Как найти силу притяжения зная массу

Характер и особенности расчета силы притяжения известны еще с древних времен. На основании имеющихся знаний, переданных современному научному сообществу великими исследователями, человек познает не только его окружающий мир, но и Вселенную.

Формула силы притяжения

Со времен Древней Греции философов интересовали явления притяжения тел к земле и свободного падения. К примеру, по утверждениям Аристотеля, из двух камней, брошенных с одинаковой высоты, быстрее достигнет земной поверхности тот, чья масса больше. В IV веке до нашей эры единственными методами научных изысканий служили наблюдения и анализ. К проверке гипотез опытным путем великие мыслители не прибегали. По истечению столетий физик из Италии Галилео Галилей проверил утверждения Аристотеля, используя практические методы исследований.

Итоги проведенных Галилеем опытов были опубликованы в «Беседах и математических доказательствах, касающихся двух новых наук». Ученый использовал псевдоним Сагредо: «пушечное ядро не опередит мушкетной пули при падении с высоты двухсот локтей». Формулировка закона всемирного тяготения была представлена в 1666 году Исааком Ньютоном. В ней фиксировались основные тезисы теоремы Галилея.

Смысл заключался в том, что тела, которые обладают разными массами, падают на землю с одинаковыми ускорениями.  Одно тело притягивает другое и, наоборот, с силой, которая прямо пропорциональна их массам и обратно пропорциональна отрезку пути между ними. Согласно определению гравитации от Ньютона, тела, характеризующиеся массой, обладают свойством, благодаря которому притягиваются друг к другу.

Понятие и определение

Силы взаимного притяжения – это силы, которые притягивают любые тела, обладающие массами.

Корректность выводов Ньютона неоднократно подтверждалась путем практических испытаний. Но в начале ХХ века перед учеными-физиками остро стоял вопрос о природе и характере взаимодействия крупных астрономических тел, включая разные виды планетарных систем и галактик в вакууме. Ньютоновского закона уже было недостаточно, чтобы решить эти задачи. Исключить недочеты позволила новая теория, разработанная Альбертом Эйнштейном в начале ХХ столетия. Общая теория относительности объясняет гравитацию не в качестве силы, а представляет ее в виде искривления пространства и времени в четырех измерениях, которое зависит от массы тел, создающих его.

Эйнштейн

Источник: i.ytimg.com

Гравитация представляет собой свойство тел, которые характеризуются массой, притягивать друг друга. Данное физическое явление можно объяснить, как поле, оказывающее дистанционное воздействие на предметы, не связанные между собой никаким другим способом.

Достижение Эйнштейна не противоречит теоретическому объяснению гравитации от Ньютона. Общая теория относительности рассматривает закон всемирного тяготения, как частный случай, применимый для сравнительно небольших расстояний. Данная закономерность в настоящее время также активно используется для поиска решений задач на практике.

Единицы измерения силы притяжения

В разных системах измерений можно встретить несколько отличающиеся обозначения. Единицы измерения силы притяжения следующие:

  • система СИ: ([F]=H);
  • система СГС: ([F]=дин).

Формула силы притяжения между телами в космосе

Закономерность гравитации, которую обнаружил Ньютон, можно представить в виде математической формулы. Вычисления выглядят следующим образом:

(F=(Gtimes m1times m2times r)/2),

где (m1,m2) – массы объектов, которые притягиваются друг к другу под действием силы (F),

(r) – расстояние, на которое удалены тела,

(G) – т.н. гравитационная постоянная величина, константа, равная 6,67.

Солнечная система

Источник: avatars.mds.yandex.net

Гравитационное взаимодействие объектов будет слабеть, если тела удаляются друг относительно друга. Сила гравитации пропорциональна величине расстояния в квадрате. При этом для нахождения искомой величины расстояние измеряется от центров тяжести тел, а не от поверхностей.

Гравитация в определенных моментах напоминает другие физические явления. Исходя из зависимости интенсивности силы от расстояния в квадрате, гравитацию можно сравнить с электромагнитным взаимодействием сильного и слабого характера.

Формула силы гравитационного притяжения между двумя телами

Квадратичная связь силы, с которой тела притягиваются друг к другу, с расстоянием между ними объясняет тот факт, что люди, находящиеся на поверхности планеты Земля не притягиваются к Солнцу, хотя масса его велика и превышает земную в миллион раз. Земля и центр Солнечной системы удалены примерно на 150 миллионов километров. Дистанция достаточно велика, чтобы ощущаться человеком. Однако эту силу можно зарегистрировать, используя высокоточные приборы. В рамках планеты Земля сила, с которой тела к ней притягиваются, то есть их вес, измеряется следующим образом:

(P=mtimes g),

где (m) – масса тела, на которое воздействует сила притяжение,

(g) – ускорение свободного падения около Земли (если рассматривать систему в условиях любой другой планеты, данная величина будет отличаться).

На разных географических широтах величина ускорения свободного падения может незначительно отличаться. Производя расчеты, данный показатель принимается за 9,81 метров в секунду в квадрате.

В физике понятия массы и веса тел отличаются. Весом называется сила, определяющее притяжение объекта к планете. Масса представляет собой меру инертности вещества. На нее не влияют другие тела, расположенные рядом.

Формула для силы притяжения тел произвольной формы

Расчеты определяются некоторыми условиями. К ним относятся характеристики исследуемых объектов.

Сила притяжения тел

Источник: img2.goodfon.ru

Если сила притяжения измеряется между телами, которые обладают произвольной формой, их считают материальными точками:

(dtimes m1=rho1times dV1)

(dtimes m2=rho2times dV2)

где (rho1, rho2) – обозначают плотность веществ материальных точек, характерных для первого и второго объектов,

(dV1 ,dV2) – элементарные объемы выделенных материальных точек.

Исходя из этого, сила притяжения (doverline F), с которой взаимодействуют объекты, равна:

  (doverline F=-Gtimes frac{rho _{1}timesrho _{2}times dtimes V_{1}times dtimes V_{2}}{r_{12}^{3}} bar{r_{12}})

Таким образом, сила притяжения первого тела вторым рассчитывается следующим образом:

(bar{F}_{12}=-Gtimesint_{V_{1}}^{rho _{1}times dtimes V_{1}}int_{V_{2}}^{frac{rho _{2}}{r_{12}^{3}}times bar{r}_{12}times dtimes V_{2}})

где интегрирование выполняется по всему объему первого ((V1)) и второго ((V2)) тел. Если тела обладают однородностью, то формула корректируется, таким образом:

(bar{F}_{12}=-Gtimesrho1timesrho2timesint_{V_{1}}^{dtimes V_{1}}int_{V_{2}}^{frac{bar{r}_{12}}{r_{12}^{3}}times dtimes V_{2}})

Формула для силы притяжения твердых тел шарообразной формы

В условиях, когда сила притяжения измеряется между телами, представленных в форме шара или близкой к нему, с плотностью, зависящей лишь от удаленности их центров тяжести, применяется следующая формула:

(bar{F}_{12}=-Gtimes(m1times m2)/R^3times R12)

где (m1,m2) – массы шаров,  (R )– радиус – вектор, соединяющий центры шаров.

Сила притяжения твердых тел

Источник: printer-plotter.ru

Пример применения формулы для расчета

Задача. Необходимо рассчитать силу притяжения между двумя идентичными однородными шарами, масса которых составляет по 1 килограмму. При этом их центры тяжести удалены на 1 метр друг от друга.

Решение будет выглядеть следующим образом:

Используя формулу для подсчета силы притяжения между двумя объектами шарообразной формы, получается:

(F_g=6.67times 10^{-11}times frac{1times 1}{1^{2}})

Ответ: (F_g=6.67times 10^{-11})

Выполнить расчет силы притяжения достаточно просто, если правильно выбрать формулу, подходящую под конкретные условия, в которых находятся тела. Если в процессе решения задач по физике или другим дисциплинам возникают проблемы, всегда можно обратиться за помощью к компетентным специалистам портала Феникс.Хелп.

Закон всемирного тяготения. Калькулятор силы притяжения, массы и расстояния онлайн.

Онлайн калькулятор закона всемирного тяготения (гравитации) вычислит силу притяжения двух материальных точек, массу и расстояния между ними, а также даст подробное решение.

Калькулятор содержит:
Калькулятор вычисления силы притяжения.
Калькулятор вычисления расстояния через массы и силу притяжения между двумя материальными точками.
Калькулятор вычисления массы материальной точки через массу второй материальной точки, силу и расстояние.

Калькулятор вычисления силы притяжения

Закон всемирного тяготения. Калькулятор силы притяжения. Сила притяжения между любыми двумя материальными точками m1 и m2 прямо пропорциональна произведению масс этих точек и обратна пропорциональна квадрату расстояния между ними.

Гравитационная постоянная G численно равна силе гравитационного притяжения между двумя телами, масса каждого тела равна 1 кг, находящимися на расстоянии 1 метра друг от друга.
G = 6.67 × 10-11 Н × м2 / кг2
Единицей измерения силы – Ньютон (Н, N)

Масса m1 =
Масса m2 =
Расстояние r =
Единица измерения силы F

Калькулятор вычисления расстояния через массы и силу притяжения между двумя материальными точками

Закон всемирного тяготения. Расстояние.По закону всемирного тяготения расстояние между двумя материальными точками равно квадратному корню из частного, в котором числителем выступает гравитационная постоянная G и произведение масс материальных точек, а знаменатель выражен силой притяжения между данными точками.

Гравитационная постоянная G численно равна силе гравитационного притяжения между двумя телами, масса каждого тела равна 1 кг, находящимися на расстоянии 1 метра друг от друга.
G = 6.67 × 10-11 Н × м2 / кг2
Единица измерения расстояния – Метр (м, m).

Масса m1 =
Масса m2 =
Сила F =
Единица измерения расстояния r

Калькулятор вычисления массы материальной точки через массу второй материальной точки, силу и расстояние.

Закон всемирного тяготения. Масса второй материальной точки. По закону всемирного тяготения масса m1 одной из материальных точек, между которыми действует сила притяжения определяется как отношение произведения силы и квадрата расстояния на произведение гравитационной постоянной и массу m2 второй материальной точки. 

Гравитационная постоянная G численно равна силе гравитационного притяжения между двумя телами, масса каждого тела равна 1 кг, находящимися на расстоянии 1 метра друг от друга.
G = 6.67 × 10-11 Н × м2 / кг2
Единица массы – килограмм, но также можно использовать и другие единицы, например грамм, тонна, миллиграмм и т.д.

Сила F =
Расстояние r =
Масса m2 =
Единица измерения массы m1

Вам могут также быть полезны следующие сервисы
Калькуляторы (физика)

Механика

Калькулятор вычисления скорости, времени и расстояния
Калькулятор вычисления ускорения, скорости и перемещения
Калькулятор вычисления времени движения
Калькулятор времени
Второй закон Ньютона. Калькулятор вычисления силы, массы и ускорения.
Закон всемирного тяготения. Калькулятор вычисления силы притяжения, массы и расстояния.
Импульс тела. Калькулятор вычисления импульса, массы и скорости
Импульс силы. Калькулятор вычисления импульса, силы и времени действия силы.
Вес тела. Калькулятор вычисления веса тела, массы и ускорения свободного падения

Оптика

Калькулятор отражения и преломления света

Электричество и магнетизм

Калькулятор Закона Ома
Калькулятор Закона Кулона
Калькулятор напряженности E электрического поля
Калькулятор нахождения точечного электрического заряда Q
Калькулятор нахождения силы F действующей на заряд q
Калькулятор вычисления расстояния r от заряда q
Калькулятор вычисления потенциальной энергии W заряда q
Калькулятор вычисления потенциала φ электростатического поля
Калькулятор вычисления электроемкости C проводника и сферы

Конденсаторы

Калькулятор вычисления электроемкости C плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления напряженности E электрического поля плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления напряжения U (разности потенциалов) плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления расстояния d между пластинами в плоском конденсаторе
Калькулятор вычисления площади пластины (обкладки) S в плоском конденсаторе
Калькулятор вычисления энергии W заряженного конденсатора
Калькулятор вычисления энергии W заряженного конденсатора. Для плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления объемной плотности энергии w электрического поля для плоского, цилиндрического и сферического конденсаторов
Калькуляторы по астрономии
Вес тела на других планетах
Ускорение свободного падения на планетах Солнечной системы и их спутниках
Конвертеры величин
Конвертер единиц длины
Конвертер единиц скорости
Конвертер единиц ускорения
Цифры в текст
Калькуляторы (Теория чисел)
Калькулятор выражений
Калькулятор упрощения выражений
Калькулятор со скобками
Калькулятор уравнений
Калькулятор суммы
Калькулятор пределов функций
Калькулятор разложения числа на простые множители
Калькулятор НОД и НОК
Калькулятор НОД и НОК по алгоритму Евклида
Калькулятор НОД и НОК для любого количества чисел
Калькулятор делителей числа
Представление многозначных чисел в виде суммы разрядных слагаемых
Калькулятор деления числа в данном отношении
Калькулятор процентов
Калькулятор перевода числа с Е в десятичное
Калькулятор экспоненциальной записи чисел
Калькулятор нахождения факториала числа
Калькулятор нахождения логарифма числа
Калькулятор квадратных уравнений
Калькулятор остатка от деления
Калькулятор корней с решением
Калькулятор нахождения периода десятичной дроби
Калькулятор больших чисел
Калькулятор округления числа
Калькулятор свойств корней и степеней
Калькулятор комплексных чисел
Калькулятор среднего арифметического
Калькулятор арифметической прогрессии
Калькулятор геометрической прогрессии
Калькулятор модуля числа
Калькулятор абсолютной погрешности приближения
Калькулятор абсолютной погрешности
Калькулятор относительной погрешности
Дроби
Калькулятор интервальных повторений
Учим дроби наглядно
Калькулятор сокращения дробей
Калькулятор преобразования неправильной дроби в смешанную
Калькулятор преобразования смешанной дроби в неправильную
Калькулятор сложения, вычитания, умножения и деления дробей
Калькулятор возведения дроби в степень
Калькулятор перевода десятичной дроби в обыкновенную
Калькулятор перевода обыкновенной дроби в десятичную
Калькулятор сравнения дробей
Калькулятор приведения дробей к общему знаменателю
Калькуляторы (тригонометрия)
Калькулятор синуса угла
Калькулятор косинуса угла
Калькулятор тангенса угла
Калькулятор котангенса угла
Калькулятор секанса угла
Калькулятор косеканса угла
Калькулятор арксинуса угла
Калькулятор арккосинуса угла
Калькулятор арктангенса угла
Калькулятор арккотангенса угла
Калькулятор арксеканса угла
Калькулятор арккосеканса угла
Калькулятор нахождения наименьшего угла
Калькулятор определения вида угла
Калькулятор смежных углов
Калькуляторы систем счисления
Калькулятор перевода чисел из арабских в римские и из римских в арабские
Калькулятор перевода чисел в различные системы счисления
Калькулятор сложения, вычитания, умножения и деления двоичных чисел
Системы счисления теория
N2 | Двоичная система счисления
N3 | Троичная система счисления
N4 | Четырехичная система счисления
N5 | Пятеричная система счисления
N6 | Шестеричная система счисления
N7 | Семеричная система счисления
N8 | Восьмеричная система счисления
N9 | Девятеричная система счисления
N11 | Одиннадцатиричная система счисления
N12 | Двенадцатеричная система счисления
N13 | Тринадцатеричная система счисления
N14 | Четырнадцатеричная система счисления
N15 | Пятнадцатеричная система счисления
N16 | Шестнадцатеричная система счисления
N17 | Семнадцатеричная система счисления
N18 | Восемнадцатеричная система счисления
N19 | Девятнадцатеричная система счисления
N20 | Двадцатеричная система счисления
N21 | Двадцатиодноричная система счисления
N22 | Двадцатидвухричная система счисления
N23 | Двадцатитрехричная система счисления
N24 | Двадцатичетырехричная система счисления
N25 | Двадцатипятеричная система счисления
N26 | Двадцатишестеричная система счисления
N27 | Двадцатисемеричная система счисления
N28 | Двадцативосьмеричная система счисления
N29 | Двадцатидевятиричная система счисления
N30 | Тридцатиричная система счисления
N31 | Тридцатиодноричная система счисления
N32 | Тридцатидвухричная система счисления
N33 | Тридцатитрехричная система счисления
N34 | Тридцатичетырехричная система счисления
N35 | Тридцатипятиричная система счисления
N36 | Тридцатишестиричная система счисления
Калькуляторы площади геометрических фигур
Площадь квадрата
Площадь прямоугольника
КАЛЬКУЛЯТОРЫ ЗАДАЧ ПО ГЕОМЕТРИИ
Калькуляторы (Комбинаторика)
Калькулятор нахождения числа перестановок из n элементов
Калькулятор нахождения числа сочетаний из n элементов
Калькулятор нахождения числа размещений из n элементов
Калькуляторы линейная алгебра и аналитическая геометрия
Калькулятор сложения и вычитания матриц
Калькулятор умножения матриц
Калькулятор транспонирование матрицы
Калькулятор нахождения определителя (детерминанта) матрицы
Калькулятор нахождения обратной матрицы
Длина отрезка. Онлайн калькулятор расстояния между точками
Онлайн калькулятор нахождения координат вектора по двум точкам
Калькулятор нахождения модуля (длины) вектора
Калькулятор сложения и вычитания векторов
Калькулятор скалярного произведения векторов через длину и косинус угла между векторами
Калькулятор скалярного произведения векторов через координаты
Калькулятор векторного произведения векторов через координаты
Калькулятор смешанного произведения векторов
Калькулятор умножения вектора на число
Калькулятор нахождения угла между векторами
Калькулятор проверки коллинеарности векторов
Калькулятор проверки компланарности векторов
Генератор Pdf с примерами
Тренажёры решения примеров
Тренажер по математике
Тренажёр таблицы умножения
Тренажер счета для дошкольников
Тренажер счета на внимательность для дошкольников
Тренажер решения примеров на сложение, вычитание, умножение, деление. Найди правильный ответ.
Тренажер решения примеров с разными действиями
Тренажёры решения столбиком
Тренажёр сложения столбиком
Тренажёр вычитания столбиком
Тренажёр умножения столбиком
Тренажёр деления столбиком с остатком
Калькуляторы решения столбиком
Калькулятор сложения, вычитания, умножения и деления столбиком
Калькулятор деления столбиком с остатком
Генераторы
Генератор примеров по математике
Генератор случайных чисел
Генератор паролей

Как найти силу, зная массу и плотонсть

Павел Базаркин



Ученик

(235),
на голосовании



10 лет назад

Голосование за лучший ответ

Александр я

Мыслитель

(5091)


10 лет назад

Сила тяжести рассчитывается по формуле: F = m * g.
1) Масса (m) – известна; но нужно еще учесть плотность;
2) Плотность рассчитывается по формуле: p = m / V; отсюда выразим массу: m = p * V
3) и вставим в формулу выше: F = p * V * g.
g = 9,81…м/с2 – ускорение свободного падения.
V – объем, м3.

Все тела в природе притягиваются, это свойство тел, имеющих массу. Сила, с которой тела притягиваются, называется силой гравитации (силой притяжения).

Формула закона всемирного тяготения с объяснениями

Зная массы двух тел и расстояние между ними, можно рассчитать силу их взаимного притяжения с помощью такой формулы:

[ large boxed  { F = G cdot frac{m_{1} cdot m_{2}}{R^{2}} } ]
(F left( text{Н} right)) (Ньютоны) — сила, с которой два шарообразных тела притягиваются
( m_{1} left( mbox{кг} right) ) (килограммы) — масса первого тела
( m_{2} left( text{кг} right) ) (килограммы) — масса второго тела
( R left( text{м} right) ) (метры) — расстояние между центрами тел
(G = 6{,}67 cdot 10^{-11} left( text{Н} cdot frac{text{м}^2}{text{кг}^2} right)) — гравитационная постоянная

Примечания:

  • формула позволяет точно рассчитать притяжение между двумя однородными шарами;
  • если тела не шарообразные, или не однородные, то силу притяжения получим с погрешностью;
  • чем больше расстояние между телами, тем меньше будет погрешность;

Словесная формулировка закона всемирного тяготения

Закон всемирного тяготения словами можно сформулировать так:

Два тела притягиваются с силой
прямо пропорциональной
массам этих тел
и обратно пропорциональной
квадрату расстояния между телами.

Пояснения к закону всемирного тяготения

Сила прямо пропорциональна массам тел. Математики прямую пропорциональность записывают так:
[ F sim m_{1} cdot m_{2} ]

Прямая пропорциональность означает: чем больше массы, тем больше сила притяжения.

Сила обратно пропорциональна расстоянию в квадрате. Математики обратную пропорциональность записывают с помощью дроби. В знаменателе этой дроби находится величина, обратно пропорциональная величине, находящейся в левой части выражения:
[ F sim frac{1}{R^{2}} ]
Обратная пропорциональность означает: чем больше расстояние между телами, тем меньше сила притяжения.

Что такое гравитационная постоянная

Физики часто употребляют термин: «Физический смысл». Физический смысл для чего-то – это ответ на вопрос: Что это такое с точки зрения физики?

Физический смысл гравитационной постоянной:

Гравитационная постоянная — это сила, с которой притягиваются два однородных шара, по 1-му килограмму каждый, когда они находятся на расстоянии 1-го метра один от другого.

(G = 6{,}67 cdot 10^{-11} left( text{Н} cdot frac{text{м}^2}{text{кг}^2} right)) — гравитационная постоянная

Как видно, это очень незначительная сила, поэтому в повседневной жизни мы ее не замечаем.

Куда направлена сила притяжения

Соединим прямой линией центы притягивающихся тел. Вдоль этой линии и будут направлены силы, с которыми тела притягиваются. Физики часто заменяют фразу «действие одного тела на другое» словом «взаимодействие».

Две сферы. Указаны направления сил, с которыми каждая из сфер притягивает соседнюю

Рис.1. Направление сил взаимодействия двух шаров.

( F_{1} ) – это сила, с которой большой шар притягивается к маленькому шарику;
( F_{2} ) – это сила, с которой маленький шарик притягивается к большому шару;
Из третьего закона Ньютона известно, что тела взаимодействуют с одинаковыми по модулю силами. Это значит, что ( | F_{1} | = | F_{2} | ). То есть, силы равны.

У физиков есть такой шуточный вопрос: «Что сильнее притягивает – Луна Землю, или Земля Луну?». Правильный ответ: «Они притягиваются с одинаковыми силами».

Как правильно выбирать расстояние для подстановки в формулу

Центр масс тела — это точка, которой мы заменяем тело для упрощения задачи.
Если тело однородное и шарообразное, то центр масс — это точка, расположенная в центре шара.
Расстояние между телами — это расстояние между центрами масс.

Рассмотрим несколько поясняющих примеров:

Пример 1. Притяжение между планетой и звездой

Две сферы, одна на некотором расстоянии от другой. Показано, как правильно выбрать расстояние между центрами масс сфер

Рис.2. Звезда и планета притягиваются

( R = left( r_{1} + h + r_{2} right) )
Складываем радиусы шаров и расстояние между их поверхностями, получаем расстояние между центрами тел. Это расстояние и подставляем в знаменатель формулы.

Пример 2. Два шарообразных тела соприкасаются

Две сферы соприкасаются поверхностями. Расстояние между центрами масс сфер подставляем в формулу закона всемирного тяготения

Рис. 3. Два шара соприкасаются

( R = left( r_{1} + r_{2} right) )
В формулу нужно подставить расстояние между центрами масс шаров. Складываем радиусы шаров и результат подставляем в формулу вместо R.

Пример 3. Малое тело покоится на поверхности планеты

Камень покоится на поверхности планеты. Радиус планеты – это расстояние между планетой и камнем.

Рис. 4. Камень находится на поверхности планеты.

( R = r )
Расстояние между телами — это радиус планеты. Радиус камня очень мал по сравнению с радиусом планеты, поэтому, мы радиус камня не учитываем.

Пример 4. Малое тело находится на некотором расстоянии от планеты

Спутник вращается вокруг планеты. Расстояние между планетой и спутником – это радиус планеты, плюс расстояние от поверхности до спутника.

Рис. 5. Искусственный спутник находится на некотором расстоянии от планеты

( R = left( r + h right) )
Складываем радиус планеты и расстояние от спутника до поверхности планеты. Полученное число является расстоянием между телами. Размеры спутника не учитываем, так как они очень малы по сравнению с радиусом планеты.

Вам будет интересно почитать:

Первая космическая скорость
Движение по окружности, центростремительная сила и центростремительное ускорение
Ускорение свободного падения


Download Article


Download Article

Gravity is one of the fundamental forces of physics. The most important aspect of gravity is that it is universal: all objects have a gravitational force that attracts other objects to them.[1]
The force of gravity acting on any object is dependent upon the masses of both objects and the distance between them.[2]

  1. Image titled Calculate Force of Gravity Step 1

    1

    Define the equation for the force of gravity that attracts an object, Fgrav = (Gm1m2)/d2.[3]
    In order to properly calculate the gravitational force on an object, this equation takes into account the masses of both objects and how far apart the objects are from each other. The variables are defined below.

    • Fgrav is the force due to gravity
    • G is the universal gravitation constant 6.673 x 10-11 Nm2/kg2[4]
    • m1 is the mass of the first object
    • m2 is the mass of the second object
    • d is the distance between the centers of two objects
    • Sometimes you will see the letter r instead of the letter d. Both symbols represent the distance between the two objects.
  2. Image titled Calculate Force of Gravity Step 2

    2

    Use the proper metric units. For this particular equation, you must use metric units. The masses of objects need to be in kilograms (kg) and the distance needs to be in meters (m). You must convert to these units before continuing with the calculation.

    Advertisement

  3. Image titled Calculate Force of Gravity Step 3

    3

    Determine the mass of the object in question. For smaller objects, you can weigh them on a scale or balance to determine their weight in grams. For larger objects, you will have to look-up the approximate mass in a table or online. In physics problems, the mass of the object will generally be provided to you.[5]

  4. Image titled Calculate Force of Gravity Step 4

    4

    Measure the distance between the two objects. If you are trying to calculate the force of gravity between an object and the earth, you need to determine how far away the object is from the center of the earth.[6]

    • The distance from the surface of the earth to the center is approximately 6.38 x 106 m.[7]
    • You can find tables and other resources online that will provide you with approximate distances of the center of the earth to objects at various elevations on the surface.[8]
  5. Image titled Calculate Force of Gravity Step 5

    5

    Solve the equation. Once you have defined the variables of your equation, you can plug them in and solve. Be sure that all of your units are in metric and on the right scale. Mass should be in kilograms and distance in meters. Solve the equation using the proper order of operations.[9]

    • For example: Determine the force of gravity on a 68 kg person on the surface of the earth. The mass of the earth is 5.98 x 1024 kg.[10]
    • Make sure all your variables have the proper units. m1 = 5.98 x 1024 kg, m2 = 68 kg, G = 6.673 x 10-11 Nm2/kg2, and d = 6.38 x 106 m
    • Write your equation: Fgrav = (Gm1m2)/d2 = [(6.67 x 10-11) x 68 x (5.98 x 1024)]/(6.38 x 106)2
    • Multiply the masses of the two objects together. 68 x (5.98 x 1024) = 4.06 x 1026
    • Multiply the product of m1 and m2 by the gravitational constant G. (4.06 x 1026) x (6.67 x 10-11) = 2.708 x 1016
    • Square the distance between the two objects. (6.38 x 106)2 = 4.07 x 1013
    • Divide the product of G x m1 x m2 by the distance squared to find the force of gravity in Newtons (N). 2.708 x 1016/4.07 x 1013 = 665 N
    • The force of gravity is 665 N.
  6. Advertisement

  1. Image titled Calculate Force of Gravity Step 6

    1

    Understand Newton’s Second Law of Motion, F = ma. Newton’s second law of motion states that any object will accelerate when acted upon by a net or unbalanced force.[11]
    In other words, if a force is acting upon an object that is greater than the forces acting in the opposite direction, the object will accelerate in the direction of the larger force.

    • This law can be summed up with the equation F = ma, where F is the force, m is the mass of the object, and a is acceleration.
    • Using this law, we can calculate the force of gravity of any object on the surface of the earth, using the known acceleration due to gravity.
  2. Image titled Calculate Force of Gravity Step 7

    2

    Know the acceleration due to gravity on earth. On earth, the force of gravity causes objects to accelerate at a rate of 9.8 m/s2. On the earth’s surface, we can use the simplified equation Fgrav = mg to calculate the force of gravity.

    • If you want a more exact approximation of force, you can still use the above equation, Fgrav = (GMearthm)/d2 to determine force of gravity.
  3. Image titled Calculate Force of Gravity Step 8

    3

    Use the proper metric units. For this particular equation, you must use metric units. The mass of the object needs to be in kilograms (kg) and the acceleration needs to be in meters per second squared (m/s2). You must convert to these units before continuing with the calculation.

  4. Image titled Calculate Force of Gravity Step 9

    4

    Determine the mass of the object in question. For smaller objects, you can weigh them on a scale or balance to determine its weight in kilograms (kg). For larger objects, you will have to look-up the approximate mass in a table or online. In physics problems, the mass of the object will generally be provided to you.[12]

  5. Image titled Calculate Force of Gravity Step 10

    5

    Solve the equation. Once you have defined the variables of your equation, you can plug them in and solve. Be sure that all of your units are in metric and on the right scale. Mass should be in kilograms and distance in meters. Solve the equation using the proper order of operations.[13]

    • Let’s use the same equation from above and see how close the approximation is. Determine the force of gravity on a 68 kg person on the surface of the earth.
    • Make sure all your variables have the proper units: m = 68 kg, g = 9.8 m/s2.
    • Write your equation. Fgrav = mg = 68*9.8 = 666 N.
    • With F = mg the force of gravity is 666 N, while using the more exact equation yields a force of 665 N. As you can see, these values are almost identical.
  6. Advertisement

Calculator, Practice Problems, and Answers

Add New Question

  • Question

    How do I find the mass of the moon?

    Community Answer

    Check out same steps as mentioned below. But remember gravity on moon is 1/6th of gravity on earth.

  • Question

    A mass of 25 kg weighs 123 Newtons on another planet. What is the gravity on the planet?

    Community Answer

    The “gravity” on the surface of a planet is it’s acceleration (the rate of increase in speed as an object falls). Fg (the force of gravity) is m x g (acceleration of gravity), in m/(s squared), so g is Fg / m = 123 N / 25 kg ~= 4.92 m/(s squared).

  • Question

    How do I find the value of acceleration due to a gravity at a height of 2R from the surface of the earth?

    Community Answer

    If you want to know what the gravity would be when you are 3 earth-radii away from the center of earth, then the gravity would be 1/9th normal gravity. You’re multiplying by 3 on the bottom, so 1/3, but then it’s squared. Acceleration would then be 1.09 meters per second squared.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • These two formulas should give the same result, but the shorter formula is simpler to use when discussing objects on a planet’s surface.

  • You may round off 9.8m/s2 to 10m/s2, to make calculations easier.

  • Use the first formula if you don’t know the acceleration due to gravity on a planet or if you’re determining the force of gravity between two very large objects such as a moon and a planet.

Advertisement

References

About This Article

Article SummaryX

To calculate the force of gravity of an object, use the formula: force of gravity = mg, where m is the mass of the object and g is the acceleration of the object due to gravity. Since g is always 9.8 m/s^2, just multiply the object’s mass by 9.8 and you’ll get its force of gravity! If you want to learn how to calculate the force of gravity between 2 objects, keep reading the article!

Did this summary help you?

Thanks to all authors for creating a page that has been read 621,247 times.

Reader Success Stories

  • Ezekiel Ishaya

    Ezekiel Ishaya

    Mar 1, 2019

    “It was great! It clears the doubt, and all those examples were very helpful.”

Did this article help you?

Добавить комментарий