Как найти силу сопротивления движению
При любом движении между поверхностями тел или в среде, в которой оно движется, всегда возникают силы сопротивления. Их еще называют силами трения. Они могут зависеть от видов трущихся поверхностей, реакций опоры тела и его скорости, если тело движется в вязкой среде, например, воде или воздухе.
Вам понадобится
- – динамометр;
- – таблица коэффициентов трения;
- – калькулятор;
- – весы.
Инструкция
Найдите силу сопротивления движению, которая действует на равномерно прямолинейно движущееся тело. Для этого при помощи динамометра или другим способом измерьте силу, которую необходимо приложить к телу, чтобы оно двигалось равномерно и прямолинейно. По третьему закону Ньютона она будет численно равна силе сопротивления движения тела.
Определите силу сопротивления движению тела, которое перемещается по горизонтальной поверхности. В этом случае сила трения прямо пропорциональна силе реакции опоры, которая, в свою очередь равна силе тяжести, действующей на тело. Поэтому сила сопротивления движению в этом случае или сила трения Fтр равна произведению массы тела m, которая измеряется весами в килограммах, на ускорение свободного падения g≈9,8 м/с² и коэффициент пропорциональности μ, Fтр=μ∙m∙g. Число μ называется коэффициентом трения и зависит от поверхностей, входящих в контакт при движении. Например, для трения стали по дереву этот коэффициент равен 0,5.
Рассчитайте силу сопротивления движению тела, движущегося по наклонной плоскости. Кроме коэффициента трения μ, массы тела m и ускорения свободного падения g, она зависит от угла наклона плоскости к горизонту α. Чтобы найти силу сопротивления движению в этом случае, нужно найти произведения коэффициента трения, массы тела, ускорения свободного падения и косинуса угла, под которым плоскость наклонена к горизонту Fтр=μ∙m∙g∙сos(α).
При движении тела в воздухе на невысоких скоростях сила сопротивления движению Fс прямо пропорциональна скорости движения тела v, Fc=α∙v. Коэффициент α зависит от свойств тела и вязкости среды и рассчитывается отдельно. При движении на высоких скоростях, например, при падении тела со значительной высоты или движении автомобиля, сила сопротивления прямо пропорциональна квадрату скорости Fc=β∙v². Коэффициент β дополнительно рассчитывается для высоких скоростей.
Источники:
- 1 Общая формула для силы сопротивления воздуха На рисунке
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Сила сопротивления зависит от размеров и формы тела и скорости перемещения тела в среде, возникающая при его движении и затормаживает это движение. Сила сопротивления отличается от силы трения тем, что последняя рассматривает характер взаимодействия друг с другом твердых тел. Можно наблюдать, когда один элемент двигается по поверхности другого. Вектор силы сопротивления имеет направление противоположное движению.
Работа силы сопротивления видна на примере: при свободном падении листка с дерева на него действует сила сопротивления воздуха, которую можно сравнить с силой тяжести. В связи с этим, ускорение падающего листка будет не таким, как от ускорения свободного падения.
Аналогично с перемещением в жидкости, если тело погружается в воду плавно, то сопротивление воды будет меньше, чем при прыжке в нее.
Чему равна сила сопротивления
В числовом выражении общая сила сопротивления равна силе, которую следует приложить для равномерного передвижения тела по ровной горизонтальной поверхности. Определяется третьим законом Ньютона.
Формулы 1 — 3
Сила сопротивления прямо пропорциональна массе тела и вычисляется по формуле:
[F=mu * m * g]
где [boldsymbol{mu}] коэффициент материала изготовления опоры, выбирается по таблице;
g – постоянная величина равная 9,8 м/с2.
Для тел с небольшой скоростью сила сопротивления рассчитывается как произведение коэффициента сопротивления материала (a) и силы, провоцирующую движение предмета (v).
[F=v a]
где v — скорость движения предмета, a — коэффициент сопротивления среды.
При высоких скоростях или больших размеров предметов, силу сопротивления вычисляют пропорционально квадрату скорости.
[F=c v^{2}]
Зависимость силы от сопротивления определяется для каждой среды отдельно. Сила сопротивления среды растет, с ростом скорости движения предмета в среде.
От чего зависит сила сопротивления
На величину силы сопротивления влияют следующие факторы:
- особенности и плотность среды, например, у жидкости плотность выше, чем у газа;
- форма тела, у предметов с вытянутыми обтекаемыми вдоль движения формами сопротивление меньше, чем с расположенными перпендикулярно движению гранями;
- скорость движения.
В зависимости от воздействия на движущиеся предметы различают несколько типов силы сопротивления:
- Сила сопротивления качению [P_{f}]. Зависит от вида и состояния опорной поверхности, скорости перемещения, силы давления воздуха и прочее. Коэффициент сопротивлению качению f зависит типа и состояния опорной поверхности, его значение уменьшается, при повышении давления и температуры.
- Сила сопротивления воздуха [P_{B}] возникает при разных показателях давления. В аэродинамике называется лобовым сопротивлением. Показатель будет выше с ростом вихреобразования в передней и задней частях объекта движения. Величина вихреобразования зависит от формы передвигаемых предметов.
Понятие силы электрического сопротивления
Строение металлических проводников объясняет наличие сопротивления. Свободные электроны движутся по проводнику встречая ионы кристаллической решетки. При контакте с ними другие электроны теряют часть своей энергии. У проводников с отличающимся атомным строением будет разное сопротивление току. Поэтому чем выше сопротивление проводника, тем проводимость электрического тока будет меньше.
Формулы 4 — 5
Электрическое сопротивление в физике обозначают R, измеряется в Ом. Сопротивление равно 1 Ом, если на концах проводника возникает напряжение в 1 Вольт при силе тока равной 1 Ампер.
Формула сопротивления силы тока:
[R=rho frac{l}{S}]
где l – длина проводника; S – площадь сечения; ρ – удельное сопротивление.
Сила электрического сопротивления зависит от материала проводника, его длины, формы и температуры. Удельное сопротивление отличается у различных материалов.
Удельное сопротивление [boldsymbol{(rho)}] — сопротивление проводника длиной 1м и обладающего площадью поперечного сечения [boldsymbol{1м^{2}}]. Обозначается в Ом*м. К примеру, удельное сопротивления меди [1,7 * 10^{-8} Oм * м], это значит, что у медного проводника длиной [1м^{2}] сопротивление равно [1,7 * 10^{-8} Ом].
Сопротивление проводника будет расти с увеличением температуры:
[rho=rho_{o}(1+alpha Delta T)]
где [boldsymbol{rho_{0}}] – обозначает удельное сопротивление при [T_{0}=293 mathrm{~K}left(20^{circ} mathrm{C}right), Delta T=T-T_{0}], α – температурный коэффициент сопротивления [left(K^{-1}right)].
При нагревании движение частиц материала возрастает и создает препятствия для направленного движения электродов. Количество столкновений свободных электронов с ионами кристаллической решетки увеличивается.
Такое свойство применимо в термометрах сопротивления, измеряют температуру исходя из зависимости температуры и сопротивления с высокой точностью измерения.
Нет времени решать самому?
Наши эксперты помогут!
Формула силы тока и сопротивление
Формула 6
Законом Ома для участка цепи называют взаимосвязь между силой тока (I), напряжением (U) и сопротивлением (R) проводника на практике установлена Г. Омом.
[I=frac{U}{R}]
Материалы с низким удельным сопротивлением считаются проводниками, они эффективно проводят электрический ток. С высоким удельным сопротивлением – диэлектрики, их используют как изоляторы. Промежуточное положение занимают полупроводники.
Пример
Найти силу тока в проводнике длиной 100 мм, сечением 0,5 мм2 изготовленном из меди, если напряжение на его концах 6,8 В.
Решение:
Запишем формулу закона Ома и найдем сопротивление через силу тока : [I=frac{U}{R}]
Для определения силы тока I, нужно определить сопротивление R. С помощью формулы с удельным сопротивлением преобразуем формулу для закона Ома:
[begin{array}{r}
R=rho frac{l}{S} \
I=frac{U S}{rho l}
end{array}]
Подставляем значения в формулу:
[I=frac{6,8 * 0,5}{0,017 * 100}=2 mathrm{~A}]
Значение ρ для меди берется из таблиц.
Ответ: 2А
Unit Converter
Enter the mass, initial velocity, final velocity, and time into the calculator to determine the average resistive force.
- All Force Calculators
- Resistance Force Calculator
- Momentum to Force Calculator
- Velocity to Force Calculator
The following equation is used to calculate the Average Resistive Force.
- Where ARF is the average resistive force (N)
- m is the mass of the object (kg)
- Vi is the initial velocity (m/s)
- Vf is the final velocity (m/s)
- t is the total time (s)
What is an Average Resistive Force?
Definition:
An average resistive force is the total force that has acted on an object over a given period of time which is caused the object to reduce its velocity.
How to Calculate Average Resistive Force?
Example Problem:
The following example outlines the steps and information needed to calculate Average Resistive Force.
First, determine the mass of the object. In this example, the mass of the object is found to be 4kg.
Next, determine the initial velocity. For this problem, the initial velocity is found to be 10m/s.
Next, determine the final velocity. In this case, the final velocity is measured to be 5m/s.
Next, determine the time. In this example, the time is 10s.
Finally, calculate the Average Resistive Force using the formula above:
ARF = m*(Vi-Vf)/t
ARF = 4*(10-5)/10
ARF = 2N
Чему равна сила сопротивления движения?? формула
Да
Профи
(719),
закрыт
10 лет назад
Лучший ответ
Наташа
Профи
(503)
12 лет назад
При малых скоростях движения силу сопротивления можно считать прямо пропорциональной скорости движения тела относительно среды.
При больших скоростях относительного движения сила сопротивления пропорциональна квадрату скорости.
Причем k1 и k2 – различные коэффициенты. Fc=k1*v
Fc=k2*v2
Остальные ответы
Телагыс
Профи
(572)
12 лет назад
F=-F Второй закон Ньютона
дмитрий чухрайУченик (249)
8 лет назад
Это третий закон Ньютона, “знаток”!!!
Дино-ВоваУченик (226)
7 лет назад
Это 3й
Сюмбель АминеваПрофи (544)
6 лет назад
+это третий закон Ньютона, а второй F=a*m
Alex TrumУченик (117)
5 лет назад
3
Похожие вопросы
Виктор Матвеевич Скоков
Эксперт по предмету «Физика»
Задать вопрос автору статьи
При совершенно любом движении будет фиксироваться появление между поверхностями тел или в среде, где оно осуществляется, сил сопротивления. Второе свойственное им название – силы трения.
Замечание 1
Силы сопротивления могут быть зависимыми от разновидностей трущихся поверхностей, реакций опоры тела, а также его скорости, при условии движения тела в вязкой среде (к примеру, в воздухе или воде).
Расчет сил сопротивления
С целью определения сил сопротивления потребуется применение третьего закона Ньютона. Такая величина, как сила сопротивления, будет численно равной силе, которую потребуется приложить с целью равномерного движения предмета по горизонтальной ровной поверхности. Это становится возможным с помощью динамометра.
Таким образом, искомая величина оказывается прямо пропорциональной массе тела. Стоит при этом учитывать во внимание, что для более точного подсчета потребуется выбрать $u$ коэффициент, зависимый от материала изготовления опоры. Также принимается во внимание материал изготовления самого предмета исследования. При расчете применяется постоянная $g$, чье значение 9,8 $м/с^2$.
В условиях движения тела на высоте, на него влияет сила трения воздуха, зависимая от скорости перемещения предмета. Искомую величину определяют на основании такой формулы (подходящей исключительно для тел с передвижением с небольшой скоростью):
$F = va$, где:
- $v$ – скорость движения предмета,
- $a$ – коэффициент сопротивления среды.
Разновидности сил сопротивления
Существуют такие разновидности сил сопротивления:
- Сила сопротивления качению $P_f$, зависимая от таких факторов, как: разновидности и состояния опорной поверхности, скорости движения, давления воздуха и пр. Коэффициент сопротивления качению $f$ зависеть при этом состояния и типа опорной поверхности. С повышением температуры и давления, указанный коэффициент уменьшается.
- Сила сопротивления воздуха (лобовое сопротивление) $Р_в$ возникает за счет разницы давлений. Данный показатель окажется тем выше, чем большим будет вихреобразование как в передней, так и в задней части объекта движения. Величина вихреобразования будет зависеть от формы движущихся тел.
«Силы сопротивления» 👇
Наиболее значимым будет воздействие на сопротивление движению передней части. Так, при создании закругления в передней и задней части плоскостенной фигуры, сопротивление возможно уменьшить на 72 %. Сила лобового сопротивления $Р_{вл}$ определяется по такой формуле:
$P_{вл} = {c_xpF_в}frac{v^2}{2}$, где:
- $с_х$– коэффициент лобового сопротивления (обтекаемости);
- $p$- плотность воздуха;
- $F_в$ –площадь лобового сопротивления (миделевого сечения) определяется по формуле
Сила сопротивления воздуха ориентирована в направлении, противоположном вектору скорости объекта движения (например, автомобиля). Обычно она рассматривается как сконцентрированная сила, приложенная в отношении точки (центра парусности объекта), не совпадающей при этом с центром массы исследуемого объекта.
Сила сопротивления разгону поступательно движущейся массы объекта, согласно второму закону Ньютона, определяется таким образом:
$Рj = mfrac{dV}{dt}$, где:
- $m$– масса автомобиля;
- $frac{dv}{dt}$ – ускорение центра масс.
Силы сопротивления при больших скоростях
В случае, когда мы имеем дело с малыми скоростями, сопротивление будет зависеть от:
- вязкости жидкости;
- скорости движения;
- линейных размеров тела.
Рассмотрим действие законов трения при больших скоростях. Так, к воздуху и в особенности, к воде законы вязкого трения будут мало применимыми. Даже при наличии таких скоростей, как 1 см/с, они будут пригодными исключительно в отношении тел крошечных размеров (в миллиметрах).
Замечание 2
Сопротивление, которое испытывает ныряющий в воду пловец, ни в коей мере не будет подчиняться действию закона вязкого трения.
При медленном движении жидкость станет плавно обтекать предмет движения. При этом сила сопротивления, которую он будет преодолевать, и окажется силой вязкого трения.
В условиях большой скорости, позади движущегося объекта возникнет уже более сложное движение жидкости. В жидкости начнут то появляться, то исчезать разные струйки, формируя при этом необычные по форме фигуры, вихри, кольца. Таким образом, картина струек будет подвержена постоянным изменениям. Возникновение подобного движения получило название турбулентного.
Турбулентное сопротивление будет зависимым от скорости и размеров предмета не так, как при вязком. Так, оно окажется пропорциональным квадратам скорости и линейных размеров. Вязкость жидкости при подобном движении перестает иметь решающее значение, а определяющим свойством выступает ее плотность. Таким образом, для силы $F$ турбулентного сопротивления справедлива формула:
$F=pv^2L^2$, где:
- $v$– скорость движения,
- $L$– линейные размеры предмета,
- $p$ – плотность среды.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме