П
Рис. 3. 11. 3.12.
ри соединении треугольником (рис.
4.11.) каждая фаза приемника подключена
к двум линейным проводам, поэтому каждое
фазное напряжение равно соответствующему
линейному напряжению.
Таким образом,
соединение треугольником следует
применять тогда, когда каждая фаза
трехфазного приемника рассчитана на
напряжение, равное номинальному линейному
напряжению сети.
Рис. 4.11.
Фазные токи
,,в общем случае не равны линейным токам,,и могут быть найдены по следующим
соотношениям:
,
,.
Линейные токи
,,могут быть определены через значения
фазных токов. Из первого закона Кирхгофа
запишем:
,
,.
Использую указанные
соотношения и имея векторы фазных токов,
можно построить векторную диаграмму
линейных токов (рис. 4.12.).
При симметричной
нагрузке соединением «треугольник»
равны в отдельности активные и полные
реактивные сопротивления всех фаз
,
Однако, как правило,
однофазные приемники подключаются не
одновременно. Нагрузку можно считать
симметричной лишь тогда, когда включены
все приемники. Для каждой фазы могут
быть использованы все методы расчета,
рассмотренные ранее применительно к
однофазной цепи с одним источником.
Зная, например, фазные напряжения и
сопротивления, можно по закону Ома найти
фазные токи по формулам
,,
При симметричной
нагрузке,
,-фазные токи равны друг другу и сдвинуты
по фазе относительно соответствующих
фазных напряжений на одинаковые углы.
В
Рис. 3. 13.
екторная диаграмма фазных напряжений
и токов на рис. 4.13. показывает, что при
симметричной нагрузке векторы фазных
токов равны по величине и сдвинуты по
фазе относительно друг друга на угол.
Векторы линейных
токов
изображают результирующими векторов
фазных токов, как показано на рис. 4.13.
Из векторной диаграммы следует, что.
Рис. 4.13.
Такое же соотношение
существует между любыми другими фазными
и линейными токами. Поэтому можно
написать, что при симметричной нагрузке
.
Зная фазные
напряжения, токи и углы сдвига фаз между
ними, либо токи и сопротивления, можно
найти фазные мощности. Например, мощности
фазы АВ будут равны
Таким же путем
находим мощности фаз ВС и СА. В силу
равенства напряжений, токов, углов
сдвига фаз и сопротивлений при симметричной
нагрузке
,,.
При симметричной
нагрузке активная Р,
реактивная Q
и полная S
мощности трехфазного приемника
,,
.
В качестве
номинальных напряжений и токов трехфазных
приемников указываются обычно линейные
напряжения и токи. Учитывая это, мощности
трехфазных приемников желательно также
выражать через линейные напряжения и
токи
,,.
4.6. Несимметричные нагрузки при соединении треугольником
Несимметричной
нагрузкой считают такую, при которой
активное или реактивное сопротивление
хотя бы одной из фаз не равно сопротивлениям
других фаз (рис. 4.14.) rAB
= rBC
= rC;
XAB=XBC≠X
CA.
В таком
случае при несимметричной нагрузке ZAB
≠ ZBC
≠ ZCA.
Фазные токи, углы
сдвига фаз между фазными напряжениями
и токами, а также мощности могут быть
определены по формулам
,
,
Так как,
а при несимметричной нагрузкеZAB
≠ ZBC
≠ ZCA,
то.
Рис. 4.14.
Углы сдвига фаз
между фазными токами и напряжениями
зависят от величины и характера
сопротивлений фаз и могут быть определены
следующим образом
;;.
Т.о., при несимметричной
нагрузке фазные токи, углы сдвига фаз
и фазные мощности в общем случае
различные.
Зная фазные
напряжения, токи и углы сдвига фаз между
ними, либо токи и сопротивления, можно
найти фазные мощности. Например, мощности
фазы AB
Активные и реактивные
мощности приемника
;
.
Векторная диаграмма
при несимметричной нагрузке для случая,
когда в фазе AB
имеется активное сопротивление, в фазе
BC
– активное и индуктивное сопротивления,
фазе CA
– активное и емкостное сопротивления,
приведена на рис. 4.15. Построение векторов
линейных токов произведено в соответствии
с выражениями
,
,.
Если
кроме фазных токов, требуется определить
линейные токи, то их можно так же
определить по векторной диаграмме, не
прибегая к решению задачи в комплексной
форме.
Рис. 4.15.
О
Рис. 3. 15.
тключение нагрузки одной из фаз
можно считать частным случаем
несимметричной нагрузки, при которой
сопротивление отключенной фазы равно
бесконечности. Так при отключении фазыCA
сопротивление Z
CA
= ∞. При этом, ток
;
фазные токи,
а также углыφAB,
φ BC
не изменятся, а линейные токи
уменьшатся и будут равны
,
.
Понятия «звезда» и «треугольник» неразрывно связаны с системами трёхфазного переменного тока, и начинающие электрики или люди далёкие от электричества не понимают значения этих слов и практического различия этих параметров. В этой статье мы поговорим о том, что такое звезда и треугольник в электродвигателе.
Теория и схемы
Чтобы избежать путаницы давайте рассматривать этот вопрос на примере трёхфазного асинхронного электродвигателя с короткозамкнутым ротором как самого распространенного из электрических машин в быту и на производстве. Как правило, у такого двигателя 3 обмотки, также встречаются многоскоростные двигатели и там количество обмоток больше трёх, но кратное этому числу.
У каждой обмотки есть начало и конец, а на схеме начало обмотки обычно обозначается точкой.
Но питающих провода в трёхфазной сети у нас 3 или 4. Отсюда возникает вопрос: «Как правильно соединить шесть концов обмоток с тремя питающими проводами?». Вот здесь как раз и всплывают эти «геометрические фигуры» — звезда и треугольник.
Итак, звезда и треугольник – это названия схем соединения потребителей в трёхфазной электросети как обмоток электродвигателей, трансформаторов, так и любой другой нагрузки.
«Звезда»
При соединении обмоток звездой к началам обмоток присоединяют питающие провода (на схемах обозначены цветами), а концы обмоток соединяют между собой в одну точку, при этом подключение нулевого проводника в точку соединения концов обмоток необязательно так как это симметричная нагрузка. В свою очередь, точка соединения концов обмоток также называется нейтралью.
Есть два варианта представления этого соединения на электрических схемах, как в наглядном виде, действительно напоминающем трёхлучевую звезду (А), так и в более классическом для схем представлении (Б). Вас не должно смущать это отличие, когда вы читаете схему.
«Треугольник»
По схеме треугольника начало следующей и конец предыдущей обмотки соединяются между собой, то есть: конец первой обмотки соединяется с началом второй, конец второй обмотки соединяется с началом третьей, а конец третьей с началом первой обмотки, а питающие провода подключаются к точкам соединения обмоток.
Итого у нас получается три точки соединения начал и концов обмоток и, соответственно, возможно подключение только трёх питающих фазных проводов без нулевого.
На схеме такое соединение также может быть нарисовано по-разному — наглядным и похожим на треугольник, или в горизонтальном или вертикальном исполнении.
Если говорить о подключении другой нагрузки, не относящейся к трансформаторам и электроприводу, то понятия «начало» и «конец» там нет, поэтому провода подключаются произвольно, но с сохранением логики соединения этих схем.
Мощность, ток и напряжение
Всем известно, что в электросети есть два напряжения: фазное — 220В и линейное — 380В. Здесь линейное напряжение больше фазного в 1.73 раза (корень квадратный из 3). Дело в том, что вторичная обмотка питающего трансформатора соединяется звездой и между фазой и нейтралью получаются те самые 220В, а между двумя разноименными фазами — 380В.
Но это справедливо не только для питающей сети, но и при распределении напряжения между потребителями. Поэтому давайте рассмотрим подробнее схему соединения обмоток звездой — как в ней распределяются токи и напряжения.
Как мы уже отметили выше в «звезде» есть два напряжения — фазное (Uф) и линейное (Uл), и при этом они соотносятся следующим образом:
Uл=1,73*Uф
Токи также бывают фазными и линейными, и в схеме звезды они равны.
Iл=Iф
В «треугольнике» дела обстоят подобным образом, но здесь, наоборот — линейное (Uл) и фазное (Uф) напряжения равны, но при этом линейный ток превышает фазный в 1,73 раза.
Uл=Uф
Iл=1,73*Iф
На рисунке выше важно выделить, что при соединении обмоток звездой на каждую обмотку приходится напряжение в 1.73 раза меньше линейного напряжения в питающей сети, то есть для 380В – 220, для 220В – 127, для 660 — 380 вольт. Запомните это, чуть позже мы вернемся к этому вопросу.
Формулы мощности для цепей соединенной по схеме звезды и по схеме треугольника не отличаются.
· полная S = 3*Sф = 3*(Uл/√3)*I = √3*Uл*I;
· активная P = √3*Uл*I*cos φ;
· реактивная Q = √3*Uл*I*sin φ.
Практика – для чего нужны эти схемы
Большинство электриков работают с электрическими сетями напряжением 220/380 вольт, поэтому давай рассмотрим, какую схему соединения обмоток выбрать для подключения электродвигателя к такой электросети.
Трёхфазные асинхронные двигатели по способу подключения к электросети условно можно разделить на 2 больших группы: с возможностью изменения схемы соединения обмоток и без неё.
В первом случае на клеммник в брно электродвигателя выведено 6 проводов, и вы можете, в зависимости от напряжения в электросети, к которой подключаете выбрать нужную схему соединения обмоток.
При этом обмотки соединяются в ту или иную схему с помощью медных шинок (или перемычек из провода, если шины потеряли), клеммы расположены таким образом, что с помощью всего трёх перемычек может быть собрана нужная схема (см. рисунок ниже).
Хоть и это должен помнить и знать каждый электрик, тем не менее производители зачастую отливают либо же клеят этикетку с указанием положения перемычек для каждой из схем на крышке брно.
Если же в брно выведено всего 3 провода, то обмотки двигателя уже соединены по какой-то схеме внутри его корпуса, и для переключения звезды и треугольника нужно вскрывать корпус, искать концы обмоток, разъединять их и соединять так, как вам нужно. Но это скорее процедура из «народного хозяйства», нежели часто встречающаяся производственная необходимость.
Какую схему выбрать и какая лучше?
Итак, как соединить обмотки звездой и треугольником мы разобрались, но здесь как раз и начинается «все самые интересные вопросы», причем эти вопросы у людей возникают чаще всего либо при подключении трёхфазного двигателя к однофазной сети, либо при подключении двигателя к частотному преобразователю с однофазным входом и линейными 220В на выходе и в других ситуациях.
Возможность изменения схемы соединения обмоток нужна для того, чтобы один и тот же двигатель мог эксплуатироваться в электросетях с различным напряжением.
Какую схему лучше выбрать? Вопрос не корректный, нужно соединять обмотки в ту схему, номинальное напряжение которой соответствует напряжению в электросети. Эта информация указана на шильдике электродвигателя.
Если на шильдике вашего двигателя указано как на фото выше «Δ/Y 220/380» – это значит что если линейное напряжение в питающей сети 220В – нужно соединять обмотки треугольником, если 380В – звездой. Если вы будете его подключать к однофазной сети 220В с конденсаторами – обмотки также соединяются треугольником.
Если на шильдике указано только одно напряжение и значок схемы (см. рисунок ниже), то возможности изменить схему соединения нет, и в брно, скорее всего, выведено будет 3 провода.
Встречаются и двигатели, которые в сети 380В работают, соединенными по схеме треугольника, схема звезды в этом случае рассчитана на работу в сети 660В, что вы можете наблюдать на следующей фотографии.
Но зачастую такие двигатели используются для пуска с переключением со звезды на треугольник, это делают для понижения пусковых токов.
660В – это линейное напряжение в схеме звезды, а 380В – фазное, то есть каждая из обмоток такого двигателя рассчитана на 380В. Это наглядно показано на рисунке «Распределение токов и напряжений между элементами цепи схемах звезды и треугольника» приведенного в первой половине статьи.
В этом случае напряжение 380В подаётся сначала на обмотки соединенные по схеме звезды, так как номинальное напряжение для этой схемы 660В двигатель в момент пуска питается от пониженного напряжения и к каждой из обмоток прикладывается всего по 220В.
Когда обороты двигателя возрастают, происходит переключение на треугольник. И уже к каждой обмотке прикладываются их номинальные 380В.
Схема подключения электродвигателя с переходом со звезды на треугольник при пуске
Что будет если перепутать звезду и треугольник?
Чтобы ответить на этот вопрос вспомним формулы мощности трёхфазной нагрузки:
· полная S = 3*Sф = 3*(Uл/√3)*I = √3*Uл*I;
· активная P = √3*Uл*I*cos φ;
· реактивная Q = √3*Uл*I*sin φ.
Для упрощения представим, что у нас есть сеть с каким-то определенным напряжением, пусть это будет 220/380 вольт, а также есть 3 лампы накаливания с номинальным напряжением 220В. И еще раз посмотрим на рисунок с распределением напряжений и токов в звезде и треугольнике.
Так как линейное напряжение у нас 380В, а в «звезде» фазное в 1.73 раза ниже линейного, то делаем вывод, что для работы в номинальном режиме нужно подключить эти лампочки звездой, тогда к каждой из них будет приложено 220В.
Теперь соединим их в треугольник, и что получится? Первое что бросается в глаза – к каждой лампе приложено уже 380В вместо 220В номинальных.
Несложно догадаться, что в этом случае наши лампочки просто сгорят, то же самое произойдет и с обмоткой двигателя.
Что при этом происходит с мощностью?
Если питающее напряжение и нагрузка неизменны, то при переключении со звезды на треугольник мощность, выделяемая на этой самой нагрузке, возрастёт в 3 раза. Это происходит потому, что напряжение на каждой лампе увеличилось в 1.73 раза, за ним настолько же вырос и ток.
Формулы для вычисления мощности в обоих случаях одинаковые, но цифры в них различаются, давайте проведем 1 расчет для примера.
Допустим, ток нагрузки в схеме звезды у нас был 1А, тогда полная мощность в звезде равна:
S = √3*Uл*Iл;
S=1.73*380В*1А=657,4 ВА
При этом мощность одной лампы в этом случае равна 220 ВА.
В треугольнике к каждой лампе приложено напряжение в 1.73 раза выше – 380В, соответственно и ток через лампу (фазный ток) возрастет на столько же. При этом не забывайте, что линейный ток в звезде и так будет в 1.73 раза больше, чем фазный. Найдем полную мощность по трём фазам:
S=√3*Uл*Iл=1.73*380В*(1.73А*1.73) = 1.73*380В*3А=1972 ВА
А на одной лампе выделится мощность равная:
W=380В*1.73А=657 ВА
Но это не значит, что при соединении по схеме треугольника двигатель будет выдавать в 3 раза большую мощность, при питании от номинального для этой схемы напряжения двигатель будет выдавать свою номинальную мощность.
Небольшое отступление от автора — я неоднократно сталкивался с фразами на форумах типа «на треугольнике двигатель работает мягче», «на звезде лучше тянет» или подобные. Однако эти фразы не несут за собой подкрепления какими-либо техническими или научными комментариями. И мне так и не удалось найти, откуда это пошло и почему, никто объяснить так и не смог (если вы можете аргументировано ответить о причинах таких высказываний – пишите об этом в комментариях, интересно почитать).
Алексей Бартош специально для ЭТМ
Содержание:
Трехфазные цепи:
Многофазной системой называется совокупность электрических цепей, называемых фазами, в которой действуют синусоидальные напряжения одной частоты, отличающиеся друг от друга по фазе. Чаще всего применяются симметричные многофазные системы, напряжения которых равны по величине и сдвинуты по фазе на угол
Трехфазная система
Наибольшее распространение имеет трехфазная система, созданная русским ученым М. О. Доливо-Добровольским (1891 г.); он изобрел и разработал все звенья этой системы — генераторы, трансформаторы, линии передачи и двигатели трехфазного тока.
Простейший трехфазный генератор (рис. 12.1) подобен рассмотренному в источнику однофазного напряжения; он состоит из трех одинаковых плоских витков или катушек, называемых фазами генератора, вращающихся в однородном магнитном поле с равномерной угловой скоростью ω вокруг оси, перпендикулярной к направлению магнитных линий. В каждой фазе следует различать начало и конец. Считая, что все катушки намотаны в одном направлении, например по часовой стрелке, можно принять за начало начальный зажим катушки или, наоборот, конечный, но принятое условие должно быть одинаковым для всех фаз. Цепи нагрузки подключаются к генератору с помощью щеток, наложенных на кольца, соединенные с катушками аналогично рис. 6.1 (на рис. 12.1 они не показаны).
Три фазы трехфазного генератора расположены под углом друг к другу; первой, или фазой А, можно назвать любую из трех фаз, второй — фазу В, начало которой HB сдвинуто в пространстве относительно начала первой НА на угол против направления вращения, третьей — фазу С, начало которой Нc сдвинуто относительно начала второй HB также на в том же направлении.
При вращении в фазах будут индуктироваться э. д. с.; период Т этих э. д. с. обороту. Катушки одинаковы, поэтому (амплитуды) э. д. с. фаз будут также одинаковы. Так как фазы сдвинуты друг относительно друга в пространстве на угол , т. е. на 1/3 полного оборота, их э. д. с. будут сдвинуты во времени на Т/3 — треть периода, что соответствует фазному сдвигу, равному:
Если за начальный взять момент времени, когда плоскость первой катушки перпендикулярна линиям магнитной индукции (см. рис. 12.1), э. д. с. (отсчитываемая, например, от конца к началу)
и э. д. с. двух других катушек (отсчитываемые в том же направлении), отставая по фазе на углы и 2•, будут равны:
Временная диаграмма э. д. с. изображена на рис. 12.2. Если вектор э. д. с. первой фазы направить по оси вещественных комплексной плоскости (рис. 12.3), комплексы э. д. с. симметричной системы будут иметь вид:
Комплексный множитель
является оператором поворота вектора на угол 2π/3 в положительном направлении. Тогда
Следовательно,
т. е. сумма векторов симметричной системы равна нулю. Это значит, что равна нулю в любой момент времени и алгебраическая сумма мгновенных значений, что можно видеть и из рис. 12.2, если взять сумму ординат трех синусоид для любой абсциссы.
Если в цепь каждой фазы генератора включить одинаковые по величине и характеру сопротивления (рис. 12.4), то токи фаз будут равны по величине и сдвинуты по фазе относительно своих напряжений на один и тот же угол ϕ:
Они также образуют трехфазную симметричную систему векторов.
При неодинаковой нагрузке фаз максимальные значения токов и фазные сдвиги будут различны, и система токов будет несимметричной.
В электроизмерительной технике и автоматике применяется также двухфазная система, векторная диаграмма э д. с. которой показана на рис. 12.5. Хотя э. д. с. по величине равны, двухфазная система несимметрична, так как сумма
Показанная на рис. 12.4 несвязанная трехфазная система, при которой отдельные фазы не соединены между собой, на практике не применяется — генераторы и приемники связывают или в звезду, или в треугольник.
Соединение звездой
При соединении генератора звездой вместе соединяются концы фаз, образуя нулевую (нейтральную) точку 0. К началам фаз генератора с помощью трехпроводной линии передачи присоединяется приемник. Если последний также соединен звездой, нулевые точки генератора и приемника могут быть соединены нулевым (нейтральным) проводом (рис. 12.6).
Различают величины, относящиеся к фазам генератора и приемника — фазные напряжения и токи, и к линейным проводам — линейные напряжения и токи. Так как линейные провода соединены последовательно с фазами генератора и приемника, линейные токи в звезде равны соответствующим фазным токам.
Для получения симметричных соотношений между величинами следует выбирать положительные направления токов во всех фазах единообразно; обычно направляют токи от генератора к приемнику (см. рис. 12.6), т. е. в сторону движения энергии. В соответствии с аналогом закона Ома положительные направления фазных напряжений совпадают с направлением токов. Положительные направления линейных напряжений могут быть выбраны произвольно, а также единообразно. Произволен также выбор направления тока на нулевом проводе.
Если выбрать направление тока в нулевом проводе от нулевой очки приемника к нулевой точке генератора (см. рис. 12.6), мгновенное значение iN и комплекс IN этого тока в общем случае будут:
На рис. 12.7, а изображена диаграмма фазных напряжений на фиемнике в соответствии с принятым на рис. 12.6 направлением гоков, сходящихся в нулевой точке О’ приемника.
Эта диаграмма называется топографической, так как ее точкам А, В, С, О’ соответствуют одноименные точки цепи. Векторы и комплексные линейные напряжения направлены, как это обычно принято, от точки, соответствующей первому индексу, к точке, соответствующей второму индексу; линейные напряжения равны разности соответствующих фазных напряжений:
а их мгновенные значения
Из этих соотношений вытекает, что сумма линейных напряжений равна нулю.
Топографическая векторная диаграмма рис. 12.7, а, в которой векторы фазных напряжений сходятся в одной точке, соответствующей нулевой точке приемника, обычно заменяется диаграммой рис. 12.7, б, где эти векторы выходят из этой же точки; так как при этом все векторы фазных и линейных напряжений изменяют свои направления на обратные, приведенные выше соотношения между напряжениями сохраняются.
При симметричной системе фазных напряжений векторы линейных напряжений образуют равносторонний треугольник; нулевая точка совпадает с его центром тяжести (рис. 12.8) и линейное напряжение
г. е. по абсолютной величине линейные напряжения в раз больше разных.
Далее сначала рассматриваются цепи без взаимной индукции между фазами и между фазами и нулевым проводом.
В звезде с нулевым проводом (см. рис. 12.6), если пренебречь его сопротивлением (ZN = 0), а также сопротивлением, линейных проводов, фазные напряжения приемника будут, очевидно равны фазным напряжениям генератора; их векторные диаграммы совпадут (см. рис. 12.7, б). Следовательно, фазные комплексные токи будут определяться фазными комплексными напряжениями генератора и комплексными сопротивлениями или проводимостями тех же фаз приемника:
т. е. соединение звездой с нулевым проводом без сопротивления обеспечивает независимую работу фаз.
При симметричной системе фазных напряжений и одинаковой нагрузке фаз система фазных токов будет симметричной и ток IN нулевого провода, равный сумме токов, будет также равен нулю независимо от величины сопротивления этого провода.
В звезде с нулевым проводом, имеющим сопротивление ZN в общем случае, когда между нулевыми точками генератора и приемника возникает узловое напряжение что вызывает на векторной диаграмме (рис. 12.9) смещение точки О’, соответствующей нулевой точке приемника, относительно точки 0, соответствующей нулевой точке генератора. То, что вектор на рис. 12.9 направлен от 0 к О’, т. е. против направления IN, объясняется указанным выше изменением направления векторов всех напряжений (см. рис. 12.7, а и б). В соответствии с методом узловых напряжений
где —фазные напряжения генератора; — проводимости фаз, YN — проводимость нулевого провода.
В звезде без нулевого провода YN =0 и
Фазные напряжения на приемнике и токи (см. рис. 12.9):
Выражения для узлового напряжения показывают, что будет изменяться при изменении нагрузки в любой фазе; вместе с будут изменяться напряжения всех фаз приемника, а следовательно, и все токи. Таким образом, звезда без нулевого провода, а также звезда с нулевым проводом, имеющим сопротивление, не обеспечивает независимой работы фаз.
В случае звезды без нулевого провода фазные напряжения на приемнике могут быть выражены через линейные напряжения:
Выражения для можно получить, пользуясь круговой перестановкой индексов:
Приведенный вывод выражений для фазных напряжений на приемнике через фазные или линейные напряжения генератора справедлив для общего случая несимметричных систем фазных и линейных напряжений.
Примером неодинаковой нагрузки фаз может служить прибор для определения порядка следования фаз (рис. 12.10). Он представляет собой три одинаковые по величине проводимости, соединенные в звезду, — две лампы накаливания и конденсатор; тогда, считая, что проводимости ламп линейны,
где а — абсолютное значение проводимостей. При симметричной системе фазных напряжений генератора, если вектор UА направлен по оси вещественных величин (UA = U), узловое напряжение
Тогда комплексные напряжения на лампах будут:
На рис. 12.9 показана векторная диаграмма для рассматриваемой цепи. Векторы токов совпадают по фазе с напряжениями ток IB опережает напряжение Uв по фазе на π/2.
Действующие значения напряжений на лампах и их отношение будут:
Поэтому лампа, включенная в фазу С, будет светиться ярче лампы, включенной в фазу А, т. е. фазы следуют друг за другом в следующем порядке: яркая лампа, тусклая лампа, конденсатор.
При индуктивных связях между фазами приемника и между его фазами и нулевым проводом должны быть учтены э. д. с. взаимной индукции. Так, например, для соединения звездой с нулевым проводом или без него по схеме рис. 12.11, а при взаимной индукции только между фазами уравнение по второму закону Кирхгофа для фазы А приемника будет иметь вид:
уравнения для второй и третьей фаз можно получить путем круговой перестановки индексов А, В, С.
Если нагрузка фаз одинакова, т. е.
(12.1)
Если, кроме того, нулевой провод отсутствует или при его наличии система фазных напряжений симметрична, то сумма токов 1А + 1в + 1С=0, и уравнение (12.1) получит вид:
г. е. в этом случае цепь рис. 12.11, а эквивалентна схеме рис. 12.11, б без индуктивных связей, но с индуктивностью фаз приемника, равной L — М.
Для дальнейшего представляет интерес случай, когда есть нулевой провод, а все фазные напряжения генератора равны между собой и совпадают по фазе: (так называемая нулевая система); тогда, очевидно, все токи также будут равны между собой:
и уравнение (12.1) получит вид:
Это значит, что в данном случае цепь рис. 12.11, а эквивалентна схеме рис. 12.11, в без индуктивной связи, но с индуктивностью фаз приемника, равной L + 2М. Ток нулевого провода будет, очевидно, равен 3I.
Соединение треугольником
Чтобы соединить генератор в треугольник, нужно связать конец каждой фазы с началом следующей; в результате фазы генератора образуют замкнутый контур. При таком соединении симметричного генератора с отключенной нагрузкой (рис. 12.12) ток внутри него не возникает, так как сумма его э. д. c., образующих симметричную систему, равна нулю.
Соединив приемник также в треугольник (рис. 12.13), можно видеть, что фазные напряжения генератора и приемника одновременно являются и линейными, линейные же токи — отличны от фазных токов Для получения симметричных соотношений между линейными и фазными токами следует выбирать их положительные направления единообразно. Для всех линейных токов обычно выбирается направление от генератора к приемнику, для фазных — по направлению обхода контура, например, против часовой стрелки для приемника (рис. 12.13). Тогда по первому закону Кирхгофа для приемника получаются следующие соотношения для мгно венных значений и комплексных токов:
Для генератора соотношения между линейными и фазными токами аналогичны. Таким образом, линейные токи равны разностям соответствующих фазных токов.
Из полученных соотношений видно, что сумма линейных токов равна нулю:
Для симметричной системы фазных токов (рис. 12.14)
т. е. по абсолютной величине линейные токи в раз больше фазных.
Токи в фазах приемника будут определяться линейными напряжениями и сопротивлениями или прово-димостями фаз приемника:
По приведенным соотношениям фазных токов могут быть определены линейные токи.
Если пренебречь сопротивлением проводов, напряжения генератора будут равны напряжениям приемника и фазы будут работать независимо друг от друга: всякое изменение сопротивления какой-либо фазы приемника вызовет изменение тока этой фазы и токов двух примыкающих к этой фазе линейных проводов, но никак не отразится на токах других фаз.
Если сопротивление линейных проводов не равно нулю (рис. 12.15, а), то из-за падения напряжения в них треугольник не обеспечивает независимой работы фаз. Изменение, например, сопротивления фазы АВ вызовет изменение фазного тока IAB, а следовательно, и линейных токов IА и IB. При этом изменятся падения напряжения в линейных проводах А и В, что при неизменных линейных напряжениях на зажимах генератора вызовет изменение напряжений на всех трех фазах приемника; следовательно, должны измениться также токи тех фаз, сопротивление которых оставалось неизменным.
Для расчета цепи рис. 12.15, а при заданных линейных напряжениях, помимо методов уравнений Кирхгофа, наложения, контурных токов и узловых напряжений, при отсутствии взаимной индукции можно применить метод преобразования. Треугольник ZAB, ZBC. ZCA преобразуют в эквивалентную звезду ZA, ZB, Zc по формулам, соответствующим (рис. 12.15, б):
Объединяя в каждой фазе сопротивление линии и приемника, приводят схему к звезде (рис. 12.15, в), после определения токов которой возвращаются к цепи рис. 12.15, б, находя фазные и линейные напряжения на звезде ZA, ZB, Zc, а затем — к исходному треугольнику (см. рис. 12.15, а), чтобы найти его фазные токи.
Приведенные выше выражения для расчета соединения треугольником справедливы для общего случая несимметричной системы напряжений генератора.
При наличии взаимной индукции, одинаковой нагрузке фаз и симметричной системе напряжений (рис. 12.16, а) система фазных токов будет также симметричной, тогда
и уравнение по второму закону Кирхгофа примет вид:
т. е. в этом случае цепь рис. 12.16, а эквивалентна схеме рис. 12.16, б без индуктивной связи, но с индуктивностью фаз приемника, равной L – М.
Мощность трехфазных систем и ее измерение
Мгновенная мощность трехфазной системы, как и всякой сложной цепи, равна сумме мощностей отдельных приемников, т. е. сумме мощностей фаз. Мгновенная мощность симметричной и одинакова нагруженной трехфазной системы
Сумма трех косинусоид, сдвинутых по фазе на угол равна нулю, в чем можно убедиться, построив и сложив векторы, изображающие эти функции. Следовательно,
т. е. мгновенная мощность симметричной одинаково нагруженной трехфазной системы постоянна, тогда как мощность однофазной системы изменяется во времени с двойной частотой по сравнению с частотой напряжения и тока.
Многофазная система, мгновенная мощность которой постоянна, называется уравновешенной. Интересно отметить, что несимметричная двухфазная система с равными напряжениями (см. рис. 12.5) в случае одинаковой нагрузки фаз также является уравновешенной:
Из-за уравновешенности трехфазные и двухфазные двигатели имеют постоянный вращающий момент, тогда как момент однофазных двигателей пульсирует с двойной частотой.
Выражение для мощности уравновешенной трехфазной системы может быть преобразовано. В симметричной звезде
В симметричном треугольнике
В обоих случаях выражения для мощности получились одинаковыми.
Для измерения мощности трехфазной симметричной и одинаково нагруженной системы достаточен один ваттметр, включенный в одну из фаз и измеряющий ее мощность. Аналогично включается однофазный счетчик электрической энергии, Для получения мощности и, соответственно, энергии трехфазной системы показания этих приборов следует утроить.
В общем случае несимметричной системы и неодинаковой нагрузки мгновенная мощность р есть величина переменная, т. е. такая система является неуравновешенной. Средняя мощность этой системы равна сумме средних мощностей отдельных фаз:
Следовательно, средняя мощность в данном случае может быть измерена тремя ваттметрами, включенными в каждую фазу, как это показано на рис. 12.17, а, для звезды с нулевым проводом (точками обозначены условные «начала» параллельных и последовательных цепей ваттметров).
В случае трех проводной системы можно ограничиться двумя ваттметрами, включенными так, как показано на рис. 12.17, б для измерения средней мощности трехфазной системы, соединенной треугольником. Мгновенные мощности, усредняемые первым и вторым ваттметрами, соответственно равны:
Так как сумма этих мощностей
При переходе к средним мощностям получается, что сумма показаний ваттметров
т. е. равна мощности системы. Вывод справедлив и для звезды без нулевого провода, так как она может быть заменена эквивалентным треугольником.
Реактивная и полная мощности симметричной и одинаково нагруженной трехфазной системы равны суммам соответствующих мощностей всех фаз:
В общем случае несимметричной и неодинаково нагруженной трехфазной системы суммирование реактивных и полных мощностей фаз не дает величин, характерных для нагрузки генератора в целом, как это было в однофазной цепи с одним источником энергии. Предлагаемые в литературе определения реактивной и полной мощностей трехфазной несимметричной и неодинаково нагруженной системы чисто условны и потому здесь не рассматриваются.
Сравнение трехфазных и однофазной cиcтем
Сопротивление линейных и нулевого проводов, соединяющих генератор и приемник, обычно мало по сравнению с сопротивлением фаз приемника, и выводы, сделанные по поводу независимости работы фаз при соединении звездой и треугольником, можно обобщить следующим образом:
- в звезде с нулевым проводом и в треугольнике токи фаз практически мало зависят друг от друга и поэтому эти схемы следует применять при неодинаковой нагрузке фаз;
- звезда без нулевого провода может применяться только при одинаковой нагрузке фаз.
Необходимо отметить, что схема соединений генератора и приемника может быть различной, и один из них может быть соединен треугольником, другой — звездой без нулевого провода.
Представляет интерес сравнение расхода металла с удельным сопротивлением р на провода однофазной и трехфазной линий передачи (рис. 12.18) той же мощности Р на то же расстояние l при одинаковом cosϕ и том же к. п. д., т. е. тех же потерях в линии Рл = kP, где k — относительная потеря мощности, и одинаковом линейном напряжении U.
Для однофазной двухпроводной линии (рис. 12.18, а) Р = UI0 cosϕ; отсюда ток I0, потери Рл и сопротивление r0 одного провода:
Следовательно, сечение s0 и объем V0 проводов соответственно равны:
Отсюда видно, что формула для сечения двухпроводной линии переменного тока отличается от аналогичной формулы для линии постоянного тока наличием множителя в знаменателе, приводящему к тем большему увеличению расхода металла, чем ниже коэффициент мощности .
Для трехфазной трехпроводной линии (рис. 12.18, б и в) и аналогично
а сечение sT и объем VT проводов:
В знаменателе этих выражений также присутствует множитель .
Из формул для s0 и sT видна эффективность высокого напряжения и большого коэффициента мощности — сечения обратно пропорциональны квадратам этих величин. Вместе с тем очевидно, что стоимость изоляции проводов растет с ростом напряжения. В результате экономически оптимальное напряжение U оказывается тем выше, чем больше передаваемая мощность Р и длина l линии.
Соотношение объемов металла линий: однофазной двухпроводной V0 и трехфазных —- трехпроводной Vr и четырехпроводной с нулевым проводом половинного сечения (рис. 12.18, г) будет
Таким образом, при одинаковом линейном напряжении звезда без нулевого провода и треугольник, очевидно, дают одинаковый расход металла на линию передачи и экономию в 25% по сравнению с однофазной линией, а нулевой провод половинного сечения вызывает перерасход металла, но все же система остается легче однофазной на 12,5%.
Соединение звездой с нулевым проводом имеет важное преимущество: помимо трехфазных приемников, рассчитанных на линейное напряжение, оно позволяет включать однофазные приемники и на линейное, и на фазное напряжение.
Если приемники работают при одинаковом фазном напряжении, линейное напряжение звезды будет в раз больше, чем треугольника, что уменьшит расход металла в 3 раза.
Основным преимуществом трехфазной системы по сравнению с однофазной является возможность легко создавать вращающееся магнитное поле, используемое, в частности, в трехфазных асинхронных двигателях, наиболее простых по конструкции и в эксплуатации.
Пульсирующее и вращающееся магнитные поля
Электрические индуктивные машины переменного тока в большинстве случаев имеют магнитопровод в виде двух коаксиальных цилиндров, набранных из стальных листов и разделенных воздушным зазором (рис. 12 19). Внешний цилиндр S является статором, внутренний R — ротором.
Если по обмотке статора, уложенной в его пазы н распределенной на части, например одной трети его окружности (рис. 12.19), будет проходить постоянный ток, магнитный поток, замыкающийся через статор, воздушный зазор и ротор будет постоянным. Приближенно магнитную индукцию можно считать распределенной по окружности статора по синусоидальному закону (сплошная линия на рис. 12.20); она имеет максимальные значения Вm по оси обмотки и равна нулю на нейтральной линии, перпендикулярной к оси обмотки. Такое синусоидально распределенное в зазоре машины поле можно условно изобразить постоянным вектором Вm (рис. 12.21), аналогично тому, как ранее это было сделано для величин, изменяющихся по синусоиде во времени.
Если по обмотке статора пропускать переменный ток, синусоидальное распределение магнитного поля сохранится, но поле будет пульсирующим, т. е. изменяющимся во времени по синусоидальному закону (см. рис. 12.20). Принимая за начало счета времени момент, когда индукция по оси обмотки максимальна, пульсирующее поле можно условно изобразить вектором Согласно формуле Эйлера,
(12.2)
Это значит, что пульсирующее синусоидально распределенное поле может быть представлено в виде суммы двух также синусоидально распределенных полей , постоянных во времени, но вращающихся с угловой скоростью ω в разные стороны; последнее видно из противоположных знаков показателей степени множителей вращения. Поле , вращающееся в положительном направлении вращения векторов, называется прямым, поле — обратным. Вращающиеся векторы, условно изображающие эти поля, на рис. 12.21 показаны для момента начала счета времени.
Разложение пульсирующего поля на два вращающихся используется, например, в однофазных двигателях, где прямое поле, воздействуя на ротор, приводит его во вращение, а обратное поле экранируется.
В трехфазных машинах на статор наложены три обмотки, показанные в разрезе на рис. 12.22, занимающие каждая треть его окружности; следовательно, эти обмотки и их оси сдвинуты в пространстве на угол 2π/3. Обмотки обтекаются токами, векторы которых образуют симметричную трехфазную систему. Тогда выражение для поля первой фазы А совпадает с выражением (12.2) при том же начале счета времени
Пусть обмотка, обтекаемая током второй фазы В, т. е. током, отстающим от тока первой фазы на угол 2π/3, сдвинута в пространстве вперед по направлению вращения прямого поля на тот же угол, что учитывается множителем . Тогда выражение для поля фазы В получает вид:
Аналогично записывается поле третьей фазы С, но так как она обтекается током, опережающим по фазе ток фазы А на угол 2π/3, и сдвинута в пространстве на тот же угол назад, знаки всех углов 2π/3 изменяются на обратные.
Результирующее поле определяется наложением полей всех трех фаз:
Отсюда видно, что все прямые поля трех обмоток арифметически складываются, тогда как обратные поля в сумме дают нуль и в машине возникает вращающееся поле, постоянное во времени. Амплитуда вращающегося поля в полтора раза превышает амплитуду пульсирующего поля отдельных обмоток, а фаза совпадает с фазой прямого поля обмотки первой фазы А.
В трехфазных двигателях вращающееся поле также используется для приведения во вращение ротора; из-за постоянства мощности в трехфазных системах и, следовательно, вращающего момента, а также отсутствия обратного поля эти двигатели имеют значительное преимущество перед однофазными.
Основы метода симметричных составляющих
Метод симметричных составляющих, предложенный Фортескью, позволяет сравнительно просто рассчитывать несимметричные, в частности, аварийные режимы в трехфазных системах и машинах. До предложения этого метода для таких расчетов надо было решать дифференциальные уравнения с переменными коэффициентами или оперировать с сопротивлениями, зависящими от токов.
В общем случае симметричной трехфазной системой векторов называется система, состоящая из трех равных по величине векторов, причем каждый вслед идущий вектор сдвинут относительно предыдущего на угол где k — любое целое число. Система (рис. 12.23, a), у которой угол сдвига между вслед идущими векторами имеет прямой порядок следования фаз в направлении вращения векторов и называется прямой системой.
Симметричные системы линейных и фазных напряжений и токов, рассмотренные выше, были именно прямыми системами. Система (рис. 12.13, в), в которой угол сдвига между вслед идущими векторами имеет обратный порядок следования фаз и называется обратной системой. Система векторов совпадающих по фазе (т. е. β = 0) называется нулевой системой (рис. 12.23, б).
Система векторов, сдвинутых по фазе на угол является также прямой системой и т. д. Таким образом, все многообразие симметричных трехфазных систем сводится к трем системам, изображенным на рис. 12.23.
Пользуясь оператором поворота вектора на угол 2π/3 в положительном направлении и приняв за основные вектор A1 прямой системы, вектор A2 обратной системы и вектор A0 нулевой системы, через них можно выразить остальные векторы:
(12.3)
Пусть задана несимметричная система трех векторов А, В, С. Далее доказывается, что каждый вектор этой системы может быть представлен в виде суммы трех векторов, являющихся составляющими прямой, обратной и нулевой систем:
(12.4)
Подстановка уравнений (12.3) в уравнения (12.4) дает:
(12.5)
Система уравнений (12.5) решается относительно А0, А1, A2 однозначно:
(12.6)
Отсюда и следует, что несимметричную систему векторов можно разложить на три симметричные системы.
Из первого уравнения системы (12.6) видно, что если сумма векторов несимметричной системы равна нулю, будут равны нулю и векторы нулевой системы. Следовательно, несимметричные системы линейных напряжений и линейных токов при отсутствии нулевого провода содержат только прямую и обратную составляющие.
Определение симметричных составляющих несимметричной системы векторов по выражениям (12.6) может быть выполнено также графически. Пусть задана несимметричная система векторов фазных напряжений (рис. 12.24, а). Во все три суммы напряжений (см. систему 12.6) вектор UА входит без изменений, а векторы Uв и Uс во второй и третьей суммах повернуты на угол 2π/3 или 4π/3. Следует начертить вектор UB, из его конца (т. е. стрелки) — вектор UA, а из конца UА — вектор Uс (рис. 12.24, б). Если вектор U в повернуть на угол 2π/3 и 4π/3 вокруг его конца, примыкающего к началу вектора UА, а вектор Uс — вокруг начала, совпадающего с концом вектора UА, суммы векторов по выражениям (12.6) будут равны утроенным искомым векторам:
Далее очевидным построением определяются все векторы трех симметричных систем.
Аналогично производится разложение несимметричной системы токов.
Симметричные составляющие несимметричной трехфазной системы напряжений и токов могут быть определены экспериментально. Например, для измерения нулевой составляющей системы фазных напряжений надо однообразно включить на фазные напряжения трансформаторы малой мощности, вторичные обмотки которых и вольтметр соединяются последовательно (рис. 12.25). Тогда, считая для простоты, что у трансформаторов коэффициент трансформации напряжения равен единице, суммарное напряжение, измеряемое вольтметром,
т. е. пропорционально напряжению нулевой системы.
Для измерения напряжения прямой последовательности (рис. 12.26) трансформаторы включаются на одинаковые по величине полные сопротивления z — трансформатор фазы А на активное сопротивление ZA=r, фазы В на активно-индуктивное сопротивление , фазы С — на активно-емкостное сопротивление . Чтобы вторичные токи трансформаторов В и С были сдвинуты по фазе относительно напряжений на дополнительные до π углы — соответственно , что соответствует умножению на операторы вторичные обмотки этих трансформаторов включаются так, как показано на рис. 12.26.
Цепи нагрузок всех трех трансформаторов соединяются параллельно и замыкаются на амперметр. Последний измеряет суммарный ток
пропорциональный напряжению U1 системы прямой последовательности.
Если поменять местами нагрузки фаз В и С, суммарный ток
будет пропорционален напряжению U2 системы обратной последовательности.
Рассмотренные схемы называются фильтрами симметричных составляющих. Они применяются в схемах защиты трехфазных энергетических систем от аварийных режимов, вызывающих несимметрию токов и напряжений отдельных фаз.
Разложение на симметричные составляющие позволяет весьма просто решать задачи на расчет трехфазных цепей при одинаковой нагрузке фаз с взаимной индукцией между ними при несимметричной системе напряжений, что широко используется в теории электрических машин. Система напряжений разлагается на симметричные составляющие, для каждой из них находят токи фаз и применяют метод наложения. При этом сопротивление фаз приемника для каждой составляющей может быть различным. Например, для цепи рис. 12.11, соединенной в звезду с нулевым проводом, сопротивление фаз для нулевой системы напряжений:
а для прямой и обратной составляющих, являющихся симметричными трехфазными системами, сопротивления
только для статических устройств, например для трансформаторов. Во вращающихся машинах прямая система токов создает магнитное поле, вращающееся в одном направлении с ротором, а обратная система токов — в противоположном; это приведет к неравенству . Таким образом, в общем случае
После определения комплексных токов каждой составляющей они пофазно суммируются и дают систему действительных токов фаз.
При неодинаковой нагрузке фаз приемника расчет усложняется, так как тогда каждая из симметричных составляющих системы такое зависит от всех составляющих систем напряжений. Эти задачи рассматриваются в литературе, посвященной расчету аварийных режимов в трехфазных электрических сетях и системах.
Можно показать, что в самом общем случае несимметрии средняя мощность всей цепи равна сумме средних мощностей нулевой, прямой и обратной составляющих:
Трехфазные цепи
Трехфазная система ЭДС:
Производство, передача и распределение электрической энергии осуществляется в основном трехфазным током в трехфазных цепях. Широкое распространение в качестве нагрузки в трехфазных цепях получили трехфазные потребители. В трехфазных цепях используются трехфазные трансформаторы. Электрическую энергию в трехфазных цепях производят трехфазные генераторы, создающие синусоидальные ЭДС одинаковой частоты, в трехфазных системах.
Трехфазной называется система трех ЭДС одинаковой частоты, Вдвинутых друг относительно друга по фазе так, что сумма углов сдвига равна или 360°.
Трехфазная система ЭДС называется симметричной, если ЭДС трех фаз сдвинуты друг относительно друга на угол и амплитуды этих трех ЭДС одинаковы по величине:
Комплексы этих ЭДС
Получение симметричной трехфазной системы ЭДС осуществляется в трехфазном электромашинном генераторе (рис. 16.1а), в Котором три жестко скрепленные под углом 120° обмотки пересекают магнитное поле с частотой вращаясь (в данном случае) против часовой стрелки.
Начала обмоток трехфазного генератора обозначаются прописными буквами а концы их соответственно (т.е. в трехфазном генераторе имеется три обмотки: и рис. 16.1а).
Таким образом, при вращении в магнитном поле жестко скрепленных обмоток в них индуктируются одинаковые ЭДС одинаковой частоты и сдвинутые на 120°.
Векторная диаграмма такой симметричной системы ЭДС изображена на рис. 16.1б. Как видно из векторной диаграммы, мгновенное значение ЭДС в обмотке CZ можно записать в виде
а комплекс этой ЭДС
т. е. логично, чтобы начальная фаза превышала
К каждой обмотке трехфазного генератора может быть подключена нагрузка с сопротивлениями
Если при этом три обмотки генератора электрически не соединены (рис. 16.2а), то такая трехфазная система называется несвязанной. Несвязанная трехфазная система практического применения не нашла.
Практическое применение нашла связанная трехфазная система (рис. 16.2б). Эта система экономически и энергетически более рациональна, так как используется три или четыре соединительных провода вместо шести и получить можно два различных напряжения, фазное и линейное, вместо одного.
Каждая обмотка трехфазного генератора со своей нагрузкой и соединительными проводами называется фазой (рис. 16.2). В трехфазной системе различают три фазы А, В и С (международные обозначения — прописные буквы).
Положительное направление ЭДС и токов в каждой фазе на рис. 16.26 указаны стрелками.
В связанных трехфазных системах применяется соединение обмоток генератора и потребителя звездой F или треугольником Е.
Соединение обмоток генератора звездой
При соединении обмоток генератора звездой концы обмоток X, Yи Z элeктpичecки соединяются в одну точку 0 (рис. 16.3а), которая называется нулевой, или нейтральной. При этом генератор с потребителем соединяется тремя или четырьмя проводами.
Провода, подключенные к началам обмоток генератора (А, В и С, называют линейными проводами, а провод, подключенный к нулевой точке 0, называется нулевым, или нейтральным.
В связанных трехфазных системах различают фазные и линейные напряжения и токи.
Фазным называется напряжение между началом и концом обмотки генератора или между нулевым и линейным проводом. Обозначаются фазные напряжения прописными буквами с индексами фаз (рис. 16.3а). Так как сопротивление обмоток генератора мало, то фазные напряжения практически не отличаются от ЭДС в обмотках генератора.
Линейным называется напряжение между началами обмоток генератора или между линейными проводами. Обозначаются линейные напряжения (рис. 16.3а).
Можно определить зависимость между линейными и фазными напряжениями при соединении обмоток генератора звездой.
Мгновенные значения фазных напряжений равны разностям потенциалов между началами и концами соответствующих обмоток, т.е:
Мгновенные значения, линейных напряжений равны разностям потенциалов между началами соответствуют:
Потенциалы концов обмоток одинаковы так как все они соединены электрически в одну точку.
Тогда
То есть мгновенное значение линейных напряжений определяется разностью мгновенных значений двух соответствующих фазных напряжений.
При соединении обмоток генератора звездой действующее значение линейного напряжения определяется геометрической разностью двух соответствующих фазных напряжений. На этом основании построена векторная диаграмма напряжений (рис. 16.3б) для соединения обмоток генератора звездой. К такому же результат) приводит определение комплексов линейных напряжений символическим методом:
При симметричной системе ЭДС фазные напряжения равны по величине и сдвинуты по фазе на угол 120°. По векторной диаграмме (рис. 16.3б) определяется линейное напряжение (рис. 16.4).
Линейное напряжение при симметричной системе ЭДС трехфазного генератора определяется равенством
Из диаграммы (рис. 16.4) определяется вектор (комплекс)
При симметричной системе ЭДС линейное напряжение трехфазного генератора, обмотки которого соединены звездой, в раза больше фазного напряжения:
Если говорят о напряжении генератора 127/220 В, то имеется в виду, что фазное напряжение в трехфазной цепи 127 В, а линейное — 220 В. В сети с напряжением 220/380 В фазное напряжение 220 В, а линейное — 380 В. Очевидно, что обмотки генератора такой симметричной цепи соединены звездой и отношение напряжений получится равным
В связанных трехфазных системах фазным называется ток, провидящий по обмотке (фазе) генератора а линейным считается ток, проходящий по линейному проводу
Как видно на рис. 16.3а, при соединении обмоток генератора звездой линейный ток равен фазному току
Соединение обмоток генератора треугольником
При соединении обмоток генератора треугольником (рис. 16.5а) конец обмотки фазы А соединяется с началом обмотки фазы В, конец обмотки фазы В соединяется к началом обмотки фазы С, конец обмотки фазы С соединяется с началом обмотки фазы А и к точкам соединения подключаются линейные провода.
При соединении обмоток генератора треугольником (рис. 16.5а) трехфазная цепь трехпроводная.
Как следует из схемы соединения обмоток треугольником (рис. 16.5а), линейное напряжение равно фазному напряжению
То есть
Из схемы (рис. 16.5а) следует, что три обмотки генератора, соединенные треугольником, образуют замкнутый контур, ток в котором при отсутствии нагрузки (холостой ход) определяется выражением
где – комплексы (векторы) ЭДС фаз генератора; — комплексы сопротивлений обмоток генератора т.е. каждая обмотка обладает активным R и индуктивным X сопротивлениями.
Так как сопротивления обмоток малы, падением напряжения на них можно пренебречь и считать, что напряжение на каждой обмотке генератора равно ее ЭДС.
При симметричной системе ЭДС и правильном соединении обмоток генератора треугольником (рис. 16.5а) геометрическая сумма ЭДС (комплексов) обмоток генератора, образующих замкнутый контур, равна нулю (рис. 16.5б). Следовательно, и ток в замкнутом контуре обмоток, соединенных треугольником, также равен нулю при холостом ходе независимо от величины внутреннего сопротивления обмоток
Если обмотки симметричного генератора соединены «неправильным» треугольником, т. е. неправильно подключить начало и конец хотя бы одной из обмоток, например (рис. 16.5’а), то геометрическая сумма ЭДС в замкнутом контуре обмоток будет равна удвоенному значению ЭДС одной фазы (рис. 1б.5’б). С учетом малого внутреннего сопротивления обмоток генератора ток в замкнутом контуре достигает катастрофической величины даже при отсутствии нагрузки (холостой ход). Таким образом, соединена, обмоток трехфазного генератора «неправильным» треугольником равносильно короткому замыканию в замкнутом контуре обмоток.
Соединение потребителей звездой
При соединении звездой потребителя и генератора (рис. 16.6) трехфазная система представляет собой сложную цепь с двумя узловыми точками Точка 0 — нейтральная точка генератора, а 0′ — нейтральная точка потребителя. Напряжение между этими узловыми точками называется напряжением смещения нейтрали.
Соединение генератора и потребителя звездой может быть с нулевым проводом (рис. 16.6б), т.е. четырехпроводная цепь, и без нулевого провода (рис. 16.6а), т.е. трехпроводная цепь.
Величину напряжения смещения нейтрали определяют методом узлового напряжения (см. (4.9)) в символической (геометрической) форме:
где – комплекс (вектор) напряжения смещения нейтрали; комплексы (векторы) ЭДС в обмотках соответствующих фаз генератора; – комплексы проводимостей соответствующих фаз:
где – комплексы сопротивлений фаз потребителя, включая внутреннее сопротивление обмоток генератора и сопротивление соединительных проводов; — комплекс проводимости нулевого провода, a — комплекс его сопротивления.
Напряжение U’ на каждой фазе потребителя, соединенного звездой (рис. 16.6а), с учетом напряжения смещения нейтрали, определяют следующим образом:
где — комплексы (векторы) напряжений на фазах потребителей.
На основании (16.15) строится векторная диаграмма напряжений (рис. 16.7), на которой вектор напряжения смещения нейтрали взят произвольно. Из векторной диаграммы (рис. 16.7) следует, что при наличии напряжения смещения нейтрали напряжения на фазах потребителя, соединенного звездой, различны по величине и по начальной фазе даже при симметричной системе ЭДС в обмотках генератора.
Очевидно (рис. 16.7), что напряжения на фазах потребителя, соединенного звездой, будут одинаковыми по величине если напряжение смещения нейтрали отсутствует, т.е. при симметричной системе ЭДС генератора.
Напряжение смещения нейтрали отсутствует, т. е. при равномерной (симметричной) нагрузке фаз или при наличии нулевого провода.
Рассмотрим эти условия:
1. Равномерная нагрузка фаз.
Равномерной называют нагрузку, при которой комплексы сопротивлений фаз равны между собой.
То есть
или
Тогда так как при симметричной системе ЭДС сумма (см. рис. 16.5б).
Так как комплекс сопротивления фазы то равномерной считается нагрузка, при которой сопротивления фаз одинаковы по величине по характеру (активный, индуктивный или емкостной) и имеют одинаковый угол сдвига фаз
2. Наличие нулевого провода.
При наличии нулевого провода, соединяющего нейтральные точки 0 и 0′ (рис. 16.6б),
Тогда
В обоих случаях (1 и 2) напряжения на фазах потребителя, подключенного к трехфазному генератору с симметричной системой ЭДС, одинаковы по величине. При этом величина напряжения на каждой фазе потребителя, соединенного звездой, в раза меньше линейного напряжения, т. е.
Ток в нулевом проводе (рис. 16.66) при соединении потребителей звездой определяется геометрической суммой токов в фазах потребителя:
Токи в фазах потребителя определяются по формулам
Очевидно, что при равномерной нагрузке фаз токи в фазах равны по величине «сдвинуты, как и напряжения, по фазе на 120°. Следовательно, их геометрическая сумма равна нулю, т.е. (см. рис. 16.5б, где вместо подставить ).
Таким образом, при равномерной нагрузке фаз нулевой провод не нужен.
При неравномерной нагрузке фаз отсутствие нулевого провода приводит к неодинаковым по величине напряжениям на каждой фазе потребителя (рис. 16.7). При этом на фазе с большим сопротивлением Z будет большее напряжение U’.
Так как отсутствие нулевого провода при неравномерной нагрузке фаз потребителя, соединенного звездой, нарушает режим работы потребителей U’, то предохранитель в нулевой провод не ставят.
Следовательно, нулевой провод служит для выравнивания напряжений на фазах потребителя при неравномерной нагрузке фаз.
При соединении потребителей звездой ток каждой фазы потребителя (рис. 16.16) равен линейному току трехфазной цепи
Соединение потребителей треугольником
При соединении потребителя треугольником (рис. 16.8) к каждой фазе потребителя приложено линейное напряжение трехфазной цепи
Так как при симметричной системе ЭДС все линейные напряжения равны по величине и сдвинуты на угол 120° по фазе, то и напряжения на каждой фазе потребителя, соединенного треугольником, равны по величине и сдвинуты по фазе на угол 120°, независимо от характера нагрузки.
При соединении потребителей треугольником линейные токи обозначаются прописными буквами с индексами фаз, т. е. а токи в фазах потребителя
Воспользовавшись первым законом Кирхгофа, линейные токи можно определить выражениями (рис. 16.8)
Линейный ток при соединении потребителей треугольником определяется геометрической разностью двух фазных токов, сходящихся с линейным в одной узловой точке (рис. 16.8).
Фазные токи потребителя, соединенного треугольником, определяются:
При симметричной системе ЭДС генератора и равномерной нагрузке фаз потребителя токи в фазах потребителя равны между собой по величине и, так лее как напряжения на фазах потребителя, сдвинуты друг относительно друга по фазе на угол 120° (рис. 16.9).
Таким образом, при равномерной нагрузке фаз и симметричной системе ЭДС при соединении потребителей треугольником линейный ток в трехфазной цепи в раза больше фазного тока:
Мощность трехфазного тока
Активная мощность, отдаваемая трехфазным генератором и потребляемая трехфазным потребителем, определяется суммой активных мощностей каждой фазы потребителя:
Аналогичное определение можно отнести и к реактивной мощности трехфазного тока, т. е.
Полная, или кажущаяся, мощность трехфазного потребителя равна
=
Очевидно, что при равномерной нагрузке фаз активная мощность трехфазного тока равна утроенному значению активной мощности каждой фазы
Однако на практике удобней оперировать линейными величинами, так как доступными являются линейные провода, а не обмотки генератора или двигателя.
При соединении потребителя звездой при равномерной нагрузке фаз
Тогда
При соединении потребителей треугольником при равномерной нагрузке фаз
Тогда
Таким образом, при равномерной нагрузке фаз при соединении потребителей звездой и треугольником мощности трехфазного тока определяются выражениями:
При неравномерной нагрузке фаз полная, или кажущаяся, мощность трехфазного тока может быть определена суммой полных мощностей каждой фазы, выраженной в комплексной форме, а именно
Равномерную нагрузку в трехфазных цепях обеспечивают электрические двигатели трехфазного тока, обмотки которых могут гь соединены или звездой, или треугольником.
Топографическая диаграмма
Напряжение между отдельными точками трехфазной цепи можно найти графически путем построения так называемой топографической диаграммы.
Топографическая диаграмма — это векторная диаграмма, поенная так, чтобы каждой точке цепи соответствовала определенная точка на диаграмме и чтобы вектор, проведенный в эту точку из начала координат, выражал по величине и фазе потенциал соответствующей точки цепи. Отрезок, соединяющий любые две точки на этой диаграмме, определяет напряжение между соответствующими точками цепи. Если топографическая диаграмма встроена в определенном масштабе, то по ней можно определить искомое напряжение и ток по величине и по фазе.
При построении топографической диаграммы для трехфазной цепи удобно принять за точку с нулевым потенциалом нулевую, или нейтральную, точку генератора. Этой точке генератора соответствует начало координат топографической диаграммы.
Топографическая диаграмма для трехфазной цепи, изображенной на рис. 16.6, построена при условии, что точка 0 на диаграмме (рис. 16.10) соответствует нулевой точке генератора, потенциал которой равен нулю, т. е.
Из точки 0 откладываются в определенном масштабе напряжений векторы фазных ЭДС в результате чего получаются точки А, В и С на топографической диаграмме. Эти точки на диаграмме соответствуют началам обмоток генератора, Соединенного звездой точками А, В и С цепи.
Отрезок равный разности векторов представляет собой линейное напряжение (падением напряжения на внутреннем сопротивлении обмотки генератора пренебрегаем, т.е. ). Аналогично отрезки на топографической диаграмме изображают линейные напряжения соответственно.
Отложив из точки 0 (начало координат) вектор напряжения смещения нейтрали (отрезок ), определяют потенциал нулевой точки потребителя 0′ на диаграмме. Тогда отрезки выражают напряжение на фазах потребителя
Если напряжение смешения нейтрали отсутствует то точка 0′ (нулевая точка потребителя) на топографической диаграмме совпадет с точкой 0 (нулевой точкой генератора). Тогда векторы напряжений на фазах потребителя равны по величине и по фазе векторам ЭДС генератора
Применение топографической диаграммы для расчета трехфазной цепи рассмотрено в примере 16.1 настоящей главы.
Пример 16.1
К трехфазной трехпроводной сети с линейным напряжением 220 В подключен потребитель, соединенный звездой, с сопротивлениями 10 Ом (рис. 16.11).
Определить напряжение и ток каждой фазы потребителя в каждом из трех режимов:
1. Потребители соединены звездой, как показано на рис. 16.11.
2. Обрыв в фазе А, т. е.
3. Короткое замыкание в фазе А, т. е.
Решение
Решение этой задачи производится с помощью построения топографической диаграммы для каждого режима.
1. Так как в данном режиме имеет место равномерная нагрузка фаз следовательно, напряжение смещения нейтрали равно нулю и точка 0′ на топографической диаграмме совпадает с точкой 0 (рис. 16.12).
Пренебрегая внутренним сопротивлением обмоток генератора определяют напряжение на каждой фазе потребителя при симметричной системе ЭДС:
так как
Toк каждой фазы потребителя будет равен
Линейные токи в каждом линейном проводе также равны между собой и равны фазным токам каждой фазы, т.е.
2. При обрыве в фазе А схема трехфазной цепи обретает следующий вид (рис. 16.13а), а топографическая диаграмма показана на рис. 16.13б.
Таким образом, точка 0′ на топографической диаграмме при обрыве в фазе А как бы опустилась на вектор линейного напряжения разделив его величину поровну между т. е.
Напряжение на оборванной фазе А, т. е. напряжение между точками 0′ и А в схеме, как следует из топографической диаграммы рис. 16.13б), будет равно
Токи в фазах:
Токи в линейных проводах:
3. При коротком замыкании фазы А схема трехфазной цепи показана на рис. 16.14а, топографическая диаграмма на рис. 16.14б.
Таким образом, точка 0′ на топографической диаграмме при коротком замыкании фазы как бы поднялась в точку А и фазные напряжения совпали с векторами линейных напряжений соответственно и стали равными им по величине, т.е.
Токи в фазах будут равны
Ток в коротко замкнутой фазе т. е. ток в проводе, соединяющем точку 0′ и А, определяется геометрической суммой токов (рис. 16.14б), т.е.
Напряжение и токи в режимах 2 и 3 легко определить из схем рис. 16.13а и 16.14а, не прибегая к топографическим диаграммам.
Пример 16.2
К соединенному звездой генератору с фазным напряжением 127 В подключен потребитель, соединенный треугольником. Активное сопротивление каждой фазы потребителя R = 8 Ом, индуктивное = 6 Ом (рис. 16.15а).
Определить ток в каждой фазе генератора, отдаваемую им мощность и построить векторную диаграмму.
Решение
Эту задачу можно решить, не прибегая к символическому методу и построению топографической диаграммы.
Напряжение на каждой фазе потребителя равно линейному напряжению генератора
Сопротивление каждой фазы потребителя равно
Ток каждой фазы потребителя (нагрузка равномерная):
В каждой фазе генератора проходит линейный ток потребителя, единенного треугольником, т.е. (см. рис. 16.15а)
Отдаваемая генератором мощность (активная мощность) равна
Так как
Угол (Приложение 10).
Таким образом, ток фазы потребителя отстает от напряжения на угол 37°, так как нагрузка индуктивного характера.
Вычисленные величины легли в основу построения векторной диаграммы (рис. 16.15б).
Пример 16.3
Параметры трехфазного потребителя, соединенного звездой, имеют следующие значения: Линейное напряжение сети симметричной системы ЭДС
Определить:
1) напряжение на каждой фазе потребителя;
2) токи каждой фазы потребителя;
3) мощности цепи. Построить векторную диаграмму.
Решение
Допустим, что обмотки генератора соединены звездой, тогда напряжение каждой фазы генератора (при симметричной системе ЭДС)
Напряжение на каждой обмотке генератора в комплексной форме:
Сопротивление каждой фазы потребителя:
Проводимости каждой фазы потребителя:
Напряжение смещения нейтрали при отсутствии нулевого провода, т. е. при будет равно
При вычислении принято: и Напряжение на каждой фазе потребителя (16.15):
Токи в каждой фазе потребителя:
Мощности каждой фазы потребителя:
Мощность всей трехфазной нагрузки:
Векторная диаграмма рассматриваемой цепи изображена на рис. 16.17.
Пример 16.4
К трехфазной сети с линейным напряжением подключены двигатель Д и однофазные силовые потребители (рис. 16.18).
Обмотки трехфазного двигателя мощностью кВт и = 0,76 соединены треугольником. Однофазные силовые потребители с параметрами: — соединены звездой.
Определить: показания амперметров мощность Р, потребляемую всей нагрузкой; показания вольтметров.
В линейном проводе С сгорел предохранитель (обрыв линейного провода С). Как при этом изменится показание вольтметpa , если оборвется и нулевой провод? Как изменится показание вольтметра
Решение
Расчет трехфазной цепи (рис. 16.18) можно осуществить, не прибегая к символическому методу и построению топографической диаграммы.
Амперметр включен в линейный провод С, подводящий 1ние к двигателю, обмотки которого соединены треугольником и представляют равномерную нагрузку фаз; следовательно (см. (16.29))
Амперметр измеряет ток в фазе В силового потребителя, соединенного звездой. При наличии нулевого провода напряжение на каждой фазе потребителя тогда ток в фазе В будет равен
так как
Показания амперметра включенного в фазу С силового потребителя:
так как
Амперметр включен в нулевой провод, ток в котором определяется геометрической суммой токов в фазах силового потребителя, соединенного звездой (см. (16.19) и рис. 16.19).
Для вычисления геометрической суммы токов фаз необходимо построить векторную диаграмму токов (рис. 16.19).
При наличии нулевого провода напряжения на фазах сдвинуты на угол 120°. Угол сдвига фаз между током и напряжением, исходя из условий, для всех трех фаз одинаков (это видно из заданных параметров силового потребителя):
Следовательно, фазные токи сдвинуты так же, как и напряжения, на угол 120°. Величины токов определены: На основании этих данных можно построить векторную диаграмму токов (рис. 16.19).
На векторной диаграмме складываются геометрически и получается суммарный ток, равный 14,7 А.
Поскольку этот суммарный ток находится в противофазе с током то ток в нулевом проводе равен 7,3 А:
Следовательно, амперметр покажет ток 7,3 А.
Для расчета мощности Р, потребляемой всей нагрузкой, вычисляется активная мощность каждого силового потребителя:
Тогда активная мощность, потребляемая всей нагрузкой, будет равна
При обрыве линейного провода С и нулевого провода две фазы силового потребителя А и В кажутся соединенными последовательно и подключенными к личному напряжению =380 В. Так как сопротивления этих фаз равны по величине, то это линейное напряжение распределится между ними поровну, т.е.
Таким образом, вольтметр покажет напряжение 190 В вместо 220 В, которое он показывал до обрыва.
При обрыве линейного провода С фазы В и С двигателя окажутся соединенными последовательно и подключенными к линейному напряжению Так как сопротивления обмоток двигателя равны между собой, то линейное напряжение распределится поровну между обмотками В и С двигателя, т.е.
Таким образом, вольтметр покажет напряжение 190 В вместо 380 В, которое он показывал до обрыва.
Вращающееся магнитное поле двухфазного тока
Двухфазным током называется совокупность двух однофазных токов, сдвинутых по фазе на угол друг относительно друга (рис. 17.3б):
Эти токи создают в обмотках переменные магнитные потоки, сдвинутые по фазе также на угол 90°:
Таким образом, если по двум неподвижно скрепленным под углом 90° обмоткам пропустить двухфазный ток, то внутри этих обмоток (рис. 17.3а) создается вращающееся магнитное поле двухфазного тока.
Как видно (рис. 17.3б), постоянный магнитный поток одной фазы) вращается против часовой стрелки, если при указанном расположении обмоток первый ток опережает второй ток по фазе.
Нетрудно убедиться в том, что если бы второй ток опережал первый то магнитное поле вращалось бы в обратную сторону. Вращающееся магнитное поле двухфазного тока широко применяется для пуска и работы однофазных машин переменного тока.
Пульсирующее магнитное поле
Если по неподвижной катушке (обмотке) машины пропустить синусоидальный ток то внутри этой катушки создается пульсирующее магнитное поле, т. е. поле, изменяющееся по величине и направлению, но расположенное в одной плоскости (рис. 17.4).
Пульсирующее магнитное поле, к видно из рис. 17.4, можно рассматривать как два магнитных поля, вращающихся в разные стогны. Поэтому в машинах, в которых используется пульсирующее магнитное поле, отсутствует пусковой момент. Для работы таких машин его необходимо создать. Пусковой момент в таких машинах создают или механически, или за счет пусковой обмотки, по которой в момент пуска пропускают импульс тока, сдвинутого по фазе относительно основного синусоидального тока, проходящего по катушке (обмотке) машины (аналогично двухфазному току).
Определение трёхфазных цепей
Наряду с однофазными источниками существуют источники энергии, содержащие две, три, четыре и т.д., характеризуемые тем, что их ЭДС, имея одинаковую частоту, сдвинуты друг относительно друга на некоторый угол. Такие генераторы называются многофазными, а электрические цепи с такими источниками – многофазными.
Трёхфазный генератор
Трёхфазные цепи получили наибольшее практическое применение. В связи с этим основные исследования многофазных цепей будем проводить на примере трёхфазных. Рассмотрим вопрос реализации трёхфазного источника, которым является трёхфазный генератор (рис. 4.1).
Рис. 4.1. Трёхфазный генератор
Для упрощения понимания принципа работы генератора обмотки (фазы) представлены одним витком. В качестве ротора генератора выбран постоянный магнит. Каждая из обмоток имеет начало – клеммы и конец – Обмотки в пространстве сдвинуты друг относительно друга на 120°, из чего следует, что максимумы ЭДС в них достигаются в разные моменты времени, отстоящие друг от друга на одну треть периода где — угловая частота вращения ротора.
Последовательность, в которой ЭДС достигают максимума в соответствующих фазах, носит название порядка чередования фаз. Прямым порядком чередования фаз называют последовательность при которой фаза отстает от фазы на и фаза отстает от фазы на На рис. 4.2 изображен график мгновенных значений ЭДС для прямого порядка чередования фаз. Изменение направления вращения ротора трёхфазного генератора на противоположное меняет эту последовательность чередования фаз, и она станет уже
Рис. 4.2. Графики мгновенных значений ЭДС фаз
Запишем мгновенные значения ЭДС, индуктируемые в фазах при вращении ротора генератора:
Поскольку ЭДС каждой фазы генератора синусоидальна, то их можно изобразить на комплексной плоскости в виде векторов соответствующих фазных ЭДС: (рис. 4.3).
Рис. 4.3. Векторная диаграмма фазных ЭДС
Важным обстоятельством является то, что система векторов фазных ЭДС генератора на комплексной плоскости образует симметричную трехлучевую звезду и сумма этих векторов в любой момент времени равна нулю.
При подключении к каждой из фаз генератора нагрузки по ней будет протекать ток. Таким образом, реализуется трёхфазная система.
Способы соединения фаз генератора и нагрузки
Соединение фаз генератора и нагрузки четырехпроводной звездой:
При соединении фаз генератора звездой все концы или начала соединяют в одну общую точку. На рис. 4.4.а показана несвязанная трёхфазная система, в которой каждая фаза генератора и приемника образует отдельную электрическую цепь и поэтому для связи генератора и приемника требуется 6 проводов.
Рис. 4.4. Соединение звездой а) несвязанная трёхфазная система, b) четырехпроводная звезда
При соединении звездой количество проводов уменьшится до 4-х. Причем провод, соединяющий общие (нейтральные или нулевые) точки фаз генератора и приемника называется нейтральным или нулевым. Остальные провода, соединяющие фазы генератора и приемника – линейные.
Токи, протекающие по фазам генератора или приемника, называются фазными токами, токи, протекающие по проводам, соединяющим фазы генератора и приемника, – линейными токам, ток, протекающий по нейтральному проводу – нейтральным.
Напряжение между началом и концом фазы генератора или приемника называется фазным, напряжение между двумя фазами или линиями – линейным.
Для этого способа соединения между линейными и фазными параметрами цепи существуют следующие соотношения:
Установим взаимосвязь между комплексами линейных и фазных напряжений источника (рис. 4.5).
Рис. 4.5. Векторно-топографическая диаграмма трёхфазной цепи при соединении приёмников звездой при симметричной активной нагрузке
В дальнейших рассуждениях фазные ЭДС заменим напряжениями на фазах источника:
Выберем любой равнобедренный треугольник, образованный двумя фазными и линейным напряжениями и опустим перпендикуляр из вершины на основание. Перпендикуляр является медианой и биссектрисой.
Из любого прямоугольного треугольника получим:
то есть:
Это второе важное соотношение для соединения звездой.
Частным случаем такого соединения является соединение «звезда-звезда» без нулевого провода.
Соединение фаз генератора и нагрузки треугольником
Вторым базовым способом соединения фаз генератора и нагрузки является соединение типа «треугольник-треугольник» (рис. 4.6).
Рис. 4.6. Соединение «треугольник-треугольник»
При соединении треугольником существует следующее соотношение:
Установим взаимосвязь между фазными и линейными токами:
Построим векторную диаграмму токов и напряжений приемника (рис. 4.7) для данного способа соединения.
Рис. 4.7. Векторно-топографическая диаграмма трёхфазной цепи при соединении
Рассмотрев любой треугольник токов, можно, аналогично напряжениям при соединении звездой, сделать вывод (только для симметричной нагрузки):
Помимо вышеназванных существуют и комбинированные способы соединения: «звезда-треугольник», «треугольник-звезда».
Режимы работы трёхфазных цепей
Различают симметричный и несимметричный режимы работы трехфазной цепи. При. симметричном режиме сопротивления трех фаз одинаковы и ЭДС образуют трехфазную. симметричную систему. В этом случае токи фаз а, в, с будут равны по величине и сдвинуты по угол 120 градусов.
Соединение «звезда-звезда» с нулевым проводом и без нулевого провода
Поскольку трёхфазные цепи являются совокупностью однофазных цепей, то для их расчета используются все ранее рассмотренные специальные методы, в том числе и комплексный метод расчета. Следовательно, расчет трёхфазных цепей можно иллюстрировать построением векторных диаграмм токов нагрузки и топографических диаграмм напряжений.
Наиболее рациональным методом расчета такой цепи может считаться метод двух узлов. Для выбранных положительных направлений напряжений и токов на схеме (рис. 4.8) составим соответствующую систему уравнений для расчета токов. приемников треугольником и симметричной активной нагрузке
Рис. 4.8. Соединение фаз генератора и приемника по схеме «четырехпроводная звезда»
1. Симметричная нагрузка.
Нагрузка считается симметричной, если комплексные сопротивления ее фаз равны:
Четырехпроводная звезда.
Для простоты в качестве потребителей фаз нагрузки будем рассматривать активные сопротивления Наличие нулевого провода делает одинаковыми потенциалы узлов и если сопротивлением нулевого провода можно пренебречь значит При этом фазные токи равны, а фазные напряжения на нагрузке будут полностью повторять фазные напряжения генератора. Для фазы
Аналогично для фаз и
Исходя из сказанного, построим топографическую диаграмму фазных напряжений и векторную диаграмму токов (рис. 4.9).
Рис. 4.9. Векторно-топографическая диаграмма для симметричной нагрузки в трех- и четырехпроводной системах
Трехпроводная звезда.
При симметричной нагрузке, как и в четырехпроводной схеме, фазы приемника работают независимо друг от друга и нулевой провод не нужен. Диаграмма в данном случае будет абсолютно той же, что и для четырехпроводной звезды.
2. Несимметричная нагрузка.
Четырехпроводная звезда.
Пусть
На векторно-топографической диаграмме токов и напряжений (рис. 4.10) показано суммирование фазных токов.
Рис. 4.10. Векторно-топографическая диаграмма для несимметричной нагрузки
Трехпроводная звезда.
Пусть Из-за неравенства проводимостей ветвей не равно нулю, то есть между точками и появляется разность потенциалов – смещение нейтрали. При этом фазные напряжения на нагрузках уже не будут повторять систему фазных напряжений генератора. Поэтому задача сводится к расчету положения точки на комплексной плоскости относительно Для его определения можно воспользоваться формулой узлового напряжения и теоретически ее рассчитать. Однако это можно сделать, основываясь на экспериментальных данных, суть которых состоит в следующем: производят измерения напряжений на фазах нагрузки; в выбранном масштабе для напряжений проводят дуги окружностей радиусами, равными измеренным фазным напряжениям из точек Точка пересечения этих трех дуг и даст искомое местоположение точки внутри треугольника, ограниченного линейными напряжениями (рис. 4.11).
Рис. 4.11. Определение смещения нулевой точки
Соединив точки и отрезком, получим смещение нейтрали. По найденным фазным напряжениям приемника направляем векторы токов. Должно выполняться равенство:
По результатам выполненных построений можно сделать главный вывод: если заведомо известно, что нагрузка несимметрична или может таковою стать, необходимо использовать четырехпроводную схему.
3. Обрыв фазы.
Четырёхпроводная звезда.
Векторная диаграмма (рис. 4.12) иллюстрирует работу четырехпроводной системы.
Рис. 4.12. Векторно-топографическая диаграмма для обрыва фазы в четырехпроводной системе
Трехпроводная звезда.
Напряжение смещения можно также определить методом засечек, как это показано на рис. 4.13.
Рис. 4.13. Векторно-топографическая диаграмма для обрыва фазы в трехпроводной системе
По первому закону Кирхгофа:
Поскольку то
Токи в фазах и должны находиться в противофазе.
4. Короткое замыкание фазы.
Четырехпроводная звезда.
В четырехпроводной системе при коротком замыкании фазы приемника получаем короткое замыкание фазы источника.
Трехпроводная звезда:
Фазные напряжения приемника:
т.е. фазные напряжения увеличились до линейных напряжений, соответственно, токи в фазах:
возросли в раз. Ток в закороченной фазе определится по первому закону Кирхгофа:
Построение векторно-топографической диаграммы для короткого замыкания показано на рис. 4.14.
5. Разнородная нагрузка.
Общий принцип построения векторных диаграмм токов и топографических диаграмм напряжений остается тем же. Единственное отличие будет состоять в появлении фазовых сдвигов между токами и напряжениями на фазах нагрузки в зависимости от ее характера.
Рис. 4.14. Векторно-топографическая диаграмма для короткого замыкания фазы в трехпроводной системе
По схеме трехпроводной звезды включают трёхфазные симметричные приемники, например, трёхфазные асинхронные и синхронные двигатели.
Соединение потребителей треугольником
Рассмотрим различные режимы работы приемника при соединении его фаз треугольником (рис. 4.15).
Рис. 4.15. Соединение фаз приемника треугольником
Вновь будем считать, что в качестве потребителей в фазах включены активные сопротивления (для простоты построений).
Симметричный режим.
На рис. 4.7 построена векторная диаграмма для симметричной нагрузки при соединении фаз приемника треугольником.
Токи равны по модулю и отличаются только по фазе:
Линейные токи:
Несимметричный режим:
Фазы по-прежнему работают независимо друг от друга и поэтому токи будут:
Линейные токи определяются соответственно по формулам (4.9). Векторная диаграмма представлена на рис. 4.16.
Рис. 4.16. Векторно-топографическая диаграмма для несимметричной нагрузки приемников, соединенных треугольником
Обрыв фазы
На рис. 4.17 построена векторная диаграмма при соединении приемников треугольником для обрыва фазы.
Рис. 4.17. Векторно-топографическая диаграмма для обрыва фазы при соединении приемников треугольником
Соотношения для токов:
При разнородной нагрузке методика расчета не меняется.
Расчет мощности в трёхфазных цепях
Рассмотрим расчет мощности при соединении приемников по схеме четырехпроводной звезды и допустим, что нагрузка несимметрична. Если учесть, что сопротивление нейтрального провода не равно нулю и активное, имеем:
При симметричной нагрузке для трех- и четырехпроводной системы получим:
При соединении фаз приемника треугольником и несимметричной нагрузке имеем:
При симметричной нагрузке:
При этом необходимо учесть, что одинаковые формулы для расчета мощности при разном способе соединения фаз нагрузки (4.10-4.12) и (4.13- 4.15) не означают одинаковые численные значения.
Пример. Пусть трёхфазный приемник с сопротивлением фазы соединен «звездой», тогда активная мощность будет:
Теперь фазы того же приемника соединим «треугольником» и подключим к тому же трёхфазному источнику:
Итог очевиден:
Измерение мощности в трёхфазных цепях
Для измерения активной мощности в симметричной трехфазной цепи достаточно одного ваттметра, включенного на измерение мощности одной из фаз.
Соединение приемников по схеме четырехпроводной звезды
В схеме (рис. 4.18) однофазные ваттметры включаются в каждую фазу, причем через токовые катушки протекают линейные токи, а катушки напряжения ваттметров включены между нулевым проводом и соответствующими линейными проводами.
Рис. 4.18. Схема включения ваттметров для измерения мощности в четырехпроводной системе
Так как активная мощность – это вещественная часть полной мощности:
то суммарная мощность трех ваттметров может быть представлена выражением:
или
В случае симметричной нагрузки для измерения мощности, потребляемой ею, достаточно воспользоваться одним ваттметром, показание которого нужно утроить.
Соединение приемников по схеме трехпроводной звезды или треугольником
В этом случае измерить мощность трёхфазного приемника можно с помощью двух ваттметров (рис. 4.19).
Рис. 4.19. Схема измерения активной мощности двумя ваттметрами
Покажем это:
Если учесть, что:
получим:
Окончательно имеем:
Оба ваттметра выполняются в одном корпусе, и прибор имеет две пары выводов для токовых катушек и две пары выводов – для катушек напряжения. Включают трёхфазный ваттметр по приведенной на рис. 4.19 схеме или по любой схеме с циклической заменой фаз.
Метод симметричных составляющих
Любую несимметричную трёхфазную систему можно разложить на три симметричные трёхфазные системы: прямой, обратной и нулевой последовательностей фаз. Такое разложение широко применяется при анализе работы трёхфазных машин и, в особенности, при расчете токов короткого замыкания в трёхфазных системах.
Пусть дана несимметричная трёхфазная система векторов (рис. 4.20).
Рис. 4.20. Несимметричная трёхфазная система векторов
Каждый из векторов этой системы можно представить в виде суммы трех составляющих:
На рис. 4.21 изображены системы указанных выше последовательностей.
Рис. 4.21. Симметричные системы векторов прямой (a), обратной (b) и нулевой (с) последовательностей
Векторы прямой, обратной и нулевой последовательностей подчиняются следующим соотношениям:
где
Коэффициент называется поворотным множителем
Подставим соотношения (4.19) в систему уравнений (4.18). Тогда получим:
Решение системы уравнений (4.20) относительно дает:
Симметричные составляющие можно определить графически, если на векторной диаграмме несимметричной системы векторов выполнить построения в соответствии с системой уравнений (4.21).
Фильтры симметричных составляющих
Симметричные составляющие несимметричных систем можно определить не только аналитически или графически, но и при помощи электрических схем, называемых фильтрами симметричных составляющих.
Эти фильтры применяются в схемах, защищающих электрические установки. Степень асимметрии системы токов и напряжений не должна превосходить известные пределы, т.е. составляющие нулевой и обратной последовательностей системы напряжений и токов при нормальных режимах должны быть меньше некоторых наперед заданных величин, определяемых для каждой конкретной установки индивидуально.
Возможность выделить при помощи электрических схем отдельные симметричные составляющие позволяет осуществить воздействие любой из них на приборы, защищающие установку, которые, будучи соответствующим образом отрегулированы, отключат или всю установку, или её часть, как только величина соответствующей составляющей превысит допустимый предел.
В качестве примера на рис. 4.22 приведены схемы фильтров нулевой последовательности линейных токов и фазных напряжений.
Рис. 4.22. Схемы фильтров нулевой последовательности
В схеме (рис. 4.22,a) вторичные обмотки трансформаторов напряжения включены последовательно и поэтому вольтметр определяет сумму фазных напряжений, т.е. утроенную составляющую нулевой последовательности системы фазных напряжений.
В схеме (рис. 4.22,b) вторичные обмотки трансформаторов тока включены параллельно и поэтому амперметр измеряет сумму линейных токов, то есть утроенную составляющую нулевой последовательности линейных токов.
- Периодические несинусоидальные напряжения и токи в линейных цепях
- Нелинейные цепи переменного тока
- Переходные процессы
- Переходные процессы в линейных цепях
- Четырехполюсники
- Линейные диаграммы
- Круговые диаграммы
- Цепи с взаимной индукцией
Электрическая мощность и закон Ома
Для анализа и расчета параметров нагревателей, как правило, мы используем различные методы, в частности закон Ома. Этот закон используется в основном для определения неизвестных величин, таких как напряжение, ток, сопротивление и мощность, которые связаны с одним или несколькими элементами электронной схемы. Закон Ома – основной закон теории электрических цепей, который определяет линейную зависимость между напряжением, током и сопротивлением. В данной статье мы постараемся подробно рассказать о законе Ома и его практическом применении.
Закон Ома
Закон Ома – это основной, главный и важный закон теории электрических цепей, который исследует взаимосвязь между напряжением, током и сопротивлением. В нем говорится, что при постоянной температуре ток, протекающий по цепи, прямо пропорционален напряжению или разности потенциалов в этой цепи.
В алгебраической форме, V∝ I
V = IR
Где
I – ток, протекающий по цепи, измеряется в амперах.
V — напряжение, приложенное к цепи, измеряется в вольтах.
А R — это константа пропорциональности, называемая сопротивлением, которое измеряется в омах.
Это сопротивление также указывается в килоомах, мегаомах и т. д.
Следовательно, закон Ома гласит, что ток в цепи прямо пропорционален напряжению и обратно пропорционален сопротивлению в этой цепи. Закон Ома можно применить как к отдельным частям, так и ко всей цепи.
Математически ток, I = V/R
Напряжение, V = IR
Сопротивление, R = V/I
Треугольник закона Ома
Ниже показано, что отношение между различными величинами в законе Ома называется треугольником закона Ома. Это простой метод описания, а также простой для запоминания соотношения между напряжением, током и сопротивлением.
На приведенном выше рисунке показан треугольник закона Ома, где отдельные термины, такие как напряжение, ток и сопротивление, и их формулы представлены из основного уравнения закона Ома. На приведенном выше рисунке один параметр вычисляется из оставшихся двух параметров. Таким образом, можно сделать вывод, что при высоком сопротивлении ток будет низким, а ток будет высоким, когда сопротивление низкое, при любом приложенном напряжении.
Электрическая мощность
Электрическая мощность дает скорость, с которой энергия передается по цепи. Электрическая мощность измеряется в ваттах. Эта мощность потребляется, когда напряжение вызывает протекание тока в цепи.
Следовательно, электрическая мощность есть произведение напряжения и силы тока.
Математически P = VI
По закону Ома V = IR и I = V/R
Подставляя в уравнение мощности
P = I2 R
P = V2/ R
Следовательно, электрическая мощность, P =VI или I 2 R или V 2 / R
Это три основные формулы для нахождения электрической мощности в цепи. Таким образом, мощность может быть рассчитана, когда известна любая из двух величин.
Треугольник мощности
Подобно треугольнику закона Ома, на рисунке ниже показан треугольник мощности, чтобы показать соотношение между мощностью, напряжением и током. Уравнения отдельных параметров легко запоминаются по этому рисунку. Округлите и скройте параметр, который необходимо измерить, а положение оставшихся двух параметров дает уравнение для поиска скрытого или округленного параметра, как показано на рисунке ниже.
Круговая диаграмма закона Ома
В дополнение к двум вышеупомянутым концепциям существует еще один метод определения параметров схемы с использованием закона Ома, который представляет собой круговую диаграмму закона Ома. Используя круговую диаграмму закона Ома, можно легко запомнить все уравнения для нахождения напряжения, тока, сопротивления и мощности, которые необходимы для упрощения электрических цепей, которые могут быть простыми или сложными.
На приведенном выше рисунке показана круговая диаграмма, которая показывает взаимосвязь между мощностью, напряжением, током и сопротивлением. Эта диаграмма разделена на четыре блока для мощности, напряжения, сопротивления и тока. Каждый блок состоит из трех формул с двумя известными значениями для каждой формулы. Из диаграммы для нахождения каждого параметра в цепи мы можем использовать любую из трех доступных формул.
Графическое представление закона Ома
Для лучшего понимания этой концепции ниже приведена экспериментальная установка, в которой регулируемый источник напряжения с шестью ячейками (по 2 В каждая) подключен к нагрузочному резистору через переключатель выбора напряжения. Измерительные приборы, такие как вольтметр и амперметр, также подключены к цепи для измерения напряжения и тока в цепи.
Регулируемый источник напряжения с нагрузочным резистором
Сначала подключите резистор 10 Ом и установите переключатель в положение «1». Тогда амперметр показывает 0,2 А, а вольтметр показывает 2 В, потому что I = V/R, т. е. I = 2/10 = 0,2 А. Затем измените положение селекторного переключателя на вторую ячейку, чтобы подать 4 В на нагрузку и запишите показания амперметра. По мере того, как селектор будет постепенно изменяться от первого положения к последнему, мы получим текущие значения, такие как 0,2, 0,4, 0,6, 0,8, 1, 1,2 для значений напряжения 2, 4, 6, 8, 10 и 12 соответственно.
Точно так же поместите резистор 20 Ом вместо резистора 10 Ом и выполните ту же процедуру, что и выше. Мы получим значения тока 0,1, 0,2, 0,3, 0,4, 0,5, 0,6 для значений напряжения 2, 4, 6, 8, 10 и 12В соответственно. Постройте график этих значений, как показано ниже.
Графическое представление закона Ома
На приведенном выше графике для данного напряжения ток меньше, когда сопротивление больше. Рассмотрим случай приложенного напряжения 12 В, когда значение тока составляет 1,2 А при сопротивлении 10 Ом и 0,6 Ом при сопротивлении 20 Ом. Точно так же при одном и том же токе напряжение тем больше, чем больше сопротивление. Из приведенных выше результатов следует, что отношение напряжения к току постоянно, когда сопротивление постоянно. Следовательно, зависимость между напряжением и током является линейной, и наклон этой линейной кривой становится тем круче, чем больше сопротивление.
Пример применения закона Ома
Рассмотрим приведенную ниже схему, в которой батарея на 6 В подключена к нагрузке 6 Ом. Амперметр и вольтметры подключены к цепи для измерения тока и напряжения практически. Но используя закон Ома мы можем найти силу тока и мощность следующим образом.
Из закона Ома
V = IR
I = V/R
I = 6/6
I = 1 А
Мощность, P = VI
P = 6×1
P = 6 Вт
Но практически амперметр не показывает точное значение из-за внутреннего сопротивления батареи. Включив внутреннее сопротивление батареи (предположим, что батарея имеет внутреннее сопротивление 1 Ом), текущее значение рассчитывается следующим образом.
Общее сопротивление цепи 6+1=7 Ом.
Ток, I = V/R
I = 6/7
I = 0,85 Ампер
Цепь фар в автомобиле
На приведенном ниже рисунке показана схема фар легкового автомобиля без схемы управления. С применением закона Ома мы можем узнать ток, протекающий через каждую лампу. Как правило, каждая лампочка подключается параллельно к аккумулятору, что позволяет другим элементам светиться, даже если какой-то из них поврежден. К этим параллельным лампам подводится батарея 12 В, где лампы имеют сопротивление 2,4 каждая (считается в данном случае).
Общее сопротивление цепи равно R = R1x R2/(R1 + R2), так как они соединены параллельно.
R = 5,76/4,8 = 1,2
Тогда ток, протекающий по цепи, равен I = V/R.
I = 12/1,2
I = 10А.
Ток, протекающий через отдельную лампу, равен I1 = I2 = 5 А (из-за одинаковых сопротивлений).
Закон Ома для цепей переменного тока
В общем, закон Ома можно применить и к цепям переменного тока . Если нагрузка индуктивная или емкостная, то также учитывается реактивное сопротивление нагрузки. Следовательно, с некоторыми изменениями закона Ома, учитывающими влияние реактивного сопротивления, его можно применять к цепям переменного тока. Из-за индуктивности и емкости в переменном токе будет значительный фазовый угол между напряжением и током. А также сопротивление переменному току называется импедансом и обозначается как Z.
Таким образом, закон Ома для цепей переменного тока задается как
E = IZ
I = E/Z
Z = E/I
Где E – напряжение в цепи переменного тока,
I – текущий ток,
Z — импеданс.
Все параметры в приведенном выше уравнении представлены в комплексной форме, которая включает фазовый угол. Подобно круговой диаграмме цепи постоянного тока, круговая диаграмма закона Ома для цепи переменного тока приведена ниже.
Пример закона Ома (цепи переменного тока)
Рассмотрим приведенную ниже схему, в которой нагрузка переменного тока (сочетание резистивной и индуктивной) подключена к источнику переменного тока 10 В, 60 Гц. Нагрузка имеет сопротивление 5 Ом и индуктивность 10 мГн.
Тогда значение импеданса нагрузки Z = R + jX L
Z = 5 + j (2∏ × f × L)
Z = 5+ j (2×3,14×60×10×10-3)
Z = 5 + j3,76 Ом или 6,26 Ом при фазовом угле -37,016
Ток, протекающий по цепи, равен
I = V/Z = 10/(5+ j3,76) = 1,597 А при фазовом угле -37,016
Для расчета параметров сети для подключения нагревателей вы можете воспользоваться данными в данной статье основными формулами, или же просто позвоните нашим специалистам компании Термоэлемент по телефону и получите полную бесплатную консультацию и помощь с выбором нужных параметров нагревателей для вашей задачи по нагреву.
Содержание:
- 1 Особенности трехфазной системы
- 2 Как выяснить свою схему
- 2.1 Схема “Треугольник”
- 2.2 Схема “Звезда”
- 3 Свойства трехфазной цепи
- 4 Трёхфазное или однофазное подключение
- 5 Характеристики трехфазной системы
- 6 Расчет
- 7 Как вычислить?
- 8 Измерение мощности ваттметром
- 9 Формулы для расчётов цепи постоянного тока
- 10 Оборудование для защиты сети от короткого замыкания
- 11 Пример расчёта полной мощности для электродвигателя
- 12 Подбираем номинал автоматического выключателя
- 13 Расчет Мощности по Току и Напряжению
- 14 Расчёт мощности по току и напряжению
- 14.1 Однофазная сеть напряжением 220 вольт
- 15 Цветовая маркировка резисторов, калькулятор резисторов онлайн
- 16 Предупреждения
- 17 Как рассчитать мощность зная силу тока и напряжения?
- 18 Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?
Особенности трехфазной системы
Для оборудования электричеством жилых домов и квартир используют два вида схем:
- однофазная;
- трехфазная.
Электросеть от электростанций выходит с 3 фазами, попадает к домам в таком же виде, далее разветвляется на отдельные фазы.
Этот способ передачи электроэнергии считается экономичным, потому что уменьшает потери при транспортировке.
Как выяснить свою схему
Узнать количество фаз у себя в доме или квартире легко, для этого нужно открыть распределительный щиток и посчитать провода, по которым ток поступает в квартиру.
При однофазной сети количество проводов будет 2: фаза, ноль.
Иногда встречается 3 провод-заземление. В трехфазной системе проводов 4: 3 фазы, ноль. Провод заземления также может быть добавлен.
2 популярных способа соединения трехфазной системы:
- треугольник;
- звезда.
Схема “Треугольник”
Каждая фаза соединяется с соседними. Сила тока от источника фазная, между собой-линейная.
Схема “Звезда”
Фазы соединяются в одной точке. В этой точке суммарное напряжение будет равно 0. Сила тока только фазная, а напряжение может варьироваться от линейного до фазного. Что это дает пользователю? Линейное напряжение в квартире 380 В, а фазовое-220 В.
Большинство приборов работают при напряжении 220 В, но некоторые приборы нуждаются в большем напряжении: старые электроплиты, мощные обогреватели и котлы, электроинструмент промышленного назначения.
Благодаря такой схеме любой прибор будет работать без проблем.
Свойства трехфазной цепи
Трехфазная сеть имеет ряд преимуществ:
- уменьшает потери при транспортировке электричества на дальние расстояния;
- кабели и оборудование имеют меньший расход чем у монофазной сети;
- энергосистема сбалансирована;
- в системе для работы присутствуют сразу 2 формы напряжения: линейное 380 В и фазное 220 В.
Трёхфазное или однофазное подключение
В зависимости от того, какой тип подключения используют, определение потребляемой мощности производится по-разному.
В однофазной сети потребляемая энергия считается по простейшей формуле:
где cosϕ – коэффициент мощности, характеризующий сдвиг фаз между током и напряжением в реактивной нагрузке.
Мощность 3 х фазной сети является суммой потребления по каждой фазе в отдельности. Формула мощности 3 х фазного тока имеет следующий вид:
Pобщ=Uа∙Iа∙cosϕа+ Ub∙Ib∙cosϕb+ Uc∙Ic∙cosϕc,
где U, I, cosϕ – напряжение, сила тока и коэффициент мощности в каждой фазе, соответственно.
К сведению. Видно, что в общем случае трехфазное соединение требует большее количество приборов учета.
Иногда посчитать потребление энергии можно по упрощенному варианту. При симметричном потреблении, например, при подключении асинхронного двигателя, токи потребления одинаковы, и формула принимает следующий вид:
где:
- Uф, Iф – фазные напряжение и ток;
- Uл, Iл – линейные напряжение и ток.
Характеристики трехфазной системы
Трехфазная система электропитания характеризуется несколькими значениями напряжения и тока. Все зависит от того, между какими точками схемы производятся измерения:
- между фазным проводом и нейтралью – фазное напряжение Uф;
- между отдельными фазами – линейное Uл.
Соотношение между данными параметрами:
При симметричном распределении нагрузки токи во всех проводах равны. В четырехпроводной схеме (с заземленным нулем) ток в нулевом проводнике отсутствует, поэтому даже при обрыве нуля сеть продолжает нормально функционировать.
В том случае, когда потребление энергии по фазам различается, в нейтральном проводе протекает некоторый ток. Полный обрыв нейтрального проводника вызывает перекос фаз, поэтому напряжение на проводах может измениться в диапазоне от нуля до линейного.
Реактивный характер нагрузки учитывается коэффициентом мощности cosϕ. Данная величина пришла из теории комплексных чисел, которые используются, когда необходимо рассчитать параметры цепей переменного тока. В случае активной нагрузки cosϕ=1, но, чем более реактивный характер имеют потребители, тем больше коэффициент уменьшается, показывая, как снижается реальная мощность относительно полной.
Важно! Поэтому для правильного расчета и уменьшения нагрузки на генераторное оборудование в реактивных цепях устанавливают корректоры коэффициента мощности. Цепи с корректором приближают коэффициент cosϕ к единице.
Расчет
Вычисление мощности трехфазной системы дело затруднительное, потому что в сети ток не постоянный, а переменный.
При постоянном токе мощность рассчитывается путем умножения напряжения и силы тока. При переменном токе все величины нестабильны из-за наличия нескольких фаз. Также имеет значение способ соединения. При однофазной системе мощность рассчитывается также путем умножения напряжения и силы тока, но с учетом коэффициента мощности-cos, который характеризует сдвиг фаз при реактивной нагрузке между напряжением и током.
Вычисление происходит по следующей формуле полной расчета мощности по току в трехфазной сети:
Pобщ=Uа∙Iа∙cosа+ Ub∙Ib∙cosb+ Uc∙Ic∙cosc
где U-напряжение, I-сила тока, cos-коэффициент мощности, a, b и c-фазы.
Измерение мощности в трехфазных цепях проводят прибором-ваттметр.
При симметричной нагрузке измеряют только одну фазу и результат измерения умножают на 3. При замере сразу 3 фаз потребуется 3 прибора. При отсутствии фазы “ноль” измерение проводится 2 приборами и расчет мощности рассчитывается по 1 закону Кирхгофа:
Ia+Ib+Ic=0
Сумма показаний двух ваттметров даст показатель мощности трехфазной цепи.
Как вычислить?
Определить любую величину, касаемую электрической энергии, поможет закон Ома. Он гласит: напряжение равняется силе тока, умноженной на сопротивление, а мощность – это сила, умноженная на напряжение.
Напряжение тока — это его сила умноженная на сопротивление. Показатель нужен для подбора оптимальных проводов и кабелей в доме. Получается, чтобы рассчитать ток по мощности, надо знать его силу и напряжение. Но как рассчитать амперы, зная мощность и напряженность, например? Опять же следуя закону Ома. Для этого необходимо мощность разделить на напряженность.
Чтобы найти мощность, зная ток и напряженность, необходимо силу в амперах умножить на напряжение в вольтах.
Произвести точный расчет можно с помощью нашего калькулятора.
Достаточно просто узнать силу тока, гораздо сложнее – произвести расчет сечения проводов. Для этого нужно посчитать силу тока и воспользоваться следующей таблицей:
Сечение медного провода в зависимости от величины потребляемого тока | ||||||||||||||
Максимальный ток в амперах | 1 | 2 | 3 | 4 | 5 | 6 | 10 | 16 | 20 | 25 | 32 | 40 | 50 | 63 |
Сечение жилы провода в миллиметрах | 0,17 | 0,33 | 0,52 | 0,67 | 0,84 | 1 | 1,7 | 2,7 | 3,3 | 4,2 | 5,3 | 6,7 | 8,4 | 10,5 |
Для того чтобы посчитать мощность, зная ток и напряженность, используйте представленную ниже таблицу:
Электрическое оборудование | Мощность прибора в ваттах | Сила в амперах |
Стиральная машинка | 2000 | 10 |
«Теплый пол» | 1000 | 5 |
Кухонная плита | 7000 | 35 |
Микроволновка | 1000 | 5 |
Посудомойка | 2000 | 10 |
Холодильник | 250 | 1 |
Кухонный комбайн | 1100 | 5 |
Чайник | 1900 | 9 |
Кофеварка | 1100 | 5 |
Миксер | 300 | 1,4 |
Фен | 1000 | 2 |
Утюг | 1500 | 6 |
Пылесос | 1200 | 5 |
Телевизор | 150 | 0,7 |
Радио | 100 | 0,4 |
Светильники | 50 | 0,2 |
Измерение мощности ваттметром
Мощность потребления трехфазного тока измеряют, используя ваттметры. Это может быть специальный ваттметр, для 3-х фазной сети, либо однофазный, включенный по определенной схеме. Современные приборы учета электроэнергии часто выполняются по цифровой схемотехнике. Такие конструкции отличаются высокой точностью измерений, большими возможностями оперирования с входными и выходными данными.
Варианты измерений:
- Соединение «звезда» с нулевым проводником и симметричная нагрузка – измерительный прибор подключается к одной из линий, считанные показания умножаются на три.
- Несимметричное потребление тока в соединении «звезда» – три ваттметра в цепи каждой фазы. Показания ваттметров суммируются;
- Любая нагрузка и соединение «треугольник» – два ваттметра, подключенных в цепь любых двух нагрузок. Показания ваттметров также суммируются.
На практике всегда стараются выполнить нагрузку симметричной. Это, во-первых, улучшает параметры сети, во-вторых, упрощает учет электрической энергии.
Формулы для расчётов цепи постоянного тока
Проще всего посчитать мощность для цепи постоянного тока. Если есть сила тока и напряжение, тогда нужно просто по формуле, приведенной выше, выполнить расчет:
P=UI
Но не всегда есть возможность найти мощность по току и напряжению. Если вам они не известны – вы можете определить P, зная сопротивление и напряжение:
P=U 2 /R
Также можно выполнить расчет, зная ток и сопротивление:
P=I 2 *R
Последними двумя формулами удобен расчёт мощности участка цепи, если вы знаете R элемента I или U, которое на нём падает.
Оборудование для защиты сети от короткого замыкания
Вы уже знаете, как посчитать амперы, зная мощность и напряжение, или вычислить мощность, когда известны сила тока и напряжение. Но иногда даже точные и верные расчеты не спасают от короткого замыкания. ЧП может случиться на трехфазной линии по не зависящим от пользователя причинам: попадание постороннего объекта на провода, обрыв из-за падения дерева. В таком случае даже если вы максимально правильно рассчитали силу тока по мощности и в вашем доме самая идеальная проводка, возможен пожар или выход электроприборов из строя. Защитить свою сеть можно следующими способами:
- поставить плавкий предохранитель. Если амперы в электроцепи превысят допустимые значения, то предохранитель расплавится, цепь будет нарушена. Цена плавкого предохранителя – 400-600 рублей. Выбирайте товар отечественного производства, рассчитанный на работу с нашими электросетями;
- установить автоматический выключатель. Это современное оборудование, которое надежно защищает бытовые приборы от преждевременного выхода из строя вследствие проблемы с проводами. Стоит от 200 до 2 тысяч рублей. Сработает за секунды в отличие от плавкого предохранителя, которому на размыкание потребуется примерно полминуты. При подключении изучите подробную информацию о маркировках проводов.
Автоматический выключатель тока защитит бытовую технику от поломок из-за короткого замыкания сети.
Пример расчёта полной мощности для электродвигателя
Мощность у электродвигателей бывает полезная или механическая на валу и электрическая. Они отличаются на величину коэффициента полезного действия (КПД), эта информация обычно указана на шильдике электродвигателя.
Отсюда берём данные для расчета подключения в треугольник на Uлинейное 380 Вольт:
Тогда найти активную электрическую мощность можно по формуле:
P=Pна валу/n=160000/0,94=170213 Вт
Теперь можно найти S:
Именно её нужно найти и учитывать, подбирая кабель или трансформатор для электродвигателя. На этом расчёты окончены.
Подбираем номинал автоматического выключателя
Применив формулу I = P/209, получим, что при нагрузке с мощностью 1 кВт ток в однофазной сети будет 4,78 А. Напряжение в наших сетях не всегда равно в точности 220 В, поэтому не будет большой ошибкой силу тока считать с небольшим запасом как 5 А на каждый киловатт нагрузки. Сразу же видно, что в удлинитель, промаркированный «5 А», утюг мощностью 1,5 кВт включать не рекомендуется, так как ток будет в полтора раза превышать паспортную величину. А еще сразу можно «проградуировать» стандартные номиналы автоматов и определить, на какую нагрузку они рассчитаны:
- 6 А – 1,2 кВт;
- 8 А – 1,6 кВт;
- 10 А – 2 кВт;
- 16 А – 3,2 кВт;
- 20 А – 4 кВт;
- 25 А – 5 кВт;
- 32 А – 6,4 кВт;
- 40 А – 8 кВт;
- 50 А – 10 кВт;
- 63 А – 12,6 кВт;
- 80 А – 16 кВт;
- 100 А – 20 кВт.
С помощью методики «5 ампер на киловатт» можно оценить силу тока, возникающую в сети при подключении бытовых устройств. Интересуют пиковые нагрузки на сеть, поэтому для расчета следует использовать максимальную потребляемую мощность, а не среднюю. Эта информация содержится в документации на изделия. Вряд ли стоит самому рассчитывать этот показатель, суммируя паспортные мощности компрессоров, электродвигателей и нагревательных элементов, входящих в устройство, так как есть еще такой показатель, как коэффициент полезного действия, который придется оценивать умозрительно с риском сильно ошибиться.
При проектировании электропроводки в квартире или загородном доме не всегда доподлинно известны состав и паспортные данные электрооборудования, которое будет подключаться, но можно воспользоваться ориентировочными данными обычных для нашего быта электроприборов:
- электросауна (12 кВт) — 60 А;
- электроплита (10 кВт) — 50 А;
- варочная панель (8 кВт) — 40 А;
- электроводонагреватель проточный (6 кВт) — 30 А;
- посудомоечная машина (2,5 кВт) — 12,5 А;
- стиральная машина (2,5 кВт) — 12,5 А;
- джакузи (2,5 кВт) — 12,5 А;
- кондиционер (2,4 кВт) — 12 А;
- СВЧ-печь (2,2 кВт) — 11 А;
- электроводонагреватель накопительный (2 кВт) — 10 А;
- электрочайник (1,8 кВт) — 9 А;
- утюг (1,6 кВт) — 8 А;
- солярий (1,5 кВт) — 7,5 А;
- пылесос (1,4 кВт) — 7 А;
- мясорубка (1,1 кВт) — 5,5 А;
- тостер (1 кВт) — 5 А;
- кофеварка (1 кВт) — 5 А;
- фен (1 кВт) — 5 А;
- настольный компьютер (0,5 кВт) — 2,5 А;
- холодильник (0,4 кВт) — 2 А.
Потребляемая мощность осветительных приборов и бытовой электроники невелика, в целом суммарную мощность осветительных приборов можно оценить в 1,5 кВт и автомата на 10 А на группу освещения достаточно. Бытовая электроника подключается к тем же розеткам, что и утюги, дополнительные мощности резервировать для нее нецелесообразно.
Если просуммировать все эти токи, цифра получается внушительная. На практике, возможности подключения нагрузки ограничивает величина выделенной электрической мощности, для квартир с электрической плитой в современных домах она составляет 10 -12 кВт и на квартирном вводе стоит автомат номиналом 50 А. И эти 12 кВт надо распределить, учитывая то, что самые мощные потребители сосредоточены на кухне и в ванной комнате. Проводка будет доставлять меньше поводов для беспокойства, если разбить ее на достаточное количество групп, каждая со своим автоматом.
Для электроплиты (варочной панели) делается отдельный ввод с автоматом на 40 А и устанавливается силовая розетка с номинальным током 40 А, ничего больше туда подключать не надо. Для стиральной машины и другого оборудования ванной комнаты делается отдельная группа, с автоматом соответствующего номинала. Эту группу обычно защищают УЗО с номинальным током на 15% большим, чем номинал автоматического выключателя. Отдельные группы выделяют для освещения и для настенных розеток в каждой комнате.
На расчет мощностей и токов придется потратить некоторое время, но можно быть уверенным, что труды не пропадут даром. Грамотно спроектированная и качественно смонтированная электропроводка – залог комфорта и безопасности вашего жилища.
Расчет Мощности по Току и Напряжению
Чтобы обезопасить себя при работе с бытовыми электроприборами, необходимо в первую очередь правильно вычислить сечение кабеля и проводки. Потому-что если будет неправильно выбран кабель, это может привести к короткому замыканию, из за чего может произойти возгорание в здание, последствия могут быть катастрофическими.
Это правило относиться и к выбору кабеля для электродвигателей.
Расчёт мощности по току и напряжению
Данный расчет происходит по факту мощности, проделывать его необходимо еще до начала проектирование своего жилища (дома, квартиры).
- Из этого значение зависят кабеля питающие приборы которые подключены к электросети.
- По формуле можно вычислить силу тока, для этого понадобиться взять точное напряжение сети и нагрузку питающихся приборов. Ее величина дает нам понять площадь сечение жил.
Если вам известны все электроприборы, которые в будущем должны питаться от сети, тогда можно легко сделать расчеты для схемы электроснабжение. Эти же расчеты можно выполнять и для производственных целей.
Однофазная сеть напряжением 220 вольт
Формула силы тока I (A — амперы):
Где P — это электрическая полная нагрузка (ее обозначение обязательно указывается в техническом паспорте данного устройства), Вт — ватт;
U — напряжение электросети, В (вольт).
В таблице представлены стандартные нагрузки электроприборов и потребляемый ими ток (220 В).
Электроприбор | Потребляемая мощность, Вт | Сила тока, А |
Стиральная машина | 2000 – 2500 | 9,0 – 11,4 |
Джакузи | 2000 – 2500 | 9,0 – 11,4 |
Электроподогрев пола | 800 – 1400 | 3,6 – 6,4 |
Стационарная электрическая плита | 4500 – 8500 | 20,5 – 38,6 |
СВЧ печь | 900 – 1300 | 4,1 – 5,9 |
Посудомоечная машина | 2000 — 2500 | 9,0 – 11,4 |
Морозильники, холодильники | 140 — 300 | 0,6 – 1,4 |
Мясорубка с электроприводом | 1100 — 1200 | 5,0 — 5,5 |
Электрочайник | 1850 – 2000 | 8,4 – 9,0 |
Электрическая кофеварка | 6з0 — 1200 | 3,0 – 5,5 |
Соковыжималка | 240 — 360 | 1,1 – 1,6 |
Тостер | 640 — 1100 | 2,9 — 5,0 |
Миксер | 250 — 400 | 1,1 – 1,8 |
Фен | 400 — 1600 | 1,8 – 7,3 |
Утюг | 900 — 1700 | 4,1 – 7,7 |
Пылесос | 680 — 1400 | 3,1 – 6,4 |
Вентилятор | 250 — 400 | 1,0 – 1,8 |
Телевизор | 125 — 180 | 0,6 – 0,8 |
Радиоаппаратура | 70 — 100 | 0,3 – 0,5 |
Приборы освещения | 20 — 100 | 0,1 – 0,4 |
На рисунке вы можете видет схему устройства электроснабжение дома при однофазном подключении к сети 220 вольт.
Схема приборов при однофазном напряжении
Как и показано на рисунке, все потребители должны быть подключены к соответствующим автоматам и счетчику, далее к общему автомату который будет выдерживать общею нагрузку дома. Кабель который будет доводит ток, должен выдерживать нагрузку всех подключенных бытовых приборов.
В таблице ниже показана скрытая проводка при однофазной схеме подключение жилища для подбора кабеля при напряжении 220 вольт.
Сечение жилы провода, мм 2 | Диаметр жилы проводника, мм | Медные жилы | Алюминиевые жилы | ||
Ток, А | Мощность, Вт | Ток, А | Мощность, кВт | ||
0,50 | 0,80 | 6 | 1300 | ||
0,75 | 0,98 | 10 | 2200 | ||
1,00 | 1,13 | 14 | 3100 | ||
1,50 | 1,38 | 15 | 3300 | 10 | 2200 |
2,00 | 1,60 | 19 | 4200 | 14 | 3100 |
2,50 | 1,78 | 21 | 4600 | 16 | 3500 |
4,00 | 2,26 | 27 | 5900 | 21 | 4600 |
6,00 | 2,76 | 34 | 7500 | 26 | 5700 |
10,00 | 3,57 | 50 | 11000 | 38 | 8400 |
16,00 | 4,51 | 80 | 17600 | 55 | 12100 |
25,00 | 5,64 | 100 | 22000 | 65 | 14300 |
Как и показано в таблице, сечение жил зависит и от материала из которого изготовлен.
Цветовая маркировка резисторов, калькулятор резисторов онлайн
Найти сопротивление резисторов по их цветовой маркировке в виде 4 или 5 цветных колец. Цветовая маркировка резисторов, калькулятор резисторов онлайн
Предупреждения
- Если через инвертер пропустить слишком большую мощность, то он может выйти из строя.
- Подключение чрезмерного числа приборов к инвертеру может привести к недостатку мощности для каждого прибора. Результатом этого может быть повреждение или отключение приборов.
- При вычислении мощности по формуле вы получите приблизительное значение. Если вам нужно точное значение мощности, воспользуйтесь ваттметром.
Как рассчитать мощность зная силу тока и напряжения?
Здесь необходимо знать величины действующего напряжения и действующей силы тока в электрической цепи. Согласно формуле предоставленной выше, мощность определяется путем умножения силы тока на действующее напряжение.
Как определить потребляемую мощность цепи имея тестер, который меряет сопротивление?
Этот вопрос был задан в комментарии в одном из материалов нашего сайта. Поспешим дать ответ на этот вопрос. Итак, для начала измеряем тестером сопротивление электроприбора (для этого достаточно подсоединить щупы тестера к вилке шнура питания). Узнав сопротивление мы можем определить и мощность, для чего необходимо напряжение в квадрате разделить на сопротивление.
Источники
- https://tokzamer.ru/informaciya/formula-dlya-rascheta-moshhnosti-trehfaznoj-seti
- https://belyaus-kupava.ru/rasschitat-tok-v-trekhfaznoy-seti-formula/
- https://ElektroKlub-nn.ru/provodka/napryazhenie-opredelenie.html
- https://lemzspb.ru/formuly-raschet-sily-toka-po-moshchnosti-380/
- https://www.calc.ru/raschet-toka-po-moshchnosti-kalkulyator.html
- https://kachestvolife.club/elektrika/raschet-toka-po-moschnosti-formula-onlayn-raschet-vybor-avtomata
[свернуть]