Как найти синус 120 по формуле приведения

Найдем синус 120 градусов, пользуясь формулой приведения для синуса тупого угла от 90º до 180º.

Утверждение:

    [sin {120^o} = frac{{sqrt 3 }}{2}]

Доказательство:

sinus 120

Синус угла альфа на единичной окружности — это ордината точки, полученной из точки (1;0) поворотом на угол альфа вокруг точки O.

Для синуса тупого угла (от 90 до 180 градусов) имеет место следующая формула приведения:

    [sin ({180^o} - alpha ) = sin alpha .]

Представим

    [{120^o} = {180^o} - {60^o}.]

Воспользуемся данной формулой приведения и значением синуса 60º:

    [sin ({180^o} - {60^o}) = sin {60^o} = frac{{sqrt 3 }}{2}.]

Что и требовалось доказать.

Если перевести 120 градусов в радианы, получим:

    [{120^o} = frac{{2pi }}{3}.]

Отсюда, синус 2П/3 равен

    [sin frac{{2pi }}{3} = frac{{sqrt 3 }}{2}.]

Как найти синус 120 градусов

Если ответить совсем кратко:

то синус ста двадцати градусов равен корню из трех, разделить пополам.

А записать выражение можно так:

А можно записать в числовом значении, тогда синус 120 равен 0, 8660.

Ниже пояснительный наглядный рисунок, почему все именно так:

автор вопроса выбрал этот ответ лучшим

Rafai­l
[136K]

4 года назад 

Если уж Вам знакомо слово синус, то наверное знакомы и формулы приведения. Нужная Вам формула sin(a)= sin(180°-a). Таким образом sin(120)= sin(180°-120°)=sin(6­0°)= (√3)/2. Ещё одна “очень полезная” формула приведения sin(a)= cos(90°-a).

zanoz­a-1952
[66K]

3 года назад 

Вопрос некорректен, так как тригонометрические функции, к которым относятся синус, косинус, тангенс, котангенс, имеют место в прямоугольном треугольнике. Синус угла, это отношение противополжного катета прямоугольного треугольника к гипотенузе.

Степа­н БВ
[41.2K]

2 месяца назад 

Синус 120 градусов равен -0,5. Это можно проверить, используя тригонометрическую таблицу или настроив калькулятор. Для решения задачи можно использовать также тригонометрические формулы и рассчитать синус угла самостоятельно.

Знаете ответ?

Синус 120 градусов

Найдем синус 120 градусов, пользуясь формулой приведения для синуса тупого угла от 90º до 180º.

Синус угла альфа на единичной окружности — это ордината точки, полученной из точки (1;0) поворотом на угол альфа вокруг точки O.

Для синуса тупого угла (от 90 до 180 градусов) имеет место следующая формула приведения:

Воспользуемся данной формулой приведения и значением синуса 60º:

Что и требовалось доказать.

Если перевести 120 градусов в радианы, получим:

Синус, косинус и тангенс угла 120 градусов

Синус, косинус и тангенс угла 2π/3 радиан

Напомним себе, что 2π/3 в градусах – это 120 градусов. ( 2 * 180 / 3 = 120 ). Таким образом, найти значение тригонометрической функции для угла 2π/3 и для ула 120 градусов – это одно и то же.

Как найти значения тригонометрических функций для угла 120 градусов

Найдем значения синуса, косинуса и тангенса для угла 120 градусов аналитическим способом.
На первый взгляд, нахождение значений синуса, косинуса и тангенса для угла 120 градусов – задача сложная. Однако, это не совсем так.
Прежде всего, мы должны обратить внимание, что для углов, значения которых превышают 90 градусов, у нас есть формулы приведения к углу, меньшему 90 градусов.

Поэтому, для начала, представим себе угол в 120 градусов как (90 + 30)
Тогда
sin ( 90 + α ) = cos α
sin 120 = sin( 90 + 30 ) = cos 30

cos ( 90 + α ) = – sin α
cos 120 = cos( 90 + 30 ) = -sin 30

tg ( 90 + α ) = -ctg α
tg 120 = tg( 90 + 30 ) = -ctg 30

Теперь можно посмотреть значения в таблицах синуса, косинуса и тангенса 120 градусов, который преобразован в значения тригонометрических функций синуса, косинуса и тангенса угла 30 градусов.

В уроке по ссылке можно посмотреть как вычислить значения тригонометрических функций для угла 30 градусов.

В итоге получаем:

Как видно из примера, значения тригонометрических функций углов синуса, косинуса и тангенса 120 градусов могут быть получены путем несложных тригонометрических преобразований с использованием тригонометрических тождеств.

См. также полную таблицу значений тригонометрических функций (таблицу синусов, косинусов и тангенсов).

Ниже приведены также значения тригонометрических функций для угла 120 градусов в виде десятичной дроби с четырьмя знаками после запятой.

Таблица СИНУСОВ для углов от 0° до 360° градусов

СИНУС (SIN α) — это одна из прямых тригонометрических функций для углов, в прямоугольном треугольнике синус острого угла равен отношению противолежащего катета к его единственной гипотенузе.

α (радианы) 0 π/6 π/4 π/3 π/2 π 3π/2
α (градусы) 30° 45° 60° 90° 180° 270° 360°
SIN α (СИНУС) 0 1/2 2/2 3 /2 1 0 -1 0

Малая таблица значений тригонометрических функций (в радианах и градусах)

Угол в градусах Sin (Синус)
0
0.0175
0.0349
0.0523
0.0698
0.0872
0.1045
0.1219
0.1392
0.1564
10° 0.1736
11° 0.1908
12° 0.2079
13° 0.225
14° 0.2419
15° 0.2588
16° 0.2756
17° 0.2924
18° 0.309
19° 0.3256
20° 0.342
21° 0.3584
22° 0.3746
23° 0.3907
24° 0.4067
25° 0.4226
26° 0.4384
27° 0.454
28° 0.4695
29° 0.4848
30° 0.5
31° 0.515
32° 0.5299
33° 0.5446
34° 0.5592
35° 0.5736
36° 0.5878
37° 0.6018
38° 0.6157
39° 0.6293
40° 0.6428
41° 0.6561
42° 0.6691
43° 0.682
44° 0.6947
45° 0.7071
46° 0.7193
47° 0.7314
48° 0.7431
49° 0.7547
50° 0.766
51° 0.7771
52° 0.788
53° 0.7986
54° 0.809
55° 0.8192
56° 0.829
57° 0.8387
58° 0.848
59° 0.8572
60° 0.866
61° 0.8746
62° 0.8829
63° 0.891
64° 0.8988
65° 0.9063
66° 0.9135
67° 0.9205
68° 0.9272
69° 0.9336
70° 0.9397
71° 0.9455
72° 0.9511
73° 0.9563
74° 0.9613
75° 0.9659
76° 0.9703
77° 0.9744
78° 0.9781
79° 0.9816
80° 0.9848
81° 0.9877
82° 0.9903
83° 0.9925
84° 0.9945
85° 0.9962
86° 0.9976
87° 0.9986
88° 0.9994
89° 0.9998
90° 1

Полная таблица синусов для углов от 0° до 360° с шагом всего в 1°

Угол в градусах Sin (Синус)
91° 0.9998
92° 0.9994
93° 0.9986
94° 0.9976
95° 0.9962
96° 0.9945
97° 0.9925
98° 0.9903
99° 0.9877
100° 0.9848
101° 0.9816
102° 0.9781
103° 0.9744
104° 0.9703
105° 0.9659
106° 0.9613
107° 0.9563
108° 0.9511
109° 0.9455
110° 0.9397
111° 0.9336
112° 0.9272
113° 0.9205
114° 0.9135
115° 0.9063
116° 0.8988
117° 0.891
118° 0.8829
119° 0.8746
120° 0.866
121° 0.8572
122° 0.848
123° 0.8387
124° 0.829
125° 0.8192
126° 0.809
127° 0.7986
128° 0.788
129° 0.7771
130° 0.766
131° 0.7547
132° 0.7431
133° 0.7314
134° 0.7193
135° 0.7071
136° 0.6947
137° 0.682
138° 0.6691
139° 0.6561
140° 0.6428
141° 0.6293
142° 0.6157
143° 0.6018
144° 0.5878
145° 0.5736
146° 0.5592
147° 0.5446
148° 0.5299
149° 0.515
150° 0.5
151° 0.4848
152° 0.4695
153° 0.454
154° 0.4384
155° 0.4226
156° 0.4067
157° 0.3907
158° 0.3746
159° 0.3584
160° 0.342
161° 0.3256
162° 0.309
163° 0.2924
164° 0.2756
165° 0.2588
166° 0.2419
167° 0.225
168° 0.2079
169° 0.1908
170° 0.1736
171° 0.1564
172° 0.1392
173° 0.1219
174° 0.1045
175° 0.0872
176° 0.0698
177° 0.0523
178° 0.0349
179° 0.0175
180° 0

Полная таблица синусов для углов от 91° до 180°

Угол Sin (Синус)
181° -0.0175
182° -0.0349
183° -0.0523
184° -0.0698
185° -0.0872
186° -0.1045
187° -0.1219
188° -0.1392
189° -0.1564
190° -0.1736
191° -0.1908
192° -0.2079
193° -0.225
194° -0.2419
195° -0.2588
196° -0.2756
197° -0.2924
198° -0.309
199° -0.3256
200° -0.342
201° -0.3584
202° -0.3746
203° -0.3907
204° -0.4067
205° -0.4226
206° -0.4384
207° -0.454
208° -0.4695
209° -0.4848
210° -0.5
211° -0.515
212° -0.5299
213° -0.5446
214° -0.5592
215° -0.5736
216° -0.5878
217° -0.6018
218° -0.6157
219° -0.6293
220° -0.6428
221° -0.6561
222° -0.6691
223° -0.682
224° -0.6947
225° -0.7071
226° -0.7193
227° -0.7314
228° -0.7431
229° -0.7547
230° -0.766
231° -0.7771
232° -0.788
233° -0.7986
234° -0.809
235° -0.8192
236° -0.829
237° -0.8387
238° -0.848
239° -0.8572
240° -0.866
241° -0.8746
242° -0.8829
243° -0.891
244° -0.8988
245° -0.9063
246° -0.9135
247° -0.9205
248° -0.9272
249° -0.9336
250° -0.9397
251° -0.9455
252° -0.9511
253° -0.9563
254° -0.9613
255° -0.9659
256° -0.9703
257° -0.9744
258° -0.9781
259° -0.9816
260° -0.9848
261° -0.9877
262° -0.9903
263° -0.9925
264° -0.9945
265° -0.9962
266° -0.9976
267° -0.9986
268° -0.9994
269° -0.9998
270° -1

Таблица синусов для углов 181° — 270°

Угол Sin (Синус)
271° -0.9998
272° -0.9994
273° -0.9986
274° -0.9976
275° -0.9962
276° -0.9945
277° -0.9925
278° -0.9903
279° -0.9877
280° -0.9848
281° -0.9816
282° -0.9781
283° -0.9744
284° -0.9703
285° -0.9659
286° -0.9613
287° -0.9563
288° -0.9511
289° -0.9455
290° -0.9397
291° -0.9336
292° -0.9272
293° -0.9205
294° -0.9135
295° -0.9063
296° -0.8988
297° -0.891
298° -0.8829
299° -0.8746
300° -0.866
301° -0.8572
302° -0.848
303° -0.8387
304° -0.829
305° -0.8192
306° -0.809
307° -0.7986
308° -0.788
309° -0.7771
310° -0.766
311° -0.7547
312° -0.7431
313° -0.7314
314° -0.7193
315° -0.7071
316° -0.6947
317° -0.682
318° -0.6691
319° -0.6561
320° -0.6428
321° -0.6293
322° -0.6157
323° -0.6018
324° -0.5878
325° -0.5736
326° -0.5592
327° -0.5446
328° -0.5299
329° -0.515
330° -0.5
331° -0.4848
332° -0.4695
333° -0.454
334° -0.4384
335° -0.4226
336° -0.4067
337° -0.3907
338° -0.3746
339° -0.3584
340° -0.342
341° -0.3256
342° -0.309
343° -0.2924
344° -0.2756
345° -0.2588
346° -0.2419
347° -0.225
348° -0.2079
349° -0.1908
350° -0.1736
351° -0.1564
352° -0.1392
353° -0.1219
354° -0.1045
355° -0.0872
356° -0.0698
357° -0.0523
358° -0.0349
359° -0.0175
360° 0

Таблица синусов для углов от 271° до 360°

Таблица синусов особенно нужна, когда у вас под рукой нет супер навороченного инженерного калькулятора с маленькой спасительной кнопкой с надписью «sin». В таком случае, чтобы узнать, чему же равняется синус определенного заданного угла, просто найдите информацию о интересующем градусе.

Как распечатать таблицу? Левой кнопкой на компьютерной мишке выделите полностью всё таблицу, на выделенном фоне нажмите уже правую кнопку мишки и в появившемся меню перейдете в пункт «Печать».

Как пользоваться таблицей? Всё гораздо проще, чем Вы думаете, ищем в левой вертикальной колонке, соответствующий градус, и напротив него и будет указано нужное значение синуса для данного нужного нам угла.

Чему равен синус 45? …

– А вот собственно и сам ответ на поставленную задачку.sin 45 = 0.7071

[spoiler title=”источники:”]

http://profmeter.com.ua/communication/learning/course/course7/lesson1077/

http://kvn201.com.ua/table-of-sines.htm

[/spoiler]

Значения синуса, косинуса, тангенса, котангенса для угла 120 градусов. sin 120, cos 120, tan 120, ctg 120

Синус, косинус и тангенс угла 2π/3 радиан

Значения синуса, косинуса, тангенса, котангенса для угла 2 пи / 3 радиан (2 pi / 3). sin 2π/3, cos 2π/3, tan 2π/3, ctg 2π/3

Напомним себе, что 2π/3 в градусах – это 120 градусов. ( 2 * 180 / 3 = 120 ). Таким образом, найти значение тригонометрической функции для угла 2π/3 и для ула 120 градусов – это одно и то же.

Как найти значения тригонометрических функций для угла 120 градусов

Найдем значения синуса, косинуса и тангенса для угла 120 градусов аналитическим способом.
На первый взгляд, нахождение значений синуса, косинуса и тангенса для угла 120 градусов – задача сложная. Однако, это не совсем так.
Прежде всего, мы должны обратить внимание, что для углов, значения которых превышают 90 градусов, у нас есть формулы приведения к углу, меньшему 90 градусов.

Поэтому, для начала, представим себе угол в 120 градусов как (90 + 30)
Тогда
sin ( 90 + α ) = cos α
sin 120 = sin( 90 + 30 ) = cos 30

cos ( 90 + α ) = – sin α
cos 120 = cos( 90 + 30 ) = -sin 30

tg ( 90 + α ) = -ctg α
tg 120 = tg( 90 + 30 ) = -ctg 30

Теперь можно посмотреть значения в таблицах синуса, косинуса и тангенса 120 градусов, который преобразован в значения тригонометрических функций синуса, косинуса и тангенса угла 30 градусов. 

В уроке по ссылке можно посмотреть как вычислить значения тригонометрических функций для угла 30 градусов.

В итоге получаем:

Значения синуса, косинуса, тангенса, котангенса для угла 120 градусов. sin 120, cos 120, tan 120, ctg 120

Как видно из примера, значения тригонометрических функций углов синуса, косинуса и тангенса 120 градусов могут быть получены путем несложных тригонометрических преобразований с использованием тригонометрических тождеств.

См. также полную таблицу значений тригонометрических функций (таблицу синусов, косинусов и тангенсов).

Ниже приведены также значения тригонометрических функций для угла 120 градусов в виде десятичной дроби с четырьмя знаками после запятой.

2π/3

синус 120


 sin 120


косинус 120


cos 120

тангенс 120


tg 120

котангенс 120


ctg 120
Значение 0,8660 -0,5000 -1,7321 -0,5774


0
 

 Синус, косинус, тангенс угла 105 градусов (sin 105 cos 105 tg 105) |

Описание курса

| Тригонометрические тождества и преобразования 

evadima0912

+10

Решено

5 лет назад

Геометрия

5 – 9 классы

Найдите синус 120 градусов

Смотреть ответ

2


Ответ проверен экспертом

5
(1 оценка)

3

Andr1806

Andr1806
5 лет назад

Светило науки – 4084 ответа – 52605 раз оказано помощи

По формуле приведения
 Sin120 = Sin(180-60) = Sin60 =√3/2 ≈ 0,8660.

(1 оценка)

Ответ

5
(1 оценка)

1

Mamedov12

Mamedov12
5 лет назад

Светило науки – 1006 ответов – 5391 помощь

sin120град=0,8660254038
примерно 0.87

(1 оценка)

https://vashotvet.com/task/1720847

Добавить комментарий