Как найти синус 120 на окружности

Синус 120 градусов

Найдем синус 120 градусов, пользуясь формулой приведения для синуса тупого угла от 90º до 180º.

Синус угла альфа на единичной окружности — это ордината точки, полученной из точки (1;0) поворотом на угол альфа вокруг точки O.

Для синуса тупого угла (от 90 до 180 градусов) имеет место следующая формула приведения:

Воспользуемся данной формулой приведения и значением синуса 60º:

Что и требовалось доказать.

Если перевести 120 градусов в радианы, получим:

Синус, косинус и тангенс угла 120 градусов

Синус, косинус и тангенс угла 2π/3 радиан

Напомним себе, что 2π/3 в градусах – это 120 градусов. ( 2 * 180 / 3 = 120 ). Таким образом, найти значение тригонометрической функции для угла 2π/3 и для ула 120 градусов – это одно и то же.

Как найти значения тригонометрических функций для угла 120 градусов

Найдем значения синуса, косинуса и тангенса для угла 120 градусов аналитическим способом.
На первый взгляд, нахождение значений синуса, косинуса и тангенса для угла 120 градусов – задача сложная. Однако, это не совсем так.
Прежде всего, мы должны обратить внимание, что для углов, значения которых превышают 90 градусов, у нас есть формулы приведения к углу, меньшему 90 градусов.

Поэтому, для начала, представим себе угол в 120 градусов как (90 + 30)
Тогда
sin ( 90 + α ) = cos α
sin 120 = sin( 90 + 30 ) = cos 30

cos ( 90 + α ) = – sin α
cos 120 = cos( 90 + 30 ) = -sin 30

tg ( 90 + α ) = -ctg α
tg 120 = tg( 90 + 30 ) = -ctg 30

Теперь можно посмотреть значения в таблицах синуса, косинуса и тангенса 120 градусов, который преобразован в значения тригонометрических функций синуса, косинуса и тангенса угла 30 градусов.

В уроке по ссылке можно посмотреть как вычислить значения тригонометрических функций для угла 30 градусов.

В итоге получаем:

Как видно из примера, значения тригонометрических функций углов синуса, косинуса и тангенса 120 градусов могут быть получены путем несложных тригонометрических преобразований с использованием тригонометрических тождеств.

См. также полную таблицу значений тригонометрических функций (таблицу синусов, косинусов и тангенсов).

Ниже приведены также значения тригонометрических функций для угла 120 градусов в виде десятичной дроби с четырьмя знаками после запятой.

Таблица СИНУСОВ для углов от 0° до 360° градусов

СИНУС (SIN α) — это одна из прямых тригонометрических функций для углов, в прямоугольном треугольнике синус острого угла равен отношению противолежащего катета к его единственной гипотенузе.

α (радианы) 0 π/6 π/4 π/3 π/2 π 3π/2
α (градусы) 30° 45° 60° 90° 180° 270° 360°
SIN α (СИНУС) 0 1/2 2/2 3 /2 1 0 -1 0

Малая таблица значений тригонометрических функций (в радианах и градусах)

Угол в градусах Sin (Синус)
0
0.0175
0.0349
0.0523
0.0698
0.0872
0.1045
0.1219
0.1392
0.1564
10° 0.1736
11° 0.1908
12° 0.2079
13° 0.225
14° 0.2419
15° 0.2588
16° 0.2756
17° 0.2924
18° 0.309
19° 0.3256
20° 0.342
21° 0.3584
22° 0.3746
23° 0.3907
24° 0.4067
25° 0.4226
26° 0.4384
27° 0.454
28° 0.4695
29° 0.4848
30° 0.5
31° 0.515
32° 0.5299
33° 0.5446
34° 0.5592
35° 0.5736
36° 0.5878
37° 0.6018
38° 0.6157
39° 0.6293
40° 0.6428
41° 0.6561
42° 0.6691
43° 0.682
44° 0.6947
45° 0.7071
46° 0.7193
47° 0.7314
48° 0.7431
49° 0.7547
50° 0.766
51° 0.7771
52° 0.788
53° 0.7986
54° 0.809
55° 0.8192
56° 0.829
57° 0.8387
58° 0.848
59° 0.8572
60° 0.866
61° 0.8746
62° 0.8829
63° 0.891
64° 0.8988
65° 0.9063
66° 0.9135
67° 0.9205
68° 0.9272
69° 0.9336
70° 0.9397
71° 0.9455
72° 0.9511
73° 0.9563
74° 0.9613
75° 0.9659
76° 0.9703
77° 0.9744
78° 0.9781
79° 0.9816
80° 0.9848
81° 0.9877
82° 0.9903
83° 0.9925
84° 0.9945
85° 0.9962
86° 0.9976
87° 0.9986
88° 0.9994
89° 0.9998
90° 1

Полная таблица синусов для углов от 0° до 360° с шагом всего в 1°

Угол в градусах Sin (Синус)
91° 0.9998
92° 0.9994
93° 0.9986
94° 0.9976
95° 0.9962
96° 0.9945
97° 0.9925
98° 0.9903
99° 0.9877
100° 0.9848
101° 0.9816
102° 0.9781
103° 0.9744
104° 0.9703
105° 0.9659
106° 0.9613
107° 0.9563
108° 0.9511
109° 0.9455
110° 0.9397
111° 0.9336
112° 0.9272
113° 0.9205
114° 0.9135
115° 0.9063
116° 0.8988
117° 0.891
118° 0.8829
119° 0.8746
120° 0.866
121° 0.8572
122° 0.848
123° 0.8387
124° 0.829
125° 0.8192
126° 0.809
127° 0.7986
128° 0.788
129° 0.7771
130° 0.766
131° 0.7547
132° 0.7431
133° 0.7314
134° 0.7193
135° 0.7071
136° 0.6947
137° 0.682
138° 0.6691
139° 0.6561
140° 0.6428
141° 0.6293
142° 0.6157
143° 0.6018
144° 0.5878
145° 0.5736
146° 0.5592
147° 0.5446
148° 0.5299
149° 0.515
150° 0.5
151° 0.4848
152° 0.4695
153° 0.454
154° 0.4384
155° 0.4226
156° 0.4067
157° 0.3907
158° 0.3746
159° 0.3584
160° 0.342
161° 0.3256
162° 0.309
163° 0.2924
164° 0.2756
165° 0.2588
166° 0.2419
167° 0.225
168° 0.2079
169° 0.1908
170° 0.1736
171° 0.1564
172° 0.1392
173° 0.1219
174° 0.1045
175° 0.0872
176° 0.0698
177° 0.0523
178° 0.0349
179° 0.0175
180° 0

Полная таблица синусов для углов от 91° до 180°

Угол Sin (Синус)
181° -0.0175
182° -0.0349
183° -0.0523
184° -0.0698
185° -0.0872
186° -0.1045
187° -0.1219
188° -0.1392
189° -0.1564
190° -0.1736
191° -0.1908
192° -0.2079
193° -0.225
194° -0.2419
195° -0.2588
196° -0.2756
197° -0.2924
198° -0.309
199° -0.3256
200° -0.342
201° -0.3584
202° -0.3746
203° -0.3907
204° -0.4067
205° -0.4226
206° -0.4384
207° -0.454
208° -0.4695
209° -0.4848
210° -0.5
211° -0.515
212° -0.5299
213° -0.5446
214° -0.5592
215° -0.5736
216° -0.5878
217° -0.6018
218° -0.6157
219° -0.6293
220° -0.6428
221° -0.6561
222° -0.6691
223° -0.682
224° -0.6947
225° -0.7071
226° -0.7193
227° -0.7314
228° -0.7431
229° -0.7547
230° -0.766
231° -0.7771
232° -0.788
233° -0.7986
234° -0.809
235° -0.8192
236° -0.829
237° -0.8387
238° -0.848
239° -0.8572
240° -0.866
241° -0.8746
242° -0.8829
243° -0.891
244° -0.8988
245° -0.9063
246° -0.9135
247° -0.9205
248° -0.9272
249° -0.9336
250° -0.9397
251° -0.9455
252° -0.9511
253° -0.9563
254° -0.9613
255° -0.9659
256° -0.9703
257° -0.9744
258° -0.9781
259° -0.9816
260° -0.9848
261° -0.9877
262° -0.9903
263° -0.9925
264° -0.9945
265° -0.9962
266° -0.9976
267° -0.9986
268° -0.9994
269° -0.9998
270° -1

Таблица синусов для углов 181° — 270°

Угол Sin (Синус)
271° -0.9998
272° -0.9994
273° -0.9986
274° -0.9976
275° -0.9962
276° -0.9945
277° -0.9925
278° -0.9903
279° -0.9877
280° -0.9848
281° -0.9816
282° -0.9781
283° -0.9744
284° -0.9703
285° -0.9659
286° -0.9613
287° -0.9563
288° -0.9511
289° -0.9455
290° -0.9397
291° -0.9336
292° -0.9272
293° -0.9205
294° -0.9135
295° -0.9063
296° -0.8988
297° -0.891
298° -0.8829
299° -0.8746
300° -0.866
301° -0.8572
302° -0.848
303° -0.8387
304° -0.829
305° -0.8192
306° -0.809
307° -0.7986
308° -0.788
309° -0.7771
310° -0.766
311° -0.7547
312° -0.7431
313° -0.7314
314° -0.7193
315° -0.7071
316° -0.6947
317° -0.682
318° -0.6691
319° -0.6561
320° -0.6428
321° -0.6293
322° -0.6157
323° -0.6018
324° -0.5878
325° -0.5736
326° -0.5592
327° -0.5446
328° -0.5299
329° -0.515
330° -0.5
331° -0.4848
332° -0.4695
333° -0.454
334° -0.4384
335° -0.4226
336° -0.4067
337° -0.3907
338° -0.3746
339° -0.3584
340° -0.342
341° -0.3256
342° -0.309
343° -0.2924
344° -0.2756
345° -0.2588
346° -0.2419
347° -0.225
348° -0.2079
349° -0.1908
350° -0.1736
351° -0.1564
352° -0.1392
353° -0.1219
354° -0.1045
355° -0.0872
356° -0.0698
357° -0.0523
358° -0.0349
359° -0.0175
360° 0

Таблица синусов для углов от 271° до 360°

Таблица синусов особенно нужна, когда у вас под рукой нет супер навороченного инженерного калькулятора с маленькой спасительной кнопкой с надписью «sin». В таком случае, чтобы узнать, чему же равняется синус определенного заданного угла, просто найдите информацию о интересующем градусе.

Как распечатать таблицу? Левой кнопкой на компьютерной мишке выделите полностью всё таблицу, на выделенном фоне нажмите уже правую кнопку мишки и в появившемся меню перейдете в пункт «Печать».

Как пользоваться таблицей? Всё гораздо проще, чем Вы думаете, ищем в левой вертикальной колонке, соответствующий градус, и напротив него и будет указано нужное значение синуса для данного нужного нам угла.

Чему равен синус 45? …

– А вот собственно и сам ответ на поставленную задачку.sin 45 = 0.7071

[spoiler title=”источники:”]

http://profmeter.com.ua/communication/learning/course/course7/lesson1077/

http://kvn201.com.ua/table-of-sines.htm

[/spoiler]

Найдем синус 120 градусов, пользуясь формулой приведения для синуса тупого угла от 90º до 180º.

Утверждение:

    [sin {120^o} = frac{{sqrt 3 }}{2}]

Доказательство:

sinus 120

Синус угла альфа на единичной окружности — это ордината точки, полученной из точки (1;0) поворотом на угол альфа вокруг точки O.

Для синуса тупого угла (от 90 до 180 градусов) имеет место следующая формула приведения:

    [sin ({180^o} - alpha ) = sin alpha .]

Представим

    [{120^o} = {180^o} - {60^o}.]

Воспользуемся данной формулой приведения и значением синуса 60º:

    [sin ({180^o} - {60^o}) = sin {60^o} = frac{{sqrt 3 }}{2}.]

Что и требовалось доказать.

Если перевести 120 градусов в радианы, получим:

    [{120^o} = frac{{2pi }}{3}.]

Отсюда, синус 2П/3 равен

    [sin frac{{2pi }}{3} = frac{{sqrt 3 }}{2}.]

Значения синуса, косинуса, тангенса, котангенса для угла 120 градусов. sin 120, cos 120, tan 120, ctg 120

Синус, косинус и тангенс угла 2π/3 радиан

Значения синуса, косинуса, тангенса, котангенса для угла 2 пи / 3 радиан (2 pi / 3). sin 2π/3, cos 2π/3, tan 2π/3, ctg 2π/3

Напомним себе, что 2π/3 в градусах – это 120 градусов. ( 2 * 180 / 3 = 120 ). Таким образом, найти значение тригонометрической функции для угла 2π/3 и для ула 120 градусов – это одно и то же.

Как найти значения тригонометрических функций для угла 120 градусов

Найдем значения синуса, косинуса и тангенса для угла 120 градусов аналитическим способом.
На первый взгляд, нахождение значений синуса, косинуса и тангенса для угла 120 градусов – задача сложная. Однако, это не совсем так.
Прежде всего, мы должны обратить внимание, что для углов, значения которых превышают 90 градусов, у нас есть формулы приведения к углу, меньшему 90 градусов.

Поэтому, для начала, представим себе угол в 120 градусов как (90 + 30)
Тогда
sin ( 90 + α ) = cos α
sin 120 = sin( 90 + 30 ) = cos 30

cos ( 90 + α ) = – sin α
cos 120 = cos( 90 + 30 ) = -sin 30

tg ( 90 + α ) = -ctg α
tg 120 = tg( 90 + 30 ) = -ctg 30

Теперь можно посмотреть значения в таблицах синуса, косинуса и тангенса 120 градусов, который преобразован в значения тригонометрических функций синуса, косинуса и тангенса угла 30 градусов. 

В уроке по ссылке можно посмотреть как вычислить значения тригонометрических функций для угла 30 градусов.

В итоге получаем:

Значения синуса, косинуса, тангенса, котангенса для угла 120 градусов. sin 120, cos 120, tan 120, ctg 120

Как видно из примера, значения тригонометрических функций углов синуса, косинуса и тангенса 120 градусов могут быть получены путем несложных тригонометрических преобразований с использованием тригонометрических тождеств.

См. также полную таблицу значений тригонометрических функций (таблицу синусов, косинусов и тангенсов).

Ниже приведены также значения тригонометрических функций для угла 120 градусов в виде десятичной дроби с четырьмя знаками после запятой.

2π/3

синус 120


 sin 120


косинус 120


cos 120

тангенс 120


tg 120

котангенс 120


ctg 120
Значение 0,8660 -0,5000 -1,7321 -0,5774


0
 

 Синус, косинус, тангенс угла 105 градусов (sin 105 cos 105 tg 105) |

Описание курса

| Тригонометрические тождества и преобразования 

Как найти синус 120 градусов

Если ответить совсем кратко:

то синус ста двадцати градусов равен корню из трех, разделить пополам.

А записать выражение можно так:

А можно записать в числовом значении, тогда синус 120 равен 0, 8660.

Ниже пояснительный наглядный рисунок, почему все именно так:

автор вопроса выбрал этот ответ лучшим

Rafai­l
[136K]

4 года назад 

Если уж Вам знакомо слово синус, то наверное знакомы и формулы приведения. Нужная Вам формула sin(a)= sin(180°-a). Таким образом sin(120)= sin(180°-120°)=sin(6­0°)= (√3)/2. Ещё одна “очень полезная” формула приведения sin(a)= cos(90°-a).

zanoz­a-1952
[66K]

3 года назад 

Вопрос некорректен, так как тригонометрические функции, к которым относятся синус, косинус, тангенс, котангенс, имеют место в прямоугольном треугольнике. Синус угла, это отношение противополжного катета прямоугольного треугольника к гипотенузе.

Степа­н БВ
[41.2K]

2 месяца назад 

Синус 120 градусов равен -0,5. Это можно проверить, используя тригонометрическую таблицу или настроив калькулятор. Для решения задачи можно использовать также тригонометрические формулы и рассчитать синус угла самостоятельно.

Знаете ответ?

План урока:

Синус и косинус угла на единичной окружности

График синуса и косинуса

Тангенс угла

График тангенса

Котангенс угла

Синус и косинус угла на единичной окружности

Впервые мы познакомились с синусом, косинусом и другими тригонометрическими функциями ещё в 8 класс на уроках геометрии, при изучении прямоугольного треугольника. Пусть есть некоторый треуг-ник АВС, у которого∠ С – прямой, а ∠ВАС принимается за α. Тогда sinα – это отношение ВС к АВ, а cosα– это отношение АС к АВ. В свою очередь tgα– это отношение ВС к АС:

1ghfgh

С помощью тригонометрических функций удобно было находить стороны прямоугольного треугол-ка. Например, пусть известно, что гипотенуза АВ равна 5, а sinα = 0,8. Тогда из формулы sinα = ВС/АВ легко получить, что

ВС = АВ•sinα = 5•0,8 = 4

Если известно, что cosα = 0,6, то мы сможем найти и второй катет:

cosα = АС/АВ

АС = АВ•cosα = 5•0,6 = 3

Отдельно заметим, что тангенс угла может быть рассчитан не как отношение двух катетов, а как отношение синуса к косинусу:

tgα = ВС/ АС = (АВ•sinα)/(АВ•cosα) = (sinα)/(cosα)

Отметим на единичной окружности произвольную точку А, которой соответствует некоторый угол α. У этой точки есть свои координаты хА и уА:

2gfdgd

Попытаемся определить, чему равны координаты точки А. Для этого обозначим буквой B точку, в которой перпендикуляр, опущенный из А, пересекает горизонтальную ось Ох, и рассмотрим треугольник ОАВ:

3gfhd

Ясно, что ОАВ – это прямоугольный треугольник, ведь∠ АОВ = 90°. Значит, отрезок АВ можно рассчитать по формуле

АВ = sinα•ОА

Но ОА – это радиус единичной окружности. Это значит, что ОА = 1. Тогда

АВ = sinα•ОА = sinα•1 = sinα

С другой стороны, видно, что величина отрезка АВ равна координате уА. Получается, что уА = АВ = sinα, или

уА = sinα

Отрезок ОВ также можно найти из прямоугольного треугольника АОВ, используя косинус:

ОВ = cosα•ОА

Учитывая, что ОА = 1, а длина ОВ равна координате хА, мы получим следующее:

хА = ОВ = cosα•ОА = cosα•1 = cosα

то есть координата хА равна cos α:

хА = cosα

Итак, мы выяснили, что координаты точки, лежащей на единичной окружности, равны синусу и косинусу угла, соответствующего этой точке.

4gfghgh

Таким образом, нам удалось дать новое определение синусу и косинусу угла:

5gfgh

6hgh

Заметим, что в прямоугольном треугольнике углы, помимо самого прямого угла, могут быть только острыми. Поэтому предыдущее определение синуса и косинуса, данное в 8 классе в курсе геометрии, было пригодно лишь для углов из диапазона 0 <α < 90°. На единичной окружности можно отложить любой угол, то есть теперь мы можем вычислять тригонометрические ф-ции для произвольных значений α. При этом синус и косинус могут оказаться отрицательными величинами. Например, для угла α = 2π/3 косинус окажется отрицательным, ведь координата хА соответствующей ему точки окажется левее нуля на горизонтальной оси Ох:

7hgjhj

Заметим, что знак синуса и косинуса определяется той четвертью, в которой будет располагаться точка на окружности. Углам в диапазоне 0 <α<π/2 соответствует I четверть, здесь все тригонометрические ф-ции принимают положительные значения. Ко II четверти относятся углы из промежутка π/2 <α<π. Здесь косинус становится меньше нуля, а синус остается положительным. В III четверти будут располагаться точки, соответствующие углам из интервала π <α< 3π/2, у них отрицательны и синус, и косинус. Наконец, к IV четверти относят углы из диапазона 3π/2 <α< 2π. Здесь отрицателен синус, а косинус больше нуля.

8gjgj

9hgfh

10gfdg

Как же определять значение синуса угла и его косинуса? Из геометрии нам уже известны их значения для трех углов: 30°, 45° и 60°:

11gfg

Далее определим тригонометрические ф-ции угла, равного нулю. Если такой угол отложить на единичной окружности, то ему будет соответствовать точка А с координатами (1; 0). Поэтому

sin 0° = уА = 0

cos 0° = xА = 1

12gdfgd

Аналогичным образом можно найти значение этих ф-ций и для угла 90°. Прямому углу на единичной окружности соответствует точка В с координатами (0; 1). Поэтому

sin90° = уВ = 1

cos90° = xВ = 0

13gdfgd

Для определения тригонометрических ф-ций у углов, больших 90°, удобно использовать симметрию. Например, пусть необходимо вычислить синус для угла 120°. Отложим на окружности две точки, В и А. Первая будет соответствовать 120°, а вторая 60°:

14gfdfg

Видно, что эти точки находятся на одном горизонтальном уровне, то есть их ординаты (координаты у) одинаковы. При этом абсциссы у них противоположны, ведь точки симметричны относительно оси Оу. Отсюда можно сделать вывод, что

уВ = уА

хВ = – хА

Но координаты А – это синус и косинус 60°, а координаты В являются тригонометрическими ф-циями угла 120°. То есть можно записать

sin 120° = sin 60°

cos 120° = – cos 60°

Так как для угла 60° значения синуса и косинуса нам уже известны, то можно записать:

15gdfg

В будущем мы изучим более простые способы вычисления синуса и косинуса углов, больших 90°, когда построения нам уже не потребуются. Однако сразу заметим, что в первую очередь необходимо запомнить значения синуса и косинуса для пяти углов: 0°, 30°, 45°, 60°, 90°. Приведем таблицу значений тригонометрических функций:

16hfgh

Некоторые люди испытывают проблемы с запоминанием этой таблицы. Однако ее можно представить в более простом виде. Заменим числа 0, 1 и 1/2 следующими выражениями с корнями:

17hgfh

С учетом этого таблицу тригонометрических функций можно переписать так:

18hgfh

Теперь в каждой ячейке стоит дробь, у которой знаменатель равен двум. В числителе же стоит корень. Обратите внимание, что у синуса под корнем последовательно стоят числа 0, 1, 2, 3, и 4. У косинуса эти же числа идут в обратном порядке – от четверки до нуля. В таком виде таблицу запомнить проще.

Для вычисления тригонометрических ф-ций углов, не попадающих в диапазон 0 ⩽ α < 2π их надо привести к этому самому диапазону. Напомним, что для этого можно просто добавить к углу несколько полных оборотов, или отнять их.

Задание. Вычислите cos 7π/3.

Решение. Угол 7π/3 равен углу π/3:

7π/3 = 6π/3 + π/3 = 2π + π/3 = π/3

Значит, и косинус у угла 7π/3 будет равен косинусу угла π/3:

cos 7π/3 = cosπ/3 = 1/2

Ответ: 1/2.

График синуса и косинуса

Заметим, что координаты точек, лежащей на единичной окружности, варьируются в пределах от – 1 до 1. Это означает, что значение синуса и косинуса также может находиться только в интервале между этими числами. Получается, что область значения этих ф-ций – это промежуток [– 1; 1].

Вычислить синус и косинус можно для абсолютно любого угла поворота, поэтому область определения этих тригонометрических ф-ций – вся числовая прямая, то есть промежуток (– ∞; + ∞).

Изучение графиков тригонометрических функций начнем с синуса. В тригонометрии при построении графика синуса принято по оси Ох откладывать значение угла в радианах, а не в градусах. Из-за этого в школьной тетради тяжело точно отметить точки, через которые проходит этот график. Например, возьмем угол, равный 90°. Его величина в радианах π/2, а sinπ/2 = 1. Получается, график должен пройти через точку (π/2; 1). Однако число π/2 – иррациональное, равное примерно 1,5708…, и точно отложить отрезок длиной π/2 невозможно.

Поэтому в учебных целях график строят приближенно (естественно, что на практике точный график можно построить с помощью компьютера с любой требуемой точностью). Считают, что величина π/2 примерно равна 1,5, то есть дроби 3/2. Если выбрать масштаб, при котором единице равны 2 клеточки, то π/2 – это 3 клеточки. Тогда π/6 – это одна клеточка, а π/3 – две.

Мы знаем, что

sin 0 = 0

sin π/6 = 1/2

sin π/2 = 1

Значит, график синуса должен проходить через точки (0; 0), (π/6; 1/2) и (π/2; 1). Отметим их на координатной плоскости:

19hgfgh

С помощью некоторых соображений симметрии можно вычислить ещё несколько точек в диапазоне от 0 до 2π. Не будем перечислять их координаты, а просто отметим их на рисунке:

20hgh

Теперь соединим их плавной кривой:

21gfdg

Мы получили график синуса на промежутке от 0 до 2π. Но ведь мы можем вычислить синус для любого другого угла! При этом мы используем тот факт, что углам, отличающимся на 2π (на один полный оборот), на единичной окружности соответствует одинаковая точка. То есть этим двум углам будут соответствовать точки на графике с одинаковой ординатой (координатой у), но абсциссами, отличающимися на 2π. Другими словами, точку графика можно перенести на 2π (то есть 12 клеточек) влево или вправо:

22gfdg

Перенести можно не одну точку, а сразу всё множество точек, лежащих между 0 и 2π:

23ghgfh

Получили ещё два участка графика, на промежутках [– 2π; 0] и [2π; 4π]. Эти участки также можно переместить влево и вправо. Продолжая этот процесс бесконечно, мы получим весь график у = sinx:

24gfdg

В результате мы получили кривую, которую называют синусоидой.

Теперь построим график косинуса. Мы знаем что

cos 0 = 1

cos π/3 = 1/2

cos π/2 = 1

Получается, что график должен проходить через точки (0;1), (π/3; 1/2) и (π/2; 0). Отметим их на плоскости:

25ghgh

Можно вычислить, используя симметрию на единичной окружности, ещё несколько точек, которые должны лежать на графике. Не приводя этих вычислений, просто отметим эти точки на плоскости:

26hgfh

Соединяем эти точки плавной линией:

27hgfj

Как и в случае с синусом, участок графика косинуса можно перенести на 2π (12 клеточек влево и вправо). В результате таких действий получим окончательный вид ф-ции у = cosх:

28hfgh

Можно заметить несколько особенностей полученных графиков. Во-первых, все точки обоих графиков лежат в «полосе» между прямыми у = 1 и у = – 1. Это следствие того, что и у синуса, и у косинуса область значений – это промежуток [– 1; 1]:

29hgfgh

Во-вторых, график косинуса очень похож на синусоиду. Он имеет такую же форму, но просто смещен на π/2 (3 клеточки) влево. Это не случайно, в будущих уроках мы узнаем причину этого явления. Но, так как график косинуса – это просто смещенная синусоида, то термин «косинусоида» для его обозначения почти не используется – он просто избыточен.

30gfdg

В-третьих, графики обладают периодичностью. Они «повторяются» с периодом 2π. Дело в том, что углам, отличающимся друг от друга на 2π (то есть ровно на один полный поворот в 360°), на единичной окружности соответствует одна и та же точка. То есть справедливы формулы:

sin (x+ 2π) = sinx

cos (x+ 2π) = sinx

31gfdg

32gjhj

В-четвертых, можно заметить, что график косинуса симметричен относительно оси Ох, а график синуса симметричен относительно начала координат. Это значит, что синус является нечетной функцией, а косинус – четной функцией. Напомним, что ф-ция f(x) является нечетной, если справедливо условие

f(x) = – f(– x)

Если f(x) – четная ф-ция, то должно выполняться условие:

f(x) = f(– x)

Действительно, если отложить на единичной окружности углы α и (– α), то можно заметить, что их косинусы будут равны друг другу, и синусы окажутся противоположными:

33hgfgh

34bgj

Поэтому верны формулы:

sin (– α) = – sinα

cos (– α) = cosα

35hgfgh

Тангенс угла

Синус и косинус являются основными, или, как говорят математики, прямыми тригонометрическими ф-циями. Однако есть ещё две производных тригонометрических ф-ций – тангенс и котангенс. Напомним, что тангенс угла в прямоугольном треугол-ке – это отношение противолежащего катета к прилежащему. Однако в тригонометрии куда удобнее пользоваться другим его определением. Тангенс – это отношение синуса угла к его косинусу:

36hgfh

37hgfh

Для получения тангенса на единичной окружности необходимо продолжить прямую, образующую угол α, до её пересечения с прямой х = 1. Точка их пересечения будет иметь координаты (1; tgα):

38jhgj

Заметим, что если α относится ко второй четверти, то тангенс получится отрицательным. Действительно, с одной стороны, соответствующая прямая пересечет линию х = 1 в точке, лежащей ниже оси Ох:

39jhghj

С другой стороны, мы знаем, что во второй четверти синус положителен, а косинус – отрицателен. Тогда их отношение, то есть тангенс, должно быть отрицательным:

40sdfds

Очевидно, что тангенс должен быть периодической ф-цией. Однако его период вдвое меньше 2π и составляет π. Действительно, углы, отличающиеся на π, будут иметь одинаковое значение тангенса, что видно из построения:

41gfd

Это значит, что справедлива формула:

tg(α + π) = tg α

42gfdgh

С другой стороны, это означает, что тангенсы углов из III четверти положительны, ведь они равны тангенсам углов из I четверти. Аналогично можно утверждать, что тангенсы углов из IV четверти отрицательны:

43gfdh

Также тангенс является нечетной ф-цией. Чтобы убедиться в этом, найдем с помощью единичной окружности tgα и tg (– α):

44hgfh

Из построения видно, что tg (– α) = tgα, поэтому тангенс попадает под определение нечетной ф-ции.

45hgfgj

Доказать этот факт можно и иначе. Вспомним, что синус – это нечетная ф-ция, а косинус – четная. Тогда, используя определение тангенса, можно записать:

46gfdh

Для вычисления тангенса проще всего использовать его определение. Мы знаем синусы и косинусы стандартных углов, а потому, деля их друг на друга, сможем найти и тангенсы стандартных углов:

47hgfh

Ещё раз отметим, что важнее всего запомнить значения синусов и косинусов стандартных углов. Зная их, школьник всегда сможет самостоятельно вычислить тангенс.

Можно ли вычислить тангенс для угла π/2, то есть для 90°? Сделать это не получится, ведь cosπ/2 равен нулю. Если подставить cosπ/2 в формулу для вычисления тангенса, то получится деление на ноль! Так как тангенс – периодическая ф-ция, то его нельзя вычислить и в тех точках, которые отличаются от π/2 на целое число π.

48hgfh

В частности, тангенс не определен при х = – π/2.

График тангенса

Так как тангенс обладает периодом, равным π, достаточно построить его график на каком-нибудь промежутке длиной π. Далее его можно будет просто перенести на π единиц влево и вправо. Удобно выбрать промежуток от – π/2 до π/2. Дело в том, что на нем она определена во всех точках, кроме его концов.

Через точки х = – π/2 и х = π/2 проведем штриховые линии – они означают, что график НЕ должен пересекать их. Ясно, что график проходит через точку (0; 0), ведь tg 0 = 0. Тангенс представляет собой дробь sinx/cosx. При увеличении х от 0 до π/2 знаменатель возрастает, а числитель убывает, стремясь к нулю. Поэтому вся дробь неограниченно растет, и график тангенса возрастает до бесконечности:

49jhgj

Так как мы строим график нечетной ф-ции, то мы можем полученную ветвь отобразить симметрично относительно начала координат:

50hgfgh

Полученный график называют тангенсоидой. Осталось воспользоваться тем, что мы рассматриваем периодическую ф-цию с периодом π, и перенести тангенсоиду влево и вправо:

51gfdg

Котангенс угла

Помимо тангенса в тригонометрии выделяют ещё одну производную ф-цию – котангенс. Он представляет отношение косинуса к синусу:

52gfdg

53gfdg

Видно, что определение котангенса очень похоже определение тангенса. В принципе, удобней использовать несколько другую формулу:

54gfg

Почти во всех задачах с помощью формулы

55hgfh

можно избавиться от котангенса, заменив его дробью 1/tgα. Поэтому мы вкратце расскажем об основных особенностях котангенса, ведь он очень редко используется на практике.

Значения этой ф-ции рассчитываются так:

56gdh

При х = 0 значение котангенса не определено, так как в этой точке косинус становится равным нулю, а деление на ноль невозможно.

График котангенса – это тангенсоида, которая отображена симметрично относительно оси Ох и смещена на π/2:

57fgh

Можно заметить, что вертикальные штриховые линии (асимптоты) графика проходят через точки, кратные π: –2π, – π, 0, π, 2π… Они разбивают координатную прямую на интервалы (– 2π; – π), (– π; 0), (0; π), (π; 2π), на каждом из которых ф-ция у = ctgx убывает. Видно, что котангенс – это периодическая ф-ция с периодом π.

Для сравнения покажем на одной плоскости графики тангенса и котангенса:

58hgfh

Котангенс, как и тангенс – нечетная ф-ция, то есть

ctg (– x) = – ctgx

Теперь у нас есть представление об основных тригонометрических ф-циях. Важнейшими из них являются синус и косинус. Тангенс является производной ф-цией от них и рассчитывается как отношение синуса к косинусу. Редко используемый котангенс, наоборот, представляет собой отношение косинуса к синусу.

Впервые элементы тригонометрии стали использовать ещё древние греки, которые производили с их помощью астрономические расчеты. В XVIII веке Эйлер сформулировал определения тригонометрических функций с помощью единичной окружности, благодаря которым стало возможным вычислять их значение для любых углов. Изначально тригонометрия использовалась для географических расчетов и навигации, однако со временем область ее применения расширилась. Оказалось, что без неё не обойтись в анализе финансовых рынков и биологических процессов, архитектуре, акустике и оптике, теории вероятностей.

Добавить комментарий