В данной таблице приведены значения синусов и косинусов для углов от 0 до 359 градусов. Но если Вам нужно рассчитать значения тригонометрических функций
для более точных углов (с минутами и секундами) или углов больше 360 градусов или углов с отрицательными значениями (например 8° 5′ 53″
или -1775° 15′ 22″ ), то можно воспользоваться тригонометрическим калькулятором.
Таблица углов от 0 до 179 градусов
Угол (градусы) | Синус (Sin) | Косинус (Cos) |
---|---|---|
0 | 0 | 1 |
1 | 0.01745241 | 0.9998477 |
2 | 0.0348995 | 0.99939083 |
3 | 0.05233596 | 0.99862953 |
4 | 0.06975647 | 0.99756405 |
5 | 0.08715574 | 0.9961947 |
6 | 0.10452846 | 0.9945219 |
7 | 0.12186934 | 0.99254615 |
8 | 0.1391731 | 0.99026807 |
9 | 0.15643447 | 0.98768834 |
10 | 0.17364818 | 0.98480775 |
11 | 0.190809 | 0.98162718 |
12 | 0.20791169 | 0.9781476 |
13 | 0.22495105 | 0.97437006 |
14 | 0.2419219 | 0.97029573 |
15 | 0.25881905 | 0.96592583 |
16 | 0.27563736 | 0.9612617 |
17 | 0.2923717 | 0.95630476 |
18 | 0.30901699 | 0.95105652 |
19 | 0.32556815 | 0.94551858 |
20 | 0.34202014 | 0.93969262 |
21 | 0.35836795 | 0.93358043 |
22 | 0.37460659 | 0.92718385 |
23 | 0.39073113 | 0.92050485 |
24 | 0.40673664 | 0.91354546 |
25 | 0.42261826 | 0.90630779 |
26 | 0.43837115 | 0.89879405 |
27 | 0.4539905 | 0.89100652 |
28 | 0.46947156 | 0.88294759 |
29 | 0.48480962 | 0.87461971 |
30 | 0.5 | 0.8660254 |
31 | 0.51503807 | 0.8571673 |
32 | 0.52991926 | 0.8480481 |
33 | 0.54463904 | 0.83867057 |
34 | 0.5591929 | 0.82903757 |
35 | 0.57357644 | 0.81915204 |
36 | 0.58778525 | 0.80901699 |
37 | 0.60181502 | 0.79863551 |
38 | 0.61566148 | 0.78801075 |
39 | 0.62932039 | 0.77714596 |
40 | 0.64278761 | 0.76604444 |
41 | 0.65605903 | 0.75470958 |
42 | 0.66913061 | 0.74314483 |
43 | 0.68199836 | 0.7313537 |
44 | 0.69465837 | 0.7193398 |
45 | 0.70710678 | 0.70710678 |
46 | 0.7193398 | 0.69465837 |
47 | 0.7313537 | 0.68199836 |
48 | 0.74314483 | 0.66913061 |
49 | 0.75470958 | 0.65605903 |
50 | 0.76604444 | 0.64278761 |
51 | 0.77714596 | 0.62932039 |
52 | 0.78801075 | 0.61566148 |
53 | 0.79863551 | 0.60181502 |
54 | 0.80901699 | 0.58778525 |
55 | 0.81915204 | 0.57357644 |
56 | 0.82903757 | 0.5591929 |
57 | 0.83867057 | 0.54463904 |
58 | 0.8480481 | 0.52991926 |
59 | 0.8571673 | 0.51503807 |
60 | 0.8660254 | 0.5 |
61 | 0.87461971 | 0.48480962 |
62 | 0.88294759 | 0.46947156 |
63 | 0.89100652 | 0.4539905 |
64 | 0.89879405 | 0.43837115 |
65 | 0.90630779 | 0.42261826 |
66 | 0.91354546 | 0.40673664 |
67 | 0.92050485 | 0.39073113 |
68 | 0.92718385 | 0.37460659 |
69 | 0.93358043 | 0.35836795 |
70 | 0.93969262 | 0.34202014 |
71 | 0.94551858 | 0.32556815 |
72 | 0.95105652 | 0.30901699 |
73 | 0.95630476 | 0.2923717 |
74 | 0.9612617 | 0.27563736 |
75 | 0.96592583 | 0.25881905 |
76 | 0.97029573 | 0.2419219 |
77 | 0.97437006 | 0.22495105 |
78 | 0.9781476 | 0.20791169 |
79 | 0.98162718 | 0.190809 |
80 | 0.98480775 | 0.17364818 |
81 | 0.98768834 | 0.15643447 |
82 | 0.99026807 | 0.1391731 |
83 | 0.99254615 | 0.12186934 |
84 | 0.9945219 | 0.10452846 |
85 | 0.9961947 | 0.08715574 |
86 | 0.99756405 | 0.06975647 |
87 | 0.99862953 | 0.05233596 |
88 | 0.99939083 | 0.0348995 |
89 | 0.9998477 | 0.01745241 |
90 | 1 | 0 |
91 | 0.9998477 | -0.01745241 |
92 | 0.99939083 | -0.0348995 |
93 | 0.99862953 | -0.05233596 |
94 | 0.99756405 | -0.06975647 |
95 | 0.9961947 | -0.08715574 |
96 | 0.9945219 | -0.10452846 |
97 | 0.99254615 | -0.12186934 |
98 | 0.99026807 | -0.1391731 |
99 | 0.98768834 | -0.15643447 |
100 | 0.98480775 | -0.17364818 |
101 | 0.98162718 | -0.190809 |
102 | 0.9781476 | -0.20791169 |
103 | 0.97437006 | -0.22495105 |
104 | 0.97029573 | -0.2419219 |
105 | 0.96592583 | -0.25881905 |
106 | 0.9612617 | -0.27563736 |
107 | 0.95630476 | -0.2923717 |
108 | 0.95105652 | -0.30901699 |
109 | 0.94551858 | -0.32556815 |
110 | 0.93969262 | -0.34202014 |
111 | 0.93358043 | -0.35836795 |
112 | 0.92718385 | -0.37460659 |
113 | 0.92050485 | -0.39073113 |
114 | 0.91354546 | -0.40673664 |
115 | 0.90630779 | -0.42261826 |
116 | 0.89879405 | -0.43837115 |
117 | 0.89100652 | -0.4539905 |
118 | 0.88294759 | -0.46947156 |
119 | 0.87461971 | -0.48480962 |
120 | 0.8660254 | -0.5 |
121 | 0.8571673 | -0.51503807 |
122 | 0.8480481 | -0.52991926 |
123 | 0.83867057 | -0.54463904 |
124 | 0.82903757 | -0.5591929 |
125 | 0.81915204 | -0.57357644 |
126 | 0.80901699 | -0.58778525 |
127 | 0.79863551 | -0.60181502 |
128 | 0.78801075 | -0.61566148 |
129 | 0.77714596 | -0.62932039 |
130 | 0.76604444 | -0.64278761 |
131 | 0.75470958 | -0.65605903 |
132 | 0.74314483 | -0.66913061 |
133 | 0.7313537 | -0.68199836 |
134 | 0.7193398 | -0.69465837 |
135 | 0.70710678 | -0.70710678 |
136 | 0.69465837 | -0.7193398 |
137 | 0.68199836 | -0.7313537 |
138 | 0.66913061 | -0.74314483 |
139 | 0.65605903 | -0.75470958 |
140 | 0.64278761 | -0.76604444 |
141 | 0.62932039 | -0.77714596 |
142 | 0.61566148 | -0.78801075 |
143 | 0.60181502 | -0.79863551 |
144 | 0.58778525 | -0.80901699 |
145 | 0.57357644 | -0.81915204 |
146 | 0.5591929 | -0.82903757 |
147 | 0.54463904 | -0.83867057 |
148 | 0.52991926 | -0.8480481 |
149 | 0.51503807 | -0.8571673 |
150 | 0.5 | -0.8660254 |
151 | 0.48480962 | -0.87461971 |
152 | 0.46947156 | -0.88294759 |
153 | 0.4539905 | -0.89100652 |
154 | 0.43837115 | -0.89879405 |
155 | 0.42261826 | -0.90630779 |
156 | 0.40673664 | -0.91354546 |
157 | 0.39073113 | -0.92050485 |
158 | 0.37460659 | -0.92718385 |
159 | 0.35836795 | -0.93358043 |
160 | 0.34202014 | -0.93969262 |
161 | 0.32556815 | -0.94551858 |
162 | 0.30901699 | -0.95105652 |
163 | 0.2923717 | -0.95630476 |
164 | 0.27563736 | -0.9612617 |
165 | 0.25881905 | -0.96592583 |
166 | 0.2419219 | -0.97029573 |
167 | 0.22495105 | -0.97437006 |
168 | 0.20791169 | -0.9781476 |
169 | 0.190809 | -0.98162718 |
170 | 0.17364818 | -0.98480775 |
171 | 0.15643447 | -0.98768834 |
172 | 0.1391731 | -0.99026807 |
173 | 0.12186934 | -0.99254615 |
174 | 0.10452846 | -0.9945219 |
175 | 0.08715574 | -0.9961947 |
176 | 0.06975647 | -0.99756405 |
177 | 0.05233596 | -0.99862953 |
178 | 0.0348995 | -0.99939083 |
179 | 0.01745241 | -0.9998477 |
Таблица углов от 180 до 359 градусов
Угол (градусы) | Синус (Sin) | Косинус (Cos) |
---|---|---|
180 | 0 | -1 |
181 | -0.01745241 | -0.9998477 |
182 | -0.0348995 | -0.99939083 |
183 | -0.05233596 | -0.99862953 |
184 | -0.06975647 | -0.99756405 |
185 | -0.08715574 | -0.9961947 |
186 | -0.10452846 | -0.9945219 |
187 | -0.12186934 | -0.99254615 |
188 | -0.1391731 | -0.99026807 |
189 | -0.15643447 | -0.98768834 |
190 | -0.17364818 | -0.98480775 |
191 | -0.190809 | -0.98162718 |
192 | -0.20791169 | -0.9781476 |
193 | -0.22495105 | -0.97437006 |
194 | -0.2419219 | -0.97029573 |
195 | -0.25881905 | -0.96592583 |
196 | -0.27563736 | -0.9612617 |
197 | -0.2923717 | -0.95630476 |
198 | -0.30901699 | -0.95105652 |
199 | -0.32556815 | -0.94551858 |
200 | -0.34202014 | -0.93969262 |
201 | -0.35836795 | -0.93358043 |
202 | -0.37460659 | -0.92718385 |
203 | -0.39073113 | -0.92050485 |
204 | -0.40673664 | -0.91354546 |
205 | -0.42261826 | -0.90630779 |
206 | -0.43837115 | -0.89879405 |
207 | -0.4539905 | -0.89100652 |
208 | -0.46947156 | -0.88294759 |
209 | -0.48480962 | -0.87461971 |
210 | -0.5 | -0.8660254 |
211 | -0.51503807 | -0.8571673 |
212 | -0.52991926 | -0.8480481 |
213 | -0.54463904 | -0.83867057 |
214 | -0.5591929 | -0.82903757 |
215 | -0.57357644 | -0.81915204 |
216 | -0.58778525 | -0.80901699 |
217 | -0.60181502 | -0.79863551 |
218 | -0.61566148 | -0.78801075 |
219 | -0.62932039 | -0.77714596 |
220 | -0.64278761 | -0.76604444 |
221 | -0.65605903 | -0.75470958 |
222 | -0.66913061 | -0.74314483 |
223 | -0.68199836 | -0.7313537 |
224 | -0.69465837 | -0.7193398 |
225 | -0.70710678 | -0.70710678 |
226 | -0.7193398 | -0.69465837 |
227 | -0.7313537 | -0.68199836 |
228 | -0.74314483 | -0.66913061 |
229 | -0.75470958 | -0.65605903 |
230 | -0.76604444 | -0.64278761 |
231 | -0.77714596 | -0.62932039 |
232 | -0.78801075 | -0.61566148 |
233 | -0.79863551 | -0.60181502 |
234 | -0.80901699 | -0.58778525 |
235 | -0.81915204 | -0.57357644 |
236 | -0.82903757 | -0.5591929 |
237 | -0.83867057 | -0.54463904 |
238 | -0.8480481 | -0.52991926 |
239 | -0.8571673 | -0.51503807 |
240 | -0.8660254 | -0.5 |
241 | -0.87461971 | -0.48480962 |
242 | -0.88294759 | -0.46947156 |
243 | -0.89100652 | -0.4539905 |
244 | -0.89879405 | -0.43837115 |
245 | -0.90630779 | -0.42261826 |
246 | -0.91354546 | -0.40673664 |
247 | -0.92050485 | -0.39073113 |
248 | -0.92718385 | -0.37460659 |
249 | -0.93358043 | -0.35836795 |
250 | -0.93969262 | -0.34202014 |
251 | -0.94551858 | -0.32556815 |
252 | -0.95105652 | -0.30901699 |
253 | -0.95630476 | -0.2923717 |
254 | -0.9612617 | -0.27563736 |
255 | -0.96592583 | -0.25881905 |
256 | -0.97029573 | -0.2419219 |
257 | -0.97437006 | -0.22495105 |
258 | -0.9781476 | -0.20791169 |
259 | -0.98162718 | -0.190809 |
260 | -0.98480775 | -0.17364818 |
261 | -0.98768834 | -0.15643447 |
262 | -0.99026807 | -0.1391731 |
263 | -0.99254615 | -0.12186934 |
264 | -0.9945219 | -0.10452846 |
265 | -0.9961947 | -0.08715574 |
266 | -0.99756405 | -0.06975647 |
267 | -0.99862953 | -0.05233596 |
268 | -0.99939083 | -0.0348995 |
269 | -0.9998477 | -0.01745241 |
270 | -1 | 0 |
271 | -0.9998477 | 0.01745241 |
272 | -0.99939083 | 0.0348995 |
273 | -0.99862953 | 0.05233596 |
274 | -0.99756405 | 0.06975647 |
275 | -0.9961947 | 0.08715574 |
276 | -0.9945219 | 0.10452846 |
277 | -0.99254615 | 0.12186934 |
278 | -0.99026807 | 0.1391731 |
279 | -0.98768834 | 0.15643447 |
280 | -0.98480775 | 0.17364818 |
281 | -0.98162718 | 0.190809 |
282 | -0.9781476 | 0.20791169 |
283 | -0.97437006 | 0.22495105 |
284 | -0.97029573 | 0.2419219 |
285 | -0.96592583 | 0.25881905 |
286 | -0.9612617 | 0.27563736 |
287 | -0.95630476 | 0.2923717 |
288 | -0.95105652 | 0.30901699 |
289 | -0.94551858 | 0.32556815 |
290 | -0.93969262 | 0.34202014 |
291 | -0.93358043 | 0.35836795 |
292 | -0.92718385 | 0.37460659 |
293 | -0.92050485 | 0.39073113 |
294 | -0.91354546 | 0.40673664 |
295 | -0.90630779 | 0.42261826 |
296 | -0.89879405 | 0.43837115 |
297 | -0.89100652 | 0.4539905 |
298 | -0.88294759 | 0.46947156 |
299 | -0.87461971 | 0.48480962 |
300 | -0.8660254 | 0.5 |
301 | -0.8571673 | 0.51503807 |
302 | -0.8480481 | 0.52991926 |
303 | -0.83867057 | 0.54463904 |
304 | -0.82903757 | 0.5591929 |
305 | -0.81915204 | 0.57357644 |
306 | -0.80901699 | 0.58778525 |
307 | -0.79863551 | 0.60181502 |
308 | -0.78801075 | 0.61566148 |
309 | -0.77714596 | 0.62932039 |
310 | -0.76604444 | 0.64278761 |
311 | -0.75470958 | 0.65605903 |
312 | -0.74314483 | 0.66913061 |
313 | -0.7313537 | 0.68199836 |
314 | -0.7193398 | 0.69465837 |
315 | -0.70710678 | 0.70710678 |
316 | -0.69465837 | 0.7193398 |
317 | -0.68199836 | 0.7313537 |
318 | -0.66913061 | 0.74314483 |
319 | -0.65605903 | 0.75470958 |
320 | -0.64278761 | 0.76604444 |
321 | -0.62932039 | 0.77714596 |
322 | -0.61566148 | 0.78801075 |
323 | -0.60181502 | 0.79863551 |
324 | -0.58778525 | 0.80901699 |
325 | -0.57357644 | 0.81915204 |
326 | -0.5591929 | 0.82903757 |
327 | -0.54463904 | 0.83867057 |
328 | -0.52991926 | 0.8480481 |
329 | -0.51503807 | 0.8571673 |
330 | -0.5 | 0.8660254 |
331 | -0.48480962 | 0.87461971 |
332 | -0.46947156 | 0.88294759 |
333 | -0.4539905 | 0.89100652 |
334 | -0.43837115 | 0.89879405 |
335 | -0.42261826 | 0.90630779 |
336 | -0.40673664 | 0.91354546 |
337 | -0.39073113 | 0.92050485 |
338 | -0.37460659 | 0.92718385 |
339 | -0.35836795 | 0.93358043 |
340 | -0.34202014 | 0.93969262 |
341 | -0.32556815 | 0.94551858 |
342 | -0.30901699 | 0.95105652 |
343 | -0.2923717 | 0.95630476 |
344 | -0.27563736 | 0.9612617 |
345 | -0.25881905 | 0.96592583 |
346 | -0.2419219 | 0.97029573 |
347 | -0.22495105 | 0.97437006 |
348 | -0.20791169 | 0.9781476 |
349 | -0.190809 | 0.98162718 |
350 | -0.17364818 | 0.98480775 |
351 | -0.15643447 | 0.98768834 |
352 | -0.1391731 | 0.99026807 |
353 | -0.12186934 | 0.99254615 |
354 | -0.10452846 | 0.9945219 |
355 | -0.08715574 | 0.9961947 |
356 | -0.06975647 | 0.99756405 |
357 | -0.05233596 | 0.99862953 |
358 | -0.0348995 | 0.99939083 |
359 | -0.01745241 | 0.9998477 |
Другие таблицы
Примеры:
(sin{30^°}=)(frac{1}{2})
(sin)(frac{π}{3})(=)(frac{sqrt{3}}{2})
(sin2=0,909…)
Содержание:
- Аргумент и значение
Синус острого угла
Синус числа
Синус любого угла
Связь с другими функциями
Функция
Аргумент и значение
Синус острого угла
Синус острого угла можно определить с помощью прямоугольного треугольника – он равен отношению противолежащего катета к гипотенузе.
Пример:
1) Пусть дан угол и нужно определить синус этого угла.
2) Достроим на этом угле любой прямоугольный треугольник.
3) Измерив, нужные стороны, можем вычислить (sinA).
Синус числа
Числовая окружность позволяет определить синус любого числа, но обычно находят синус чисел как-то связанных с Пи: (frac{π}{2}), (frac{3π}{4}), (-2π).
Например, для числа (frac{π}{6}) – синус будет равен (0,5). А для числа (-)(frac{3π}{4}) он будет равен (-)(frac{sqrt{2}}{2}) (приблизительно (-0,71)).
Подробнее как вычисляется синус разных чисел можно прочитать в этой статье.
Значение синуса всегда лежит в пределах от (-1) до (1). При этом вычислен он может быть для абсолютно любого угла и числа.
Синус любого угла
Благодаря единичному кругу можно определять тригонометрические функции не только острого угла, но и тупого, отрицательного, и даже большего, чем (360°) (полный оборот). Как это делать – проще один раз увидеть, чем (100) раз услышать, поэтому смотрите картинку.
Теперь пояснение: пусть нужно определить (sin∠КОА) с градусной мерой в (150°). Совмещаем точку О с центром окружности, а сторону ОК – с осью (x). После этого откладываем (150°) против часовой стрелки. Тогда ордината точки А покажет нам (sin∠KOA).
Если же нас интересует угол с градусной мерой, например, в (-60°) (угол КОВ), делаем также, но (60°) откладываем по часовой стрелке.
И, наконец, угол больше (360°) (угол КОС) – всё аналогично тупому, только пройдя по часовой стрелке полный оборот, отправляемся на второй круг и «добираем нехватку градусов». Конкретно в нашем случае угол (405°) отложен как (360° + 45°).
Несложно догадаться, что для откладывания угла, например, в (960°), надо сделать уже два оборота ((360°+360°+240°)), а для угла в (2640°) – целых семь.
Как вы могли заменить, и синус числа, и синус произвольного угла определяется практически одинаково. Изменяются только способ нахождения точки на окружности.
Связь с другими тригонометрическими функциями:
– косинусом того же угла (или числа): основным тригонометрическим тождеством (sin^2x+cos^2x=1)
– тангенсом и косинусом того же угла (или числа): формулой (tgx=)(frac{sinx}{cosx})
– котангенсом того же угла (или числа): формулой (1+сtg^2x=)(frac{1}{sin^2x})
Другие наиболее часто применяемые формулы смотри здесь.
Функция (y=sinx)
Если отложить по оси (x) углы в радианах, а по оси (y) – соответствующие этим углам значения синуса, мы получим следующий график:
График данной функции называется синусоида и обладает следующими свойствами:
– область определения – любое значение икса: (D(sinx )=R)
– область значений – от (-1) до (1) включительно: (E(sinx )=[-1;1])
– нечетная: (sin(-x)=-sinx)
– периодическая с периодом (2π): (sin(x+2π)=sinx)
– точки пересечения с осями координат:
ось абсцисс: ((πn;0)), где (n ϵ Z)
ось ординат: ((0;0))
– промежутки знакопостоянства:
функция положительна на интервалах: ((2πn;π+2πn)), где (n ϵ Z)
функция отрицательна на интервалах: ((π+2πn;2π+2πn)), где (n ϵ Z)
– промежутки возрастания и убывания:
функция возрастает на интервалах: ((-)(frac{π}{2})(+2πn;) (frac{π}{2})(+2πn)), где (n ϵ Z)
функция убывает на интервалах: (()(frac{π}{2})(+2πn;)(frac{3π}{2})(+2πn)), где (n ϵ Z)
– максимумы и минимумы функции:
функция имеет максимальное значение (y=1) в точках (x=)(frac{π}{2})(+2πn), где (n ϵ Z)
функция имеет минимальное значение (y=-1) в точках (x=-)(frac{π}{2})(+2πn), где (n ϵ Z).
Смотрите также:
Косинус
Тангенс
Котангенс
Решение уравнения (sinx=a)
В статье, мы полностью разберемся, как выглядит таблица тригонометрических значений, синуса, косинуса, тангенса и котангенса . Рассмотрим основное значение тригонометрических функций, от угла в 0,30,45,60,90,…,360 градусов.
И посмотрим как пользоваться данными таблицами в вычислении значения тригонометрических функций.
Первой рассмотрим таблицу косинуса, синуса, тангенса и котангенса от угла в 0, 30, 45, 60, 90,.. градусов.
Определение данных величин дают определить значение функций углов в 0 и 90 градусов:
Так же исходя из свойств периодичности таблицу можно увеличить, если заменим углы на 00+3600*z …. 3300+3600*z, в котором z является целым числом. В данной таблице возможно вычислить значение всех углов, соответствующими точками в единой окружности.
Разберем наглядно как использовать таблицу в решении.
Все очень прост. Так как нужное нам значение лежит в точке пересечения нужных нам ячеек. К примеру возьмем cos угла 60 градусов, в таблице это будет выглядеть как:
В итоговой таблице основных значений тригонометрических функций, действуем так же. Но в данной таблице возможно узнать сколько составит тангенс от угла в 1020 градусов, он = -√3 Проверим 10200 = 3000+3600*2. Найдем по таблице.
Для более поиска тригонометрических значений углов с точностью до минут используются таблицы Брадиса. Подробная инструкция как ими пользоваться на странице по ссылке.
Таблица Брадиса. Для синуса, косинуса, тангенса и котангенса.
Разберемся как пользоваться таблицами Брадиса в решении задач.
Найдем обозначение sin (обозначение в столбце с левого края) 42 минут (обозначение находится на верхней строчке). Путем пересечения ищем обозначение, оно = 0,3040.
Величины минут указаны с промежутком в шесть минут, как быть если нужное нам значение попадет именно в этот промежуток. Возьмем 44 минуты, а в таблице есть только 42. Берем за основу 42 и воспользуемся добавочными столбцами в правой стороне, берем 2 поправку и добавляем к 0,3040 + 0,0006 получаем 0,3046.
При sin 47 мин, берем за основу 48 мин и отнимаем от нее 1 поправку, т.е 0,3057 — 0,0003 = 0,3054
При вычислении cos работаем аналогично sin только за основу берем нижнюю строку таблицы. К примеру cos 200 = 0.9397
Значения tg угла до 900 и cot малого угла, верны и поправок в них нет. К примеру, найти tg 780 37мин = 4,967
Ну вот мы и рассмотрели основные тригонометрические таблицы. Надеемся это информация была для вас крайне полезной. Свои вопросы по таблицам, если они появились, обязательно пишите в х!
Заметка: Стеновые отбойники — отбойная доска для защиты стен (http://www.spi-polymer.ru/otboyniki/)
Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:
Когда прямые пересекаются, то получается четыре разные области по отношению к точке пересечения.
Эти новые области называют углами.
Мы говорили о том, что когда объект делает полный круг вокруг точки, то он проходит 360°, однако, когда объект делает более одного круга, то он делает угол более 360 градусов. Это обычное явление в повседневной жизни. Колесо проходит многие круги, когда автомобиль движется, то есть оно образует угол больше 360°.
Для того, чтобы узнать количество циклов (пройденных кругов) при вращении объекта, мы считаем количество раз, которое нужно прибавить 360 к самому себе, чтобы получить число равное или меньшее, чем данный угол. Точно так же мы находим число, которое мы умножаем на 360, чтобы получить число меньшее, но наиболее близкое к данному углу.
a) 380 = (1 × 360) + 20
Объект описал один круг и 20°
Так как $20^{circ} = frac{20}{360} = frac{1}{18}$ круга
Объект описал $1frac{1}{18}$ кругов. b) 2 × 360 = 720
770 = (2 × 360) + 50
Объект описал два круга и 50°
$50^{circ} = frac{50}{360} = frac{5}{36}$ круга
Объект описал $2frac{5}{36}$ круга
c)2 × 360 = 720
1000 = (2 × 360) + 280
$280^{circ} = frac{260}{360} = frac{7}{9}$ кругов
Объект описал $2frac{7}{9}$ кругов
Когда объект вращается по часовой стрелки, то он образует отрицательный угол вращения, а когда вращается против часовой стрелке — положительный угол. До этого момента мы рассматривали только положительные углы.
Это означает, что при наличии отрицательного угла, мы можем получить соответствующий ему положительный угол.
Например, нижняя часть вертикальной прямой это 270°. Когда измеряется в негативную сторону, то получим -90°. Мы просто вычитаем 270 из 360.
Имея отрицательный угол, мы прибавляем 360, для того чтобы получить соотвествующий положительный угол.
2. Найти соответствующий отрицательный угол 80°, 167°, 330°и 1300°.
Решение
1. Для того, чтобы найти соответствующий положительный угол мы прибавляем 360 к значению угла.
a) -35°= 360 + (-35) = 360 — 35 = 325°
b) -60°= 360 + (-60) = 360 — 60 = 300°
c) -180°= 360 + (-180) = 360 — 180 = 180°
d) -670°= 360 + (-670) = -310
Это означает один круг по часовой стрелке (360)
360 + (-310) = 50°
2. Для того, чтобы получить соответсвующий отрицательный угол мы вычитаем 360 от значения угла.
80° = 80 — 360 = — 280°
167° = 167 — 360 = -193°
330° = 330 — 360 = -30°
1300° = 1300 — 360 = 940 (пройден один круг)
940 — 360 = 580 (пройден второй круг)
580 — 360 = 220 (пройден третий круг)
220 — 360 = -140°
Угол равен -360 — 360 — 360 — 140 = -1220°
Радиан — это угол из центра круга, в который заключена дуга, длина которой равна радиусу данного круга.
Это единица измерения угловой величины. Такой угол примерно равен 57,3°.
В большинстве случаев, это обозначается как рад.
Таким образом $1 рад approx 57,3^{circ}$
Радианы обычно выражаются через $pi$ во избежание десятичных частей в вычислениях. В большинстве книг, аббревиатура рад (rad)
не встречается, но читатель должен знать, что, когда речь идет об угле, то он задан через $pi$, а
единицами измерения автоматически становятся радианы.
Пример 4
1. Преобразовать 240°, 45°, 270°, 750° и 390° в радианы через $pi$.
Умножим углы на $frac{pi}{180}$.
2. Преобразовать следующие углы в градусы.
a) $frac{5}{4}pi$ b) $3,12pi$
c) 2,4 радиан
$180^{circ} = pi$
a) $frac{5}{4} pi = frac{5}{4} imes 180 = 225^{circ}$
b) $3,12pi = 3,12 imes 180 = 561,6^{circ}$ c) 1 рад = 57,3°
Для того чтобы преобразовать отрицательный угол в положительный, мы складываем его с $2pi$.
Для того чтобы преобразовать положительный угол в отрицательный, мы вычитаем из него $2pi$.
Пример 5
1. Преобразовать $-frac{3}{4}pi$ и $-frac{5}{7}pi$ в позитивные углы в радианах.
Когда объект вращается на угол больший, чем $2pi$;, то он делает больше одного круга.
Для того, чтобы определить количество оборотов (кругов или циклов) в таком угле, мы находим такое число, умножая которое на $2pi$, результат равен или меньше, но как можно ближе к данному числу.
Источник: https://www.math10.com/ru/geometria/ugli/izmerenie-uglov/izmerenie-uglov.html
Здесь рассматриваем задачи Proc32 — Proc33 из задачника Абрамяна: описание функций преобразования углов из градусов в радианы и наоборот.
Так что такое радианная мера угла? Рассмотрим некоторую окружность радиуса R с центром в точке О. Поскольку окружность делится на 360 градусов, а длина окружности равна 2πR, то на 1 градус приходится длина дуги равная 2πR/360 = πR/180. Тогда углу α градусов соответствует длина дуги L = πRα/180.
В этом смысле очень интересна ситуация, когда длина дуги L равна радиусу окружности R. Каков при этом угол дуги? Вспоминая предыдущую формулу для вычисления длины дуги, имеем: πRα/180 = R, откуда πα/180 = 1, а отсюда получаем α = 180/π.
Например, если длина дуги равна 1.5R, то радианная мера угла этой дуги равна 1.5; если длина дуги равна 0.25R, то радианная мера равна 0.25; для дуги длиной 2πR (вся окружность) радианная мера равна 2π и т.д. Вообще, для дуги длиной L угол в радианах равен L/R, где R – радиус.
Радиан – это очень удобный способ измерения углов, поскольку вместо самих углов мы можем оперировать коэффициентами отношений длин дуг и их радиусов. В высшей математике во всех тригонометрических функциях используется только радианная мера.
Proc32. Описать функцию DegToRad(D) вещественного типа, находящую величину угла в радианах, если дана его величина D в градусах (D — вещественное число, 0 ≤ D < 360). Воспользоваться следующим соотношением: 180° = π радианов. В качестве значения π использовать 3.14. С помощью функции DegToRad перевести из градусов в радианы пять данных углов.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | { Функция возвращает величину угла в радианах, если дана его величина D в градусах (D — вещественное число, 0 ≤ D < 360) } function DegToRad(D: real): real; const pi = 3.14; { |
Источник: https://progmatem.ru/proc/proc-32-33.html
Радианная и градусная мера угла
3 ноября 2011
В школьном курсе математики есть два определения основных тригонометрических функций — синуса, косинуса, тангенса и котангенса:
- Геометрический подход — основан на сторонах прямоугольного треугольника и их соотношениях. В этом случае все синусы и косинусы положительны, поскольку длина отрезка всегда задается положительным числом;
- Алгебраический подход — работа ведется на тригонометрической окружности. Такой подход возникает на стыке 9—10 классов, и с этого момента синусы и косинусы вполне могут быть отрицательными. А «старые» геометрические определения становятся лишь частным случаем.
Для решения задачи B11 нужен именно алгебраический подход. Чуть позже мы убедимся, что такие задачи решаются элементарно — буквально с помощью одной формулы. Но для начала научимся быстро (буквально на лету) определять координатную четверть, в которой расположен искомый угол. В этом нам помогут следующие правила.
Переход от радианной меры к градусной
Вспомните: в 8—9 классах мы работали лишь с несколькими стандартными углами. А именно: 30°, 45° и 60°. В особо продвинутых случаях учителя рассказывали еще об углах 90° и 0°. Любые другие значения назывались «сложными», и возникновение таких углов, скорее всего, указывало на ошибку в решении.
С введением тригонометрической окружности все ограничения на углы отпадают. Здесь я не буду рассказывать, как устроена тригонометрическая окружность — все это подробно описано в любом учебнике по математике. Вместо этого предлагаю обсудить другой вопрос — более важный, но которому почему-то не уделяется достаточно внимания. Речь идет о переходе от радианной меры угла к градусной.
Исторически так сложилось (и небезосновательно), что углы на тригонометрической окружности измеряют в радианах. Например, полный оборот — 360° — обозначается как 2π радиан. А всеми любимый (или ненавидимый) угол 45° равен π/4 радиан.
У многих возникает вопрос: при чем здесь число π? Ведь π ≈ 3,14. Так вот, чтобы избежать путаницы, запомните простое, но очень важное правило:
Во всех тригонометрических функциях — синусе, косинусе, тангенсе и котангенсе — можно без ущерба для здоровья заменять число π на 180°. Пишется это так: π → 180°.
Обратите внимание: данное правило работает только для тригонометрических функций! Например, мы спокойно можем записать sin π = sin 180°. Но если мы хотим найти примерную длину отрезка l = 5π, придется считать: l = 5 · π ≈ 5 · 3,14 = 15,7.
Разумеется, существует и обратное правило — переход от градусной меры угла к радианной. Однако нас это сейчас не интересует, поскольку в задачах B11 такой переход не встречается.
Теперь взгляните на конкретные примеры:
Задача. Перейдите от радианной меры угла к градусной (значение тригонометрических функций вычислять не надо):
- sin π/3;
- cos 7π/6;
- tg π;
- sin π/4;
- tg 2π/3;
- ctg π/2;
- sin 3π/2;
- cos 5π/4.
Итак, перед нами восемь тригонометрических функций, аргументы которых заданы в радианах. Мы можем перейти от радианной меры аргументов к градусной по правилу: π → 180°. Имеем:
- sin π/3 = sin 180/3 = sin 60°;
- cos 7π/6 = cos (7 · 180/6) = cos 210°;
- tg π = tg 180°;
- sin π/4 = sin 180/4 = sin 45°;
- tg 2π/3 = tg (2 · 180/3) = tg 120°;
- ctg π/2 = ctg 180/2 = ctg 90°;
- sin 3π/2 = sin (3 · 180/2) = sin 270°;
- cos 5π/4 = cos (5 · 180/4) = cos 225°.
Итак, вместо непонятного множителя π мы получаем вполне вменяемое число, которое можно умножать и делить по стандартным правилам.
Границы координатных четвертей
Теперь, когда мы умеем заменять радианную меру углов градусной, попробуем переписать всю тригонометрическую окружность. Это будет ключом к решению задачи B11.
Основные правила останутся прежними: «нулевой градус» совпадает с положительным направлением оси ОХ, а углы откладываются в направлении против часовой стрелки.
Но числа, стоящие на границах координатных четвертей, станут другими. Взгляните:
Отныне вместо непонятных «пи» и «пи-пополам» используйте простую и понятную шкалу:
- α ∈ (0°; 90°) ⇒ это угол I координатной четверти;
- α ∈ (90°; 180°) ⇒ II координатная четверть;
- α ∈ (180°; 270°) ⇒ III координатная четверть;
- α ∈ (270°; 360°) ⇒ IV координатная четверть.
Хорошая новость состоит в том, что эти правила очень быстро откладываются в голове — стоит лишь немного потренироваться. И вы точно не забудете эти числа на ЕГЭ по математике, чего нельзя сказать про радианную меру.
Если же память на числа плохая, могу посоветовать одну хитрость. Взгляните еще раз на границы координатных четвертей: 90°, 180°, 270° и 360°. Первая из них — 90° — это прямой угол, знакомый еще из курса средней школы. Его вы точно не забудете.
Остальные углы отличаются друг от друга на эти же самые 90°. Взгляните: 90° + 90° = 180°; 180° + 90° = 270°; 270° + 90° = 360°.
Таким образом, даже если вы забудете эти числа, их всегда можно восстановить, если просто запомнить, что прямой угол — это 90°.
А теперь разберем конкретные примеры. Будем учиться искать координатные четверти быстро, поскольку от этого умения напрямую зависит решение задачи B11.
Задача. Определите, в какой координатной четверти находится аргумент тригонометрической функции:
- sin 8π/9;
- tg 12π/15;
- cos 9π/10;
- cos 7π/18;
- sin 3π/5;
- ctg 5π/3;
- tg 4π/9;
- cos 9π/20.
Для начала переведем все углы из радиан в градусы по правилу: π → 180°. А затем найдем координатную четверть, ориентируясь по границам: 90°, 180°, 270°, 360°. Имеем:
- sin 8π/9 = sin (8 · 180/9) = sin 160°; т.к. 160° ∈ [90°; 180°], это II четверть;
- tg 12π/15 = tg (12 · 180/15) = tg 144°; т.к. 144° ∈ [90°; 180°], это II четверть;
- cos 9π/10 = cos (9 · 180/10) = cos 162°; т.к. 162° ∈ [90°; 180°], это II четверть;
- cos 7π/18 = cos (7 · 180/18) = cos 70°; т.к. 70° ∈ [0°; 90°], это I четверть;
- sin 3π/5 = sin (3 · 180/5) = sin 108°; т.к. 108° ∈ [90°; 180°], это II четверть;
- ctg 5π/3 = ctg (5 · 180/3) = ctg 300°; т.к. 300° ∈ [270°; 360°], это IV четверть;
- tg 4π/9 = tg (4 · 180/9) = tg 80°; т.к. 80° ∈ [0°; 90°], это I четверть;
- cos 9π/20 = cos (9 · 180/20) = cos 81°; т.к. 81° ∈ [0°; 90°], это I четверть.
Как видите, далеко не всегда можно найти значение самой тригонометрической функции. Например, попробуйте вычислить cos 162° или sin 108°. Зато мы всегда можем определить, в какой координатной четверти находится данный угол.
Нестандартные углы и периодичность
До сих пор мы рассматривали углы α ∈ [0°; 360°].
Но что произойдет, если, например, угол α = 420°? А как насчет отрицательных углов? Такие углы редко встречаются на ЕГЭ по математике (по крайней мере, в части B), но лучше застраховать себя от подобных «неожиданностей», поэтому предлагаю разобрать и такие задачи. Тем более, схема решения практически ничем не отличается от «стандартных» углов.
Итак, что если угол α > 360°? Судя по тригонометрической окружности, точка сделает полный оборот — а затем пройдет еще чуть-чуть. Это самое «чуть-чуть» вычисляется очень просто. Достаточно отнять от исходного угла величину 360° (иногда это приходится делать несколько раз).
С отрицательными углами работаем аналогично. Если добавлять к отрицательному углу величину 360°, мы очень скоро получим новый угол α ∈ [0°; 360°]. Таким образом, вся схема решения выглядит следующим образом:
- Перейти от радианной меры угла к градусной. Для этого достаточно сделать замену: π → 180°;
- Если полученный угол оказался больше 360°, отнимаем от него по 360° до тех пор, пока новый угол не окажется на отрезке [0°; 360°];
- Аналогично, если угол будет отрицательным, увеличиваем его на 360° до тех пор, пока он не попадет в отрезок [0°; 360°];
- Выясняем, в какой координатной четверти находится полученный угол, ориентируясь на стандартные границы: 90°, 180°, 270° и 360°.
Задача. Определите, в какой координатной четверти находится аргумент тригонометрической функции:
- sin 21π/6;
- cos 19π/3;
- sin (−25π/9);
- tg (−11π/4).
Снова переводим все углы из радиан в градусы по правилу: π → 180°. Дальше уменьшаем или увеличиваем аргумент на 360° до тех пор, пока он не окажется на отрезке [0°; 360°]. И только затем выясняем координатную четверть. Получим:
- sin 21π/6 = sin (23 · 180/6) = sin 690°. Очевидно, что 690° > 360°, поэтому выполняем преобразование: sin 690° → sin (690° − 360°) = sin 330°. Но 330° ∈ [270°; 360°], это IV четверть;
- cos 19π/3 = cos (19 · 180/3) = cos 1140°. Поскольку 1140° > 360°, имеем: cos 1140° → cos (1140° − 360°) = cos 780° → cos (780° − 360°) = cos 420° → cos (420° − 360°) = cos 60°. Т.к. 60° ∈ [0°; 90°], это I четверть;
- sin (−7π/9) = sin (−7 · 180/9) = sin (−140°). Но −140° < 0°, поэтому увеличиваем угол: sin (−140°) → sin (−140° + 360°) = sin 220°. Поскольку 220° ∈ [180°; 270°], это III четверть;
- tg (−11π/4) = tg (−11 · 180/4) = tg (−495°). Т.к. −495° < 0°, начинаем увеличивать угол: tg (−495°) → tg (−495° + 360°) = tg (−135°) → tg (−135° + 360°) = tg 225°. Это уже нормальный угол. Т.к. 225° ∈ [180°; 270°], это III четверть.
Вот и все! Обратите внимание: во втором пункте пришлось вычитать 360° три раза — и только затем получился нормальный угол. Аналогично, в четвертом пункте пришлось прибавлять два раза по 360°, чтобы выйти на положительный угол. Таким образом, добавлять и вычитать углы иногда приходится много раз — это не должно настораживать.
В заключение хочу добавить, что если вы хорошо знаете математику и быстро ориентируетесь в радианных углах, то совсем необязательно переводить их в градусы. Однако большинство людей (и не только школьники) предпочитают именно градусную меру — знакомую еще со средней школы и, как следствие, более понятную.
Источник: https://www.berdov.com/ege/trigonometry/radian_degree_measure/
Определение и численные соотношения между единицами измерения углов в РФ. Тысячные, угловые градусы, минуты, секунды, радианы, обороты
Таблица . Единицы измерения углов (плоских) вводятся как:
Единицы измерения углов
тысячная (артиллерийская РФ) | 1/6000 полного оборота |
угловая секунда = 1” | 1/60 угловой минуты |
угловая минута = 1′ | 1/60 углового градуса |
угловой градус = 1° | 1/360 полного оборота |
радиан = 1 рад | Угловая величина дуги длины=1 взятой на окружности радиуса=1 . Таким образом, величина полного угла равна 2 π радиан. |
полный оборот = полный угол = оборот = 1 об. | Очевидно |
Таблица 1. Перевод угловых градусов, минут, секунд, радиан, оборотов в тысячные.
Перевод угловых градусов, минут, секунд, радиан, оборотов в тысячные.
Точно в тысячных | Численное значение | |
1 угловая секунда = 1” | 6000/360*60*60=1/216 | 0,00462963 … тысячных |
1 угловая минута = 1′ | 6000/360*60=5/18 | 0,27777778 … тысячных |
1 угловой градус = 1° | 6000/360=50/3 | 16,66666667 …. тысячных |
1 радиан = 1 рад | 6000/2π | 954,92965855 … тысячных |
1 полный оборот = полный угол = оборот = об. | 6000 | 6000 тысячных |
Таблица 2. Перевод тысячных, угловых градусов, минут, радиан, оборотов в угловые секунды.
Перевод тысячных, угловых градусов, минут, радиан, оборотов в угловые секунды.
Точно в угловых секундах | Численное значение | |
1 тысячная (артиллерийская РФ) | 360*60*60/6000=216 | 216 угловых секунд |
1 угловая минута = 1′ | 60 | 60 угловых секунд |
1 угловой градус = 1° | 360*60=21600 | 21600 угловых секунд |
1 радиан = 1 рад | 360*60*60/2π | 206264,80624710…угловых секунд |
1 полный оборот = полный угол = оборот = 1 об. | 360*60*60=1296000 | 1296000 угловых секунд |
Таблица 3. Перевод тысячных, угловых градусов, секунд, радиан, оборотов в угловые минуты.
Перевод тысячных, угловых градусов, секунд, радиан, оборотов в угловые минуты.
Точно угловых минут | Численное значение | |
1 тысячная (артиллерийская РФ) | 360*60/6000=18/5=3,6 | 3,6 угловых минут |
1 угловая секунда = 1” | 1/60 | 0,01666667…угловых минут |
1 угловой градус = 1° | 60 | 60 угловых минут |
1 радиан = 1 рад | 360*60/2π | 3437,74677078 … угловых минут |
1 полный оборот = полный угол = оборот = 1 об. | 360*60=21600 | 21600 угловых минут |
Таблица 4. Перевод тысячных, угловых минут, секунд, радиан, оборотов в угловые градусы.
Перевод тысячных, угловых минут, секунд, радиан, оборотов в угловые градусы.
Точно в угловых градусах | Численное значение | |
1 тысячная (артиллерийская РФ) | 360/6000=3/50=0,06 | 0,06 угловых градусов |
1 угловая секунда = 1” | 1/60/60=1/3600 | 0,000277778… угловых градусов |
1 угловая минута = 1′ | 1/60 | 0,016666667 …. угловых градусов |
1 радиан = 1 рад | 360/2π | 57,295779513 … угловых градусов |
1 полный оборот = полный угол = оборот = 1 об. | 360 | 360 угловых градусов |
Таблица 5. Перевод тысячных, угловых градусов, минут, секунд, оборотов в радианы.
Перевод тысячных, угловых градусов, минут, секунд, оборотов в радианы.
Точно в радианах | Численное значение | |
1 тысячная (артиллерийская РФ) | 2π/6000 | 0,0010471976… радиан |
1 угловая секунда = 1” | 2π/360/60/60 | 0,0000048481…радиан |
1 угловая минута = 1′ | 2π/360/60 | 0,0002908882… радиан |
1 угловой градус = 1° | 2π/360 | 0,0174532925…радиан |
1 полный оборот = полный угол = оборот = 1 об. | 2π | 6,2831853072 … радиан |
Таблица 6. Перевод тысячных, угловых градусов, минут, секунд, радиан в обороты.
Перевод тысячных, угловых градусов, минут, секунд, радиан в обороты.
Точно в оборотах | Численное значение | |
1 тысячная (артиллерийская РФ) | 1/6000 | 0,00016666667…оборотов |
1 угловая секунда = 1” |
Источник: https://dpva.ru/Guide/GuideMathematics/GuideMathematicsFiguresTables/FlatAngleDegrees/
Таблица СИНУСОВ для углов от 0° до 360° градусов
- Таблица СИНУСОВ…
- Таблица косинусов…
- Таблица тангенсов…
- Таблица котангенсов…
СИНУС (SIN α) — это одна из прямых тригонометрических функций для углов, в прямоугольном треугольнике синус острого угла равен отношению противолежащего катета к его единственной гипотенузе.
Малая таблица значений тригонометрических функций (в радианах и градусах)
√
1/2 | √2/2 | √3/2 | 1 | -1 |
α (радианы)
π/6
π/4
π/3
π/2
π3π/2
2π
α (градусы)
0°
30°
45°
60°
90°
180°
270°
360°
SIN α (СИНУС)
…
Полная таблица синусов для углов от 0° до 360° с шагом всего в 1°
0° | |
1° | 0.0175 |
2° | 0.0349 |
3° | 0.0523 |
4° | 0.0698 |
5° | 0.0872 |
6° | 0.1045 |
7° | 0.1219 |
8° | 0.1392 |
9° | 0.1564 |
10° | 0.1736 |
11° | 0.1908 |
12° | 0.2079 |
13° | 0.225 |
14° | 0.2419 |
15° | 0.2588 |
16° | 0.2756 |
17° | 0.2924 |
18° | 0.309 |
19° | 0.3256 |
20° | 0.342 |
21° | 0.3584 |
22° | 0.3746 |
23° | 0.3907 |
24° | 0.4067 |
25° | 0.4226 |
26° | 0.4384 |
27° | 0.454 |
28° | 0.4695 |
29° | 0.4848 |
30° | 0.5 |
31° | 0.515 |
32° | 0.5299 |
33° | 0.5446 |
34° | 0.5592 |
35° | 0.5736 |
36° | 0.5878 |
37° | 0.6018 |
38° | 0.6157 |
39° | 0.6293 |
40° | 0.6428 |
41° | 0.6561 |
42° | 0.6691 |
43° | 0.682 |
44° | 0.6947 |
45° | 0.7071 |
46° | 0.7193 |
47° | 0.7314 |
48° | 0.7431 |
49° | 0.7547 |
50° | 0.766 |
51° | 0.7771 |
52° | 0.788 |
53° | 0.7986 |
54° | 0.809 |
55° | 0.8192 |
56° | 0.829 |
57° | 0.8387 |
58° | 0.848 |
59° | 0.8572 |
60° | 0.866 |
61° | 0.8746 |
62° | 0.8829 |
63° | 0.891 |
64° | 0.8988 |
65° | 0.9063 |
66° | 0.9135 |
67° | 0.9205 |
68° | 0.9272 |
69° | 0.9336 |
70° | 0.9397 |
71° | 0.9455 |
72° | 0.9511 |
73° | 0.9563 |
74° | 0.9613 |
75° | 0.9659 |
76° | 0.9703 |
77° | 0.9744 |
78° | 0.9781 |
79° | 0.9816 |
80° | 0.9848 |
81° | 0.9877 |
82° | 0.9903 |
83° | 0.9925 |
84° | 0.9945 |
85° | 0.9962 |
86° | 0.9976 |
87° | 0.9986 |
88° | 0.9994 |
89° | 0.9998 |
90° | 1 |
Угол в градусах
Sin (Синус)
…
Полная таблица синусов для углов от 91° до 180°
91° | 0.9998 |
92° | 0.9994 |
93° | 0.9986 |
94° | 0.9976 |
95° | 0.9962 |
96° | 0.9945 |
97° | 0.9925 |
98° | 0.9903 |
99° | 0.9877 |
100° | 0.9848 |
101° | 0.9816 |
102° | 0.9781 |
103° | 0.9744 |
104° | 0.9703 |
105° | 0.9659 |
106° | 0.9613 |
107° | 0.9563 |
108° | 0.9511 |
109° | 0.9455 |
110° | 0.9397 |
111° | 0.9336 |
112° | 0.9272 |
113° | 0.9205 |
114° | 0.9135 |
115° | 0.9063 |
116° | 0.8988 |
117° | 0.891 |
118° | 0.8829 |
119° | 0.8746 |
120° | 0.866 |
121° | 0.8572 |
122° | 0.848 |
123° | 0.8387 |
124° | 0.829 |
125° | 0.8192 |
126° | 0.809 |
127° | 0.7986 |
128° | 0.788 |
129° | 0.7771 |
130° | 0.766 |
131° | 0.7547 |
132° | 0.7431 |
133° | 0.7314 |
134° | 0.7193 |
135° | 0.7071 |
136° | 0.6947 |
137° | 0.682 |
138° | 0.6691 |
139° | 0.6561 |
140° | 0.6428 |
141° | 0.6293 |
142° | 0.6157 |
143° | 0.6018 |
144° | 0.5878 |
145° | 0.5736 |
146° | 0.5592 |
147° | 0.5446 |
148° | 0.5299 |
149° | 0.515 |
150° | 0.5 |
151° | 0.4848 |
152° | 0.4695 |
153° | 0.454 |
154° | 0.4384 |
155° | 0.4226 |
156° | 0.4067 |
157° | 0.3907 |
158° | 0.3746 |
159° | 0.3584 |
160° | 0.342 |
161° | 0.3256 |
162° | 0.309 |
163° | 0.2924 |
164° | 0.2756 |
165° | 0.2588 |
166° | 0.2419 |
167° | 0.225 |
168° | 0.2079 |
169° | 0.1908 |
170° | 0.1736 |
171° | 0.1564 |
172° | 0.1392 |
173° | 0.1219 |
174° | 0.1045 |
175° | 0.0872 |
176° | 0.0698 |
177° | 0.0523 |
178° | 0.0349 |
179° | 0.0175 |
180° |
Угол в градусах
Sin (Синус)
…
Таблица синусов для углов 181° — 270°
181° | -0.0175 |
182° | -0.0349 |
183° | -0.0523 |
184° | -0.0698 |
185° | -0.0872 |
186° | -0.1045 |
187° | -0.1219 |
188° | -0.1392 |
189° | -0.1564 |
190° | -0.1736 |
191° | -0.1908 |
192° | -0.2079 |
193° | -0.225 |
194° | -0.2419 |
195° | -0.2588 |
196° | -0.2756 |
197° | -0.2924 |
198° | -0.309 |
199° | -0.3256 |
200° | -0.342 |
201° | -0.3584 |
202° | -0.3746 |
203° | -0.3907 |
204° | -0.4067 |
205° | -0.4226 |
206° | -0.4384 |
207° | -0.454 |
208° | -0.4695 |
209° | -0.4848 |
210° | -0.5 |
211° | -0.515 |
212° | -0.5299 |
213° | -0.5446 |
214° | -0.5592 |
215° | -0.5736 |
216° | -0.5878 |
217° | -0.6018 |
218° | -0.6157 |
219° | -0.6293 |
220° | -0.6428 |
221° | -0.6561 |
222° | -0.6691 |
223° | -0.682 |
224° | -0.6947 |
225° | -0.7071 |
226° | -0.7193 |
227° | -0.7314 |
228° | -0.7431 |
229° | -0.7547 |
230° | -0.766 |
231° | -0.7771 |
232° | -0.788 |
233° | -0.7986 |
234° | -0.809 |
235° | -0.8192 |
236° | -0.829 |
237° | -0.8387 |
238° | -0.848 |
239° | -0.8572 |
240° | -0.866 |
241° | -0.8746 |
242° | -0.8829 |
243° | -0.891 |
244° | -0.8988 |
245° | -0.9063 |
246° | -0.9135 |
247° | -0.9205 |
248° | -0.9272 |
249° | -0.9336 |
250° | -0.9397 |
251° | -0.9455 |
252° | -0.9511 |
253° | -0.9563 |
254° | -0.9613 |
255° | -0.9659 |
256° | -0.9703 |
257° | -0.9744 |
258° | -0.9781 |
259° | -0.9816 |
260° | -0.9848 |
261° | -0.9877 |
262° | -0.9903 |
263° | -0.9925 |
264° | -0.9945 |
265° | -0.9962 |
266° | -0.9976 |
267° | -0.9986 |
268° | -0.9994 |
269° | -0.9998 |
270° | -1 |
Угол
Sin (Синус)
…
Таблица синусов для углов от 271° до 360°
271° | -0.9998 |
272° | -0.9994 |
273° | -0.9986 |
274° | -0.9976 |
275° | -0.9962 |
276° | -0.9945 |
277° | -0.9925 |
278° | -0.9903 |
279° | -0.9877 |
280° | -0.9848 |
281° | -0.9816 |
282° | -0.9781 |
283° | -0.9744 |
284° | -0.9703 |
285° | -0.9659 |
286° | -0.9613 |
287° | -0.9563 |
288° | -0.9511 |
289° | -0.9455 |
290° | -0.9397 |
291° | -0.9336 |
292° | -0.9272 |
293° | -0.9205 |
294° | -0.9135 |
295° | -0.9063 |
296° | -0.8988 |
297° | -0.891 |
298° | -0.8829 |
299° | -0.8746 |
300° | -0.866 |
301° | -0.8572 |
302° | -0.848 |
303° | -0.8387 |
304° | -0.829 |
305° | -0.8192 |
306° | -0.809 |
307° | -0.7986 |
308° | -0.788 |
309° | -0.7771 |
310° | -0.766 |
311° | -0.7547 |
312° | -0.7431 |
313° | -0.7314 |
314° | -0.7193 |
315° | -0.7071 |
316° | -0.6947 |
317° | -0.682 |
318° | -0.6691 |
319° | -0.6561 |
320° | -0.6428 |
321° | -0.6293 |
322° | -0.6157 |
323° | -0.6018 |
324° | -0.5878 |
325° | -0.5736 |
326° | -0.5592 |
327° | -0.5446 |
328° | -0.5299 |
329° | -0.515 |
330° | -0.5 |
331° | -0.4848 |
332° | -0.4695 |
333° | -0.454 |
334° | -0.4384 |
335° | -0.4226 |
336° | -0.4067 |
337° | -0.3907 |
338° | -0.3746 |
339° | -0.3584 |
340° | -0.342 |
341° | -0.3256 |
342° | -0.309 |
343° | -0.2924 |
344° | -0.2756 |
345° | -0.2588 |
346° | -0.2419 |
347° | -0.225 |
348° | -0.2079 |
349° | -0.1908 |
350° | -0.1736 |
351° | -0.1564 |
352° | -0.1392 |
353° | -0.1219 |
354° | -0.1045 |
355° | -0.0872 |
356° | -0.0698 |
357° | -0.0523 |
358° | -0.0349 |
359° | -0.0175 |
360° |
Угол
Sin (Синус)
…
Таблица синусов особенно нужна, когда у вас под рукой нет супер навороченного инженерного калькулятора с маленькой спасительной кнопкой с надписью «sin». В таком случае, чтобы узнать, чему же равняется синус определенного заданного угла, просто найдите информацию о интересующем градусе.
Как распечатать таблицу? Левой кнопкой на компьютерной мишке выделите полностью всё таблицу, на выделенном фоне нажмите уже правую кнопку мишки и в появившемся меню перейдете в пункт «Печать».
Как пользоваться таблицей? Всё гораздо проще, чем Вы думаете, ищем в левой вертикальной колонке, соответствующий градус, и напротив него и будет указано нужное значение синуса для данного нужного нам угла.
Пример
Чему равен синус 45? …
— А вот собственно и сам ответ на поставленную задачку.sin 45 = 0.7071
Bill4iam
Источник: https://kvn201.com.ua/table-of-sines.htm
Перевод градусов в радианы, перевод радианов в градусы на algebra24
- Гостям разрезали круглый торт на 12 равных кусков.
Скольким радианам будет равен угол при вершине каждого из кусков? Посмотреть решение Решение:
- Поскольку круг описывает угол 360 градусов, то каждый из кусков будет отсекать угол 360/12=30 градусов.
- Чтобы найти радианную меру угла 30 градусов, воспользуемся формулой
- $$ alpha = 30^0 cdot frac{ pi }{ 180^0 } = 30^0 cdot frac{3,14}{180^0} approx 0,524 rad $$
Ответ:
$$ alpha approx 0,524 rad$$
- Спутник Земли за некоторое время пролетел расстояние, равное 2 ее радиусам. Какой угол он при этом описал? Ответ подайте в радианах и градусах. Посмотреть решение Решение:
Согласно определению, 1 радиан отсекает на окружности сектор с длиной дуги, равной радиусу. Таким образом, если дуга равна 2 радиусам, то отсеченный угол равен 2 радиана. Переведем 2 радиана в градусы, воспользовавшись формулой:
$$ alpha = 2 cdot frac{ 180^0 }{ pi } = 2 cdot frac{180^0}{3,14}=114,592^0 $$
Ответ:
$$ alpha approx 114,592^0$$
- Двигаясь на север, капитан корабля решил повернуть на северо-восток. На сколько радиан ему нужно изменить курс судна? Посмотреть решение Решение:
Угол между направлениями север и северо-восток составляет 45 градусов. Для его перевода в радианную меру применим формулу:
$$ alpha = 45^0 cdot frac{pi}{180^0} = 45^0 cdot frac{3,14}{180^0} approx 0,785 $$ радиан.
Ответ:
$$ alpha approx 0,785 rad$$
- Определите центральный угол в градусах, если он отсекает дугу 16 см, не прибегая к измерениям. Радиус окружности 12 см. Посмотреть решение Решение:
- Для определения радианной меры центрального угла воспользуемся формулой θ=L/R, где L – длина дуги, R – радиус окружности. Чтобы перевести его в градусную меру, воспользуемся формулой:
- $$ heta^0 = heta cdot frac{180^0}{ pi} $$
- Преобразуем формулу и получим решение в виде:
- $$ heta^0 = L cdot frac{180^0}{(pi cdot R)} = 16 cdot frac{180^0}{3,14 cdot 12} = 76,433^0 $$
Ответ:
$$ heta approx 76,433^0$$
- Известно, что точка, двигаясь по окружности, произвела угловое перемещение на 15 радиан. На какой угол в градусах она отклонилась от первоначального положения после остановки? Посмотреть решение Решение:(способ 1)
Для перевода 15 радиан в градусы воспользуемся формулой:
$$ alpha^0 = alpha cdot frac{180^0}{pi} = 15 cdot frac{180^0}{3,14} = 859,87^0 $$
С учетом того, что каждые $$360^0$$ — это полный оборот, найдем остаток от деления $$859,87^0$$ на $$360^0$$. Получим $$139,87^0$$.
Ответ:
$$ alpha = 139,87^0$$
Решение:(способ 2)
Учитываем, что полный оборот соответствует углу с радианной мерой $$2pi$$. Находим остаток от деления $$15$$ радиан на $$2pi approx 6,28 $$, получим $$2,44 $$радиана.
Затем воспользуемся формулой для перевода в градусы:
$$ alpha^0 = alpha cdot frac{180^0}{pi} = 2,44 cdot frac{180^0}{3,14} = 139,87^0 $$
Ответ:
$$ alpha = 139,87^0$$
Источник: https://algebra24.ru/gradus-radian
- Главная
- Прочее
Оценка статьи:
(нет голосов)
Загрузка…
Adblock
detector
Таблица синусов.
Таблица синусов – это записанные в таблицу посчитанные значения синусов углов от 0° до 360°. Используя таблицу синусов вы сможете провести расчеты даже если под руками не окажется инженерного калькулятора. Чтобы узнать значение синуса от нужного Вам угла достаточно найти его в таблице.
Калькулятор – синус угла
sin(°) = 0
Калькулятор – арксинус угла
arcsin() = 90°
Таблица синусов в радианах
α | 0 | π6 | π4 | π3 | π2 | π | 3π2 | 2π |
sin α | 0 | 12 | √22 | √32 | 1 | 0 | -1 | 0 |
Таблица синусов углов от 0° до 180°
sin(0°) = 0 sin(1°) = 0.017452 sin(2°) = 0.034899 sin(3°) = 0.052336 sin(4°) = 0.069756 sin(5°) = 0.087156 sin(6°) = 0.104528 sin(7°) = 0.121869 sin(8°) = 0.139173 sin(9°) = 0.156434 sin(10°) = 0.173648 sin(11°) = 0.190809 sin(12°) = 0.207912 sin(13°) = 0.224951 sin(14°) = 0.241922 sin(15°) = 0.258819 sin(16°) = 0.275637 sin(17°) = 0.292372 sin(18°) = 0.309017 sin(19°) = 0.325568 sin(20°) = 0.34202 sin(21°) = 0.358368 sin(22°) = 0.374607 sin(23°) = 0.390731 sin(24°) = 0.406737 sin(25°) = 0.422618 sin(26°) = 0.438371 sin(27°) = 0.45399 sin(28°) = 0.469472 sin(29°) = 0.48481 sin(30°) = 0.5 sin(31°) = 0.515038 sin(32°) = 0.529919 sin(33°) = 0.544639 sin(34°) = 0.559193 sin(35°) = 0.573576 sin(36°) = 0.587785 sin(37°) = 0.601815 sin(38°) = 0.615661 sin(39°) = 0.62932 sin(40°) = 0.642788 sin(41°) = 0.656059 sin(42°) = 0.669131 sin(43°) = 0.681998 sin(44°) = 0.694658 sin(45°) = 0.707107 |
sin(46°) = 0.71934 sin(47°) = 0.731354 sin(48°) = 0.743145 sin(49°) = 0.75471 sin(50°) = 0.766044 sin(51°) = 0.777146 sin(52°) = 0.788011 sin(53°) = 0.798636 sin(54°) = 0.809017 sin(55°) = 0.819152 sin(56°) = 0.829038 sin(57°) = 0.838671 sin(58°) = 0.848048 sin(59°) = 0.857167 sin(60°) = 0.866025 sin(61°) = 0.87462 sin(62°) = 0.882948 sin(63°) = 0.891007 sin(64°) = 0.898794 sin(65°) = 0.906308 sin(66°) = 0.913545 sin(67°) = 0.920505 sin(68°) = 0.927184 sin(69°) = 0.93358 sin(70°) = 0.939693 sin(71°) = 0.945519 sin(72°) = 0.951057 sin(73°) = 0.956305 sin(74°) = 0.961262 sin(75°) = 0.965926 sin(76°) = 0.970296 sin(77°) = 0.97437 sin(78°) = 0.978148 sin(79°) = 0.981627 sin(80°) = 0.984808 sin(81°) = 0.987688 sin(82°) = 0.990268 sin(83°) = 0.992546 sin(84°) = 0.994522 sin(85°) = 0.996195 sin(86°) = 0.997564 sin(87°) = 0.99863 sin(88°) = 0.999391 sin(89°) = 0.999848 sin(90°) = 1 |
sin(91°) = 0.999848 sin(92°) = 0.999391 sin(93°) = 0.99863 sin(94°) = 0.997564 sin(95°) = 0.996195 sin(96°) = 0.994522 sin(97°) = 0.992546 sin(98°) = 0.990268 sin(99°) = 0.987688 sin(100°) = 0.984808 sin(101°) = 0.981627 sin(102°) = 0.978148 sin(103°) = 0.97437 sin(104°) = 0.970296 sin(105°) = 0.965926 sin(106°) = 0.961262 sin(107°) = 0.956305 sin(108°) = 0.951057 sin(109°) = 0.945519 sin(110°) = 0.939693 sin(111°) = 0.93358 sin(112°) = 0.927184 sin(113°) = 0.920505 sin(114°) = 0.913545 sin(115°) = 0.906308 sin(116°) = 0.898794 sin(117°) = 0.891007 sin(118°) = 0.882948 sin(119°) = 0.87462 sin(120°) = 0.866025 sin(121°) = 0.857167 sin(122°) = 0.848048 sin(123°) = 0.838671 sin(124°) = 0.829038 sin(125°) = 0.819152 sin(126°) = 0.809017 sin(127°) = 0.798636 sin(128°) = 0.788011 sin(129°) = 0.777146 sin(130°) = 0.766044 sin(131°) = 0.75471 sin(132°) = 0.743145 sin(133°) = 0.731354 sin(134°) = 0.71934 sin(135°) = 0.707107 |
sin(136°) = 0.694658 sin(137°) = 0.681998 sin(138°) = 0.669131 sin(139°) = 0.656059 sin(140°) = 0.642788 sin(141°) = 0.62932 sin(142°) = 0.615661 sin(143°) = 0.601815 sin(144°) = 0.587785 sin(145°) = 0.573576 sin(146°) = 0.559193 sin(147°) = 0.544639 sin(148°) = 0.529919 sin(149°) = 0.515038 sin(150°) = 0.5 sin(151°) = 0.48481 sin(152°) = 0.469472 sin(153°) = 0.45399 sin(154°) = 0.438371 sin(155°) = 0.422618 sin(156°) = 0.406737 sin(157°) = 0.390731 sin(158°) = 0.374607 sin(159°) = 0.358368 sin(160°) = 0.34202 sin(161°) = 0.325568 sin(162°) = 0.309017 sin(163°) = 0.292372 sin(164°) = 0.275637 sin(165°) = 0.258819 sin(166°) = 0.241922 sin(167°) = 0.224951 sin(168°) = 0.207912 sin(169°) = 0.190809 sin(170°) = 0.173648 sin(171°) = 0.156434 sin(172°) = 0.139173 sin(173°) = 0.121869 sin(174°) = 0.104528 sin(175°) = 0.087156 sin(176°) = 0.069756 sin(177°) = 0.052336 sin(178°) = 0.034899 sin(179°) = 0.017452 sin(180°) = 0 |
Таблица синусов углов от 181° до 360°
sin(181°) = -0.017452 sin(182°) = -0.034899 sin(183°) = -0.052336 sin(184°) = -0.069756 sin(185°) = -0.087156 sin(186°) = -0.104528 sin(187°) = -0.121869 sin(188°) = -0.139173 sin(189°) = -0.156434 sin(190°) = -0.173648 sin(191°) = -0.190809 sin(192°) = -0.207912 sin(193°) = -0.224951 sin(194°) = -0.241922 sin(195°) = -0.258819 sin(196°) = -0.275637 sin(197°) = -0.292372 sin(198°) = -0.309017 sin(199°) = -0.325568 sin(200°) = -0.34202 sin(201°) = -0.358368 sin(202°) = -0.374607 sin(203°) = -0.390731 sin(204°) = -0.406737 sin(205°) = -0.422618 sin(206°) = -0.438371 sin(207°) = -0.45399 sin(208°) = -0.469472 sin(209°) = -0.48481 sin(210°) = -0.5 sin(211°) = -0.515038 sin(212°) = -0.529919 sin(213°) = -0.544639 sin(214°) = -0.559193 sin(215°) = -0.573576 sin(216°) = -0.587785 sin(217°) = -0.601815 sin(218°) = -0.615661 sin(219°) = -0.62932 sin(220°) = -0.642788 sin(221°) = -0.656059 sin(222°) = -0.669131 sin(223°) = -0.681998 sin(224°) = -0.694658 sin(225°) = -0.707107 |
sin(226°) = -0.71934 sin(227°) = -0.731354 sin(228°) = -0.743145 sin(229°) = -0.75471 sin(230°) = -0.766044 sin(231°) = -0.777146 sin(232°) = -0.788011 sin(233°) = -0.798636 sin(234°) = -0.809017 sin(235°) = -0.819152 sin(236°) = -0.829038 sin(237°) = -0.838671 sin(238°) = -0.848048 sin(239°) = -0.857167 sin(240°) = -0.866025 sin(241°) = -0.87462 sin(242°) = -0.882948 sin(243°) = -0.891007 sin(244°) = -0.898794 sin(245°) = -0.906308 sin(246°) = -0.913545 sin(247°) = -0.920505 sin(248°) = -0.927184 sin(249°) = -0.93358 sin(250°) = -0.939693 sin(251°) = -0.945519 sin(252°) = -0.951057 sin(253°) = -0.956305 sin(254°) = -0.961262 sin(255°) = -0.965926 sin(256°) = -0.970296 sin(257°) = -0.97437 sin(258°) = -0.978148 sin(259°) = -0.981627 sin(260°) = -0.984808 sin(261°) = -0.987688 sin(262°) = -0.990268 sin(263°) = -0.992546 sin(264°) = -0.994522 sin(265°) = -0.996195 sin(266°) = -0.997564 sin(267°) = -0.99863 sin(268°) = -0.999391 sin(269°) = -0.999848 sin(270°) = -1 |
sin(271°) = -0.999848 sin(272°) = -0.999391 sin(273°) = -0.99863 sin(274°) = -0.997564 sin(275°) = -0.996195 sin(276°) = -0.994522 sin(277°) = -0.992546 sin(278°) = -0.990268 sin(279°) = -0.987688 sin(280°) = -0.984808 sin(281°) = -0.981627 sin(282°) = -0.978148 sin(283°) = -0.97437 sin(284°) = -0.970296 sin(285°) = -0.965926 sin(286°) = -0.961262 sin(287°) = -0.956305 sin(288°) = -0.951057 sin(289°) = -0.945519 sin(290°) = -0.939693 sin(291°) = -0.93358 sin(292°) = -0.927184 sin(293°) = -0.920505 sin(294°) = -0.913545 sin(295°) = -0.906308 sin(296°) = -0.898794 sin(297°) = -0.891007 sin(298°) = -0.882948 sin(299°) = -0.87462 sin(300°) = -0.866025 sin(301°) = -0.857167 sin(302°) = -0.848048 sin(303°) = -0.838671 sin(304°) = -0.829038 sin(305°) = -0.819152 sin(306°) = -0.809017 sin(307°) = -0.798636 sin(308°) = -0.788011 sin(309°) = -0.777146 sin(310°) = -0.766044 sin(311°) = -0.75471 sin(312°) = -0.743145 sin(313°) = -0.731354 sin(314°) = -0.71934 sin(315°) = -0.707107 |
sin(316°) = -0.694658 sin(317°) = -0.681998 sin(318°) = -0.669131 sin(319°) = -0.656059 sin(320°) = -0.642788 sin(321°) = -0.62932 sin(322°) = -0.615661 sin(323°) = -0.601815 sin(324°) = -0.587785 sin(325°) = -0.573576 sin(326°) = -0.559193 sin(327°) = -0.544639 sin(328°) = -0.529919 sin(329°) = -0.515038 sin(330°) = -0.5 sin(331°) = -0.48481 sin(332°) = -0.469472 sin(333°) = -0.45399 sin(334°) = -0.438371 sin(335°) = -0.422618 sin(336°) = -0.406737 sin(337°) = -0.390731 sin(338°) = -0.374607 sin(339°) = -0.358368 sin(340°) = -0.34202 sin(341°) = -0.325568 sin(342°) = -0.309017 sin(343°) = -0.292372 sin(344°) = -0.275637 sin(345°) = -0.258819 sin(346°) = -0.241922 sin(347°) = -0.224951 sin(348°) = -0.207912 sin(349°) = -0.190809 sin(350°) = -0.173648 sin(351°) = -0.156434 sin(352°) = -0.139173 sin(353°) = -0.121869 sin(354°) = -0.104528 sin(355°) = -0.087156 sin(356°) = -0.069756 sin(357°) = -0.052336 sin(358°) = -0.034899 sin(359°) = -0.017452 sin(360°) = 0 |
Построение тригонометрической окружности
А теперь сделай вот что: возьми-ка в руки циркуль и нарисуй любую (самую любую, но лучше достаточно немаленькую) окружность.
Получилось?
Ну да ладно, задачка не самая сложная. Так, ты не потерял ту точку, в которой у тебя был центр (куда ты прикладывал острую ножку циркуля)? Я вот у себя потерял, растяпа! Ну ладно, найду!
А что пока делать тебе?
А вот что: проведи через эту точку две линии, которые пересекаются «прямым крестиком», то есть под прямым углом. И пусть их точка пересечения – это центр (который ты не потерял!) окружности.
Нарисовал? У меня получилось что-то вроде вот этого.
Правда я чуть-чуть поторопился и сразу «обозвал» эти прямые ( displaystyle x) и ( displaystyle y) и точку пересечения через ( displaystyle O).
А что такое в таком случае ( displaystyle R)?
Это радиус нашей окружности.
Как называлась наша тема? Единичная окружность.
Тогда будем считать ( но не будем так рисовать!), что ( displaystyle R=1 ).
А рисовать мы так не будем, потому что на такой крошечной картинке ты ничего не разберешь! Ты же понимаешь, что когда инженеры проектируют самолеты, скажем, они не рисуют его в натуральную величину?
Так и мы не будем рисовать единичную окружность в самом деле единичной. Это нам нужно исключительно для удобства.
Теперь отмечаем: ( displaystyle OR=1). Что же мы с тобой на самом деле сделали? А вот что:
Мы поместили нашу окружность в систему координат ( displaystyle mathbf{X0Y}), сделав центр окружности началом координат!
Это позволит изучать свойства такой окружности уже не с геометрической, а с математической точки зрения. Этот подход был придуман хитрым математиком и философом Рене Декартом еще в 17 веке!
Перегнать фигуру в цифры, каково, а?
Но допустим, мы поместили нашу окружность в координаты. В скольких точках она пересекается с осями системы координат?
В четырех. Вот они:
Эти точки ( displaystyle left( A; B; C; D right)) имеют координаты:
( displaystyle Aleft( 1,0 right)); ( displaystyle Bleft( 0,1 right)); ( displaystyle Cleft( -1;0 right)); ( displaystyle Dleft( 0;-1 right)).
Теперь вспомни, как называются области, на которые этот «координатный крестик» делит всю плоскость?
Они называются координатные четверти.
Тогда посмотри на рисунок. Наша окружность тоже оказалась разрезанной на 4 равные дольки. Давай пронумеруем каждую из этих долек против часовой стрелки:
Ты уже можешь догадаться, как называются эти самые дольки:
1 четверть, 2 четверть, 3 четверть, 4 четверть
(Прямо как четверти в школе!)
Углы на тригонометрической окружности
Теперь давай сделаем еще вот что. Снова посмотрим на предыдущую картинку.
Чему на ней равен ( displaystyle angle AOB)?
Он равен ( displaystyle 90{}^circ ).
Также, как и ( displaystyle angle BOC), как и угол ( displaystyle angle COD), и угол ( displaystyle angle DOA).
( displaystyle angle text{AOB}=angle text{BOC}=angle text{COD}=angle text{DOA}=90{}^circ )
Тогда чему равна их сумма?
Она равна ( displaystyle 360{}^circ ).
Вместе же эти 4 угла составляют всю окружность целиком!
Градусная мера окружности равна ( displaystyle 360{}^circ )!
( displaystyle angle Atext{OC}=angle text{AOB}+angle text{BOC}=180{}^circ )
Что еще можно вытянуть? А вот что:
( displaystyle angle Atext{OD}=angle text{AOB}+angle text{BOC}+angle text{COD}=270{}^circ )
Отметим эти значения также на нашей окружности:
Однако, ты нередко можешь увидеть и вот такую картинку:
где вместо привычных нам градусов появляются некие буковки «пи» ( displaystyle pi ) с цифрами.
В чем же тут дело, кто прав и кто виноват?
Ну так вот, кто прав, кто виноват, решать, увы, не нам. Но чтобы «воз не был поныне там», нам нужно уделить этому моменту пару минут времени.
В самом деле, есть два способа измерять углы:
- Через градусы
- Через радианы
Как измерять углы через градусы мы все знаем. Это нам привычно. Однако в некоторых случаях их измеряют по-другому (как в градуснике есть несколько шкал: цельсий, кельвин, фаренгейт и т. д.), а именно: через радианы.
Для того, чтобы перейти от одной формы записи к другой, используется вот такое основное соотношение:
( displaystyle 180{}^circ =pi ~рад.)
И все, больше знать ничего не надо!
По пропорции ты легко получишь, что для того, чтобы пересчитать угол из градусов в радианы, нужно применить вот такую незамысловатую формулу:
( displaystyle P~рад.=frac{alpha {}^circ cdot pi }{180})
И наоборот: от радиан к градусам:
( displaystyle alpha {}^circ =frac{P~рад.cdot 180}{pi })
Ты должен уметь ориентироваться и в той, и в другой форме записи.
Потренируйся на следующих примерах:
- Перевести угол в ( displaystyle 30) градусов в радианы;
- Перевести угол ( displaystyle frac{pi }{4}) радиан в градусы;
- Перевести угол в ( displaystyle 60) градусов в радианы;
- Перевести угол в ( displaystyle frac{pi }{2}) радиан в градусы;
- Перевести угол в ( displaystyle 120) градусов в радианы;
- Перевести угол в ( displaystyle frac{3pi }{4}) радиан в градусы;
- Перевести угол в ( displaystyle 150) градусов в радианы.
Я сделаю только первые два, а остальные реши сам!
- ( P~рад.=frac{30cdot pi }{180}=frac{pi }{6}), тогда угол в ( displaystyle 30) градусов равен углу в ( displaystyle frac{pi }{6}) радиан;
- ( alpha {}^circ =frac{frac{pi }{4}cdot 180}{pi }=frac{45pi }{pi }=45{}^circ ), тогда угол в ( displaystyle frac{pi }{4}) радиан равен углу в ( displaystyle 45) градусов.
Все очень просто, не так ли? Остальные значения ты можешь найти в следующей таблице:
( displaystyle 0{}^circ ) | ( displaystyle 30{}^circ ) | ( displaystyle 45{}^circ ) | ( displaystyle 60{}^circ ) | ( displaystyle 90{}^circ ) | ( displaystyle 120{}^circ ) | ( displaystyle 135{}^circ ) | ( displaystyle 150{}^circ ) | ( displaystyle 180{}^circ ) |
( displaystyle 0) | ( displaystyle frac{pi }{6}) | ( displaystyle frac{pi }{4}) | ( displaystyle frac{pi }{3}) | ( displaystyle frac{pi }{2}) | ( displaystyle frac{2pi }{3}) | ( displaystyle frac{3pi }{4}) | ( displaystyle frac{5pi }{6}) | ( displaystyle pi ) |
( displaystyle 210{}^circ ) | ( displaystyle 225{}^circ ) | ( displaystyle 240{}^circ ) | ( displaystyle 270{}^circ ) | ( displaystyle 300{}^circ ) | ( displaystyle 315{}^circ ) | ( displaystyle 330{}^circ ) | ( displaystyle 360{}^circ ) |
( displaystyle frac{7pi }{6}) | ( displaystyle frac{5pi }{4}) | ( displaystyle frac{4pi }{3}) | ( displaystyle frac{3pi }{2}) | ( displaystyle frac{5pi }{3}) | ( displaystyle frac{7pi }{4}) | ( displaystyle frac{11pi }{6}) | ( displaystyle 2pi ) |
Так что впредь не удивляйся, когда ты увидишь вместо привычных градусов углы в радианах. Теперь ты знаешь, что это такое, и с чем его едят!
Синус, косинус, тангенс и котангенс на тригонометрической окружности
Но мы с тобой и так слишком увлеклись. Ты давно уже, наверное, заждался обещанных синусов и косинусов на тригонометрической окружности. Не смею более отвлекаться!
Давай сделаем вот что: совместим два знакомых нам объекта: тригонометрическую окружность (пока в том виде, в котором она у нас есть) и прямоугольный треугольник.
Что нам нужно, чтобы наш треугольник «целиком влез» в окружность?
Его гипотенуза должна быть не более единицы. Пусть же она у нас в точности будет равна единице.
Совместим мы их вот так:
Я нарисовал прямоугольный треугольник с центром в начале координат и гипотенузой равной ( 1). Это так потому, что окружность-то у меня единичная!
Тогда по определению синуса и косинуса:
- ( sin alpha =frac{AB}{OB}=frac{AB}{1}=AB)
- ( cos alpha =frac{OA}{OB}=frac{OA}{1}=OA)
А что же такое отрезки ( OA) и ( OB)? Чему равны их длины?
Смотри, сейчас будет самое главное: мы взяли угол ( alpha ) и провели луч, соединяющий этот угол с точкой на окружности.
Обозначим эту точку через ( B). Пусть ( B) имеет координаты ( Bleft( x,y right)).
Тогда длина отрезка ( OA) равна ( x), а длина отрезка ( AB)–равна ( y).
Но мы с тобой помним, что ( sin alpha =AB), ( cos alpha =OA), тогда:
- ( y=sin alpha )
- ( x=cos alpha )
Ух ты! Это надо еще раз обдумать, что же мы такое получили.
Давай проговорим еще раз: мы выбрали некоторый угол ( alpha ) и хотим найти его синус и косинус.
Что мы делаем?
- Проводим единичную окружность с центром, совпадающим с вершиной угла;
- Ищем точку пересечения нашего угла с окружностью;
- Её «иксовая» координата – это косинус нашего угла;
- Её «игрековая» координата – это синус нашего угла.
Вот и все! Теперь синус и косинус искать стало намного проще! Допустим, мы хотим найти синус, косинус ( 30) градусов.
Отмечаем ( 30) градусов на окружности и «достраиваем» этот угол до треугольника (как показано на рисунке выше).
Как найти ( x) и ( y)?
Да очень просто: в прямоугольном треугольнике катет, лежащий против угла в ( 30) градусов равен половине гипотенузы (это известный факт из геометрии 7 класса).
Так как гипотенуза равна ( 1), то противолежащий ей катет равен ( 0,5), откуда:
( sin 30{}^circ =0,5)
Что касается косинуса: для этого нам потребуется заметить, что выполняется тривиальное утверждение (основное тригонометрическое тождество):
( si{{n}^{2}}alpha +co{{s}^{2}}alpha =1)
Как ты думаешь, откуда оно берется? Да это же пресловутая теорема Пифагора!
Наши катеты в треугольничке равны ( x) и ( y), которые в свою очередь совпадают с ( cos alpha ) и ( sin alpha ). Гипотенуза в треугольнике равна ( 1).
Тогда:
( {{x}^{2}}+{{y}^{2}}=1) или, что то же самое,
( si{{n}^{2}}alpha +co{{s}^{2}}alpha =1)
Эта формула позволит по известному синусу вычислить неизвестный косинус и наоборот.
В частности, если:
( si{{n}^{2}}30{}^circ +co{{s}^{2}}30{}^circ =1) и ( sin 30{}^circ =0,5), то
( frac{1}{4}+co{{s}^{2}}30{}^circ =1)
( displaystyle co{{s}^{2}}30{}^circ =frac{3}{4})
( displaystyle cos 30{}^circ =pm sqrt{frac{3}{4}}=pm frac{sqrt{3}}{2})
Определение знака синуса, косинуса, тангенса и котангенса
Вообще, этот вопрос заслуживает особого внимания, но здесь все просто: у угла ( displaystyle 30) градусов и синус и косинус положительны (смотри рисунок), тогда берем знак «плюс».
( displaystyle cos 30{}^circ =frac{sqrt{3}}{2})
Теперь попробуй на основе вышеизложенного найти синус и косинус углов: ( displaystyle 60{}^circ ) и ( displaystyle 45{}^circ )
Можно схитрить: в частности для угла в ( displaystyle 60{}^circ ) градусов. Так как если один угол прямоугольного треугольника равен ( displaystyle 60{}^circ ) градусам, то второй – ( displaystyle 30{}^circ ) градусам. Теперь вступают в силу знакомые тебе формулы:
( displaystyle sin 30{}^circ =cos 60{}^circ )
( displaystyle sin 60{}^circ =cos 30{}^circ )
Тогда так как ( displaystyle sin 30{}^circ =0,5), то и ( displaystyle cos 60{}^circ =0,5). Так как ( displaystyle cos 30{}^circ =frac{sqrt{3}}{2}), то и ( displaystyle sin 60{}^circ =frac{sqrt{3}}{2}).
C ( displaystyle 45) градусами все еще проще: так если один из углов прямоугольного треугольника равен ( displaystyle 45) градусам, то и другой тоже равен ( displaystyle 45) градусам, а значит такой треугольник равнобедренный.
Значит, его катеты равны. А значит равны его синус и косинус.
Тогда:
( displaystyle si{{n}^{2}}45{}^circ +co{{s}^{2}}45{}^circ =2si{{n}^{2}}45{}^circ =1)
( displaystyle si{{n}^{2}}45{}^circ =co{{s}^{2}}45{}^circ =1/2)
Откуда: ( displaystyle sin 45{}^circ =cos 45{}^circ =sqrt{1/2}=frac{sqrt{2}}{2})
Теперь найди сам по новому определению (через икс и игрек!) синус и косинус углов в ( displaystyle 0) градусов и ( displaystyle 90) градусов. Здесь уже никакие треугольники нарисовать не получится! Уж слишком они будут плоские!
У тебя должно было получиться:
( displaystyle sin 0{}^circ =0), ( displaystyle cos 0{}^circ =1), ( displaystyle sin 90{}^circ =1), ( displaystyle cos 90{}^circ =0).
Тангенс и котангенс ты можешь отыскать самостоятельно по формулам:
( displaystyle text{t}g alpha =frac{sin alpha }{cos alpha }), ( displaystyle ctg alpha =frac{cos alpha }{sin alpha })
Обрати внимание, что на ноль делить нельзя!!
Теперь все полученные числа можно свести в таблицу:
Здесь приведены значения синуса, косинуса, тангенса и котангенса углов I четверти.
Для удобства углы приведены как в градусах, так и в радианах (но ты-то теперь знаешь связь между ними!). Обрати внимание на 2 прочерка в таблице: а именно у котангенса нуля и тангенса ( displaystyle 90) градусов. Это неспроста!
В частности:
( displaystyle ctg 0=frac{cos 0}{sin 0}=frac{1}{0}=?????)
Поэтому мы с тобой будем считать, что тангенс ( displaystyle 90) градусов и котангенс нуля просто-напросто не определены!
Теперь давай обобщим понятие синус и косинус на совсем произвольный угол. Я рассмотрю здесь два случая:
- Угол лежит в пределах от ( displaystyle 0) до ( displaystyle 360) градусов;
- Угол больше ( displaystyle 360) градусов.
Честно говоря, я скривил немного душой, говоря про «совсем все» углы. Они бывают также и отрицательными! Но этот случай мы с тобой рассмотрим чуть позже. Вначале остановимся на первом случае.
Если угол лежит в 1 четверти – то тут все понятно, мы этот случай уже рассмотрели и даже таблицы нарисовали.
Теперь же пусть наш угол больше ( displaystyle 90) градусов и не больше чем ( displaystyle 360).
Это значит, что он расположен либо во 2, либо в 3 или же в 4 четверти.
Как мы поступаем? Да точно так же!
Давай рассмотрим вместо вот такого случая…
…вот такой:
То есть рассмотрим угол ( displaystyle alpha ), лежащий во второй четверти. Что мы можем сказать про него?
У точки ( displaystyle {{M}_{1}}), которая является точкой пересечения луча и окружности по-прежнему имеет 2 координаты (ничего сверхъестественного, правда?). Это координаты ( displaystyle {{x}_{1}}) и ( displaystyle {{y}_{1}}).
Причем первая координата отрицательная, а вторая – положительная! Это значит, что у углов второй четверти косинус отрицателен, а синус – положителен!
Удивительно, правда? До этого мы еще ни разу не сталкивались с отрицательным косинусом.
Да и в принципе этого не могло быть, когда мы рассматривали тригонометрические функции как отношения сторон треугольника.
Кстати, подумай, у каких углов косинус равен ( displaystyle -1)? А у каких ( displaystyle -1) равен синус?
Аналогично можно рассмотреть углы во всех остальных четвертях. Я лишь напомню, что угол отсчитывается против часовой стрелки! (так, как это показано на последнем рисунке!).
Конечно, можно и отсчитывать в другую сторону, но вот подход к таким углам будет уже несколько другой.
Исходя из приведенных выше рассуждений, можно расставить знаки у синуса, косинуса, тангенса (как синус деленный на косинус) и котангенса (как косинус деленный на синус) для всех четырех четвертей.
Но еще раз повторюсь, нет смысла запоминать этот рисунок. Все, что тебе нужно знать:
Синус – это игрек. Косинус – это икс. Тангенс – это синус деленный на косинус. Котангенс – это косинус деленный на синус.
Углы больше 360 градусов
А как быть с углами, большими чем ( displaystyle 360) градусов?
Возьму я, скажем, угол в ( displaystyle 30) градусов (( displaystyle frac{pi }{6}) радиан) и пойду от него против часовой стрелки…
На рисунке я нарисовал спираль, но ты-то понимаешь, что на самом деле у нас нет никакой спирали: у нас есть только окружность.
Так куда же мы попадем, если стартуем от определенного угла и пройдем полностью весь круг (( displaystyle 360) градусов или ( displaystyle 2pi ) радиан)?
Куда мы придем? А придем мы в тот же самый угол!
Это же, конечно, справедливо и для любого другого угла:
Взяв произвольный угол ( displaystyle alpha ) и пройдя полностью всю окружность, мы вернемся в тот же самый угол ( displaystyle alpha ).
Что же нам это даст? А вот что: если ( displaystyle sin alpha =y,~cos alpha =x), то
( displaystyle sin left( alpha +2pi k right)=y), ( displaystyle cos left( alpha +2pi k right)=x), откуда окончательно получим:
( displaystyle sin left( alpha +2pi k right)=sinalpha )
( displaystyle cos left( alpha +2pi k right)=cosalpha )
Для любого целого ( displaystyle k). Это значит, что синус и косинус являются периодическими функциями с периодом ( displaystyle 2pi ).
Таким образом, нет никакой проблемы в том, чтобы найти знак теперь уже произвольного угла: нам достаточно отбросить все «целые круги», которые умещаются в нашем угле и выяснить, в какой четверти лежит оставшийся угол.
Например, найти знак:
- ( displaystyle text{sin}1000{}^circ ),
- ( displaystyle text{cos} 605{}^circ ),
- ( displaystyle text{cos}frac{16pi }{7}),
- ( displaystyle text{sin}frac{19pi }{4}).
Проверяем:
Отрицательные углы
Отрицательные углы в тригонометрии откладываются на тригонометрическом круге вниз от начала, по направлению движения часовой стрелки:
Давай вспомним, как мы до этого откладывали углы на тригонометрической окружности.
Мы шли от положительного направления оси ( displaystyle Ox) против часовой стрелки:
Тогда на нашем рисунке построен угол, равный ( displaystyle 180+45=225{}^circ ). Аналогичным образом мы строили все углы.
Однако ничего нам не запрещает идти от положительного направления оси ( displaystyle Ox) по часовой стрелке.
Мы будем тоже получать различные углы, но они будут уже отрицательными:
А следующей картинке изображено два угла, равные по абсолютной величине (если не знаешь, что это такое, читай здесь про «Модуль числа»), но противоположные по знаку:
В целом правило можно сформулировать вот так:
- Идем против часовой стрелки – получаем положительные углы
- Идем по часовой стрелке – получаем отрицательные углы
Схематично правило изображено вот на этом рисунке:
Ты мог бы задать мне вполне резонный вопрос: ну углы нам нужны для того, чтобы измерять у них значения синуса, косинуса, тангенса и котангенса.
Так есть ли разница, когда у нас угол положительный, а когда – отрицательный? Я отвечу тебе: как правило есть.
Однако ты всегда можешь свести вычисление тригонометрической функции от отрицательного угла к вычислению функции в угле положительном.
Посмотри на следующую картинку:
Я построил два угла, они равны по абсолютному значению, но имеют противоположный знак. Отметим для каждого из углов его синус и косинус на осях.
Что мы с тобой видим? А вот что:
Синусы у углов ( displaystyle alpha ) и ( displaystyle -alpha ) противоположны по знаку!
Тогда если ( displaystyle text{sin} text{ }!!alpha!!text{ }=text{y}),
то ( displaystyle sin left( -text{ }!!alpha!!text{ } right)=-text{y})
( displaystyle sin left( -text{ }!!alpha!!text{ } right)=-text{sin} text{ }!!alpha!!text{ }).
Косинусы у углов ( displaystyle alpha ) и ( displaystyle -alpha ) совпадают!
Тогда если ( displaystyle text{cos} text{ }!!alpha!!text{ }=text{x}),
то и ( displaystyle cos left( -text{ }!!alpha!!text{ } right)=text{x})
( displaystyle cos left( -text{ }!!alpha!!text{ } right)=text{cos} text{ }!!alpha!!text{ })
Так как ( displaystyle text{tg}left( -text{ }!!alpha!!text{ } right)=frac{text{sin}left( -text{ }!!alpha!!text{ } right)}{text{cos}left( -text{ }!!alpha!!text{ } right)}=frac{-text{sin}left( text{ }!!alpha!!text{ } right)}{text{cos}left( text{ }!!alpha!!text{ } right)}), то:
( displaystyle text{tg}left( -text{ }!!alpha!!text{ } right)=-text{tg }!!alpha!!text{ })
Так как ( displaystyle text{ctg}left( -text{ }!!alpha!!text{ } right)=frac{text{cos}left( -text{ }!!alpha!!text{ } right)}{text{sin}left( -text{ }!!alpha!!text{ } right)}=frac{text{cos}left( text{ }!!alpha!!text{ } right)}{-text{sin}left( text{ }!!alpha!!text{ } right)}), то:
( displaystyle text{ctg}left( -text{ }!!alpha!!text{ } right)=-text{ctg} text{ }!!alpha!!text{ })
Таким образом, мы всегда можем избавиться от отрицательного знака внутри любой тригонометрической функции: либо просто уничтожив его, как у косинуса, либо поставив его перед функцией, как у синуса, тангенса и котангенса.
Кстати, вспомни-ка, как называется функция ( displaystyle f(x)), у которой для любого допустимого ( displaystyle x) выполняется:( displaystyle f(-x)=-f(x))?
Такая функция называется нечетной.
А если же для любого допустимого ( displaystyle x) выполняется: ( displaystyle f(-x)=f(x))? То в таком случае функция называется четной.
Таким образом, мы с тобой только что показали, что:
Синус, тангенс и котангенс – нечетные функции, а косинус – четная.
Таким образом, как ты понимаешь, нет никакой разницы, ищем ли мы синус от положительного угла или отрицательного: справиться с минусом очень просто. Так что нам не нужны таблицы отдельно для отрицательных углов.
С другой стороны, согласись, было бы очень удобно зная только тригонометрические функции углов первой четверти, уметь вычислять аналогичные функции и для остальных четвертей.
Можно ли это сделать? Конечно, можно!
У тебя есть по крайней мере 2 пути: первый – строить треугольник и применять теорему Пифагора (так мы с тобой и отыскали значения тригонометрических функций для основных углов первой четверти)
Второй – запомнив значения функций для углов в первой четверти и некое несложное правило, уметь вычислять тригонометрические функции для всех остальных четвертей.
Второй способ избавит тебя от долгой возни с треугольниками и с Пифагором, поэтому мне он видится более перспективным:
Итак, данный способ (или правило) называется формулами приведения.
Формулы приведения
Грубо говоря, эти формулы помогут тебе не запоминать вот такую таблицу (она между прочим содержит 98 чисел!):
…если ты помнишь вот эту (всего на 20 чисел):
То есть ты сможешь не забивать себе голову совершенно ненужными 78 числами! Пусть, например, нам нужно вычислить ( displaystyle text{sin} 855{}^circ ). Ясно, что в маленькой таблице такого нет. Что же нам делать? А вот что:
Во-первых, нам понадобятся следующие знания:
Синус и косинус имеют период ( displaystyle 2pi ) (( displaystyle 360) градусов)
То есть
( displaystyle sinleft( 2pi k+x right)=sin x)
( displaystyle cosleft( 2pi k+x right)=cos x)
Тангенс (котангенс) имеют период ( displaystyle pi ) (( displaystyle 180) градусов)
( displaystyle tgleft( pi k+x right)=tg x)
( displaystyle ctgleft( pi k+x right)=ctg x)
( displaystyle k) – любое целое число
Синус и тангенс – функции нечетные, а косинус – четная:
( displaystyle sinleft( -x right)=-sin x)
( displaystyle tgleft( -x right)=-tgleft( x right))
( displaystyle cosleft( -x right)=cosleft( x right))
Первое утверждение мы уже доказали с тобой, а справедливость второго установили совсем недавно.
Непосредственно правило приведения выглядит вот так:
Если мы вычисляем значение тригонометрической функции от отрицательного угла – делаем его положительным при помощи группы формул о четности.
Например:
( displaystyle sinleft( -855{}^circ right)=-sin855{}^circ),
( displaystyle cosleft( -855{}^circ right)=cos855{}^circ).
Отбрасываем для синуса и косинуса его периоды: ( displaystyle 2pi k) (по ( displaystyle 360) градусов), а для тангенса – ( displaystyle pi k) (( displaystyle 180) градусов).
Например:
( displaystyle sin 855{}^circ =sinleft( 2cdot 360{}^circ +135{}^circ right)=sin 135{}^circ )( displaystyle tg 225{}^circ =tgleft( 180{}^circ +45{}^circ right)=tg 45{}^circ )
Если оставшийся «уголок» меньше ( displaystyle 90) градусов, то задача решена: ищем его в «малой таблице».
Иначе ищем, в какой четверти лежит наш угол ( displaystyle alpha ): это будет 2, 3 или 4 четверть. Смотрим, какой знак имеет искомая функция в четверти. Запомнили этот знак!!!
Представляем угол ( displaystyle alpha )в одной из следующих форм:
- ( displaystyle alpha =90+beta ) (если во второй четверти)
- ( displaystyle alpha =180-beta ) (если во второй четверти)
- ( displaystyle alpha =180+beta ) (если в третьей четверти)
- ( displaystyle alpha =270-beta ) (если в третьей четверти)
- ( displaystyle alpha =270+beta ) (если в четвертой четверти)
- ( displaystyle alpha =360-beta ) (если в четвертой четверти)
…так, чтобы оставшийся угол ( displaystyle beta ) был больше нуля и меньше ( displaystyle 90) градусов.
Например:
( displaystyle 135{}^circ =180{}^circ -45{}^circ )
( displaystyle 135{}^circ =90{}^circ +45{}^circ )
( displaystyle 315{}^circ =270{}^circ+45{}^circ )
( displaystyle 240{}^circ =180{}^circ +60{}^circ )
( displaystyle 240{}^circ =270{}^circ -30{}^circ )…
В принципе не важно, в какой из двух альтернативных форм для каждой четверти ты представишь угол. На конечном результате это не скажется.
Теперь смотрим, что у нас получилось: если ты выбрал запись через ( displaystyle 180) или ( displaystyle 360) градусов плюс минус что-либо, то знак функции меняться не будет: ты просто убираешь ( displaystyle 180) или ( displaystyle 360) и записываешь синус, косинус или тангенс оставшегося угла.
Если же ты выбрал запись через ( displaystyle 90) или ( displaystyle 270) градусов, то синус меняем на косинус, косинус на синус, тангенс на котангенс, котангенс – на тангенс.
Ставим перед получившимся выражением знак, который мы запомнили.