Как найти силу тока или напряжение через реактивную мощность?
гаврыло кизяков
Ученик
(110),
на голосовании
11 лет назад
Подскажите, как найти силу тока или напряжение зная полное сопротивление цепи и реактиную мощность?
Дополнен 11 лет назад
Ты имеешь в виду именно реактивную мощность?
Голосование за лучший ответ
natalia
Гуру
(3392)
11 лет назад
сила тока= корень из (мощность деленная на сопротивление)
напряжение=корень из (мощность умноженное на сопротивление)
вроде так
Как разными способами найти силу тока
Содержание
- 1 Зачем нужно находить силу тока
- 2 Вычисление тока, если известны мощность и напряжение
- 3 Определение мощности прибора
- 4 Вычисление тока при известных значениях напряжения и сопротивления
- 5 Использование мощности и сопротивления
- 6 Непосредственное измерение силы тока
- 7 Видео по теме
Знание силы тока в электрической цепи является в некоторых случаях необходимым. Ее определяют не только с помощью непосредственного измерения, но и расчетов. В последнем случае нужную информацию можно получить на основе технических характеристик оборудования.
Зависимости между основными электрическими величинами
Зачем нужно находить силу тока
Любое вещество состоит из атомов, которые включают в себя положительно заряженное ядро и вращающиеся вокруг него электроны. При отсутствии электрического поля движение этих частиц является хаотичным. Но как только проводник становится частью электрической цепи, подключённой к источнику питания, электроны начинают двигаться по направлению к положительному полюсу.
Ток проявляется через заряд. Каждый электрон несёт в себе элементарный отрицательный электрический заряд. Сила тока — это количество электронов, проходящих через поперечное сечение проводника за какой-то отрезок времени. Следовательно, можно сделать вывод, что рассматриваемый параметр определяют заряд и время.
Электроток, выраженный через заряд и время
Найти силу тока в проводнике можно только в том случае, когда электрическая цепь подключена к источнику питания. Например, это может быть включение бытового прибора в электросеть с переменным напряжением, равным 220 В. Разным приборам для работы нужна разная мощность. В некоторых случаях даже выключенное оборудование может потреблять небольшое количество электричества, если оставить его вилку в розетке. Поэтому рассчитать силу тока в цепи можно через мощность и напряжение.
Слишком интенсивный электроток способен создавать проблемы. Он может, например, привести к перегреву деталей или к их разрушению. Если большой ток пройдёт через человека, то это нанесет серьёзный вред его здоровью или даже станет опасным для жизни. Для нормального и безопасного функционирования оборудования важно, чтобы электроток соответствовал установленным нормативам. Определение силы тока по мощности и напряжению позволяет проверить, насколько она соответствует требованиям.
Вычисление тока, если известны мощность и напряжение
Есть простой способ, как узнать ток, зная мощность и напряжение. В данном случае рассчитать постоянный ток можно по формуле:
Расчет для переменного тока через мощность усложняется, поскольку его величина и направление постоянно меняются. Это обстоятельство нужно учитывать при расчетах. Если питание однофазное, то используется такая формула:
Чтобы определить силу переменного тока в трехфазной сети, следует воспользоваться формулой:
При рассмотрении переменного тока нужно учитывать не только активную, но и реактивную мощность. Первая связана с активным сопротивлением, а вторая — с реактивным (ёмкостным и индуктивным). Соотношение между различными видами отражается с помощью cos φ.
Косинус угла «фи» обычно указывают в технической документации прибора. Если эту информацию нельзя получить из документации, то в расчетах очень мощных устройств принимают значение 0.8. Для большинства обычных бытовых приборов в вычислениях используют 0.95.
Подставив в формулу, применяемую для определения силы тока на участке цепи, значения напряжения U = 220 В для однофазной цепи и 380 В для трехфазной, а также cos φ = 0.95, получим следующие выражения:
Как видим, сила тока в трехфазной и однофазной сети при одинаковой нагрузке будет разной. В однофазной она втрое больше, чем в трехфазной.
Определение мощности прибора
Перед тем как найти силу электрического тока, нужно определить величину используемой мощности:
- Ее значение должно указываться в технической документации. Однако она не всегда доступна. В частности, документация может быть утеряна.
- На задней панели приборов часто имеется наклейка, на которой приведены важнейшие характеристики устройства. В числе прочих обычно указывают мощность.
Задняя панель прибора с указанием основных данных
- Можно воспользоваться таблицей с указанием средних значений мощности для различных видов устройств.
Мощность разных приборов
При вычислениях необходимо помнить, что пусковая мощность может превышать рабочую. Расчёт силы тока должен учитывать обе этих величины. Когда пусковая мощность вызывает резкое мгновенное увеличение силы тока, оно не должно превышать допустимой величины. Для бытовой техники пусковую мощность указывают редко. Поэтому перед тем как рассчитать силу тока, необходимо обратиться к соответствующим справочникам, чтобы найти определенное значение мощности. Для получения ее точной величины следует провести измерение ваттметром.
Вычисление тока при известных значениях напряжения и сопротивления
Если известно напряжение и сопротивление, то сила тока вычисляется по формуле, вытекающей из закона Ома:
Если известны значения ЭДС, внутреннего сопротивления и нагрузки, то можно найти силу тока, используя закон Ома для полной цепи:
Использование мощности и сопротивления
Как известно, мощность можно находить по формуле.
Применив в данном выражении закон Ома, можно привести его к следующему виду:
Теперь силу тока можно выразить так:
Следовательно, вычислить силу тока можно разными способами.
Непосредственное измерение силы тока
Величину силы тока можно не только рассчитывать, но и измерять, используя такие приборы, как амперметр или мультиметр. Любой из них при измерениях должен стать частью электрической цепи. Поэтому прибор нужно подключать последовательно.
Если нет большой нужды измерять силу тока амперметром, то лучше вычислить этот параметр, используя формулы, даже если для этого придется измерить напряжение. Вольтметром эта процедура осуществляется без разрыва электроцепи, чего нельзя сделать при использовании амперметра.
Также применяется магнитометрический способ. Примером его использования являются токовые клещи. Перед тем как определить силу электротока, их устанавливают так, чтобы они охватывали провод. Поскольку вокруг проводника при протекании тока образуется магнитное поле, которое клещи улавливают, то по его характеристикам прибор определяет силу тока в цепи.
Видео по теме
Расчет тока по мощности
Онлайн калькулятор для расчета тока по мощности и напряжению, мощности и сопротивлению, напряжению и сопротивлению. Для расчёта силы тока в цепи введите мВ, В, кВ, МВ и мВт, Вт, кВт, МВт или мОм, Ом, кОм, МОм, результат вычислений можно получить в мА, А, кА, МА.
Формула для расчета тока по мощности и напряжению (постоянный ток): Мощность / Напряжение
Формула для расчета тока по мощности и напряжению (переменный ток однофазный): Мощность / (Напряжение × Коэффициент мощности)
Формула для расчета тока по мощности и напряжению (переменный ток трёхфазный): Мощность / (Напряжение × Коэффициент мощности × √3)
Формула для расчета тока по мощности и сопротивлению: √(Мощность / Сопротивление)
Формула для расчета тока через напряжение и сопротивление: Напряжение / Сопротивление
×
Пожалуйста напишите с чем связна такая низкая оценка:
×
Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»
Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»
Включение потребителей в бытовые или промышленные электрические сети с использованием кабеля меньшей мощности, чем это необходимо, может вызвать серьезные негативные последствия. В первую очередь это приведет к постоянному срабатыванию автоматических выключателей или перегоранию плавких предохранителей. При отсутствии защиты питающий провод или кабель может перегореть. В результате перегрева изоляция оплавляется, а между проводами возникает короткое замыкание. Чтобы избежать подобных ситуаций, необходимо заранее выполнить расчет тока по мощности и напряжению, в зависимости от имеющейся однофазной или трехфазной электрической сети.
Для чего нужен расчет тока
Расчет величины тока по мощности и напряжению выполняется еще на стадии проектирования электрических сетей объекта. Полученные данные позволяют правильно выбрать питающий кабель, к которому будут подключаться потребители. Для расчетов силы тока используется значение напряжения сети и полной нагрузки электрических приборов. В соответствии с величиной силы тока выбирается сечение жил кабелей и проводов.
Если все потребители в доме или квартире известны заранее, то выполнение расчетов не представляет особой сложности. В дальнейшем проведение электромонтажных работ значительно упрощается. Таким же образом проводятся расчеты для кабелей, питающих промышленное оборудование, преимущественно электрические двигатели и другие механизмы.
Расчет тока для однофазной сети
Измерение силы тока производится в амперах. Для расчета мощности и напряжения используется формула I = P/U, в которой P является мощностью или полной электрической нагрузкой, измеряемой в ваттах. Данный параметр обязательно заносится в технический паспорт устройства. U – представляет собой напряжение рассчитываемой сети, измеряемое в вольтах.
Взаимосвязь силы тока и напряжения хорошо просматривается в таблице:
Электрические приборы и оборудование |
Потребляемая мощность (кВт) |
Сила тока (А) |
Стиральные машины |
2,0 – 2,5 |
9,0 – 11,4 |
Электрические плиты стационарные |
4,5 – 8,5 |
20,5 – 38,6 |
Микроволновые печи |
0,9 – 1,3 |
4,1 – 5,9 |
Посудомоечные машины |
2,0 – 2,5 |
9,0 – 11,4 |
Холодильники, морозильные камеры |
0,14 – 0,3 |
0,6 – 1,4 |
Электрический подогрев полов |
0,8 – 1,4 |
3,6 – 6,4 |
Мясорубка электрическая |
1,1 – 1,2 |
5,0 – 5,5 |
Чайник электрический |
1,8 – 2,0 |
8,4 – 9,0 |
Таким образом, взаимосвязь мощности и силы тока дает возможность выполнить предварительные расчеты нагрузок в однофазной сети. Таблица расчета поможет подобрать необходимое сечение провода, в зависимости от параметров.
Диаметры жил проводников (мм) |
Сечение жил проводников (мм2) |
Медные жилы |
Алюминиевые жилы |
||
Сила тока (А) |
Мощность (кВт) |
Сила (А) |
Мощность (кВт) |
||
0,8 |
0,5 |
6 |
1,3 |
||
0,98 |
0,75 |
10 |
2,2 |
||
1,13 |
1,0 |
14 |
3,1 |
||
1,38 |
1,5 |
15 |
3,3 |
10 |
2,2 |
1,6 |
2,0 |
19 |
4,2 |
14 |
3,1 |
1,78 |
2,5 |
21 |
4.6 |
16 |
3,5 |
2,26 |
4,0 |
27 |
5,9 |
21 |
4,6 |
2,76 |
6,0 |
34 |
7,5 |
26 |
5,7 |
3,57 |
10,0 |
50 |
11,0 |
38 |
8,4 |
4,51 |
16,0 |
80 |
17,6 |
55 |
12,1 |
5,64 |
25,0 |
100 |
22,0 |
65 |
14,3 |
Расчет тока для трехфазной сети
В случае использования трехфазного электроснабжения вычисление силы тока производится по формуле: I = P/1,73U, в которой P означает потребляемую мощность, а U – напряжение в трехфазной сети. 1,73 является специальным коэффициентом, применяемым для трехфазных сетей.
Так как напряжение в этом случае составляет 380 вольт, то вся формула будет иметь вид: I = P/657,4.
Точно так же, как и в однофазной сети, диаметр и сечение проводников можно определить с помощью таблицы, отражающей зависимости этих параметров от различных нагрузок.
Диаметры жил проводников (мм) |
Сечение жил проводников (мм2) |
Медные жилы |
Алюминиевые жилы |
||
Сила тока (А) |
Мощность (кВт) |
Сила (А) |
Мощность (кВт) |
||
0,8 |
0,5 |
6 |
2,25 |
||
0,98 |
0,75 |
10 |
3,8 |
||
1,13 |
1,0 |
14 |
5,3 |
||
1,38 |
1,5 |
15 |
5,7 |
10 |
3,8 |
1,6 |
2,0 |
19 |
7,2 |
14 |
5,3 |
1,78 |
2,5 |
21 |
7,9 |
16 |
6,0 |
2,26 |
4,0 |
27 |
10,0 |
21 |
7,9 |
2,76 |
6,0 |
34 |
12,0 |
26 |
9,8 |
3,57 |
10,0 |
50 |
19,0 |
38 |
14,0 |
4,51 |
16,0 |
80 |
30,0 |
55 |
20,0 |
5,64 |
25,0 |
100 |
38,0 |
65 |
24,0 |
В некоторых случаях расчет тока по напряжению и мощности следует проводить с учетом полной реактивной мощности, присутствующей в электродвигателях, сварочном и другом оборудовании. Для таких устройств коэффициент мощности будет равен 0,8.
Как рассчитать мощность тока
Многие потребители электроэнергии не подозревают того, что часть учтённого электричества расходуется бесполезно. В зависимости от вида нагрузки уровень потерь электроэнергии может достигать от 12 до 50%. При этом счетчики электроэнергии засчитывают эти потери, относя их к полезной работе, за что приходится платить. Виной завышения оплаты за потребление электроэнергии, не выполняющей полезной работы, является реактивная мощность, присутствующая в сетях переменных токов.
Чтобы понять, за что мы переплачиваем и как компенсировать влияние реактивных мощностей на работу электрических установок, рассмотрим причину появления реактивной составляющей при передаче электроэнергии. Для этого придётся разобраться в физике процесса, связанного с переменным напряжением.
Что такое реактивная мощность?
Для начала рассмотрим понятие электрической мощности. В широком смысле слова, этот термин означает работу, выполненную за единицу времени. По отношению к электрической энергии, понятие мощности немного откорректируем: под электрической мощностью будем понимать физическую величину, реально характеризующую скорость генерации тока или количество переданной либо потреблённой электроэнергии в единицу времени.
Понятно, что работа электричества в единицу времени определяется электрической мощностью, измеряемой в ваттах. Мгновенную мощность на участке цепи находят по формуле: P = U×I, где U и I – мгновенные значения показателей параметров напряжения и силы тока на данном участке.
Строго говоря, приведённая выше формула справедлива только для постоянного тока. Однако, в цепях синусоидального тока формула работает лишь тогда, когда нагрузка потребителей чисто активная. При резистивной нагрузке вся электрическая энергия расходуется на выполнение полезной работы. Примерами активных нагрузок являются резистивные приборы, такие как кипятильник или лампа накаливания.
При наличии в электрической цепи ёмкостных или индуктивных нагрузок, появляются паразитные токи, не участвующие в выполнении полезной работы. Мощность этих токов называют реактивной.
На индуктивных и ёмкостных нагрузках часть электроэнергии рассеивается в виде тепла, а часть препятствует выполнению полезной работы.
К устройствам с индуктивными нагрузками относятся:
- электромоторы;
- дроссели;
- трансформаторы;
- электромагнитные
реле и другие устройства, содержащие обмотки.
Ёмкостными сопротивлениями обладают конденсаторы.
Физика процесса
Когда мы имеем дело с цепями постоянного тока, то говорить о реактивной мощности не приходится. В таких цепях значения мгновенной и полной мощности совпадают. Исключением являются моменты включения и отключения ёмкостных и индуктивных нагрузок.
Похожая ситуация происходит при наличии чисто активных сопротивлений в синусоидальных цепях. Однако если в такую электрическую цепь включены устройства с индуктивными или ёмкостными сопротивлениями, происходит сдвиг фаз по току и напряжению (см. рис.1).
При этом на индуктивностях наблюдается отставание тока по фазе, а на ёмкостных элементах фаза тока сдвигается так, что ток опережает напряжение. В связи с нарушением гармоники тока, полная мощность разлагается на две составляющие. Ёмкостные и индуктивные составляющие называют реактивными, бесполезными. Вторая составляющая состоит из активных мощностей.
Угол сдвига фаз используется при вычислениях значений активных и реактивных ёмкостных либо индуктивных мощностей. Если угол φ = 0, что имеет место при резистивных нагрузках, то реактивная составляющая отсутствует.
Важно запомнить:
- резистор потребляет исключительно активную мощность, которая выделяется в виде тепла и света;
- катушки индуктивности провоцируют образование реактивной составляющей и возвращают её в виде магнитных полей;
- Ёмкостные элементы (конденсаторы) являются причиной появления реактивных сопротивлений.
Треугольник мощностей и cos φ
Для наглядности изобразим полную мощность и её составляющие в виде векторов (см. рис. 2). Обозначим вектор полной мощности символом S, а векторам активной и реактивной составляющей присвоим символы P и Q, соответственно. Поскольку вектор S является суммой составляющих тока, то, по правилу сложения векторов, образуется треугольник мощностей.
Применяя теорему Пифагора, вычислим модуль вектора S:
Отсюда можно найти реактивную составляющую:
Выше мы уже упоминали, что реактивная мощность зависит от сдвига фаз, а значит и от угла этого сдвига. Эту зависимость удобно выражать через cos φ. По определению cos φ = P/S. Данную величину называют коэффициентом мощности и обозначают Pf. Таким образом, Pf = cos φ = P/S.
Коэффициент мощности, то есть cos φ, является очень важной характеристикой, позволяющей оценить эффективность работы тока. Данная величина находится в промежутке от 0 до 1.
Если угол сдвига фаз принимает нулевое значение, то cos φ = 1, а это значит что P = S, то есть полная мощность состоит только из активной мощности, а реактивность отсутствует. При сдвиге фаз на угол π/2 , cos φ = 0, откуда следует, что в цепи господствуют только реактивные токи (на практике такая ситуация не возникает).
Из этого можно сделать вывод: чем ближе к 1 коэффициент Pf , тем эффективнее используется ток. Например, для синхронных генераторов приемлемым считается коэффициент от 0,75 до 0,85.
Формулы
Поскольку реактивная мощность зависит от угла φ, то для её вычисления применяется формула: Q = UI×sin φ. Единицей измерения реактивной составляющей является вар или кратная ей величина – квар.
Активную составляющую находят по формуле: P = U*I×cosφ. Тогда
Зная коэффициент Pf (cos φ), мы можем рассчитать номинальную мощность потребителя тока по его номинальному напряжению, умноженному на значение силы потребляемого тока.
Способы компенсации
Мы уже выяснили, как влияют реактивные токи на работу устройств и оборудования с индуктивными или ёмкостными нагрузками. Для уменьшения потерь в электрических сетях с синусоидальным током их оборудуют дополнительными устройствами компенсации.
Принцип действия установок компенсации основан на свойствах индуктивностей и ёмкостей по сдвигу фаз в противоположные стороны. Например, если обмотка электромотора сдвигает фазу на угол φ, то этот сдвиг можно компенсировать конденсатором соответствующей ёмкости, который сдвигает фазу на величину – φ. Тогда результирующий сдвиг будет равняться нулю.
На практике компенсирующие устройства подключают параллельно нагрузкам. Чаще всего они состоят из блоков конденсаторов большой ёмкости, расположенных в отдельных шкафах. Одна из таких конденсаторных установок изображена на рисунке 3. На картинке видно группы конденсаторов, используемых для компенсации сдвигов напряжений в различных устройствах с индуктивными обмотками.
Компенсацию реактивной мощности ёмкостными нагрузками хорошо иллюстрируют графики на рисунке 4. Обратите внимание на то, как эффективность компенсации зависит от напряжения сети. Чем выше сетевое напряжение, тем сложнее компенсировать паразитные токи (график 3).
Устройства компенсации часто устанавливаются в производственных цехах, где работает много устройств на электроприводах. Потери электричества при этом довольно ощутимы, а качество тока сильно ухудшается. Конденсаторные установки успешно решают подобные проблемы.
Нужны ли устройства компенсации в быту?
На первый взгляд в домашней сети не должно быть больших
реактивных токов. В стандартном наборе бытовых потребителей преобладают
электрическая техника с резистивными нагрузками:
- электрочайник (Pf = 1);
- лампы накаливания
(Pf = 1); - электроплита (Pf =
1) и другие нагревательные приборы;
Коэффициенты
мощности современной бытовой техники, такой как телевизор, компьютер и т.п.
близки к 1. Ими можно пренебречь.
Но если речь идёт о холодильнике (Pf = 0,65), стиральной машине и микроволновой печи, то уже стоит задуматься об установке синхронных компенсаторов. Если вы часто пользуетесь электроинструментом, сварочным аппаратом или у вас дома работает электронасос, тогда установка устройства компенсации более чем желательна.
Экономический эффект от установки таких устройств
ощутимо скажется на вашем семейном бюджете. Вы сможете экономить около 15%
средств ежемесячно. Согласитесь, это не так уж мало, учитывая тарифы не
электроэнергию.
Попутно вы решите следующие вопросы:
- уменьшение нагрузок на индуктивные элементы и на проводку;
- улучшение качества тока, способствующего стабильной работе электронных устройств;
- понижение уровня высших гармоник в бытовой сети.
Для того чтобы ток и напряжение работали синфазно, устройства компенсации следует размещать как можно ближе к потребителям тока. Тогда реальная отдача индуктивных электроприёмников будет принимать максимальные значения.