Как найти силу реакции опоры блока

Как определить реакции в опорах?

Привет! В этой статье, предлагаю поговорить о реакциях опор, еще известных как опорные реакции. Для успешного освоения курса – «сопротивление материалов», каждый студент должен уметь определять реакции в опорах, и этому уделяют особое внимание на термехе. А курс термеха, по традиции, читают до сопромата. Для тех, кто проспал механику на первом курсе, я подготовил данную статью, чтобы каждый желающий мог приобрести навыки по расчету опорных реакций.

Что такое реакция опоры?

Реакция опоры – это та сила, которая возникает в опоре от действия внешней нагрузки. В зависимости от конструкции опоры и ее назначения, в ней может появляться разное количество реакций, это может быть как сила, так и момент.

В начале этой статьи, расскажу о том, что должен уже уметь читатель, для успешного освоения данного урока. Если у Вас есть проблемы по поднятым вопросам на старте статьи, переходите по ссылкам на другие материалы на нашем сайте, после чего возвращайтесь к нам на чай реакции. Во второй части статьи, посмотрим, как вычисляются реакции на простейшем примере – балки, загруженной по центру сосредоточенной силой. Тут я покажу, как пользоваться уравнениями равновесия статики, как их правильно составлять. Дальше по плану, научу учитывать распределенную нагрузку, на примере той же балки. И завершать данный урок, будет пример определения реакций для плоской рамы, загруженной всевозможными типами нагрузок. Где применим уже все фишки, о которых я буду рассказывать по ходу урока. Что же, давайте начнем разбираться с реакциями!

Что вы должны уже уметь?

В этом блоке статье, я расскажу, как и обещал, что Вы должны УЖЕ уметь, чтобы понять то, что я буду докладывать дальше, про реакции опор.

Должны уметь находить сумму проекций сил

Да, это то, что Вам когда-то рассказывали на термехе, как собственно, и опорные реакции. Если Вы шарите немного в этих проекциях, то можете смело переходить к следующему пункту. Если же нет, то специально на этот случай, у меня есть другая статья, про проекции сил. Переходите, просвещайтесь, после чего, обязательно, возвращайтесь сюда!

Должны уметь составлять сумму моментов относительно точки

Немного теории! Познакомимся для начала с самим понятием момент силы. Момент силы — это произведение силы на плечо. Где плечо — это кратчайшее расстояние от точки до силы, то есть перпендикуляр. Проиллюстрирую написанное:

На изображении показано, как определить момент силы F, относительно точки O.

Так же, для моментов, нужно задаться каким-то правилом знаков. Сила относительно точки может поворачивать как по часовой стрелке, так и против нее. Я в своих уроках буду придерживаться такого правила:

  • Если сила относительно точки крутит ПРОТИВ часовой стрелке, то момент положительный.
  • Если она крутит ПО часовой стрелки, то соответственно момент отрицательный.

Причем, это правило условно! Какое правило Вы будете использовать совсем не важно, результат получите тот же самый. В теоретической механике, к примеру, делают также как я рассказываю.

Должны разбираться в основных видах опор

Теперь поговорим о самих опорах. В этой статье, будем работать с двумя типами опор: шарнирно-подвижной и шарнирно-неподвижной.

Шарнирно-подвижная опора препятствует вертикальному перемещению элементу конструкции, в связи с чем, в ней, под действием внешней нагрузки возникает вертикальная реакция. Обозначают ее обычно как Ri, где i — точка крепления опоры.

Шарнирно-неподвижная опора имеет две реакции: вертикальную и горизонтальную. Так как препятствует перемещению в этих двух направлениях.

Вообще-то способов закрепления элементов конструкций и их условных обозначений достаточно много, но в рамках этой статьи их рассматривать не будем.

Примеры определения сил реакций опор

Вроде, всю подготовительную информацию дал, теперь будем рассматривать конкретные примеры. И начнем с простейшей расчетной схемы балки.

Определение реакций опор для балки

Возьмем балку на двух опорах, длиной 2 метра. Загрузим ее, посередине пролета, сосредоточенной силой:

Для этой расчетной схемы, выгодно записать такое условие равновесия:
То есть, будем составлять две суммы моментов относительно опорных точек, из которых можно сразу выразить реакции в опорах. В шарнирно-неподвижной опоре горизонтальная реакция будет равна нулю, ввиду того, что горизонтальные силы отсутствуют. Последним уравнением, взяв сумму проекций на вертикальную ось, сможем проверить правильность нахождения опорных реакций, это сумма должна быть равна нулю.

Введем систему координат, пустим ось х вдоль балки, а ось y вертикально. Обозначим реакции в опорах как RA и RB:

Запишем уравнение моментов, относительно точки А. Сила F поворачивает ПО часовой стрелки, записываем ее со знаком МИНУС и умножаем на плечо. Сила RB поворачивает ПРОТИВ часовой стрелки, пишем ее со знаком ПЛЮС и умножаем на плечо. Все это приравниваем к нулю:

Из полученного уравнения выражаем реакцию RB.

Первая реакция найдена! Вторая реакция находится аналогично, только теперь уравнение моментов записываем относительно другой точки:

После нахождения реакций, делаем проверку:

Определение реакций опор для балки с распределенной нагрузкой

Теперь рассмотрим балку, загруженную распределенной нагрузкой:


Перед тем как посчитать реакции опор, распределенную нагрузку нужно свернуть до сосредоточенной силы. Если умножить интенсивность q на длину участка, на которой действует нагрузка, получим силу Q. Сила Q будет находиться ровно посередине балки, как и сила F в нашем первом примере:

Подробно комментировать нахождение реакций в опорах здесь, не буду. Просто приведу решение:

Определение опорных реакций для плоской рамы

Теперь, после освоения азов по расчету реакций, предлагаю выполнить расчет плоской рамы. Для примера, возьмем раму, загруженную всевозможными видами нагрузок:

Проводим ряд действий с расчетной схемой рамы:

  • заменяем опоры на реакции;
  • сворачиваем распределенную нагрузку до сосредоточенной силы;
  • вводим глобальную систему координат x и y.

Для такой расчетной схемы, лучше использовать следующую форму условий равновесия:

Составив первое уравнение, относительно точки A, сразу найдем реакцию в опоре B:

Записав второе уравнение, сумму проекций на ось х, найдем горизонтальную реакцию HA:

И, наконец, третье уравнение, позволит найти реакцию RA:

Не пугайтесь отрицательного значения реакции! Это значит, что при отбрасывании опоры, мы не угадали с направлением этой силы.

Расчет же показал, что RA, направленна в другую сторону:

В итоге, получили следующие реакции в опорах рамы:

Осталось проверить наши расчеты! Для этого предлагаю записать уравнение моментов, относительно точки B. И если, эта сумму будет равна нулю, то расчет выполнен верно:

Как видим, расчет реакций выполнен правильно!

На этом заканчиваю данный урок. Если у Вас остались какие-то вопросы по нахождению опорных реакций, смело задавайте их в комментариях к этой статье. Обязательно на все отвечу!

Спасибо за внимание! Если понравилась данная статья, расскажите о ней своим одногруппникам, не жадничайте 🙂

Также рекомендую подписаться на наши соц. сети, чтобы быть в курсе обновлений материалов проекта.

Как определить реакции опор или найти опорные реакции: для балки или рамы

Что такое реакция опоры или опорная реакция?

Реакция опоры или опорная реакция – это силовой фактор, возникающий в опоре, от действия на конструкцию внешней нагрузки. В опорах, как правило, возникают реактивные силы, которые для удобства ручного расчета раскладываются на две составляющие: вертикальную и горизонтальную проекции. В жестких заделках, которые ограничивают все степени свободы конструкций, в том числе поворот сечений, также могут появляться реактивные моменты.

Зачем определять реакции опор?

На элементы конструкций всегда наложены какие-то связи, в виде опор, жестких заделок, стержней, которые ограничивают степени свободы конструкций. Под действием внешней нагрузки в этих связях возникают реакции. И эти реакции опор нужно обязательно учитывать при расчетах на прочность, жесткость и т. д., так как они являются внешними нагрузками. Практически любая задача по сопромату начинается с нахождения реакций связей, именно поэтому статья будет одной из первых на этом сайте.

Пример определения опорных реакций для балки

Давайте рассмотрим пример, на котором я покажу как определяются реакции опор. Причем, постараюсь объяснить максимально просто, буквально на пальцах.

Возьмем простую балку, загруженную сосредоточенной силой F, под действием которой в опорах появляются реакции RA и RB. Также сразу вводим систему координат x, y:

Чтобы узнать численное значение эти реакций, воспользуемся первой формой уравнений равновесия:

Первое уравнение равновесия

Записываем первое уравнение. Так как оси x не параллельна ни одна из сил, то соответственно сумма проекций сил на эту ось будет равна нулю:

Таким будет первое уравнение для этой расчетной схемы.

Второе уравнение равновесия

Второе уравнение, связанно с проекциями на вертикальную ось. Здесь все намного лучше, все силы параллельны этой оси, а значит дадут проекции. Вопрос только с каким знаком, каждая сила пойдет в уравнение. Если направление силы, совпадает с направлением оси, то в уравнение она пойдет со знаком «плюс» (RA и RB). Если же сила направленна в противоположную сторону, как F, в нашем случае, то в уравнении будем записывать ее с минусом. Таким образом, получим второе уравнение равновесия:

Как видите, во втором уравнении у нас находится 2 неизвестные реакции. Чтобы, наконец, решить задачу, давайте запишем третье уравнение равновесия.

Третье уравнение равновесия

Это уравнение отличается от первых двух, так как тут речь идет о моментах. Напомню, момент – это произведение силы на плечо. В свою очередь, плечо – это перпендикуляр, опущенный от центра момента до линии действия силы. То есть это кратчайшее расстояние от центра момента до силы. В качестве центра моментов у нас назначена точка A, по условию сумма моментов всех сил должна быть равна нулю относительно этой точки.

Начинаем рассуждать и записывать уравнение. Реакция RA не дает момента, относительно точки А, так как линия действия этой силы пересекает эту точку и соответственно плечо равно нулю. А там, где нет плеча, нет и момента.

Сила F, относительно точки А, создает момент равный:

Обратите внимание, плечо в данном случае равно 2 метрам. Кроме того, важен знак момента, для этого традиционно используется правило, которое продвинутым студентам известно еще с теоретической механики:

  • Если сила, относительно произвольного центра, поворачивает ПРОТИВ часовой стрелки, то момент силы положительный;
  • Если сила, относительно произвольного центра, поворачивает ПО часовой стрелке, то момент силы отрицательный.

Для силы F, как видите, момент отрицательный:

Реакция опоры — RB, создает момент равный RB · 4, так как сила поворачивает против часовой стрелки, то в уравнение записываем его со знаком плюс:

Вычисление реакций опор

Вот собственно и все, все уравнения составлены. Теперь осталось только решить их и найти искомые значения реакций опор (F=2 кН):

В этой статье, мы рассмотрели достаточно простой пример. Если вы хотите развить свои навыки по определению реакций опор, узнать различные хитрости по их нахождению, научится определять реакции, когда на конструкцию действуют силы под различными углами, учитывать в уравнениях сосредоточенные моменты и распределенную нагрузку, приступайте к изучению статьи – как определить реакции опор для балки.

Определение реакций опор балки – решение задачи

Как определить реакции опор балки

Пример решения задачи на определение реакций опор балки

Жесткая балка, линейные размеры которой указаны на рисунке 1, закреплена в точках А и В. На балку действуют пара сил с моментом М, равномерно распределенная нагрузка интенсивностью q и две силы P и G, место приложения которых показано на рисунке.
Определить реакции опор балки в точках A и B, вызываемые указанными нагрузками.

Дано:
P = 20,2 Н ; G = 22,6 Н ; q = 2 Н/м ; M = 42,8 Н·м ; a = 1,3 м ; b = 3,9 м ; α = 45° ;

Решение задачи

Проводим оси x и y системы координат. Начало системы координат поместим в точку A . Ось x направим горизонтально, вдоль балки. Ось y – вертикально. Ось z перпендикулярна плоскости рисунка и направлена на нас. На рисунке она не указана.

Силы, действующие на балку.

Отбрасываем опоры и заменяем их силами реакций.
В шарнире A , разложим силу реакции на составляющие и вдоль осей координат.
Реакция , в подвижной опоре на катках, направлена вертикально. Предполагаемые направления реакций опор выбираем по своему усмотрению, наугад. Если ошибемся с направлением реакции, то получим отрицательное значение, что будет говорить о том, что соответствующая сила реакции направлена в противоположную сторону.

Заменим равномерно распределенную нагрузку q равнодействующей . Абсолютное значение равнодействующей равно площади эпюры:
Н .
Точка приложения равнодействующей находится в центре тяжести эпюры. Поскольку эпюра представляет собой прямоугольник, то ее центр тяжести находится в точке C – посередине отрезка AD :
AC = CD = b/2 = 1,95 м .

Уравнения равновесия для сил

Определяем проекции сил на оси координат.

Разложим силу на составляющие вдоль координатных осей:
.
Абсолютные значения составляющих:
.
Вектор параллелен оси x и направлен в противоположную от нее сторону. Вектор параллелен оси y и также направлен в противоположную сторону. Поэтому проекции силы на оси координат имеют следующие значения:
.

Остальные силы параллельны осям координат. Поэтому они имеют следующие проекции:
;
;
;
;
.

Составляем уравнения равновесия для сил.
Сумма проекций всех сил на ось x равна нулю:
;
;
;
(П1) .

Сумма проекций всех сил на ось y равна нулю:
;
;
;
(П2) .

Уравнения равновесия для моментов

Итак, мы уже составили два уравнения для сил: (П1) и (П2). Но в них есть три неизвестные величины: , и . Чтобы их определить, нам нужно составить еще одно уравнение.

Составим уравнение равновесия для моментов сил. Для этого нам нужно выбрать ось, относительно которой мы будем вычислять моменты. В качестве такой оси возьмем ось, проходящую через точку A , перпендикулярно плоскости рисунка. За положительное направление выберем то, которое направлено на нас. Тогда, по правилу правого винта, положительным направлением закручивания будет направление против часовой стрелки.

Находим моменты сил относительно выбранной оси.
Силы , и пересекают ось. Поэтому их моменты равны нулю:
; ; .

Сила перпендикулярна плечу AB . Ее момент:
.
Поскольку, относительно оси A , сила направлена против часовой стрелки, то ее момент положительный.

Сила перпендикулярна плечу AK . Поскольку, относительно оси A , эта сила направлена по часовой стрелки, то ее момент имеет отрицательное значение:
.

Аналогичным способом находим моменты остальных сил:
;
.
Момент от пары сил M не зависит от точек приложения сил, входящих в пару:
.

Составляем уравнение равновесия. Сумма моментов сил относительно оси A равна нулю:
;

;
;
(П3) .

Решение уравнений равновесия

Итак, для трех неизвестных величин, мы получили три уравнения:
(П1) .
(П2) .
(П3) .

Решаем эти уравнения. Вычисляем расстояния.
м;
м;
м;
м.

Из уравнения (П1) находим:
Н.
Из уравнения (П3) находим:

Н.
Из уравнения (П2) имеем:
Н.
Абсолютное значение реакции опоры в точке A :
Н.

Проверка правильности решения

Чтобы проверить, правильно ли мы определили реакции опор балки, найдем сумму моментов сил относительно другой оси. Если мы нашли реакции правильно, то она должна равняться нулю.

Возьмем ось, проходящую через точку E . Вычисляем сумму моментов сил относительно этой оси:

.
Найдем погрешность вычисления суммы моментов. Найденные силы мы округлили до двух знаков после запятой. То есть погрешность определения реакций опор составляет 0,01 Н . Расстояния, по порядку величины, примерно равны 10 м. Тогда погрешность вычисления суммы моментов составляет около 10·0,01 = 0,1 Нм . Мы получили значение -0,03 Нм . Эта величина отличается от нуля не более, чем на величину погрешности. То есть, с учетом погрешности вычислений, сумма моментов относительно другой оси равна нулю. Значит решение правильное, силы реакций найдены верно.

Второй способ решения

Первым способом мы составили два уравнения для сил и одно – для моментов. Задачу можно решить другим способом, составив два уравнения для моментов и одно для сил.

Воспользуемся тем, что сумма моментов сил равна нулю относительно любой оси. Возьмем вторую ось, которая проходит через точку B перпендикулярно плоскости рисунка. Сумма моментов сил относительно этой равна нулю:
.
Вычисляем моменты сил относительно оси B .
; ; ;
;
;
;
;
.

Сумма моментов сил относительно оси B равна нулю:
;

;
;
(П4) ;

Итак, вторым способом, мы также имеем три уравнения:
(П1) .
(П3) ;
(П4) .

Здесь каждое уравнение содержит только одну неизвестную величину. Реакции и определяются из тех же уравнений, что и ранее. Находим силу из уравнения (П4):

Н.

Значение реакции совпало со значением, полученным первым способом из уравнения (П2).

Автор: Олег Одинцов . Опубликовано: 14-10-2017 Изменено: 28-12-2021

[spoiler title=”источники:”]

http://sopromats.ru/sopromat/opredelenie-reaktsiy-opor/

http://1cov-edu.ru/mehanika/statika/opredelenie-reaktsij-opor-balki/

[/spoiler]

Библиографическое описание:


Шумейко, А. В. Силы, действующие в простом механизме блок / А. В. Шумейко, О. Г. Веташенко. — Текст : непосредственный // Юный ученый. — 2020. — № 2 (32). — С. 38-42. — URL: https://moluch.ru/young/archive/32/1875/ (дата обращения: 19.05.2023).




В учебниках физики для 7 класса при изложении материала о подъёме груза простым механизмом блок авторы учебников рассматривают разное количество сил, действующих на блок или трос. Для выяснения, что за силы и на какие предметы они действуют в простом механизме блок при подъёме груза, и написана эта статья.



Ключевые слова:



неподвижный блок, подвижный блок, сила упругости троса, сила трения.

В учебнике физики для 7 класса автора А. В. Пёрышкина на рис.177 нарисован подъём груза простым механизмом неподвижный блок и на рис.178 силы

F



1


и

F



2


действуют на блок в точках

А

и

В

, а в учебнике О. Ф. Кабардина на рис.22.3 нарисован неподвижный блок, с тросом и сила

F

действует на трос, а сила тяжести

mg

действует на груз.

То же самое происходит и в изложении материала о подвижном блоке: в учебнике А. В. Пёрышкина рис.179, на блок действуют две силы

Р

и

F

рис.180, а в учебнике О. Ф. Кабардина на том же самом подвижном блоке три силы: сила тяжести

mg

на грузе и две силы

F

натяжения троса рис.22.4.

Выяснение сил, действующих в простом механизме блок, начнём с неподвижного блока, изображенного на рис.1. Груз висит на одном из концов троса, далее трос огибает верхнюю полуокружность блока и за второй конец троса происходит подъём груза. На груз действует сила притяжения Земли

F



тяж г


, которая направлена вертикально вниз. Под действием силы тяжести груза в тросу возникает сила упругости

F



упр т


, направленная по тросу и одинаковая по всей длине троса рис.2.

Рис.2. Рис.3. Рис.4.

Рис.1. Рис.2. Рис.3. Рис.4.

На рис.3 трос огибает верхнюю полуокружность блока и по всей длине этой полуокружности действуют силы тяжести: груза и троса, а также сила необходимая для подъёма груза. При сложении всех этих параллельных сил равнодействующая сила тяжести

F



тяж б






приложена к центру блока и направлена вертикально вниз, одновременно создавая силу упругости обоймы блока

F



упр б



,

направленную по обойме блока вверх. На рис.4, при подъёме груза, трос движется по верхней полуокружности вращая блок и создавая силу трения скольжения

F



тр


между тросом и блоком.

На рис.5 для определения силы, необходимой для поднятия груза, уберём силу тяжести блока

F



тяж б






и силу упругости блока

F



упр б


, так как они не влияют на величину силы поднятия груза

.

Остались три силы: сила тяжести груза

F



тяж г


, сила упругости троса

F



упр т






и сила трения

F



тр


. Вспомним, что в покое или при равномерном подъёме сила упругости троса равна силе тяжести груза

F



упр т



=


F



тяж г


, а сила трения

F



тр


препятствует подъёму. Поэтому для равномерного подъёма груза необходима сила

F



п,


равная сумме сил упругости троса и силы трения

F



п



=


F



упр т


+

F



тр


. Это равенство справедливо для поднятия груза

полной силой

, а на рис.142 в Элементарном учебнике физики под редакцией академика Л. Г. Ландсберга маляры и альпинисты поднимают себя

половинной силой

.

Рис. 142Рис. 6Рис. 7

Рис. 5.Рис. 142Рис. 6Рис. 7

На рис.142 человек сидит на сидении, которое прикреплено к тросу, огибающему верхнюю часть неподвижного блока, за второй конец троса человек руками поднимает себя. На рис.6 нарисуем действующие силы подъёма человека. Земля притягивает человека, поэтому на сидение действует половина веса тела человека

Р



ч,


вторая половина веса приходится на руки, которые производят подъём человека. Под действием деления веса человека в тросу возникают силы упругости

F



упр



1

и

F



упр



2

, каждая из которых будет в 2 раза меньше веса человека

F



упр


=


Р



ч.


Наглядно это можно представить как на рис.7, груз поднимают за два независимых троса, и вес груза разделится между тросами, и сила упругости каждого троса будет в два раза меньше веса груза.

F



упр


=


Р



г



.

Подведём итог по силам, действующим на неподвижном блоке:

  1. Сила необходимая для подъёма груза на неподвижном блоке равна сумме силы упругости троса и силе трения

    F



    п



    =


    F



    упр



    +


    F



    тр



    .
  2. Величина силы упругости троса зависит от способа крепления поднимаемого груза. Если груз закреплён за один из концов троса (за одну ветвь троса) то сила упругости равна весу груза

    F



    упр



    = Р



    г


    , а если груз закреплён за оба конца троса (за две ветви троса) то сила упругости равна половине веса груза

    F



    упр


    =


    Р



    г



    . Выигрыш в


    силе в 2 раза при подъёме груза



    половинной силой



    с


    помощью неподвижного блока даёт трос, а


    не неподвижный блок.

  3. На рис.178 неподвижный блок нельзя рассматривать как равноплечий рычаг из-за того, что при изменении направления действия силы

    F



    2


    меняется длина рычага

    ОВ

    на рис.8 (видоизменённом рис.178).

Рис. 8.

Рис. 178.Рис. 8.

Рассмотрим силы, действующие на подвижный блок рис.9. Груз висит на подвижном блоке, который своей нижней полуокружностью висит на тросу, один конец этого троса закреплён, а подъём подвижного блока с грузом происходит за второй конец троса. На рис.10 обозначим действующие силы на подвижный блок: Земля притягивает груз висящий на подвижном блоке и поэтому в центре подвижного блока действует сила веса груза

Р



г,


а на концах троса силы упругости

F



упр



1

и

F



упр



2

, каждая из которых в 2 раза меньше веса груза из-за того, что вес груза распределился поровну между концами (ветвями) троса, как будто груз висит на двух отдельных тросах рис.11.

Рис.10.Рис.11.Рис.12.

Рис. 9.Рис.10.Рис.11.Рис.12.

При подъёме груза блок будет вращаться и создавать силу трения скольжения между подвижным блоком и тросом рис.12, из которого видно, что поднимая груз за один конец троса мы прикладываем силу упругости (которая в 2 раза меньше веса груза) и силу трения

F



п



=


F



упр



2 +


F



тр



. Выигрыш в


силе в 2 раза даёт трос, а


не подвижный блок

и это можно проверить с помощью рис.181 из учебника А. В. Пёрышкина, на котором нарисован неподвижный блок, который не даёт выигрыша в силе и подвижный блок — дающий выигрыш в силе в 2 раза.

Общий выигрыш в


силе этой


комбинации блоков при подъёме груза 2 раза.

Выигрыш в силе 2 разаРис.13 (изменённый рис.181). Выигрыш в силе 3 раза.

Рис.181. Выигрыш в силе 2 разаРис.13 (изменённый рис.181). Выигрыш в силе 3 раза.

Если в этот рисунок добавить еще один неподвижный блок (не дающий выигрыш в силе) и закрепить конец троса за груз рис.13 (изменённый рис.181),

то выигрыш в


силе данной комбинации блоков при подъёме груза будет равен трем, потому что вес груза разделится на три части, так как висит на трёх частях (ветвях) троса.

Отсюда следует, что доказательство в учебнике А. В. Пёрышкина о том, что неподвижный блок не даёт выигрыша в силе, а подвижный блок даёт выигрыш в силе является ошибочным, так как

выигрыш в


силе при подъёме груза на простом механизме блок даёт сила упругости троса (верёвки, цепи), а


модуль выигрыша равен количеству частей (ветвей) троса, на которых висит груз, так как вес груза делится на их количество.

Литература:

  1. Кабардин О. Ф. Физика. 7 класс: учеб. для общеобразоват. организаций /О. Ф. Кабардин, — 6-е изд. — М.: Просвещение, 2018, — 174 с.: ил. — ISBN 978–5–09–060739–1.
  2. Ландсберг Г. С.(ред). Элементарный учебник физики, том 1. Механика. Теплота. Молекулярная физика. М. Наука 1985 г.
  3. Пёрышкин А. В. Физика 7 кл.; учебник / А. В. Пёрышкин, — 9-е изд., пер. — М.: Дрофа, 2019, — 224 с.: ил. ISВN 978–5–358–09796–4.

Основные термины (генерируются автоматически): неподвижный блок, подъем груза, сила, вес груза, трос, конец троса, подвижной блок, подвижный блок, сила трения, сила упругости.

Привет! В этой статье предлагаю поговорить о реакциях опор, еще известных как опорные реакции. Для успешного освоения курса – «сопротивление материалов», каждый студент должен уметь определять реакции опор, чему учат еще в рамках дисциплины — «теоретическая механика». Но для тех, кто проспал механику на первом курсе, я подготовил данную статью, чтобы каждый желающий мог приобрести навыки по расчету опорных реакций.

Так как этот урок для чайников, я многие моменты буду упрощать и рассказывать только самое основное, чтобы написанное здесь, было понятно даже самому неподготовленному студенту — заочнику.

В рамках статьи рассмотрим 4 примера: двухопорная балка, загруженная посередине пролёта сосредоточенной силой, такая же балка, но загруженная распределённой нагрузкой, консольная балка и плоская рама.

Что такое реакция опоры?

Чтобы лучше понять, что такое реакция опоры (опорная реакция), давай рассмотрим следующий пример — балку (стержень) лежащую на опорах:

Схема, демонстрирующая схему балки (стержня) и опоры

На балку давит нагрузка – сила, в свою очередь, балка давит на опоры. И чтобы балка лежала на опорах (никуда не проваливалась), опоры выполняют свою основную функцию — удерживают балку. А чтобы удерживать балку, опоры должны компенсировать тот вес, с которым балка давит на них. Соответственно, действие опор можно представить в виде некоторых сил, так называемых — реакций опор.

Возникшие реакции в опорах балки под нагрузкой

Для балки, и нагрузка, и реакции опор, будут являться внешними силами, которые нужно обязательно учитывать при расчёте балки. А чтобы учесть опорные реакции, сначала нужно научиться определять их, чем, собственно, и займёмся на этом уроке.

Виды связей и их реакции

Связи – это способы закрепления элементов конструкций. Опоры, которые я уже показывал ранее – это тоже связи.

 В этой статье будем рассматривать три вида связей: жёсткая заделка, шарнирно-подвижная и шарнирно-неподвижная опора.

Жёсткая заделка

Схема жёсткой заделки

Жёсткая заделка — это один из вариантов закрепления элементов конструкций. Этот тип связи препятствует любым перемещениям, тем самым для плоской задачи, может возникать три реакции: вертикальная (RA), горизонтальная (HA) и момент (MA).

Реакции жёсткой заделки

Шарнирно-подвижная и шарнирно-неподвижная опора

В этой статье будем работать с двумя типами опор: шарнирно-подвижной и шарнирно-неподвижной.

Схема шарнирно-подвижной и шарнирно-неподвижной опоры

В шарнирно-неподвижной опоре возникает две реакции: вертикальная и горизонтальная. Так как опора препятствует перемещению в этих двух направлениях. В шарнирно-подвижной опоре возникает только вертикальная реакция.

Реакции в шарнирно-подвижной и шарнирно-неподвижной опоре

Однако, видов связей и их условных обозначений достаточно много, но в рамках этой статьи их все рассматривать не будем. Так как, изученные ранее виды связей, являются основными и практически всегда, при решении задач по сопромату, ты будешь сталкиваться именно с ними.

Что такое момент силы?

Также необходимо разобраться с понятием момент силы.

Момент силы — это произведение силы на плечо. Где плечо — это кратчайшее расстояние от точки до силы, то есть перпендикуляр.

Проиллюстрирую написанное:

Схема для нахождения момента силы
На изображении показано, как определить момент силы F, относительно точки O.

Правило знаков для моментов

Также для моментов, нужно задаться каким-то правилом знаков. Я в своих уроках буду придерживаться такого правила:

  • если сила относительно точки стремится повернуть ПРОТИВ часовой стрелки, то момент положительный;
  • если она стремится повернуть ПО часовой стрелке, то момент отрицательный.
Правило знаков для моментов

Всю подготовительную информацию дал, теперь будем рассматривать конкретные примеры. И начнём с простейшей расчётной схемы балки.

Определение реакций для двухопорной балки

Возьмём балку, загруженную посередине сосредоточенной силой и опирающейся на шарнирно-неподвижную и шарнирно-подвижную опору:

Расчётная схема балки, загруженная распределённой нагрузкой

Введём систему координат: направим ось x вдоль балки, а ось y вертикально. Обозначим реакции в опорах как HA, RA и RB:

Указание координатных осей для схемы балки

Для тех, кто пришёл сюда, ещё будучи на этапе изучения теоретической механики, а я знаю, таких будет много, важно отметить, что в сопромате не принято указывать знаки векторов над силами.

В термехе же, в обязательном порядке, преподаватель от тебя настойчиво будет требовать указывать знак вектора над всеми силами, вот так:

Обозначение векторов

Условия равновесия системы

Чтобы найти все реакции, нужно составить и решить три уравнения — уравнения равновесия:

Условия равновесия

Данные уравнения являются условиями равновесия системы. А так как мы предполагаем, что опоры обеспечивают это состояние равновесия (удерживают балку). То составив и решив уравнения равновесия — найдём значения опорных реакций.

Первое уравнение называется уравнением проекций — суммой проекций всех сил на координатную ось, которая должна быть равна нулю. Два других уравнения называются уравнениями моментов — суммами моментов всех сил относительно точек, которые должны быть равны нулю.

Уравнения равновесия

Как видишь, чтобы научиться находить реакции опор, главное — научиться правильно составлять уравнения равновесия.

Расчётная схема для определения реакций

Уравнение проекций

Запишем первое уравнение — уравнение проекций для оси x.

В уравнении будут участвовать только те силы, которые параллельны оси x. Такая сила у нас только одна — HA. Так как HA направлена против положительного направления оси x, в уравнение её нужно записать с минусом:

Тогда HA будет равна:

Поздравляю, первая реакция найдена!

Уравнения моментов

А теперь самое интересное…запишем уравнение моментов, относительно точки A, с учётом ранее рассмотренного правила знаков для моментов.

Так как сила F поворачивает ПО часовой стрелке, записываем её со знаком «МИНУС» и умножаем на плечо.

Так как сила RB поворачивает ПРОТИВ часовой стрелки, пишем её со знаком «ПЛЮС» и умножаем на плечо. И, наконец, всё это приравниваем к нулю:

Из полученного уравнения выражаем реакцию RB:

Вторая реакция найдена! Третья реакция находится аналогично, но только теперь уравнение моментов записываем относительно другой точки:

Проверка правильности найденных опорных реакций

Чем хороши задачи на определение реакций, так это тем, что правильность расчёта реакций легко проверить. Для этого достаточно составить дополнительное уравнение равновесия, подставить все численные значения и если сумма проекций сил или сумма моментов будет равна нулю, то и реакции, значит, найдены — верно, а если нет, то ищем ошибку.

Составим дополнительное уравнение проекций для оси y и подставим все численные значения:

Как видишь, реакции опор найдены правильно.

Определение реакций опор для балки с распределенной нагрузкой

Теперь рассмотрим балку, загруженную распределенной нагрузкой:

Схема балки, загруженная распределённой нагрузкой

Перед тем как посчитать реакции опор, распределенную нагрузку нужно «свернуть» до сосредоточенной силы. Если умножить интенсивность q на длину участка, на которой действует нагрузка, получим силу Q. Сила Q будет находиться ровно посередине балки, как и сила F в нашем первом примере:

Сворачивание распределённой нагрузки до сосредоточенной силы

Подробно комментировать нахождение реакций в опорах здесь, не буду. Просто приведу решение:

Обозначение реакций в опорах и координатных осей
Условия равновесия для балки

Расчёт реакций для консольной балки

Давай рассмотрим теперь пример с жёсткой заделкой – консольную балку. Заодно посмотрим, как учесть силу, приложенную под углом (α = 30°).

Консольная балка, загруженная распределённой нагрузкой и силой под определённым углом

Силу, направленную под определённым углом, нужно разложить на две составляющие – горизонтальную и вертикальную. А их значения найти из силового треугольника:

Раскладывание сил на составляющие и силовой треугольник

Покажем реакции в заделке и выполним расчёт:

Обозначение реакций, сил и координатных осей для консольной балки

Для этой задачи выгоднее использовать другую форму условий равновесия:

А выгодна она тем, что из каждого записанного уравнения будем сразу находить реакцию:

Не пугайся отрицательного значения реакции! Это значит, что при указании реакции, мы не угадали с её направлением. Расчёт же показал, что MA, направлена не по часовой стрелке, а против.

В теоретической механике, когда реакции получают с «минусом» обычно не заморачиваются и не меняют их направление на схеме, так и оставляют в ответе отрицательное значение, оговаривая, что да реакция найдена, но с учётом знака, на самом деле направлена в другую сторону. Потому что найденные реакции в задачах на статику, являются конечной точкой расчёта.

У нас же, в сопромате после нахождения опорных реакций, всё только начинается. Найдя реакции, мы всего лишь находим ВСЕ силы действующие на элемент конструкции, а дальше по сценарию стоит задача определить внутренние усилия, возникающие в этом элементе, расчёты на прочность и т. д. Поэтому на схеме, обязательно следует указывать истинное направление реакций. Чтобы потом, когда будут рассчитываться внутренние усилия ничего не напутать со знаками.

Если получили отрицательное значение, нужно отразить это на схеме:

Изменение направления реактивного момента

С учётом изменений на схеме реакция будет равна:

Сделаем проверку, составив уравнение равновесие, ещё не использованное – сумму моментов относительно, скажем, точки B, которая, при правильном расчёте, конечно, должна быть равна нулю:

Если не менять направление реакции, то в проверочном уравнении нужно учесть этот «минус»:

Можешь посмотреть еще один пример, с похожей схемой, для закрепления материала, так сказать.

Реакции опор для плоской рамы

Теперь предлагаю выполнить расчёт плоской рамы. Для примера возьмём расчётную схему, загруженную всевозможными видами нагрузок:

Расчётная схема плоской рамы

Проводим ряд действий с расчетной схемой рамы:

  • заменяем опоры на реакции;
  • сворачиваем распределенную нагрузку до сосредоточенной силы;
  • вводим систему координат x и y.
Обозначение реакций, сворачивание распределённой нагрузки и введение осей координат

Выполняем расчёт реакций опор:

Меняем направление реакции RA:

Изменение направления опорной реакции

В итоге получили следующие реакции в опорах рамы:

Осталось проверить наши расчеты! Для этого предлагаю записать уравнение моментов, относительно точки B. И если, эта сумма будет равна нулю, то расчет выполнен верно:

Как видим, расчет реакций выполнен правильно!

перейти к содержанию

Документация SkyCiv

Ваш гид по программному обеспечению SkyCiv – учебные пособия, практические руководства и технические статьи

  1. Домой

  2. Учебники

  3. Beam Tutorials

  4. Как определить реакцию опор?

Как определить реакцию опор?


Оглавление

  • Типы поддержек и их реакции
  • Пошаговое руководство по определению опорных реакций в балках
    • Сумма моментов (ΣM = 0)
    • Сумма горизонтальных сил (ΣFу = 0)
  • Программное обеспечение SkyCiv Beam

Типы поддержек и их реакции

Важно также понимать различные типы опор и то, какие реакции они вызывают в вашей модели анализа.. Ниже приведена краткая шпаргалка по различным типам поддержки и их реакциям.:

Тип поддержки Перевод вращение Ноты
Фиксированная поддержка
Фиксируется во всех направлениях
Реакции в X,И,С УЧАСТИЕМ
Фиксируется во всех направлениях
Реакции в X,И,С УЧАСТИЕМ
FFFFFF – Реакции на всех степенях свободы
Горизонтальная роликовая опора
Исправлено в Y
Реакции только в направлении Y
Выпущено во всех направлениях
Отсутствие вращательных реакций
RFFRRR – Реакции идут только в направлении Y
Штифтовая или шарнирная опора
Исправлено в X,И,С УЧАСТИЕМ
Реакции в X,И,С УЧАСТИЕМ
Выпущено во всех направлениях
Отсутствие вращательных реакций
Чтобы определить условие ограничения как – Реакции во всех переводах, нет в ротации
Консольная поддержка
Фиксируется во всех направлениях
Реакции в X,И,С УЧАСТИЕМ
Фиксируется во всех направлениях
Реакции в X,И,С УЧАСТИЕМ
То же, что фиксированный

Пошаговое руководство по определению опорных реакций в балках:

Пошаговое руководство по определению опорных реакций в балках, и это вообще самый простой. Он включает в себя расчет сил реакции на опорах. (поддерживает A и B в приведенном ниже примере) из-за сил, действующих на балку. Вам нужно знать это, чтобы пройти и рассчитать диаграммы изгибающих моментов (ПРО) и диаграммы силы сдвига (ЮФО); важная часть ваших курсов по статике и строению в колледже / университете. SkyCiv предлагает мощный Бесплатный калькулятор реакции что позволяет смоделировать любую балку и показать вам эти ручные расчеты, но это также важная концепция для понимания.

Видеоурок: Определить реакции на опорах.





Решая подобную задачу, мы сначала хотим помнить, что луч статичен.; это означает, что он не движется. Из простой физики, это означает, что сумма сил в направлении y равна нулю. (т.е.. общие силы, направленные вниз, равны общим силам, направленным вверх). Вторая формула, которую следует запомнить, заключается в том, что сумма моментов относительно любой данной точки равна нулю.. Это потому, что луч статичен и поэтому не вращается..

Для определения реакции на опоры, следуйте этим простым шагам:

1. Сумма моментов (ΣM = 0)

Все, что нам нужно знать о моментах на этом этапе, это то, что они равны силе, умноженной на расстояние от точки. (т.е.. сила x расстояние от точки). Рассмотрим простой пример 4-метровой балки с опорой для штифта в точке A и роликовой опорой в точке B.. Схема свободного тела показана ниже, где Aи и Bи вертикальные реакции на опорах:как рассчитывать реакции, определить реакции на опорах

Сначала мы хотим рассмотреть сумму моментов относительно точки B и приравнять ее к нулю.. Мы выбрали точку B, чтобы доказать, что это можно сделать с любого конца балки. (при условии, что это поддерживается штифтом). тем не мение, Вы могли бы так же легко работать из пункта А. Так, теперь суммируем моменты относительно точки B и пусть сумма равна 0:

Учебник по реакциям как рассчитать,	 определить реакции на опорах

ПРИМЕЧАНИЕ: Мы выбрали знаковое соглашение: моменты против часовой стрелки положительны, а моменты по часовой стрелке отрицательны.. Это наиболее распространенное соглашение о знаках, но решать вам. Вы должны ВСЕГДА использовать одно и то же соглашение о знаках во всей задаче.. Всегда используйте одно и то же соглашение о знаках с самого начала. Теперь у нас есть первое уравнение. Нам нужно решить другое уравнение, чтобы найти Bи (сила вертикальной реакции на опоре B).

2. Сумма горизонтальных сил (ΣFи знак равно 0)

Суммируйте силы в y (вертикальный) направления и пусть сумма равна нулю. Не забудьте включить все силы, включая реакции, и нормальные нагрузки, такие как точечные нагрузки.. Итак, если мы суммируем силы в направлении y для приведенного выше примера, мы получаем следующее уравнение:

сумма реакций вертикальных сил, определить реакции на опорах

ПРИМЕЧАНИЕ: Снова мы придерживались соглашения о знаках, которое должно было принимать восходящие силы. (наши реакции) как положительные и нисходящие силы (точечная нагрузка) как отрицательный. Помните, что соглашение о знаках зависит от вас, но вы должны ВСЕГДА использовать одно и то же соглашение о знаках во всей задаче..

Так что у нас это, мы использовали два приведенных выше уравнения (сумма моментов равна нулю, а сумма вертикальных сил равна нулю) и рассчитали, что реакция на опоре A равна 10 кН и реакция на опоре B 10кН. Это имеет смысл, поскольку точечная нагрузка находится прямо посередине балки., это означает, что обе опоры должны иметь одинаковые вертикальные силы (т.е.. это симметрично).

В итоге, вот полный ручные расчеты произведено SkyCiv Beam:

Луч-Программное обеспечение-Ручные расчеты-Реакции, определить реакции на опорах

Программное обеспечение SkyCiv Beam

Через эту статью, вы изучили понятие сил реакции на опорах. Программное обеспечение для анализа лучей SkyCiv позволяет пользователям легко и точно анализировать балочные конструкции. Вы можете получить анализ вашего балочного члена, включая реакции, сдвигающая сила, изгибающий момент, отклонение, подчеркивает, и неопределенные лучи в считанные секунды.

Если вы хотите сначала попробовать, Бесплатный Калькулятор Луча отличный способ начать, или просто зарегистрируйтесь бесплатно сегодня!

Была ли эта статья полезна для вас?

да

Нет

© авторское право 2015-2023. SkyCiv Engineering. ABN: 73 605 703 071

язык

по Transposh - translation plugin for wordpress

Определением реакций опор называют расчет величины и направления реактивных (т.е. ответных) сил и моментов, возникающих в опорах конструкций под действием системы заданных внешних нагрузок.

В рассмотренных ниже примерах, для наглядности, заданные внешние нагрузки показаны синим или зеленым цветом, а реакции опор — красным или оранжевым.

При решении задач, определяемые реакции опор могут обозначаться по разному:

  1. буквой R (от англ. Reaction). В этом случае, для уточнения точки приложения и направления силы могут добавляться соответствующие индексы (например, RAy — это реакция в точке A направленная вдоль оси Y);
  2. буквами V (Vertical) и H (Horizontal) обозначаются соответственно вертикальная и горизонтальная составляющие полной реакции (например, HB — это реакция в точке B направленная вдоль оси балки);
  3. Также возможно обозначение реакций по осям координат — YA, XB и т.д.

Сохранить или поделиться с друзьями

Рассмотрим решение всех типов задач по расчету величины и направления опорных реакций в заделках, шарнирных опорах и стержнях:

Примеры нахождения реакций опор

Примеры нахождения реакций опор для различных способов закрепления и нагружения бруса, балок, рам и других элементов конструкций.

Реакции опоры и стержня системы

Невесомая балка удерживается в горизонтальном положении шарнирно-неподвижной опорой в т. A и вертикальным стержнем BC.
В точке D к балке приложена сосредоточенная сила F=30кН под углом 50°.

Требуется найти реакции, возникающие в опоре A и стержне BC.

Решение
Для решения задачи, покажем систему координат x-y и зададим произвольное направление реакций.

В точке A реакция в опоре раскладывается на две составляющие — вертикальную VA и горизонтальную HA.
Реакция в стержне (RB) всегда направлена вдоль самого стержня.

Для определения трех реакций требуется три уравнения равновесия.
Это будут два уравнения суммы моментов относительно точек в опорах и сумма проекций всех сил на ось x равные нулю.
Составим их:


Из полученных уравнений выражаем и находим искомые реакции опор

Вертикальная реакция в опоре A получилась отрицательной, это значит что она направлена в противоположную сторону.
Направляем ее вниз, изменив знак на «плюс».

Выполним проверку найденных реакций, проецируя все силы на ось y.

Равенство нулю суммы проекций всех сил и реакций показывает то, что реакции опор найдены верно.

Таким образом, заданная балка удерживается в равновесии под действием одной активной и трех реактивных сил.

Расчет реакций опор балки

Простая балка на двух шарнирных опорах нагружена системой усилий, включающей силу F=60кН, приложенную под углом 40°, момент M=45кНм и равномерно распределенную нагрузку q=18кН/м.

Требуется определить реакции в опорах A и C.

Решение
Вычерчиваем заданную схему в масштабе, показываем численные значения нагрузок, систему координат x-y и задаем произвольное направление реакций.

Здесь, в шарнирно-подвижной опоре будет только одна составляющая реакции.

Для упрощения решения, распределенную нагрузку можно заменить её равнодействующей, которая при равномерном распределении q будет приложена по её центру


а силу F можно разложить на составляющие, спроецировав её на оси x и y.

В следющих примерах эти действия выполнять не будем, проводя вычисления напрямую со значениями q и F.

Аналогично тому, как это делалось при решении предыдущей задачи, записываем уравнения равновесия балки: нулевые суммы моментов всех нагрузок и искомых реакций относительно опор

и проекций сил на ось балки

Откуда находим все три опорные реакции

Все результаты положительны, следовательно, направление реакций было выбрано верно.

Проверяем найденные значения.

Величина реакций рассчитана правильно.

Подробное решение данного типа задач

Остальные задачи по определению опорных реакций с детальным разбором выполняемых действий:

При растяжении-сжатии стержней

Определение реакций в опорах стержней и стержневых систем при действии продольных сил.

  • Расчет опорной реакции при растяжении-сжатии
  • Расчет опорной реакции ступенчатого бруса
  • Опорная реакция в заделке стержня с продольно распределенной нагрузкой

При кручении

Примеры расчета опорных моментов и реакций в подшипниках вала при кручении.

  • Определение неизвестного крутящего момента вала
  • Определение реакций подшипников пространственно нагруженного вала
  • Расчет уравновешивающего момента вала

При изгибе балок и рам

Определение реакций в шарнирных опорах и заделках консольных балок и рам при действии систем внешних сил, моментов и распределенных нагрузок.

  • Определение реакций в опорах двухопорной балки
  • Расчет опорных реакций консольной балки
  • Определение опорных реакций в жесткой заделке при изгибе
  • Определение реакций опор балки, когда сила приложена под углом
  • Проверка опорных реакций балки
  • Расчет реакций в опорах рамы
  • Определение опорных реакций балки (Видео)

Наш короткий видеоурок по расчету реакций опор балки:

Другие видео

Другие примеры определения реакций опор

Расчет реакций в опорах нестандартных систем.

  • Определение реакции шарнира и опоры
  • Реакции в шарнирах
  • Реакции опор и шарнира
  • Расчет веса противовеса и реакций в шарнирах
  • Величина груза обеспечивающая равновесие и реакции в подшипниках
  • Определение усилий в стержнях
  • Натяжение троса и реакция опоры
  • Реакции опор в точках системы
  • Опорные реакции невесомой конструкции
  • Опорные реакции в скользящей заделке
  • Давление в шарнире и реакции в бискользящей заделке
  • Реакции в скользящей заделке
  • Расчет усилия в стержне

Типы опор и их реакции

В механике различают тела свободные: возможность перемещения, которых в любом направлении ничем не ограничена, и несвободные, когда перемещение данного тела ограничивают другие тела.

Сами тела ограничивающие свободу перемещения данного тела называют опорами (связями), а силы, с которыми опоры удерживают данное тело в равновесии, называют реакциями опор.

Направление реакций зависит от вида опор и схемы нагружения.

При решении задач очень важно правильно заменить опоры их реакциями, иначе записанные уравнения равновесия окажутся неверными.

И здесь важно помнить о том, что реакции могут появляться только по тем направлениям, в которых перемещение невозможно.

Рассмотрим определение реакций в основных типах опор:

Другие видео

Реакция гладкой поверхности

Пусть некоторое тело опирается на гладкую поверхность.

Здесь перемещение тела возможно только вдоль поверхности.
Движение перпендикулярно ей исключено.

Потому что перемещению в сторону поверхности препятствует сама поверхность, а при движении от нее нарушится сама связь.
Таким образом, гладкая поверхность препятствует перемещению тела только в направлении нормали, поэтому реакция гладкой поверхности всегда направлена по нормали к этой поверхности.

При взаимодействии криволинейных поверхностей аналогично, реакция направлена нормально к касательной в точке контакта тел.

То же самое будет при контакте в двух точках.

Реакция ребра

В случае, когда прямая балка опирается на ребро, реакции будут направлены перпендикулярно опираемой или опирающейся плоскости в точке их касания.

При повороте балки реакция всегда будет оставаться нормальной к соответствующей поверхности.

Гибкая связь

Для тела, подвешенного на нерастяжимой нити или тросе, связь не позволяет телу удаляться от точки подвеса в направлении самой нити.
Поэтому реакция гибкий связи будет направлена всегда только вдоль самой нити.

Реакции в стержнях

Как и в предыдущем пункте, в стержнях, которые с помощью шарниров соединяют какие-либо элементы с опорами, реакции направлены вдоль самих стержней.

Но в отличие от нитей, здесь может быть одно из двух направлений: растягивающее стержень или сжимающее его.

Реакции в шарнирных опорах

На плоскости возможны только три направления перемещения:
Линейные — вдоль осей x и y, и вращение относительно оси Z.

Поэтому в двумерных системах каждая опора может давать не более трех реакций.
Если свободное тело закрепить шарнирно-неподвижной опорой, которая допускает вращение, но исключает любые линейные перемещения, то в такой опоре могут возникать две реакции.

Они являются осевыми проекциями полной реакции опоры, которая может быть найдена как корень из суммы квадратов её составляющих.
Направление вектора полной реакции зависит от схемы нагружения элемента.

Встречаются разные способы изображения шарнирно-неподвижных опор в расчетных схемах.
В шарнирно-подвижных опорах, помимо вращения возможно линейное перемещение вдоль поверхности, поэтому здесь будет только одна, нормальная к поверхности, составляющая реакции, которая по направлению и величине будет совпадать с полной.

У таких опор так же существуют дополнительные варианты схематичного изображения.
Пример направления реакций опор для балки на двух шарнирных опорах.

Реакции в заделках

Вид связи, при котором брус жестко закреплен в опоре называется глухой заделкой.
В этом случае исключены любые перемещения элемента.

Поэтому в плоских заделках может возникать до трех реакций: горизонтальная и вертикальная составляющие полной реакции, а также момент.
Скользящая заделка допускает линейное перемещение вдоль одной из осей.

Следовательно, по этой оси реакции не будет.
В бискользящей заделке исключается только угловое перемещение элемента.

Здесь из реакций будет один момент.

Реакции опор в трехмерных системах

В пространстве возможно уже шесть направлений движения:
Поступательные вдоль каждой из осей и вращение относительно них.

Поэтому в трехмерных системах опоры могут давать до шести реакций.
Шкив на валу, закрепленном подшипниками, может вращаться относительно продольной оси вала.

Любые другие перемещения невозможны.
В силу конструктивных особенностей подшипников моментов в них не возникает.
Здесь имеют место только реактивные силы.
В радиальном подшипнике (который справа) все реакции поперечны оси вала.
В радиально-упорном (который слева) добавляется еще и продольная.

В трехмерном шарнире исключены любые линейные перемещения и возможны только повороты относительно трех осей, что дает до трех составляющих полной реакции R.

В жесткой заделке при общем случае нагружения может возникать до шести реакций: трёх сил и трех моментов.

Пример замены опор их реакциями для трехмерной системы:

Порядок расчета опорных реакций

В рассмотренных выше примерах при определении реакций в опорах выполняется следующая последовательность действий:

  1. Вычерчивается (в масштабе) расчетная схема элемента с указанием всех размеров и приложенных внешних нагрузок;Расчетная схема балки
    Расчетная схема балки
  2. Выбирается система координат и обозначаются характерные сечения бруса;Система координат для балки
    Система координат для балки
  3. Определяется количество и возможное направление связей;Направление опорных реакций балки
    Направление опорных реакций балки
  4. Записываются уравнения статики (по количеству неизвестных реакций);
  5. Из уравнений равновесия находим величину и направление (по знаку) опорных реакций.Опорные реакции балки
    Опорные реакции балки

После расчетов выполняется проверка найденных значений.
Более подробно порядок расчета опорных реакций рассматривается в разделе «Статика» теоретической механики.

Другие примеры решения задач >

Добавить комментарий