Как найти симметрию оси круга

Сколько осей симметрии у круга?

оси симметрии круга Они бесконечны. Эти оси делят любую геометрическую форму на две точно равные половины.

И круг состоит из всех точек, чье расстояние до фиксированной точки меньше или равно некоторому значению «r».

Упомянутая выше фиксированная точка называется центром, а значение «r» называется радиусом. Радиус – это наибольшее расстояние, которое может быть между точкой на окружности и центром..

С другой стороны, любой отрезок, концы которого находятся на краю окружности (окружности) и проходит через центр, называется диаметром. Его измерение всегда равно удвоенному радиусу.

Круг и окружность

Не путайте круг с кругом. Окружность относится только к точкам, которые находятся на расстоянии «r» от центра; то есть только край круга.

Однако при поиске осей симметрии безразлично, работаете ли вы с кругом или с кругом.

Что такое ось симметрии?

Ось симметрии – это линия, которая делит на две равные части определенную геометрическую фигуру. Другими словами, ось симметрии действует как зеркало.

Валы симметрии круга

Если вы наблюдаете любой круг, независимо от его радиуса, вы можете видеть, что не каждая линия, которая пересекает его, является осью симметрии..

Например, ни одна из линий, нарисованных на следующем рисунке, не является осью симметрии..

Простой способ проверить, является ли линия осью симметрии или нет, состоит в том, чтобы перпендикулярно отразить геометрическую фигуру к противоположной стороне линии..

Если отражение не соответствует исходному рисунку, то эта линия не является осью симметрии. Следующее изображение иллюстрирует эту технику.

Но если рассматривается следующее изображение, хорошо известно, что нарисованная линия является осью симметрии круга.

Вопрос: есть ли еще оси симметрии? Ответ – да. Если повернуть эту линию на 45 ° против часовой стрелки, полученная линия также является осью симметрии круга.

То же самое происходит, если вы поворачиваете на 90 °, 30 °, 8 ° и вообще на любое количество градусов.

Важной особенностью этих линий является не склонность, которую они имеют, но все они проходят через центр круга. Следовательно, любая линия, содержащая диаметр окружности, является осью симметрии..

Таким образом, поскольку круг имеет бесконечное число диаметров, то он имеет бесконечное количество осей симметрии.

Другие геометрические фигуры, такие как треугольник, четырехугольник, пятиугольник, шестиугольник или любой другой многоугольник, имеют конечное число осей симметрии.

Причина, по которой круг имеет бесконечное число осей симметрии, заключается в том, что у него нет сторон.

Осевая и центральная симметрия

О чем эта статья:

Что такое симметрия

Симметрия — это соразмерность, пропорциональность частей чего-либо, расположенных по обе стороны от центра. Говоря проще, если обе части от центра одинаковы, то это симметрия.

Ось симметрии фигуры — это прямая, которая делит фигуру на две симметричные части. Чтобы наглядно понять, что такое ось симметрии, внимательно рассмотрите рисунок.

Центр симметрии — это точка, в которой пересекаются все оси симметрии.

Вернемся к рисунку: на нем мы видим фигуры, имеющие ось и центр симметрии.

Рассмотрите фигуры с осевой и центральной симметрией.

  • Ось симметрии угла — биссектриса.
  • Ось симметрии равностороннего треугольника — биссектриса, медиана, высота.
  • Оси симметрии прямоугольника проходят через середины его сторон.
  • У ромба две оси симметрии — прямые, содержащие его диагонали.
  • У квадрата 4 оси симметрии, так как он сразу и квадрат, и ромб.
  • Ось симметрии окружности — любая прямая, проведенная через ее центр.

Витрувианский человек да Винчи — хрестоматийный пример симметрии. Принято считать, что, чем предмет симметричнее, тем он красивее. Хотя, по секрету, в природе нет ничего абсолютно симметричного, так уж задумано. Вся идеальная симметрия — дело рук человека.

Осевая симметрия

Вот как звучит определение осевой симметрии:

Осевой симметрией называется симметрия, проведенная относительно прямой. При осевой симметрии любой точке, расположенной по одну сторону прямой, всегда соответствует другая точка на второй стороне этой прямой.

При этом отрезки, соединяющие эти точки, перпендикулярны оси симметрии.

Осевая симметрия часто встречается в повседневной жизни. К сожалению, не на фото в паспорте и не в стрелках на глазах. Но её вполне себе можно встретить в половинках авокадо, на морде кота или в зданиях вокруг. Осевая симметрия — неотъемлемая часть архитектуры. Оглядитесь и поищите примеры осевой симметрии вокруг вас.

В геометрии есть фигуры, обладающие осевой симметрией: квадрат, треугольник, ромб, прямоугольник.

Давайте разберемся, как построить фигуру, симметричную данной относительно прямой.

Пример 1. Постройте треугольник A1B1C1 ,симметричный треугольнику ABC относительно прямой.

  1. Проведем из вершин треугольника ABC три прямые, перпендикулярные оси симметрии, выведем эти прямые на другую сторону оси симметрии.
  2. Найдем расстояние от вершин треугольника ABC до точек на оси симметрии.
  3. С другой стороны прямой отложим такие же расстояния.
  4. Соединяем точки отрезками и строим треугольник A1B1C1, симметричный треугольнику ABC.
  5. Получаем два треугольника, симметричных относительно оси симметрии.

Пример 2. Постройте треугольник, симметричный треугольнику ABC относительно прямой d.

  1. Строим по уже известному алгоритму. Проводим прямые, перпендикулярные прямой d, из вершин треугольника ABC и выводим их на другую сторону оси симметрии.
  2. Измеряем расстояние от вершин до точек на прямой.
  3. Откладываем такие же расстояния на другой стороне оси симметрии.
  4. Соединяем точки и строим треугольник A1B1C1.

Пример 3. Построить отрезок A1B1, симметричный отрезку AB относительно прямой l.

  1. Проводим через точку А прямую, перпендикулярную прямой l.
  2. Проводим через точку В прямую, перпендикулярную прямой l.
  3. Измеряем расстояния от точек А и В до прямой l.
  4. Откладываем такое же расстояние на перпендикулярных прямых от прямой l по другую сторону и ставим точки A1 и B1.
  5. Соединяем точки A1 и B1.

Больше примеров и увлекательных заданий — на курсах по математике в онлайн-школе Skysmart!

Центральная симметрия

Теперь поговорим о центральной симметрии — вот ее определение:

Центральной симметрией называется симметрия относительно точки.

Фигуры с центральной симметрией, как и фигуры с осевой симметрией, окружают нас повсюду. Центральную симметрию можно заметить в живой природе, в разрезе фруктов и в цветах.

Давайте разберемся, как построить центральную симметрию и рассмотрим алгоритм построения фигур с центральной симметрией.

Пример 1: Постройте треугольник A1B1C1 ,симметричный треугольнику ABC, относительно центра (точки О).

  1. Соединяем точки ABC c центром и выводим эти прямые на другую сторону оси.
  2. Измеряем отрезки AO, BO, CO и откладываем равные им отрезки с другой стороны от центра (точки О).
  3. Получившиеся точки соединяем отрезками A1B1 A1C1 B1C1.
  4. Получаем треугольник A1B1C1, симметричный треугольнику ABC, относительно центра.

Пример 2. Построить отрезок A1B1, симметричный отрезку AB относительно центра (точки О).

  1. Измеряем расстояние от точки B до точки О и от точки А до точки О.
  2. Проводим прямую из точки А через точку О и выводим ее на другую сторону.
  3. Проводим прямую из точки B через точку О и выводим ее на другую сторону.
  4. Чертим на противоположной стороне отрезки А1О и B1О, равные отрезкам АО и АB.
  5. Соединяем точки A1 и B1 и получаем отрезок A1B1, симметричный данному.

Задачи на самопроверку

В 8 классе геометрия — сплошная симметрия: центральная, осевая, зеркальная да какая угодно. Чтобы во всем этом не поплыть, больше тренируйтесь. Чертите и приглядывайтесь, угадывайте вид симметрии и решайте больше задачек. Вот несколько упражнений для тренировки. Мы в вас очень верим!

Задачка 1. Рассмотрите симметричные геометрические рисунки и назовите вид симметрии.

Мы рассмотрели примеры осевой и центральной симметрии и знаем, что:

Симметрия относительно прямой — осевая
Симметрия относительно точки — центральная

Задачка 2. Пусть M и N какие-либо точки, l — ось симметрии. М1 и N1 — точки,
симметричные точкам M и N относительно прямой l. Докажите, что MN = М1N1.

Подсказка: опустите перпендикуляры из точек N и N1 на прямую MМ1.

Задачка 3. Постройте фигуру, симметричную данной относительно прямой a.

Симметрия окружности

Есть ли симметрия в окружности? Сколько осей симметрии имеет окружность? Что является центром симметрии окружности?

Окружность имеет бесконечно много осей симметрии.

Осью симметрии окружности является любая прямая, содержащая диаметр окружности.

Проведём произвольный диаметр AB окружности.

Отметим на окружности произвольную точку X.

Из точки X проведём хорду, перпендикулярную диаметру.

Обозначим точки пересечения этой прямой с диаметром AB как P и X1.

Так как хорда перпендикулярна диаметру, то диаметр проходит через середину.

Следовательно, XP=X1P, а значит, точка X1 симметрична точке X относительно прямой, содержащей диаметр AB.

Имеем: точка, симметричная произвольной точке окружности относительно произвольного диаметра, также принадлежит окружности. Следовательно, любой диаметр окружности является её осью симметрии.

Что и требовалось доказать .

Окружность — центрально-симметричная фигура.

Осью симметрии окружности является её центр.

Отметим на окружности произвольную точку X.

Проведем через точку X диаметр XX1.

XO=X1O (как радиусы).

Таким образом, точка, симметричная произвольной точке окружности относительно её центра, также принадлежит окружности. Значит, окружность — центрально-симметричная фигура, а центр симметрии окружности — это центр окружности.

[spoiler title=”источники:”]

http://skysmart.ru/articles/mathematic/osevaya-i-centralnaya-simmetriya

[/spoiler]

Есть ли симметрия в окружности? Сколько осей симметрии имеет окружность? Что является центром симметрии окружности?

Утверждение

simmetriya-okruzhnostiОкружность имеет бесконечно много осей симметрии.

Осью симметрии окружности является любая прямая, содержащая диаметр окружности.

Доказательство:

os-simmetrii-okruzhnostiПроведём произвольный диаметр AB окружности.

Отметим на окружности произвольную точку X.

Из точки X проведём хорду, перпендикулярную диаметру.

Обозначим точки пересечения этой прямой с диаметром AB как P и X1.

Так как хорда перпендикулярна диаметру, то диаметр проходит через середину.

Следовательно, XP=X1P, а значит, точка X1 симметрична точке X относительно прямой, содержащей диаметр AB.

Имеем: точка, симметричная произвольной точке окружности относительно произвольного диаметра, также принадлежит окружности. Следовательно, любой диаметр окружности является её осью симметрии.

Что и требовалось доказать.

Утверждение

Окружность — центрально-симметричная фигура.

Осью симметрии окружности является её центр.

Доказательство:

centr-simmetrii-okruzhnostiОтметим на окружности произвольную точку X.

Проведем через точку X диаметр XX1.

XO=X1O (как радиусы).

Следовательно, точки X и X1 симметричны относительно точки O.

Таким образом, точка, симметричная произвольной точке окружности относительно её центра, также принадлежит окружности. Значит, окружность — центрально-симметричная фигура, а центр симметрии окружности — это центр окружности.

Что и требовалось доказать.

Опыты с зеркалами, которые мы проводили на прошлом занятии,
позволили нам прикоснуться к удивительному миру симметрии.

В переводе с греческого слово «симметрия» означает
«соразмерность, пропорциональность, одинаковость в расположении частей».

Посмотрите на кленовый лист, бабочку, снежинку. Их объединяет то,
что они симметричны. Если мы на каждом из рисунков начертим прямую вот таким
образом…

А затем поставим зеркальце вдоль этой прямой на каждом рисунке, то
отражённая в зеркале половинка фигуры дополнит её до целой (такой же, как
исходная фигура).

Поэтому такая симметрия называется зеркальной (или осевой,
если речь идёт о плоскости). Прямая, вдоль которой поставлено зеркало,
называется осью симметрии.

Если симметричную фигуру сложить пополам вдоль оси симметрии, то
её части совпадут.

С симметрией мы постоянно встречаемся в повседневной жизни. Люди
используют симметрию в орнаментах, предметах быта, технике. Издавна человек
использовал симметрию в архитектуре. Древним храмам, башням средневековых
замков, современным зданиям она придаёт гармоничность, законченность. Симметрия
также встречается в природе. Она создаёт ощущение порядка, гармонии, красоты.

Давайте сделаем кляксу. Для этого на лист бумаги капнем чернил.
Сложим лист вдвое, а затем разогнём. Линия сгиба листа является осью симметрии
кляксы.

Получается, что клякса имеет одну (вертикальную) ось симметрии.

А вот у снежинки 6 линий сгиба и все они являются осями симметрии.

У геометрических фигур может быть одна или несколько осей
симметрии, а может и не быть совсем.

Так, прямоугольник обладает двумя осями симметрии, каждая
из которых проходит через середины двух его противоположных сторон. То есть,
вырезав прямоугольник из бумаги и перегнув его по любой из двух осей симметрии,
половинки фигуры совпадут.

Ромб также обладает двумя осями
симметрии. Это прямые, которые содержат его диагонали.

Квадрат имеет четыре оси симметрии.
Две проходят через середины его противоположных сторон. И ещё две – это прямые,
которые содержат его диагонали.

Круг. Его осью симметрии является
любая прямая, которая проходит через его центр, то есть содержит диаметр круга.
А значит, круг имеет бесконечно много осей симметрии

Теперь посмотрите на следующую фигуру. Это произвольный
параллелограмм
. У него нет ни одной оси симметрии.

У произвольного треугольника тоже нет осей симметрии.

У равнобедренного треугольника есть одна ось симметрии.

У равностороннего (то есть у правильного) треугольника
– три оси симметрии.

Теперь посмотрите на шестиугольник. У него три оси симметрии,
которые проходят через противоположные вершины, и ещё три оси, которые проходят
через середины противоположных сторон. То есть всего шесть осей симметрии.

Таким образом, мы можем сказать, что круг – «самая
симметричная»
фигура из рассмотренных, так как он имеет бесконечно много
осей симметрии.

Сейчас давайте посмотрим на следующие фигуры и выясним, какая из
них лишняя.

Итак, первая фигура напоминает замочную скважину. Она имеет одну
ось симметрии.

Вторая фигура тоже имеет одну ось симметрии.

У третьей фигуры (в виде буквы Т) одна ось симметрии.

У четвёртой тоже одна. А вот пятая фигура не имеет ни одной оси
симметрии. И поэтому она лишняя.

Теперь давайте посмотрим на следующие пять фигур. Что у них
общего?

Первая фигура – круг. Выше мы выяснили, что у круга бесконечно
много осей симметрии. Вторая фигура (в виде стрелки) имеет только одну ось
симметрии. Третья фигура – эллипс. У эллипса две оси симметрии. Четвёртая
фигура имеет одну ось симметрии. Пятая фигура тоже имеет одну ось симметрии. Каждая
фигура имеет хотя бы одну ось симметрии.

На предыдущем занятии мы с вами проводили опыт с двумя плоскими
зеркалами. С помощью составленного из двух зеркал калейдоскопа мы получали
симметричные фигуры.

Давайте изобразим в виде прямых два зеркала под углом  друг к
другу. Затем нарисуем в одном из углов некоторую линию и, не пользуясь
настоящими зеркалами, дорисуем её до симметричной фигуры, которая получилась бы
при отражении в зеркалах. Полученная фигура имеет две оси симметрии. Понятно,
что угол ними равен .

Посмотрите на рассмотренные выше фигуры, которые имеют две оси
симметрии. Угол между осями равен .

Если, например, мы поставим зеркала под углом  друг к
другу, то линия отразится 5 раз, а полученная фигура будет иметь 3 оси
симметрии.

Давайте научимся точно строить отражение фигуры в зеркале.
Представим, что прямая l – зеркало (или ось симметрии). Изобразим некоторую ломаную  и построим
её отражение в зеркале.

Итак, из вершин ,  и  опускаем перпендикуляры на прямую l. Затем продолжаем их «за
зеркало» на такое же расстояние (равное длине соответствующего отрезка).
Получаем точки ,  и . Соединяем
эти точки. Ломаная  является
отражение ломаной .

Можно сказать, что ломаная  симметрична
ломаной  относительно
прямой l.

Построим с вами треугольник, симметричный треугольнику  относительно
прямой l.

Из вершин  и  опустим
перпендикуляры на прямую l. Затем продолжим их за прямую l на такое же расстояние
(равное длине соответствующего отрезка). Получим точки  и .

При этом точка  осталась на
месте. Она лежит на оси симметрии. Она симметрична сама себе.  и  симметричны
относительно прямой l.

А сейчас посмотрите на рисунок.

Давайте выясним, симметрична ли точка  точке  относительно
прямой l. Для этого мы соединим точки  и . Затем с
помощью угольника проверим, перпендикулярна ли прямая l отрезку . Перпендикулярна.

Потом с помощью линейки проверим, делит ли прямая l отрезок  и пополам. Делит.

Значит, точки  и  симметричны
относительно прямой l.

Кроме симметрии относительно прямой существует ещё симметрия
относительно точки, так называемая центральная симметрия. Она
характеризуется наличием центра симметрии – точки О, которая обладает
определённым свойством. Можно сказать, что точка О является центром
симметрии, если при повороте вокруг точки О на  фигура
переходит сама в себя.

Понятие центральной симметрии распространяется и на трёхмерное
пространство.

Проверить, является ли фигура центрально-симметричной или нет,
можно с помощью обычной иголки и кальки. Наложим на нашу фигуру кальку. Затем,
проколов фигуру в предполагаемом центре и обведя её контур, надо повернуть фигуру
на  вокруг
иголки. Если фигура «вошла» в свой контур, то она центрально-симметричная.

Сейчас посмотрите на плоские фигуры, которые имеют и центр
симметрии, и оси симметрии.

Это круг. Выше мы сказали, что он имеет бесконечно много
осей симметрии, каждая из которых содержит его диаметр. А вот центром симметрии
круга является его центр.

Квадрат имеет четыре оси симметрии.
Центром симметрии квадрата является точка пересечения его диагоналей.

У шестиугольника шесть осей симметрии. Центром его
симметрии является точка пересечения его диагоналей.

Выше мы сказали, что произвольный параллелограмм не имеет
ни одной оси симметрии. Но он имеет центр симметрии – это точка пересечения его
диагоналей.

А вот, например, равнобедренный треугольник имеет ось
симметрии, но не имеет центра симметрии. То же самое можно сказать и про
пятиугольник, у которого есть оси симметрии, но центра симметрии нет.

Как нарисовать пять осей симметрии круга.

На этой странице сайта, в категории Математика размещен ответ на вопрос
Как нарисовать пять осей симметрии круга?. По уровню сложности вопрос рассчитан на учащихся
1 – 4 классов. Чтобы получить дополнительную информацию по
интересующей теме, воспользуйтесь автоматическим поиском в этой же категории,
чтобы ознакомиться с ответами на похожие вопросы. В верхней части страницы
расположена кнопка, с помощью которой можно сформулировать новый вопрос,
который наиболее полно отвечает критериям поиска. Удобный интерфейс
позволяет обсудить интересующую тему с посетителями в комментариях.

Симметричные окружности

Как найти уравнение окружности, симметричной данной?

Симметричные окружности имеют равные радиусы. Следовательно, остаётся найти координаты центра симметричной окружности (как точки, симметричной данной).

1) Окружность задана уравнением (x-3)²+(y+2)²=16. Составить уравнение окружности, симметричной данной относительно точки (7; 10).

Центр окружности (x-3)²+(y+2)²=16 — точка с координатами (3;-2). Найдём точку, симметричную ей относительно точки (7; 10).

Таким образом, центр окружности, симметричной данной, — точка с координатами (11;22). Подставляем в формулу уравнения окружности a=11, b=22, R²=16:

2) Окружность задана уравнением (x+5)²+(y+1)²=9. Составить уравнение окружности, симметричной данной относительно начала координат.

Центром данной окружности является точка (-5;-1). Точка, симметричная данной относительно начала координат — (5;1). Таким образом, для окружности, симметричной данной относительно точки O(0;0) a=5, b=1, R²=9:

3) Окружность задана уравнением (x-7)²+(y-2)²=12. Составить уравнение окружности, симметричной данной относительно прямой y=x.

Центр окружности (x-7)²+(y-2)²=12 — точка (7;2) — при симметрии относительно прямой y=x переходит в точку (2;7). Следовательно, a=2, b=7, R²=12 и искомое уравнение окружности:

4) Окружность задана уравнением (x+4)²+(y-5)²=19. Составить уравнение окружности, симметричной данной относительно прямой y=2x+4.

Центр окружности (x+4)²+(y-5)²=19 — точка (-4;5). Точку, симметричную точке (-4;5) относительно прямой y=2x+4, нашли в прошлый раз — (3,2; 1,4). Таким образом, a=3,2, b=1,4, R²=19 и уравнение симметричной окружности

5) Окружность задана уравнением (x+8)²+(y+3)²=4. Составить уравнение окружности, симметричной данной относительно прямой y= -1.

Центр окружности (x+8)²+(y+3)²=4 — (-8; -3). Точка, симметричная точке (-8; -3) относительно прямой y= -1, имеет такую же абсциссу, x= -8. Расстояние от точки (-8; -3) до прямой y= -1 равно -1-(-3)=2. Расстояние от прямой y= -1 до центра симметричной окружности также равно 2, отсюда -1+2=1 — это ордината центра. Таким образом, точка (-8; 1) — центр окружности, симметричной данной, а R²=4.

Следовательно, искомое уравнение окружности

Составьте уравнение окружности, симметричной окружности (х — 10)2 + (у + 8)2 = 49 относительно точки (-1; 5).

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,292
  • гуманитарные 33,622
  • юридические 17,900
  • школьный раздел 607,160
  • разное 16,830

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Найти уравнение окружности симметричной с окружностью

Симметричные окружности

Как найти уравнение окружности, симметричной данной?

Симметричные окружности имеют равные радиусы. Следовательно, остаётся найти координаты центра симметричной окружности (как точки, симметричной данной).

1) Окружность задана уравнением (x-3)²+(y+2)²=16. Составить уравнение окружности, симметричной данной относительно точки (7; 10).

Центр окружности (x-3)²+(y+2)²=16 — точка с координатами (3;-2). Найдём точку, симметричную ей относительно точки (7; 10).

Таким образом, центр окружности, симметричной данной, — точка с координатами (11;22). Подставляем в формулу уравнения окружности a=11, b=22, R²=16:

2) Окружность задана уравнением (x+5)²+(y+1)²=9. Составить уравнение окружности, симметричной данной относительно начала координат.

Центром данной окружности является точка (-5;-1). Точка, симметричная данной относительно начала координат — (5;1). Таким образом, для окружности, симметричной данной относительно точки O(0;0) a=5, b=1, R²=9:

3) Окружность задана уравнением (x-7)²+(y-2)²=12. Составить уравнение окружности, симметричной данной относительно прямой y=x.

Центр окружности (x-7)²+(y-2)²=12 — точка (7;2) — при симметрии относительно прямой y=x переходит в точку (2;7). Следовательно, a=2, b=7, R²=12 и искомое уравнение окружности:

4) Окружность задана уравнением (x+4)²+(y-5)²=19. Составить уравнение окружности, симметричной данной относительно прямой y=2x+4.

Центр окружности (x+4)²+(y-5)²=19 — точка (-4;5). Точку, симметричную точке (-4;5) относительно прямой y=2x+4, нашли в прошлый раз — (3,2; 1,4). Таким образом, a=3,2, b=1,4, R²=19 и уравнение симметричной окружности

5) Окружность задана уравнением (x+8)²+(y+3)²=4. Составить уравнение окружности, симметричной данной относительно прямой y= -1.

Центр окружности (x+8)²+(y+3)²=4 — (-8; -3). Точка, симметричная точке (-8; -3) относительно прямой y= -1, имеет такую же абсциссу, x= -8. Расстояние от точки (-8; -3) до прямой y= -1 равно -1-(-3)=2. Расстояние от прямой y= -1 до центра симметричной окружности также равно 2, отсюда -1+2=1 — это ордината центра. Таким образом, точка (-8; 1) — центр окружности, симметричной данной, а R²=4.

Следовательно, искомое уравнение окружности

Уравнение с двумя переменными и его график. Уравнение окружности

п.1. Понятие уравнения с двумя переменными

Мы уже знакомы со многими функциями и умеем их записывать в виде формул:
y = 2x + 5 – прямая, y = 5x 2 + 2x – 1 – парабола, (mathrm ) – гипербола.

Если записать такое выражение: x 2 (x + y) = 1 – y – в нём тоже есть две переменные x и y, и постоянная 1.

Для наших примеров:
F(x; y) = 2x – y + 5 = 0 – прямая
F(x; y) = 5x 2 + 2x – y – 1 = 0 – парабола
F(x; y) = (mathrm ) – y = 0 – гипербола
F(x; y)=x 2 (x + y) + y – 1 = 0 – некоторая кривая (график — ниже).

п.2. Обобщенные правила преобразования графика уравнения

Пусть F(x; y) = 0 – исходный график некоторой функции

Симметричное отображение относительно оси OY

Симметричное отображение относительно оси OX

Центральная симметрия относительно начала координат

Параллельный перенос графика на a единиц вправо

Параллельный перенос графика на a единиц влево

Параллельный перенос графика на b единиц вниз

Параллельный перенос графика на b единиц вверх

Сжатие графика к оси OY в a раз

Сжатие графика к оси OX в b раз

F(x; by) = 0
0 Например:

Окружность с центром в точке O(2; 1) и радиусом R = 3 задаётся уравнением: $$ mathrm $$

п.4. Примеры

Пример 1. Постройте график уравнения:
а) 2x + 7y – 14 = 0
Выразим y из уравнения: ( mathrm =-frac + 2 > ) – это прямая

б) xy + 4 = 0
Выразим y из уравнения: ( mathrm > ) – это гипербола

в) ( x+ 2) 2 + y 2 = 4
Это – уравнение окружности с центром O(–2; 0), радиусом ( mathrm =2> )

г) x 2 + 5y – 2 = 0
Выразим y из уравнения: ( mathrm > ) – это парабола

Пример 2*. Постройте график уравнения:
а) 2|x| + 5y = 10
( mathrm =-frac25|x|+2> )
Строим график для ( mathrm ), а затем отражаем его относительно оси OY в левую полуплоскость.

б) 3x + |y| = 6
|y| = –3x + 6
Строим график для y > 0: y = –3x + 6, а затем отражаем его относительно оси OX в нижнюю полуплоскость.

в) |x| + |y| = 2
|y| = –|x| + 2
Строим график для x > 0, y > 0: y = –x + 2, а затем отражаем его относительно осей OX и OY.

г) |x – 1| + |y – 2| = 4
Получим тот же ромб (квадрат), что и в (в), но его центр будет перенесен из начала координат в точку O(1; 2).

д) (mathrm +2|y-2|=4>)
Ромб по x растянется в 2 раза по диагонали, а по y – сожмётся в 2 раза по диагонали.

Пример 3. Постройте график уравнения:
а) x 2 + y 2 + 4x – 6y + 4 = 0
Выделим полные квадраты:
(x 2 + 4x + 4) + (y 2 – 6y + 9) – 9 = 0
(x + 2) 2 + (y – 3) 2 = 3 2 – уравнение окружности с центром (–2; 3), радиусом 3.

Уравнения прямых и кривых на плоскости с примерами решения

Содержание:

Уравнения прямых и кривых на плоскости

Уравнения кривых в большом количестве встречаются при чтении экономической литературы. Укажем некоторые из этих кривых.

Кривая безразличия — кривая, показывающая различные комбинации двух продуктов, имеющих одинаковое потребительское значение, или полезность, для потребителя.

Кривая потребительского бюджета — кривая, показывающая различные комбинации количеств двух товаров, которые потребитель может купить при данном уровне его денежного дохода.

Кривая производственных возможностей — кривая, показывающая различные комбинации двух товаров или услуг, которые могут быть произведены в условиях полной занятости и полного объема производства в экономике с постоянными запасами ресурсов и неизменной технологией.

Кривая инвестиционного спроса — кривая, показывающая динамику процентной ставки и объем инвестиций при разных процентных ставках.

Кривая Филлипса — кривая, показывающая существование устойчивой связи между уровнем безработицы и уровнем инфляции.

Кривая Лаффера — кривая, показывающая связь между ставками налогов и налоговыми поступлениями, выявляющая такую налоговую ставку, при которой налоговые поступления достигают максимума.

Уже простое перечисление терминов показывает, как важно для экономистов умение строить графики и анализировать уравнения кривых, каковыми являются прямые линии и кривые второго порядка — окружность, эллипс, гипербола, парабола. Кроме того, при решении большого класса задач требуется выделить на плоскости область, ограниченную какими-либо кривыми, уравнения которых заданы. Чаще всего эти задачи формулируются так: найти наилучший план производства при заданных ресурсах. Задание ресурсов имеет обычно вид неравенств, уравнения которых даны. Поэтому приходится искать наибольшее или наименьшее значения, принимаемые некоторой функцией в области, заданной уравнениями системы неравенств.

В аналитической геометрии линия на плоскости определяется как множество точек, координаты которых удовлетворяют уравнению

Пусть на плоскости задана прямоугольная декартова система координат. Прямая на плоскости может быть задана одним из уравнений:

1. Общее уравнение прямой:

Вектор ортогонален прямой, числа А и В одновременно не равны нулю.

2. Уравнение прямой с угловым коэффициентом:

где — угловой коэффициент прямой, то есть величина угла, образованного прямой с осью некоторая точка, принадлежащая прямой.

Уравнение (2.2) принимает вид есть точка пересечения прямой с осью

3. Уравнение прямой в отрезках:

где а и b — величины отрезков, отсекаемых прямой на осях координат.

4. Уравнение прямой, проходящей через две данные точки —

5. Уравнение прямой, проходящей через данную точку параллельно данному вектору

6. Нормальное уравнение прямой:

где — радиус-вектор произвольной точки этой прямой, — единичный вектор, ортогональный этой прямой и направленный от начала координат к прямой; — расстояние от начала координат до прямой.

Нормальное уравнение прямой в координатной форме имеет вид:

где величина угла, образованного прямой с осью Ох.

Уравнение пучка прямых с центром в точке имеет вид:

где — параметр пучка. Если пучок задается двумя пересекающимися прямыми то его уравнение имеет вид:

где — параметры пучка, не обращающиеся в 0 одновременно.

Величина угла между прямыми задается формулой:

Равенство есть необходимое и достаточное условие перпендикулярности прямых.

Для того, чтобы два уравнения

задавали одну и ту же прямую, необходимо и достаточно, чтобы их коэффициенты были пропорциональны:

Уравнения (2.7), (2.8) задают две различные параллельные прямые, если и прямые пересекаются, если Расстояние d от точки до прямой есть длина перпендикуляра, проведенного из точки к прямой. Если прямая задана нормальным уравнением, то — радиус-вектор точки или, в координатной форме,

Общее уравнение кривой второго порядка имеет вид:

Предполагается, что среди коэффициентов уравнения есть отличные от нуля.

Уравнение окружности с центром в точке и радиусом, равным R: Эллипсом называется геометрическое место точек, сумма расстояний которых от двух данных точек (фокусов) есть величина постоянная, равная 2а. Каноническое (простейшее) уравнение эллипса:

Эллипс, заданный уравнением (2.10), симметричен относительно осей координат.

Параметры а и b называются полуосями эллипса.

Пусть тогда фокусы и находятся на оси Ох на расстоянии от начала координат. Отношение называется эксцентриситетом эллипса.

Расстояния от точки эллипса до его фокусов (фокальные радиусы-векторы) определяются формулами:

Если же то фокусы находятся на оси

Если а=b, то эллипс является окружностью с центром в начале координат радиуса а.

Гиперболой называется геометрическое место точек, разность расстояний которых от двух данных точек (фокусов) равна по абсолютной величине данному числу 2а.

Каноническое уравнение гиперболы:

Гипербола, заданная уравнением (2.11), симметрична относительно осей координат. Она пересекает ось в точках — вершинах гиперболы и не пересекает ось Параметр а называется вещественной полуосью, b — мнимой полуосью. Параметр есть, расстояние от фокуса до начала координат. Отношение называется эксцентриситетом гиперболы. Прямые, уравнения которых называются асимптотами гиперболы.

Расстояния от точки гиперболы до ее фокусов (фокальные радиусы-векторы) определяются формулами:

Гипербола, у которой а=b, называется равносторонней, ее уравнение а уравнение асимптот

Гиперболы называются сопряженными. Параболой называется геометрическое место точек, одинаково удаленных от данной точки (фокуса) и данной прямой (директрисы).

Каноническое уравнение параболы имеет два вида:

1. — парабола симметрична относительно оси Ох. 2. — парабола симметрична относительно оси Оy. В обоих случаях и вершина параболы, то есть точка, лежащая на оси симметрии, находится в начале координат.

Парабола, уравнение которой имеет фокус и директрису фокальный радиус-вектор точки Парабола, уравнение которой имеет фокус и директрису фокальный радиус-вектор точки параболы равен

Уравнение задает линию, разбивающую плоскость на две или несколько частей. В одних из этих частей выполняется неравенство а в других — неравенство Иными словами, линия отделяет часть плоскости, где от части плоскости, где

Прямая, уравнение которой разбивает плоскость на две полуплоскости. На практике для выяснения того, в какой полуплоскости мы имеем а в какой применяют метод контрольных точек. Для этого берут контрольную точку (разумеется, не лежащую на прямой, уравнение которой ) и проверяют, какой знак имеет в этой точке выражение Тот же знак имеет указанное выражение и во всей полуплоскости, где лежит контрольная точка. Во второй полуплоскости имеет противоположный знак.

Точно так же решаются и нелинейные неравенства с двумя неизвестными.

Например, решим неравенство Его можно переписать в виде

Уравнение задает окружность с центром в точке С(2,-3) и радиусом 5. Окружность разбивает плоскость на две части — внутреннюю и внешнюю. Чтобы узнать, в какой из них имеет место данное неравенство, возьмем контрольную точку во внутренней области, например, центр С(2,-3) нашей окружности. Подставляя координаты точки С в левую часть неравенства, получаем отрицательное число -25. Значит, и во всех точках, лежащих внутри окружности, выполняется неравенство Отсюда следует, что данное неравенство имеет место во внешней для окружности области.

Пример:

Составьте уравнения прямых, проходящих через точку А(3,1) и наклоненных к прямой под углом 45°.

Решение:

Будем искать уравнение прямой в виде Поскольку прямая проходит через точку А, то ее координаты удовлетворяют уравнению прямой, т.е.

Величина угла между прямыми определяется формулой Так как угловой коэффициент исходной прямой равен то имеем уравнение для определения

Имеем два значения Находя соответствующие значения b по формуле получим две искомые прямые, уравнения которых:

Пример:

При каком значении параметра t прямые, уравнения которых параллельны ?

Решение:

Прямые, заданные общими уравнениями, параллельны, если коэффициенты при x и y пропорциональны, т.е. Решая полученное уравнение, находим t:

Пример:

Найти уравнение общей хорды двух окружностей: и

Решение:

Найдем точки пересечения окружностей, для этого решим систему уравнений: Решая первое уравнение, находим значения Из второго уравнения -соответствующие значения Теперь получим уравнение общей хорды, зная две точки А(3,1) и В(1,3), принадлежащие этой прямой:

Пример:

Как расположены на плоскости точки, координаты которых удовлетворяют условиям

Решение:

Первое неравенство системы определяет внутренность круга, не включая границу, т.е. окружность с центром в точке (3,3) и радиуса Второе неравенство задает полуплоскость, определяемую прямой, уравнение которой х = у, причем, так как неравенство строгое, точки самой прямой не принадлежат полуплоскости, а все точки ниже этой прямой принадлежат полуплоскости. Поскольку мы ищем точки, удовлетворяющие обоим неравенствам, то искомая область — внутренность полукруга.

Пример:

Вычислить длину стороны квадрата, вписанного в эллипс, уравнение которого

Решение:

Пусть — вершина квадрата, лежащая в первой четверти. Тогда сторона квадрата будет равна 2с. Т.к. точка М принадлежит эллипсу, ее координаты удовлетворяют уравнению эллипса откуда значит, сторона квадрата —

Пример:

Зная уравнение асимптот гиперболы и одну из ее точек составить уравнение гиперболы.

Решение:

Запишем каноническое уравнение гиперболы: Асимптоты гиперболы задаются уравнениями значит, откуда Поскольку М — точка гиперболы, то ее координаты удовлетворяют уравнению гиперболы, т.е. Учитывая, что а=2b , найдем b: Тогда уравнение гиперболы

Пример:

Вычислить длину стороны правильного треугольника АВС, вписанного в параболу с параметром р, предполагая, что точка А совпадает с вершиной параболы.

Решение:

Каноническое уравнение параболы с параметром р имеет вид вершина ее совпадает с началом координат, и парабола симметрична относительно оси абсцисс. Так как прямая АВ образует с осью Оx угол в 30°, то уравнение прямой имеет вид: Следовательно, мы можем найти координаты точки В, решая систему уравнений откуда Значит, расстояние между точками

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Плоскость и прямая в пространстве
  • Определитель матрицы
  • Критерий совместности Кронекера-Капелли
  • Формулы Крамера
  • Производные тригонометрических функции
  • Производная сложной функции
  • Пределы в математике
  • Функции многих переменных

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

источники:

http://www.soloby.ru/706179/%D1%81%D0%BE%D1%81%D1%82%D0%B0%D0%B2%D1%8C%D1%82%D0%B5-%D0%BE%D0%BA%D1%80%D1%83%D0%B6%D0%BD%D0%BE%D1%81%D1%82%D0%B8-%D1%81%D0%B8%D0%BC%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%BD%D0%BE%D0%B9-%D0%BE%D0%BA%D1%80%D1%83%D0%B6%D0%BD%D0%BE%D1%81%D1%82%D0%B8-%D0%BE%D1%82%D0%BD%D0%BE%D1%81%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE

http://b4.cooksy.ru/articles/nayti-uravnenie-okruzhnosti-simmetrichnoy-s-okruzhnostyu

Добавить комментарий