надежной герметизации трубопроводов и соединений, фактическая производительность совпадает с теоретической. В большинстве случаев подбор насоса идет под конкретную систему трубопроводов, и величина расхода задается заранее.

Напор – энергия, сообщаемая насосом перекачиваемой среде, отнесенная к единице массы перекачиваемой среды. Обозначается буквой H и имеет размерность метры. Стоит уточнить, что напор не является геометрической характеристикой и не является высотой, на которую насос может поднять перекачиваемую среду.

Потребляемая мощность (мощность на валу) – мощность, потребляемая насосом при работе. Потребляемая мощность отличается от полезной мощности насоса, которая затрачивается непосредственно на сообщение энергии перекачиваемой среде. Часть потребляемой мощности может теряться из-за протечек, трения в подшипниках и т.д. Коэффициент полезного действия определяет соотношение между этими величинами.

Для различных типов насосов расчет этих характеристик может отличаться, что связано с различиями в их конструкции и принципах действия.

Расчет производительности для различных насосов

Все многообразие типов насосов можно разделить на две основные группы, расчет производительности которых имеет принципиальные отличия. По принципу действия насосы подразделяют на динамические и объемные. В первом случае перекачка среды происходит за счет воздействия на нее динамических сил, а во втором случае – за счет изменения объема рабочей камеры насоса.

К динамическим насосам относятся:

1) Насосы трения (вихревые, шнековые, дисковые, струйные и т.д.)
2) Лопастные (осевые, центробежные)
3) Электромагнитные

К объемным насосам относятся:
1) Возвратно-поступательные (поршневые и плунжерные, диафрагменные)
2) Роторные
3) Крыльчатые

Ниже будут приведены формулы расчета производительности для наиболее часто встречающихся типов.

Поршневые насосы (объемные насосы)

Основным рабочим элементом поршневого насоса является цилиндр, в котором двигается поршень. Поршень совершает возвратно-поступательные движения за счет кривошипно-шатунного механизма, чем обеспечивается последовательное изменение объема рабочей камеры. За один полный оборот кривошипа из крайнего положения поршень совершает полный ход вперед (нагнетание) и назад (всасывание). При нагнетании в цилиндре поршнем создается избыточное давление, под действием которого всасывающий клапан закрывается, а нагнетательный клапан открывается, и перекачиваемая жидкость подается в нагнетательный трубопровод. При всасывании происходит обратный процесс, при котором в цилиндре создается разряжение за счет движения поршня назад, нагнетательный клапан закрывается, предотвращая обратный ток перекачиваемой среды, а всасывающий клапан открывается и через него происходит заполнение цилиндра. Реальная производительность поршневых насосов несколько отличается от теоретической, что связано с рядом факторов, таких как утечки жидкости, дегазация растворенных в перекачиваемой жидкости газов, запаздывание открытия и закрытия клапанов и т.д.

Для поршневого насоса простого действия формула расхода будет выглядеть следующим образом:

Q = F·S·n·ηV

Q – расход (м3/с)
F – площадь поперечного сечения поршня, м2
S – длина хода поршня, м
n – частота вращения вала, сек-1
ηV – объемный коэффициент полезного действия

Для поршневого насоса двойного действия формула расчета производительности будет несколько отличаться, что связано наличием штока поршня, уменьшающего объем одной из рабочих камер цилиндра.

Q = F·S·n + (F-f)·S·n = (2F-f)·S·n

Q – расход, м3
F – площадь поперечного сечения поршня, м2
f – площадь поперечного сечения штока, м2
S – длина хода поршня, м
n – частота вращения вала, сек-1
ηV – объемный коэффициент полезного действия

Если пренебречь объемом штока, то общая формула производительности поршневого насоса будет выглядеть следующим образом:

Q = N·F·S·n·ηV

Где N – число действий, совершаемых насосом за один оборот вала.

Шестеренчатые насосы (объемные насосы)

В случае шестеренчатых насосов роль рабочей камеры выполняет пространство, ограничиваемое двумя соседними зубьями шестерней. Две шестерни с внешним или внутренним зацеплением размещаются в корпусе. Всасывание перекачиваемой среды в насос происходит за счет разряжения, создаваемого между зубьями шестерен, выходящими из зацепления. Жидкость переносится зубьями в корпусе насоса, и затем выдавливается в нагнетательный патрубок в момент, когда зубья вновь входят в зацепление. Для протока перекачиваемой среды в шестеренных насосах предусмотрены торцевые и радиальные зазоры между корпусом и шестернями.

Производительность шестеренного насоса может быть рассчитана следующим образом:

Q = 2·f·z·n·b·ηV

Q – производительность шестеренчатого насоса, м3
f – площадь поперечного сечения пространства между соседними зубьями шестерни, м2
z – число зубьев шестерни
b – длинна зуба шестерни, м
n – частота вращения зубьев, сек-1
ηV – объемный коэффициент полезного действия

Существует также альтернативная формула расчета производительности шестеренного насоса:

Q = 2·π·DН·m·b·n·ηV

Q – производительность шестеренчатого насоса, м3
DН – начальный диаметр шестерни, м
m – модуль шестерни, м
b – ширина шестерни, м
n – частота вращения шестерни, сек-1
ηV – объемный коэффициент полезного действия

Винтовые насосы (объемные насосы)

В насосах данного типа перекачивание среды обеспечивается за счет работы винта (одновинтовой насос) или нескольких винтов, находящихся в зацеплении, если речь идет о многовинтовых насосах. Профиль винтов подбирается таким образом, чтобы область нагнетания насоса была изолирована от области всасывания. Винты располагаются в корпусе таким образом, чтобы при их работе образовывались заполненные перекачиваемой средой области замкнутого пространства, ограниченные профилем винтов и корпусом и движущиеся по направлению в области нагнетания.

Производительность одновинтового насоса может быть рассчитана следующим образом:

Q = 4·e·D·T·n·ηV

Q – производительность винтового насоса, м3
e – эксцентриситет, м
D – диаметр винта ротора, м
Т – шаг винтовой поверхности статора, м
n – частота вращения ротора, сек-1
ηV – объемный коэффициент полезного действия

Центробежные насосы

Центробежные насосы являются одним из наиболее многочисленных представителей динамических насосов и широко распространены. Рабочим органом в центробежных насосах является насаженное на вал колесо, имеющее лопасти, заключенные между дисками, и расположенное внутри спиралевидного корпуса.

За счет вращения колеса создается центробежная сила, воздействующая на массу перекачиваемой среды, находящейся внутри колеса, и передает ей часть кинетической энергии, которая затем переходит в потенциальную энергию напора. Создаваемое при этом в колесе разрежение обеспечивает непрерывную подачу перекачиваемой среды их всасывающего патрубка. Важно отметить, что перед началом эксплуатации центробежный насос должен быть предварительно заполнен перекачиваемой средой, так как в противном случае всасывающей силы будет недостаточно для нормальной работы насоса.

Центробежный насос может иметь не один рабочий орган, а несколько. В таком случае насос называется многоступенчатым. Конструктивно он отличается тем, что на его валу расположено сразу несколько рабочих колес, и жидкость последовательно проходит через каждое из них. Многоступенчатый насос при той же производительности будет создавать больший напор в сравнении с аналогичным ему одноступенчатым насосом.

Производительность центробежного насоса может быть рассчитана следующим образом:

Q = b1·(π·D1-δ·Z)·c1 = b2·(π·D2-δ·Z)·c2

Q – производительность центробежного насоса, м3
b1,2 – ширины прохода колеса на диаметрах D1 и D2, ­м
D1,2 – внешний диаметр входного отверстия (1) и внешний диаметр колеса (2), м
δ – толщина лопаток, м
Z – число лопаток
C1,2 – радиальные составляющие абсолютных скоростей на входе в колесо (1) и выходе из него (2), м/с

Расчет напора

Как было отмечено выше, напор не является геометрической характеристикой и не может отождествляться с высотой, на которую необходимо поднять перекачиваемую жидкость. Необходимое значение напора складывается из нескольких слагаемых, каждое из которых имеет свой физический смысл.

Общая формула расчета напора (диаметры всасывающего и нагнетающего патрубком приняты одинаковыми):

H = (p2-p1)/(ρ·g) + Hг + hп

H – напор, м
p1 – давление в заборной емкости, Па
p2 – давление в приемной емкости, Па
ρ – плотность перекачиваемой среды, кг/м3
g – ускорение свободного падения, м/с2
Hг – геометрическая высота подъема перекачиваемой среды, м
hп – суммарные потери напора, м

Первое из слагаемых формулы расчета напора представляет собой перепад давлений, который должен быть преодолен в процессе перекачивания жидкости. Возможны случаи, когда давления p1 и p2 совпадают, при этом создаваемый насосом напор будет уходить на поднятие жидкости на определенную высоту и преодоление сопротивления.

Второе слагаемое отражает геометрическую высоту, на которую необходимо поднять перекачиваемую жидкость. Важно отметить, что при определении этой величины не учитывается геометрия напорного трубопровода, который может иметь несколько подъемов и спусков.

Третье слагаемое характеризует снижение создаваемого напора, зависящее от характеристик трубопровода, по которому перекачивается среда. Реальные трубопроводы неизбежно будут оказывать сопротивление току жидкости, на преодоление которого необходимо иметь запас величины напора. Общее сопротивление складывается из потерь на трение в трубопроводе и потерь в местных сопротивлениях, таких как повороты и отводы трубы, вентили, расширения и сужения прохода и т.д. Суммарные потери напора в трубопроводе рассчитываются по формуле:

Hоб – суммарные потери напора, складывающиеся из потерь на трение в трубах Hт и потерь в местных сопротивлениях Нмс

Hоб = HТ + HМС = (λ·l)/dэ·[w2/(2·g)] + ∑ζМС·[w2/(2·g)] = ((λ·l)/dэ + ∑ζМС)·[w2/(2·g)]

λ – коэффициент трения
l – длинна трубопровода, м
dЭ – эквивалентный диаметр трубопровода, м
w – скорость потока, м/с
g – ускорение свободного падения, м/с2
w2/(2·g) – скоростной напор, м
∑ζМС – сумма всех коэффициентов местных сопротивлений

Расчет потребляемой мощности насоса

Выделяют несколько мощностей в зависимости от потерь при ее передаче, которые учитываются различными коэффициентами полезного действия. Мощность, идущая непосредственно на передачу энергии перекачиваемой жидкости, рассчитывается по формуле:

NП = ρ·g·Q·H

NП – полезная мощность, Вт
ρ – плотность перекачиваемой среды, кг/м3
g – ускорение свободного падения, м/с2
Q – расход, м3
H – общий напор, м

Мощность, развиваемая на валу насоса, больше полезной, и ее избыток идет на компенсацию потерь мощности в насосе. Взаимосвязь между полезной мощностью и мощностью на валу устанавливается коэффициентом полезного действия насоса. КПД насоса учитывает утечки через уплотнения и зазоры (объемный КПД), потери напора при движении перекачиваемой среды внутри насоса (гидравлический КПД) и потери на трение между подвижными частями насоса, такими как подшипники и сальники (механический КПД).

NВ = NПН

NВ – мощность на валу насоса, Вт
NП – полезная мощность, Вт
ηН – коэффициент полезного действия насоса

В свою очередь мощность, развиваемая двигателем, превышает мощность на валу, что необходимо для компенсации потерь энергии при ее передаче от двигателя к насосу. Мощность электродвигателя и мощность на валу связаны коэффициентами полезного действия передачи и двигателя.

NД = NВ/(ηП·ηД)

NД – потребляемая мощность двигателя, Вт
NВ – мощность на валу, Вт
ηП – коэффициент полезного действия передачи
ηН – коэффициент полезного действия двигателя

Окончательная установочная мощность двигателя высчитывается из мощности двигателя с учетом возможной перегрузки в момент запуска.

NУ = β·NД

NУ – установочная мощность двигателя, Вт
NД – потребляемая мощность двигателя, Вт
β – коэффициент запаса мощности

Коэффициент запаса мощности может быть приближенно выбран из таблицы:

Предельная высота всасывания (для центробежного насоса)

Всасывание в центробежном наосе происходит за счет разности давлений в сосуде, откуда происходит забор перекачиваемой среды, и на лопатках рабочего колеса. Чрезмерное увеличение разности давлений может привести к появлению кавитации – процессу, при котором происходит понижение давления до значения, при котором температура кипения жидкости опускается ниже температуры перекачиваемой среды и начинается ее испарение в пространстве потока с образованием множества пузырьков. Пузырьки уносятся потоком дальше по ходу течения, где под действием возрастающего давления они конденсируются, и происходит их “схлопывание”, сопровождаемое многочисленными гидравлическими ударами, негативно сказывающимися на сроке службы насоса. В целях избегания негативного воздействия кавитации необходимо ограничивать высоту всасывания центробежного насоса.

Геометрическая высота всасывания может быть определена по формуле:

hг = (P0-P1)/(ρ·g) – hсв – w²/(2·g) – σ·H

hГ – геометрическая высота всасывания, м
P0 – давление в заборной емкости, Па
P1 – давление на лопатках рабочего колеса, Па
ρ – плотность перекачиваемой среды, кг/м3
g – ускорение свободного падения, м/с2
hсв – потери на преодоление гидравлических сопротивлений во всасывающем трубопроводе, м
w²/(2·g) – скоростной напор во всасывающем трубопроводе, м
σ·H – потери на добавочное сопротивление, пропорциональное напору, м
где σ – коэффициент кавитации, H – создаваемый насосом напор

Коэффициент кавитации может быть рассчитан по эмпирической формуле:

σ = [(n·√Q) / (126H4/3)]4/3

σ – коэффициент кавитации
n – частота вращения рабочего колеса, сек-1
Q – производительность насоса, м3
Н – создаваемый напор, м

Также существует формула для центробежных насосов для расчета запаса напора, обеспечивающего отсутствие кавитации:

Hкв = 0,3·(Q·n²)2/3

Hкв – запас напора, м
Q – производительность центробежного насоса, м3
n – частота вращения рабочего колеса, с-1

Примеры задач по расчету и подбору насосов с решениями

Пример №1

Плунжерный насос одинарного действия обеспечивает расход перекачиваемой среды 1 м3/ч. Диаметр плунжера составляет 10 см, а длинна хода – 24 см. Частота вращения рабочего вала составляет 40 об/мин.

Требуется найти объемный коэффициент полезного действия насоса.

Решение:

Площадь поперечного сечения плунжера :

F = (π·d²)/4 = (3,14·0,1²)/4 = 0,00785 м²2

Выразим коэффициент полезного действия из формулы расхода плунжерного насоса:

ηV = Q/(F·S·n) = 1/(0,00785·0,24·40) · 60/3600 = 0,88

Пример №2

Двухпоршневой насос двойного действия создает напор 160 м при перекачивании масла с плотностью 920 кг/м3. Диаметр поршня составляет 8 см, диаметр штока – 1 см, а длинна хода поршня равна 16 см. Частота вращения рабочего вала составляет 85 об/мин. Необходимо рассчитать необходимую мощность электродвигателя (КПД насоса и электродвигателя принять 0,95, а установочный коэффициент 1,1).

Решение:

Площади попреречного сечения поршня и штока:

F = (3,14·0,08²)/4 = 0,005024 м²

F = (3,14·0,01²)/4 = 0,0000785 м²

Производительность насоса находится по формуле:

Q = N·(2F-f)·S·n = 2·(2·0,005024-0,0000785)·0,16·85/60 = 0,0045195 м³/час

Далее находим полезную мощность насоса:

NП = 920·9,81·0,0045195·160 = 6526,3 Вт

С учетом КПД и установочного коэффициента получаем итоговую установочную мощность:

NУСТ = 6526,3/(0,95·0,95)·1,1 = 7954,5 Вт = 7,95 кВт

Пример №3

Трехпоршневой насос перекачивет жидкость с плотностью 1080 кг/м3 из открытой емкости в сосуд под давлением 1,6 бара с расходом 2,2 м3/час. Геометрическая высота подъема жидкости составляет 3,2 метра. Полезная мощность, расходуемая на перекачивание жидкости, составляет 4 кВт. Необходимо найти величину потери напора.

Решение:

Найдем создаваемый насосом напор из формулы полезной мощности:

H = NП/(ρ·g·Q) = 4000/(1080·9,81·2,2)·3600 = 617,8 м

Подставим найденное значение напора в формулу напора, выраженую через разность давлений, и найдем искомую величину:

hп = H – (p2-p1)/(ρ·g) – Hг = 617,8 – ((1,6-1)·105)/(1080·9,81) – 3,2 = 69,6 м

Пример №4

Реальная производительность винтового насоса составляет 1,6 м3/час. Геометрические характеристики насоса: эксцентриситет – 2 см; диаметр ротора – 7 см; шаг винтовой поверхности ротора – 14 см. Частота вращения ротора составляет 15 об/мин. Необходимо определить объемный коэффициент полезного действия насоса.

Решение:

Выразим искомую величину из формулы производительности винтового насоса:

ηV = Q/(4·e·D·T·n) = 1,6/(4·0,02·0,07·0,14·15) · 60/3600 = 0,85

Пример №5

Необходимо рассчитать напор, расход и полезную мощность центробежного насоса, перекачивающего жидкость (маловязкая) с плотностью 1020 кг/м3 из резервуара с избыточным давлением 1,2 бара а резервуар с избыточным давлением 2,5 бара по заданному трубопроводу с диаметром трубы 20 см. Общая длинна трубопровода (суммарно с эквивалентной длинной местных сопротивлений) составляет 78 метров (принять коэффициент трения равным 0,032). Разность высот резервуаров составляет 8 метров.

Решение:

Для маловязких сред выбираем оптимальную скорость движения в трубопроводе равной 2 м/с. Рассчитаем расход жидкости через заданный трубопровод:

Q = (π·d²) / 4·w = (3,14·0,2²) / 4·2 = 0,0628 м³/с

Скоростной напор в трубе:

w²/(2·g) = 2²/(2·9,81) = 0,204 м

При соответствующем скоростном напоре потери на трение м местные сопротивления составят:

HТ = (λ·l)/dэ · [w²/(2g)] = (0,032·78)/0,2 · 0,204 = 2,54 м

Общий напор составит:

H = (p2-p1)/(ρ·g) + Hг + hп = ((2,5-1,2)·105)/(1020·9,81) + 8 + 2,54 = 23,53 м

Остается определить полезную мощность:

NП = ρ·g·Q·H = 1020·9,81·0,0628·23,53 = 14786 Вт

Пример №6

Целесообразна ли перекачка воды центробежным насосом с производительностью 50 м3/час по трубопроводу 150х4,5 мм?

Решение:

Рассчитаем скорость потока воды в трубопроводе:

Q = (π·d²)/4·w

w = (4·Q)/(π·d²) = (4·50)/(3,14·0,141²) · 1/3600 = 0,89 м/с

Для воды скорость потока в нагнетательном трубопроводе составляет 1,5 – 3 м/с. Получившееся значение скорости потока не попадает в данный интервал, из чего можно сделать вывод, что применение данного центробежного насоса нецелесообразно.

Пример №7

Определить коэффициент подачи шестеренчатого насоса. Геометрические характеристики насоса: площадь поперечного сечения пространства между зубьями шестерни 720 мм2; число зубьев 10; длинна зуба шестерни 38 мм. Частота вращения составляет 280 об/мин. Реальная подача шестеренчатого насоса составляет 1,8 м3/час.

Решение:

Теоретическая производительность насоса:

Q = 2·f·z·n·b = 2·720·10·0,38·280·1/(3600·106) = 0,0004256 м³/час

Коэффициент подачи соответственно равен:

ηV = 0,0004256/1,8·3600 = 0,85

Пример №8

Насос, имеющий КПД 0,78, перекачивает жидкость плотностью 1030 кг/м3 с расходом 132 м3/час. Создаваемый в трубопроводе напор равен 17,2 м. Насос приводится в действие электродвигателем с мощностью 9,5 кВт и КПД 0,95. Необходимо определить, удовлетворяет ли данный насос требованиям по пусковому моменту.

Решение:

Рассчитаем полезную мощность, идущую непосредственно на перекачивание среды:

NП = ρ·g·Q·H = 1030·9,81·132/3600·17,2 = 6372 Вт

Учтем коэффициенты полезного действия насоса и электродвигателя и определим полную необходимую мощность электродвигателя:

NД = NП/(ηН·ηД) = 6372/(0,78·0,95) = 8599 Вт

Поскольку нам известна установочная мощность двигателя, определим коэффициент запаса мощности электродвигателя:

β = NУ/NД = 9500/8599 = 1,105

Для двигателей с мощностью от 5 до 50 кВт рекомендуется выдирать пусковой запас мощности от 1,2 до 1,15. Полученное нами значение не попадает в данный интервал, из чего можно сделать вывод, что при эксплуатации данного насоса при заданных условиях могут возникнуть проблемы в момент его пуска.

Пример №9

Центробежный насос перекачивает жидкость плотностью 1130 кг/м3 из открытого резервуара в реактор с рабочим давлением 1,5 бар с расходом 5,6 м3/час. Геометрическая разница высот составляет 12 м, причем реактор расположен ниже резервуара. Потери напора на трение в трубах и местные сопротивления составляет 32,6 м. Требуется определить полезную мощность насоса.

Решение:

Рассчитаем напор, создаваемый насосом в трубопроводе:

H = (p2-p1)/(ρ·g) + Hг + hп = ((1,5-1)·105)/(1130·9,81) – 12 + 32,6 = 25,11 м

Полезная мощность насоса может быть найдена по формуле:

NП = ρ·g·Q·H = 1130·9,81·5,6/3600·25,11 = 433 Вт

Пример №10

Определить предельное повышение расхода насоса, перекачивающего воду (плотность принять равной 1000 кг/м3) из открытого резервуара в другой открытый резервуар с расходом 24 м3/час. Геометрическая высота подъема жидкости составляет 5 м. Вода перекачивается по трубам 40х5 мм. Мощность электродвигателя составляет 1 кВт. Общий КПД установки принять равным 0,83. Общие потери напора на трение в трубах и в местных сопротивлениях составляет 9,7 м.

Решение:

Определим максимальное значение расхода, соответствующее максимально возможной полезной мощности, развиваемой насосом. Для этого предварительно определим несколько промежуточных параметров.

Рассчитаем напор, необходимый для перекачивания воды:

H = (p2-p1)/(ρ·g) + Hг + hп = ((1-1)·105)/(1000·9,81) + 5 + 9,7 = 14,7 м

Полезная мощность, развиваемая насосом:

NП = NобщН = 1000/0,83 = 1205 Вт

Значение максимального расхода найдем из формулы:

NП = ρ·g·Q·H

Найдем искомую величину:

Qмакс = NП/(ρ·g·H) = 1205/(1000·9,81·14,7) = 0,00836 м³/с

Расход воды может быть увеличен максимально в 1,254 раза без нарушения требований эксплуатации насоса.

Qмакс/Q = 0,00836/24·3600 = 1,254

Добавить комментарий