Как найти симметричные точки на рисунке

  1. Главная
  2. Справочники
  3. Справочник по математике 5-9 класс
  4. Координаты на плоскости
  5. Осевая и центральная симметрии

Осевая симметрия

Рассмотрим построение точки, симметричной данной точке А относительно данной прямой .

Пусть дана точка А и прямая .

Точку симметричную точке А относительно прямой , можно построить так. Проведем через точку А прямую , перпендикулярную прямой . Для этого используем чертежный угольник. Прикладываем чертежный угольник так, как показано на рисунке ниже и проводим прямую через точку А.

Пусть прямые и пересекаются в точке О. Отложим при помощи линейки на прямой отрезок ОА1, равный отрезку ОА.

Получаем точки А и А1, которые симметричны относительно прямой .

Также можно построить фигуры, симметричные относительно прямой.

Построим треугольник А1В1С1, симметричный треугольнику АВС относительно прямой .

Пусть дан треугольник АВС и прямая .

Далее строим точки А1, В1 и С1, симметричные точкам А, В и С относительно прямой (алгоритм построения смотри выше), соединив которые получим треугольник А1В1С1, симметричный треугольнику АВС относительно прямой .

Обратите внимание, любые две фигуры, симметричные относительно прямой, равны.

Если фигура имеет ось симметрии (прямая  ) то, все точки этой фигуры, не принадлежащие этой оси, можно разделить на пары симметричных точек.

Центральная симметрия

Точки М и М1 называют симметричными относительно точки О, если точка О является серединой отрезка ММ1 (смотри рисунок ниже).

Рассмотрим построение точки, симметричной данной точке М относительно данной точки О.

Пусть даны точки М и О. Точку, симметричную точке М относительно точки О, можно построит так. Проведем луч МО.

На луче МО отложим отрезок ОN , равный отрезку ОМ.

Точки М и М1, которые симметричны относительно точки О.

Также можно построить фигуры, симметричные относительно точки.

Построим треугольник А1В1С1, симметричный треугольнику АВС относительно точки О.

Пусть дан треугольник АВС и точки О.

Далее строим точки А1, В1 и С1, симметричные точкам А, В и С относительно точки О (алгоритм построения смотри выше), соединив которые получим треугольник А1В1С1, симметричный треугольнику АВС относительно точки О.

Обратите внимание, любые две фигуры, симметричные относительно точки, равны.

Рассмотрим окружность с центром в точке О. Все точки окружности можно разбить на пары точек, симметричных относительно точки О.

В таком случае говорят, что окружность имеет центр симметрии – точку О.

Также центр симметрии имеют такие фигуры, как отрезок, прямоугольник, эллипс.

Советуем посмотреть:

Перпендикулярные прямые

Параллельные прямые

Координатная плоскость

Координаты на плоскости


Правило встречается в следующих упражнениях:

6 класс

Номер 1244,
Мерзляк, Полонский, Якир, Учебник

Номер 1247,
Мерзляк, Полонский, Якир, Учебник

Номер 1250,
Мерзляк, Полонский, Якир, Учебник

Номер 1260,
Мерзляк, Полонский, Якир, Учебник

Номер 1268,
Мерзляк, Полонский, Якир, Учебник

Номер 1269,
Мерзляк, Полонский, Якир, Учебник

Номер 1273,
Мерзляк, Полонский, Якир, Учебник

Номер 1304,
Мерзляк, Полонский, Якир, Учебник

Номер 3,
Мерзляк, Полонский, Якир, Учебник

Номер 8,
Мерзляк, Полонский, Якир, Учебник


Как ты думаешь, какие точки на рисунках являются симметричными относительно изображенных прямых? Проверь свое предположение сначала с помощью построений и измерений, а потом с помощью кальки.
Задание рисунок 1

reshalka.com

ГДЗ учебник по математике 3 класс Петерсон. 15 урок. Симметрия. Номер №2

Решение а

Решение рисунок 1
Точки A и D не симметричны относительно прямой l, так как отрезок AB не перпендикулярен прямой l.

Решение б

Решение рисунок 1
Точки C и D симметричны прямой l.

Решение в

Решение рисунок 1
Точки E и F симметричны прямой l.

Решение г

Решение рисунок 1
Точки K и M не симметричны относительно прямой l, так как отрезок KM не перпендикулярен прямой l.

Выясним, как связаны между собой координаты симметричных точек и рассмотрим на примерах, как найти координаты точки, симметричной данной точке.

I. Две точки A(xA;yA) и B(xB;yB) симметричны относительно точки O(xO;yO), если точка O является серединой отрезка AB.

По формулам координаты середины отрезка получаем связь координат этих точек:

    [ x_O = frac{{x_A + x_B }}{2},y_O = frac{{y_A + y_B }}{2}. ]

Координаты точек, симметричных относительно начала координат — точки O(0;0) — противоположные числа.

То есть координаты точки B, симметричной точке A относительно начала координат, отличаются от  координат точки A только знаками:

A(a;b) и B(-a;-b) — точки, симметричные относительно начала координат.

Примеры.

1) Найти точку, симметричную точке A(-3;7) относительно точки F(5; 11).

Решение:

Пусть B(xB;yB) — точка, симметричная точке A относительно точки F. Тогда

    [ x_F = frac{{x_A + x_B }}{2} ]

    [ 5 = frac{{ - 3 + x_B }}{2} ]

    [ - 3 + x_B = 5 cdot 2 ]

    [ x_B = 13, ]

    [ y_F = frac{{y_A + y_B }}{2} ]

    [ 11 = frac{{7 + y_B }}{2} ]

    [ y_B = 15. ]

Ответ: (13;15).

2) Найти точку, симметричную точке C (9;-4) относительно начала координат.

Решение:

Точка D, симметричная точке C относительно начала координат, имеет координаты, противоположные координатам точки C: D(-9;4).

Ответ: (-9;4).

II. Две точки A(xA;yA) и B(xB;yB) симметричны относительно прямой g, если эта прямая проходит через середину отрезка AB и перпендикулярна к нему.

Таким образом, чтобы найти координаты точки B, симметричной данной точке A относительно прямой g, можно:

  • Написать уравнение прямой f, перпендикулярной прямой g, проходящей через точку A.
  • Найти точку O пересечения прямых f и g.
  • Зная конец отрезка A и его середину O найти другой конец B.

Пример

Найти точку, симметричную точке A(-4;5) относительно прямой y=2x+4.

Решение:

Уравнение прямой, перпендикулярной данной прямой y=2x+4, ищем в виде y=-0,5x+b. Так как эта прямая проходит через точку A, координаты A удовлетворяют уравнению прямой:

5=-0,5·(-4)+b, откуда b=3.

Таким образом, y=-0,5x+3 — прямая, перпендикулярная прямой y=2x+4 и проходящая через точку A.

Найдём координаты точки пересечения прямых:

    [ left{ begin{array}{l} y = 2x + 4, \ y = - 0,5x + 3, \ end{array} right. Rightarrow O( - 0,4;3,2). ]

    [ x_O = frac{{x_A + x_B }}{2} ]

    [ - 0,4 = frac{{ - 4 + x_B }}{2} ]

    [ x_B = 3,2; ]

    [ y_O = frac{{y_A + y_B }}{2} ]

    [ y_B = 1,4. ]

Значит точка B(3,2;1,4) симметрична точке A(-4;5) относительно прямой y=2x+4.

Ответ: (3,2;1,4).

Координаты точек, симметричных относительно осей координат и биссектрис координатных четвертей — прямых y=x и y=-x — находятся проще:

 для точки A(x;y)
симметрия относительно:
оси Ox A1(x;-y)
оси Oy A2(-x;y)

биссектрисы I и II координатных

четвертей (прямой y=x)

A3(y;x)

биссектрисы I b II координатных

четвертей (прямой y= -x)

A4(-y;-x)

Осевая и центральная симметрии

Рассмотрим построение точки, симметричной данной точке А относительно данной прямой .

Пусть дана точка А и прямая .

Точку симметричную точке А относительно прямой , можно построить так. Проведем через точку А прямую , перпендикулярную прямой . Для этого используем чертежный угольник. Прикладываем чертежный угольник так, как показано на рисунке ниже и проводим прямую через точку А.

Пусть прямые и пересекаются в точке О. Отложим при помощи линейки на прямой отрезок ОА1, равный отрезку ОА.

Получаем точки А и А1, которые симметричны относительно прямой .

Также можно построить фигуры, симметричные относительно прямой.

Построим треугольник А1В1С1, симметричный треугольнику АВС относительно прямой .

Пусть дан треугольник АВС и прямая .

Далее строим точки А1, В1 и С1, симметричные точкам А, В и С относительно прямой />(алгоритм построения смотри выше), соединив которые получим треугольник А1В1С1, симметричный треугольнику АВС относительно прямой />.

Обратите внимание, любые две фигуры, симметричные относительно прямой, равны.

Если фигура имеет ось симметрии (прямая ) то, все точки этой фигуры, не принадлежащие этой оси, можно разделить на пары симметричных точек.

Центральная симметрия

Точки М и М1 называют симметричными относительно точки О, если точка О является серединой отрезка ММ1 (смотри рисунок ниже).

Рассмотрим построение точки, симметричной данной точке М относительно данной точки О.

Пусть даны точки М и О. Точку, симметричную точке М относительно точки О, можно построит так. Проведем луч МО.

На луче МО отложим отрезок ОN , равный отрезку ОМ.

Точки М и М1, которые симметричны относительно точки О.

Также можно построить фигуры, симметричные относительно точки.

Далее строим точки А1, В1 и С1, симметричные точкам А, В и С относительно точки О (алгоритм построения смотри выше), соединив которые получим треугольник А1В1С1, симметричный треугольнику АВС относительно точки О.

Обратите внимание, любые две фигуры, симметричные относительно точки, равны.

Рассмотрим окружность с центром в точке О. Все точки окружности можно разбить на пары точек, симметричных относительно точки О.

В таком случае говорят, что окружность имеет центр симметрии — точку О.

Также центр симметрии имеют такие фигуры, как отрезок, прямоугольник, эллипс.

Осевая и центральная симметрия

Симметрия — это соразмерность, пропорциональность частей чего-либо, расположенных по обе стороны от центра. Говоря проще, если обе части от центра одинаковы, то это симметрия.

Ось симметрии фигуры — это прямая, которая делит фигуру на две симметричные части. Чтобы наглядно понять, что такое ось симметрии, внимательно рассмотрите рисунок.

Ось симметрии фигуры

Центр симметрии — это точка, в которой пересекаются все оси симметрии.

Вернемся к рисунку: на нем мы видим фигуры, имеющие ось и центр симметрии.

Рассмотрите фигуры с осевой и центральной симметрией.

  • Ось симметрии угла — биссектриса.
  • Ось симметрии равностороннего треугольника — биссектриса, медиана, высота.
  • Оси симметрии прямоугольника проходят через середины его сторон.
  • У ромба две оси симметрии — прямые, содержащие его диагонали.
  • У квадрата 4 оси симметрии, так как он сразу и квадрат, и ромб.
  • Ось симметрии окружности — любая прямая, проведенная через ее центр.

Витрувианский человек да Винчи — хрестоматийный пример симметрии. Принято считать, что, чем предмет симметричнее, тем он красивее. Хотя, по секрету, в природе нет ничего абсолютно симметричного, так уж задумано. Вся идеальная симметрия — дело рук человека.

Осевая симметрия

Вот как звучит определение осевой симметрии:

Осевой симметрией называется симметрия, проведенная относительно прямой. При осевой симметрии любой точке, расположенной по одну сторону прямой, всегда соответствует другая точка на второй стороне этой прямой.

При этом отрезки, соединяющие эти точки, перпендикулярны оси симметрии.

Осевая симметрия часто встречается в повседневной жизни. К сожалению, не на фото в паспорте и не в стрелках на глазах. Но её вполне себе можно встретить в половинках авокадо, на морде кота или в зданиях вокруг. Осевая симметрия — неотъемлемая часть архитектуры. Оглядитесь и поищите примеры осевой симметрии вокруг вас.

Примеры осевой симметрии в реальной жизни

В геометрии есть фигуры, обладающие осевой симметрией: квадрат, треугольник, ромб, прямоугольник.

Давайте разберемся, как построить фигуру, симметричную данной относительно прямой.

Пример 1. Постройте треугольник A1B1C1 ,симметричный треугольнику ABC относительно прямой.

  1. Проведем из вершин треугольника ABC три прямые, перпендикулярные оси симметрии, выведем эти прямые на другую сторону оси симметрии.
  2. Найдем расстояние от вершин треугольника ABC до точек на оси симметрии.
  3. С другой стороны прямой отложим такие же расстояния.
  4. Соединяем точки отрезками и строим треугольник A1B1C1, симметричный треугольнику ABC.
  5. Получаем два треугольника, симметричных относительно оси симметрии.

Пример 2. Постройте треугольник, симметричный треугольнику ABC относительно прямой d.

  1. Строим по уже известному алгоритму. Проводим прямые, перпендикулярные прямой d, из вершин треугольника ABC и выводим их на другую сторону оси симметрии.
  2. Измеряем расстояние от вершин до точек на прямой.
  3. Откладываем такие же расстояния на другой стороне оси симметрии.
  4. Соединяем точки и строим треугольник A1B1C1.

Пример 3. Построить отрезок A1B1, симметричный отрезку AB относительно прямой l.

  1. Проводим через точку А прямую, перпендикулярную прямой l.
  2. Проводим через точку В прямую, перпендикулярную прямой l.
  3. Измеряем расстояния от точек А и В до прямой l.
  4. Откладываем такое же расстояние на перпендикулярных прямых от прямой l по другую сторону и ставим точки A1 и B1.
  5. Соединяем точки A1 и B1.

Больше примеров и увлекательных заданий — на курсах по математике в онлайн-школе Skysmart!

Центральная симметрия

Теперь поговорим о центральной симметрии — вот ее определение:

Центральной симметрией называется симметрия относительно точки.

Фигуры с центральной симметрией, как и фигуры с осевой симметрией, окружают нас повсюду. Центральную симметрию можно заметить в живой природе, в разрезе фруктов и в цветах.

центральная симметрия

Давайте разберемся, как построить центральную симметрию и рассмотрим алгоритм построения фигур с центральной симметрией.

Пример 1: Постройте треугольник A1B1C1 ,симметричный треугольнику ABC, относительно центра (точки О).

  1. Соединяем точки ABC c центром и выводим эти прямые на другую сторону оси.
  2. Измеряем отрезки AO, BO, CO и откладываем равные им отрезки с другой стороны от центра (точки О).
  3. Получившиеся точки соединяем отрезками A1B1 A1C1 B1C1.
  4. Получаем треугольник A1B1C1, симметричный треугольнику ABC, относительно центра.

Пример 2. Построить отрезок A1B1, симметричный отрезку AB относительно центра (точки О).

  1. Измеряем расстояние от точки B до точки О и от точки А до точки О.
  2. Проводим прямую из точки А через точку О и выводим ее на другую сторону.
  3. Проводим прямую из точки B через точку О и выводим ее на другую сторону.
  4. Чертим на противоположной стороне отрезки А1О и B1О, равные отрезкам АО и АB.
  5. Соединяем точки A1 и B1 и получаем отрезок A1B1, симметричный данному.

Задачи на самопроверку

В 8 классе геометрия — сплошная симметрия: центральная, осевая, зеркальная да какая угодно. Чтобы во всем этом не поплыть, больше тренируйтесь. Чертите и приглядывайтесь, угадывайте вид симметрии и решайте больше задачек. Вот несколько упражнений для тренировки. Мы в вас очень верим!

Задачка 1. Рассмотрите симметричные геометрические рисунки и назовите вид симметрии.

Мы рассмотрели примеры осевой и центральной симметрии и знаем, что:

Симметрия относительно прямой — осевая
Симметрия относительно точки — центральная

Опознайте вид симметрии

Задачка 2. Пусть M и N какие-либо точки, l — ось симметрии. М1 и N1 — точки,
симметричные точкам M и N относительно прямой l. Докажите, что MN = М1N1.

Докажите симметричность отрезка

Подсказка: опустите перпендикуляры из точек N и N1 на прямую MМ1.

Задачка 3. Постройте фигуру, симметричную данной относительно прямой a.

Как найти точку, симметричную относительно прямой

Как найти точку, симметричную относительно прямой

Bx — Ay + Ay0 — Bx0 = 0.
Ее решение даст числа (x1, y1), служащие координатами точки пересечения прямых.

Искомая точка должна лежать на найденной прямой, причем ее расстояние до точки пересечения должно быть равно расстоянию от точки пересечения до точки (x0, y0). Координаты точки, симметричной точке (x0, y0), можно, таким образом, найти, решив систему уравнений:
Bx — Ay + Ay0 — Bx0 = 0,

√((x1 — x0)^2 + (y1 — y0)^2 = √((x — x1)^2 + (y — y1)^2).

Но можно поступить проще. Если точки (x0, y0) и (x, y) находятся на равных расстояниях от точки (x1, y1), и все три точки лежат на одной прямой, то:
x — x1 = x1 — x0,

y — y1 = y1 — y0.
Следовательно, x = 2×1 — x0, y = 2y1 — y0. Подставив эти значения во второе уравнение первой системы и упростив выражения, легко убедиться, что правая его часть становится идентична левой. Дополнительно учитывать первое уравнение уже нет смысла, поскольку известно, что точки (x0, y0) и (x1, y1) ему удовлетворяют, а точка (x, y) заведомо лежит на той же прямой.

  • Как построить симметрию
  • Как найти координаты проекций точек
  • Как найти центр симметрии

Тригонометрический круг: вся тригонометрия на одном рисунке

Тригонометрический круг — это самый простой способ начать осваивать тригонометрию. Он легко запоминается, и на нём есть всё необходимое.
Тригонометрический круг заменяет десяток таблиц.

Вот что мы видим на этом рисунке:

  • Перевод градусов в радианы и наоборот. Полный круг содержит градусов, или радиан.
  • Значения синусов и косинусов основных углов. Помним, что значение косинуса угла мы находим на оси , а значение синуса — на оси .
  • И синус, и косинус принимают значения от до .
  • Значение тангенса угла тоже легко найти — поделив на . А чтобы найти котангенс — наоборот, косинус делим на синус.
  • Знаки синуса, косинуса, тангенса и котангенса.
  • Синус — функция нечётная, косинус — чётная.
  • Тригонометрический круг поможет увидеть, что синус и косинус — функции периодические. Период равен .
  • А теперь подробно о тригонометрическом круге:

    Нарисована единичная окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями и , в которой мы привыкли рисовать графики функций.

    Мы отсчитываем углы от положительного направления оси против часовой стрелки.

    Полный круг — градусов.
    Точка с координатами соответствует углу ноль градусов. Точка с координатами отвечает углу в , точка с координатами — углу в . Каждому углу от нуля до градусов соответствует точка на единичной окружности.

    Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Всё это легко увидеть на нашем рисунке.

    Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса , синус — ордината . Поскольку окружность единичная, для любого угла и синус, и косинус находятся в пределах от до :

    Простым следствием теоремы Пифагора является основное тригонометрическое тождество:

    Для того, чтобы узнать знаки синуса и косинуса какого-либо угла, не нужно рисовать отдельных таблиц. Всё уже нарисовано! Находим на нашей окружности точку, соответствующую данному углу , смотрим, положительны или отрицательны ее координаты по (это косинус угла ) и по (это синус угла ).

    Принято использовать две единицы измерения углов: градусы и радианы. Перевести градусы в радианы просто: градусов, то есть полный круг, соответствует радиан. На нашем рисунке подписаны и градусы, и радианы.

    Если отсчитывать угол от нуля против часовой стрелки — он положительный. Если отсчитывать по часовой стрелке — угол будет отрицательным. Например, угол — это угол величиной в , который отложили от положительного направления оси по часовой стрелке.

    Легко заметить, что

    Углы могут быть и больше градусов. Например, угол — это два полных оборота по часовой стрелке и еще . Поскольку, сделав несколько полных оборотов по окружности, мы возвращаемся в ту же точку с теми же координатами по и по , значения синуса и косинуса повторяются через . То есть:

    где — целое число. То же самое можно записать в радианах:

    Можно на том же рисунке изобразить ещё и оси тангенсов и котангенсов, но проще посчитать их значения. По определению,

    Единичная окружность

    О чем эта статья:

    10 класс, ЕГЭ/ОГЭ

    Статья находится на проверке у методистов Skysmart.
    Если вы заметили ошибку, сообщите об этом в онлайн-чат
    (в правом нижнем углу экрана).

    Единичная окружность в тригонометрии

    Все процессы тригонометрии изучают на единичной окружности. Сейчас узнаем, какую окружность называют единичной и дадим определение.

    Единичная окружность — это окружность с центром в начале прямоугольной декартовой системы координат и радиусом, равным единице.

    Прямоугольная система координат — прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат.

    Радиус — отрезок, который соединяет центр окружности с любой точкой, лежащей на окружности, а также длина этого отрезка. Радиус составляет половину диаметра.

    Единичную окружность с установленным соответствием между действительными числами и точками окружности называют числовой окружностью.

    Поясним, как единичная окружность связана с тригонометрией.

    В тригонометрии мы постоянно сталкиваемся с углами поворота. А углы поворота связаны с вращением по окружности.

    Угол поворота — это угол, который образован положительным направлением оси OX и лучом OA.

    Величины углов поворота не зависят от радиуса окружности, по которой происходит вращение, поэтому удобно работать именно с окружностью единичного радиуса. Это позволяет избавиться от коэффициентов при математическом описании. Вот и все объяснение полезности единичной тригонометрической окружности.

    Все углы, которые принадлежат одному семейству, дают одинаковые абсолютные значения тригонометрических функций, но эти значения могут различаться по знаку. Вот как:

    • Если угол находится в первом квадранте, все тригонометрические функции имеют положительные значения.
    • Для угла во втором квадранте все функции, за исключением sin и cos, отрицательны.
    • В третьем квадранте значения всех функций, кроме tg и ctg, меньше нуля.
    • В четвертом квадранте все функции, за исключением cos и sec, имеют отрицательные значения.

    Градусная мера окружности равна 360°. Чтобы решать задачи быстро, важно запомнить, где находятся углы 0°; 90°; 180°; 270°; 360°. Единичная окружность с градусами выглядит так:

    Радиан — одна из мер для определения величины угла.

    Один радиан — это величина угла между двумя радиусами, проведенными так, что длина дуги между ними равна величине радиуса.

    Число радиан для полной окружности — 360 градусов.

    Длина окружности равна 2πr, что превышает длину радиуса в 2π раза.

    Поскольку по определению 1 радиан — это угол между концами дуги, длина которой равна радиусу, в полной окружности заключен угол, равный 2π радиан.

    Потренируемся переводить радианы в градусы. В полной окружности содержится 2π радиан, или 360 градусов. Таким образом:

    • 2π радиан = 360°
    • 1 радиан = (360/2π) градусов
    • 1 радиан = (180/π) градусов
    • 360° = 2π радиан
    • 1° = (2π/360) радиан
    • 1° = (π/180) радиан

    Кстати, определение синуса, косинуса, тангенса и котангенса в тригонометрии дается через координаты точек на единичной окружности. Эти определения дают возможность раскрыть свойства синуса, косинуса, тангенса и котангенса.

    Уравнение единичной окружности

    При помощи этого уравнения, вместе с определениями синуса и косинуса, можно записать основное тригонометрическое тождество:

    Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

    Лекция по тригонометрии№1

    Лекция по тригонометрии

    Просмотр содержимого документа
    «Лекция по тригонометрии№1»

    В геометрии углом называется фигура, образованная двумя лучами, выходящими из одной точки.

    В прямоугольном треугольнике синусом угла является отношение катета, противолежащего искомому углу, к гипотенузе треугольника.

    Соответственно, косинус — это отношение прилежащего катета и гипотенузы.

    Оба эти значения всегда имеют величину меньше единицы, так как гипотенуза всегда длиннее катета.

    Радианная мера угла

    Любой угол можно рассматривать как результат вращения луча в плоскости вокруг начальной точки. Вращая луч вокруг точки О от начального положения OA до конечного положения ОВ, получим угол АОВ.

    Понятие об измерении углов известно из геометрии. При измерении углов принимают некоторый определенный угол за единицу измерения и с ее помощью измеряют другие углы. За единицу измерения можно принять любой угол.

    На практике уже более трех тысяч лет за единицу измерения величины угла принята 1/360 часть полного оборота, которую называют градусом.

    Радианная (радиусная) мера угла появилась в трудах Ньютона (1643—1727) и Лейбница (1646—1716) и вошла в науку благодаря трудам академика Петербургской академии наук Леонарда Эйлера (1707—1783).

    Если α – длина дуги единичной окружности, градусная мера которой равна β, то

    α = . Таким образом, дуга в 1 радиан содержит градусов:

    Дуга в 1° = радиан , 1 радиан 57 0 17′

    Радианная мера угла позволяет установить взаимно однозначное соответствие между множеством углов и рядом действительных чисел. Это возможно, поскольку с одной стороны – это число, равное 3,14… с другой стороны это угол, соответствующий 180 о . Таким образом, нетрудно установить взаимоноднозначное соответствие между углами от 0 до 360 о и действительными числами от 0 до .

    Градусная мера угла

    Поворот, равный полного оборота против часовой стрелки задает угол в один градус.

    Различают также следующие доли градуса:

    1 минута = 1′ = 1/60 градуса;

    1 секунда = 1” = 1/60 минуты = 1/3600 градуса.

    Угол, равный 180 о или половине полного оборота называют развернутым, равный 90 о или четверти полного оборота – прямым.

    Угол считается положительным, если переход от его начальной стороны к конечной совершается вращением подвижного луча против часовой стрелки, и отрицательным, если такой переход совершается вращением по часовой стрелке.

    Единичный круг – круг с центром в начале координат и радиусом, равным по длине единице. Окружность этого круга называется единичной окружностью.

    Координатные оси делят единичный круг и его окружность на четыре равные части, которые называются четвертями, или квадрантами.

    Синус – отношение ординаты конца подвижного радиуса к длине этого радиуса.

    Косинус – отношение абсциссы конца подвижного радиуса к длине этого радиуса.

    Тангенс – отношение ординаты конца подвижного радиуса к его абсциссе.

    Котангенс – отношение абсциссы конца подвижного радиуса к его ординате.

    Секанс – отношение длины подвижного радиуса к абсциссе его конца.

    Косеканс – отношение длины подвижного радиуса к ординате его конца.

    Тригонометрические функции числового аргумента.

    Р анее было установлено взаимно однозначное соответствие между множеством всех действительных чисел и множеством точек единичной окружности. Каждому действительному числу α поставлена в соответствие точка Мα единичной окружности. Пусть на плоскости выбрана прямоугольная система координат так, что ее начало совпадает с центром рассматриваемой единичной окружности, а единичная точка оси абсцисс совпадает с точкой А. Пусть хα, уα — координаты точки Мα. Тогда каждому числу α поставлены в соответствие два числа хα и уα.

    Число уα.называется синусом α и обозначается sin α,

    а число хαназывается косинусом α и обозначается cos α.

    Функция sin α, , называется синусом.

    Функция cos α, , называется косинусом.

    Периодичность тригонометрических функций.

    Тригонометрические функции являются периодическими функциями

    Теорема: Число 2π является минимальным периодом синуса и косинуса.

    Это следует из того, что значение тригонометрических функций определяются с помощью координат вращающейся точки.

    Но при вращении этой точки по единичной окружности через каждый оборот она занимает тоже самое положение, как известно полный оборот точка совершает тогда, когда приращение аргумента равно 2π. Следовательно, sin (t +2π) = sin t, аналогично, и для cos (t +2π) =cos t.

    Тангенс и котангенс также являются периодическими функциями, но наименьшим периодом для тангенса и котангенса является π.

    Пример 4: Найти sin 2672° = sin (7·360° + 152°)= sin 152°

    А теперь подробно о тригонометрическом круге: нарисована единичная окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями и , в которой мы привыкли рисовать графики функций.

    Мы отсчитываем углы от положительного направления оси против часовой стрелки.

    Полный круг 360 градусов. Точка с координатами соответствует углу ноль градусов. Точка с координатами отвечает углу в , точка с координатами — углу в . Каждому углу от нуля до градусов соответствует точка на единичной окружности.

    Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Всё это легко увидеть на нашем рисунке.

    Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса , синус — ордината . Поскольку окружность единичная, для любого угла и синус, и косинус находятся в пределах от до :

    Простым следствием теоремы Пифагора является основное тригонометрическое тождество:

    Для того, чтобы узнать знаки синуса и косинуса какого-либо угла, не нужно рисовать отдельных таблиц. Всё уже нарисовано! Находим на нашей окружности точку, соответствующую данному углу , смотрим, положительны или отрицательны ее координаты по (это косинус угла ) и по (это синус угла ).

    Принято использовать две единицы измерения углов: градусы и радианы. Перевести градусы в радианы просто: градусов, то есть полный круг, соответствует радиан. На нашем рисунке подписаны и градусы, и радианы.

    Если отсчитывать угол от нуля против часовой стрелки — он положительный. Если отсчитывать по часовой стрелке — угол будет отрицательным. Например, угол — это угол величиной в , который отложили от положительного направления оси по часовой стрелке.

    Легко заметить, что , .

    Углы могут быть и больше 360 градусов. Например, угол 732 градуса — это два полных оборота по часовой стрелке и еще 12 градусов. Поскольку, сделав несколько полных оборотов по окружности, мы возвращаемся в ту же точку с теми же координатами по и по , значения синуса и косинуса повторяются через . То есть:

    где — целое число. То же самое можно записать в радианах:

    Можно на том же рисунке изобразить ещё и оси тангенсов и котангенсов, но проще посчитать их значения. По определению,

    Пример 1: Найти синус числа .

    Решение: Так как , то этому соответствует та же точка М, что и числу Опустим из точки М перпендикуляр MP на ось Ох (рис. 4), имеем |РМ| = у. В прямоугольном треугольнике РОМ длина гипотенузы ОМ равна 1 (так как окружность единичная), длина катета РМ равна (как катет, лежащий против угла в 30º). Следовательно, ордината точки М равна числу 0,5, т. е. у = 0,5.

    Легко видеть, что tg α определен для всех действительных чисел .

    Функция tg α, , называется тангенсом. Легко видеть, что ctg α определен для всех действительных чисел а .

    Функция ctg α, , называется котангенсом.

    Реже используются функции секанс и косеканс

    Знаки тригонометрических функций.

    Знаки тригонометрических функций определяются тем, в какой из координатных четвертей плоскости лежит рассматриваемый угол.

    Так как синус числа α является ординатой конца единичного вектора с началом в начале координат, то синус положителен в первой и второй четвертях и отрицателен в третей и четвертой.

    Косинусом числа α есть абсцисса конца вектора. Поэтому косинус положителен в первой и четвертой четвертях и отрицателен – во второй и третей.

    Тангенс и котангенс есть отношение координат, поэтому они положительны когда координаты имеют одинаковые знаки (первая и третья ) и отрицательны, когда разные (вторая и четвертая).

    Пример: Найти знак sin 2735° Ответ: 2735° = 7 · 360° + 215°. Так как 360° = 2π, а синус есть периодическая функция с периодом 2π, то знак синуса зависит только от величины угла 215°, который расположен в третьей четверти, где синус отрицателен. Следовательно, sin 2735º = sin 215º

    Пример: Определить знак следующего выражения sin 300° · cos 200°. Ответ: sin 300° 0.

    Четность и нечетность тригонометрических функций.

    Докажем, что косинус – функция четная, а синус, тангенс и котангенс – функции нечетные. Пусть дана единичная окружность с центром в начале координат. Любые два противоположных действительных числа α и — α можно изобразить на этой окружности двумя точками Мα и М, симметричными относительно оси абсцисс (рис. 6). Так как точки Мα и М лежат на единичной окружности, то координатами точки Мαбудут числа cos α и sin α, а координатами точки М будут числа cos (– α) и sin (– α). Так как точки Мα и М, симметричны относительно Ох, то их абсциссы совпадают, а ординаты противоположны. На основании этого для любых допустимых чисел αсправедливы равенства:

    Формула (1) означает, что косинус – функция четная, а формулы (2), (3), (4) означают, что синус, тангенс и котангенс – функции нечетные, что и требовалось доказать. Например :

    Основные тригонометрические тождества

    Итак, напомним, что при рассмотрении тригонометрических функций, мы используем единичную окружность, с радиусом, равным единице. Рассмотрим произвольный прямоугольный треугольник, полученный в результате движения радиус-вектора на некоторый угол.

    К прямоугольному треугольнику применима теорема Пифагора, в соответствии с которой квадрат гипотенузы будет равен сумме квадратов остальных сторон треугольника. Так как мы знаем, что синусу соответствует значение ординаты на плоскости, то есть величина противолежащего катета, а косинусу значение абсциссы (прилежащего катета). Так же нам известно, что гипотенуза треугольника является радиусом окружности, длина которого равна единицы, то теорему Пифагора можем получить в следующем виде: sin 2 α + cos 2 α = 1

    Тригонометрические тождества мы можем получить, зная определение тангенса и котангенса.

    Давайте перемножим первое и второе уравнение и посмотрим, что получилось. В результате данного математического действия получим, что произведение тангенса на котангенс равно единице: tgx+ctgx =1

    А теперь давайте возьмем первое основное тождество и почленно разделим все на cos 2 α или на sin 2 α. В результате этого получим:

    Первое тождество справедливо для всех углов. Остальные же используются исключительно при углах, синус и косинус которых не равен 0.

    Пример: Найдите значения cos α, tg α, ctg α, если sin α = .

    [spoiler title=”источники:”]

    http://skysmart.ru/articles/mathematic/edinichnaya-okruzhnost

    http://multiurok.ru/files/lektsiia-po-trigonometrii1.html

    [/spoiler]

    Добавить комментарий