Как найти синус косинус тангенс медиану


Как найти,

гипотенузу или катеты в прямоугольном треугольнике.

Формулы для прямоугольного треугольника

a, b – катеты

c – гипотенуза

α, β – острые углы

Формулы для катета, (a):

Формулы катета прямоугольного треугольника

Формулы для катета, (b):

Формулы катета прямоугольного треугольника

Формулы для гипотенузы, (c):

Формулы гипотенузы прямоугольного треугольника

формула гипотенузы прямоугольного треугольника

Формулы сторон по теореме Пифагора, (a,b):

Формула стороны по теореме Пифагора

Формула стороны по теореме Пифагора

Формула стороны по теореме Пифагора




Вычислить длину неизвестной стороны через любые стороны и углы

Формулы сторон равнобедренного треугольника

b – сторона (основание)

a – равные стороны

α – углы при основании

β – угол образованный равными сторонами

Формулы длины стороны (основания), (b):

Формулы длины стороны (основания), (b):

Формулы длины стороны (основания), (b):

Формулы длины равных сторон , (a):

Формулы длины равных сторон

Формулы длины равных сторон




Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

Как найти неизвестную сторону треугольника

a, b, c – стороны произвольного треугольника

α, β, γ – противоположные углы

Формула  длины через две стороны и угол (по теореме косинусов), (a):

Формула  стороны треугольника по теореме косинусов

* Внимательно, при подстановке в формулу, для тупого угла (α>90), cosα принимает отрицательное значение

Формула  длины через сторону и два угла (по теореме синусов), (a):

Формула  стороны по теореме синусов




В прямоугольном треугольнике катеты, являются высотами. Ортоцентр – точка пересечения высот, совпадает с вершиной прямого угла.

Формулы высоты прямого угла в прямоугольном треугольнике
H – высота из прямого угла

a, b – катеты

с – гипотенуза

c1 , c2 – отрезки полученные от деления гипотенузы, высотой

α, β – углы при гипотенузе

Формула длины высоты через стороны, (H):

Формула длины высоты через стороны

Формула длины высоты через гипотенузу и острые углы, (H):

Формула длины высоты через гипотенузу и острые углы

Формула длины высоты через катет и угол, (H):

Формула длины высоты через катет и угол

Формула длины высоты через составные отрезки гипотенузы , (H):

Формула длины высоты через составные отрезки гипотенузы




Высота– перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется – ортоцентр.

Найти длину высоты треугольникаH – высота треугольника

a – сторона, основание

b, c – стороны

β, γ – углы при основании

p – полупериметр, p=(a+b+c)/2

R – радиус описанной окружности

S – площадь треугольника

Формула длины высоты через стороны, (H):

Формула длины высоты через стороны

Формула длины высоты через сторону и угол, (H):

Формула длины высоты через сторону и угол

Формула длины высоты через сторону и площадь, (H):

Формула длины высоты через сторону и площадь

Формула длины высоты через стороны и радиус, (H):

Формула длины высоты через стороны и радиус




Медиана, отрезок |CO|, исходящий из вершины прямого угла BCA и делящий гипотенузу c, пополам.

Медиана в прямоугольном треугольнике (M), равна, радиусу описанной окружности (R).

Длина медианы прямоугольного треугольника

M – медиана

R – радиус описанной окружности

O – центр описанной окружности

с – гипотенуза

a, b – катеты

α – острый угол CAB

Медиана равна радиусу и половине гипотенузы, (M):

Медиана равна радиусу и половине гипотенузы

Формула длины через катеты, (M):

Формула медианы через катеты

Формула длины через катет и острый угол, (M):

Формула медианы через катет и острый угол




Медиана – отрезок |AO|, который выходит из вершины A и делит противолежащею сторону  c пополам.

Медиана делит треугольник ABC на два равных по площади треугольника AOC и ABO.

Найти длину медианы треугольника по формулам

M – медиана, отрезок |AO|

c – сторона на которую ложится медиана

a, b – стороны треугольника

γ – угол CAB

Формула длины медианы через три стороны, (M):

Формула длины медианы через три стороны

Формула длины медианы через две стороны и угол между ними, (M):

Формула длины медианы через две стороны и угол между ними




Формула для вычисления высоты = биссектрисы = медианы.

В равностороннем треугольнике: все высоты, биссектрисы и медианы, равны. Точка их пересечения, является центром вписанной окружности.

Найти медиану биссектрису высоту равностороннего треугольника

L – высота=биссектриса=медиана

a – сторона треугольника

Формула длины высоты, биссектрисы и медианы равностороннего треугольника, (L):

Формула длины высоты, биссектрисы и медианы равностороннего треугольника

Калькулятор – вычислить, найти медиану, биссектрису, высоту




Формулы для вычисления высоты, биссектрисы и медианы.

В равнобедренном треугольнике: высота, биссектриса и медиана, исходящие из угла образованного равными сторонами, один и тот же отрезок.

Длина биссектрисы равнобедренного треугольника

L – высота = биссектриса = медиана

a – одинаковые стороны треугольника

b – основание

α – равные углы при основании

β – угол образованный равными сторонами

Формулы высоты, биссектрисы и медианы, через сторону и угол, (L):

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

Формула высоты, биссектрисы и медианы, через стороны, (L):

Формулы высоты, биссектрисы и медианы равнобедренного треугольника




1. Найти по формулам длину биссектрисы из прямого угла на гипотенузу:

Биссектриса прямого угла прямоугольного треугольника

L – биссектриса, отрезок ME ,  исходящий из прямого угла (90 град)

a, b – катеты прямоугольного треугольника

с – гипотенуза

α – угол прилежащий к гипотенузе

Формула длины биссектрисы через катеты, ( L):

Формула длины биссектрисы через катеты

Формула длины биссектрисы через гипотенузу и угол, ( L):

Формула длины биссектрисы через гипотенузу и угол

2. Найти по формулам длину биссектрисы из острого угла на катет:

Биссектриса из острого угла прямоугольного треугольника

L – биссектриса, отрезок ME ,  исходящий из острого угла

a, b – катеты прямоугольного треугольника

с – гипотенуза

α, β – углы прилежащие к гипотенузе

Формулы длины биссектрисы через катет и угол, (L):

Формула биссектрисы из острого угла прямоугольного треугольника через катет и угол

Формула биссектрисы из острого угла прямоугольного треугольника через катет и угол

Формула длины биссектрисы через катет и гипотенузу, (L):

Формула биссектрисы из острого угла прямоугольного треугольника через катет и гипотенузу




Найти длину биссектрисы в треугольнике

L– биссектриса, отрезок |OB|, который делит угол ABC пополам

a, b – стороны треугольника

с – сторона на которую опущена биссектриса

d, e – отрезки полученные делением биссектрисы

γ – угол ABC , разделенный биссектрисой пополам

p – полупериметр, p=(a+b+c)/2

Длина биссектрисы через две стороны и угол, (L):

Длина биссектрисы через две стороны и угол

Длина биссектрисы через полупериметр и стороны, (L):

Длина биссектрисы через полупериметр и стороны

Длина биссектрисы через три стороны, (L):

Длина биссектрисы через три стороны

Длина биссектрисы через стороны и отрезки d, e, (L):

Длина биссектрисы через стороны и отрезки d, e

Точка пересечения всех трех биссектрис треугольника ABC, совпадает с центром О

Точка пересечения всех трех биссектрис треугольника ABC, совпадает с центром О, вписанной окружности.



Что такое синус, косинус, тангенс, котангенс

18 мая 2022

Сегодня мы узнаем, что такое синус, косинус, тангенс и котангенс. Это первый и самый важный урок по тригонометрии на всём сайте.

Содержание:

  1. Ключевые определения: синус, косинус, тангенс, котангенс.
  2. Почему эти значения зависят только от углов?
  3. Стандартные углы: 30°, 45°, 60°.
  4. Простейшие свойства синуса, косинуса, тангенса, котангенса.
  5. Тригонометрия на координатной сетке.

Никаких сложных формул и длинных решений. Всё расписано максимально подробно. Изучите этот урок — и никаких проблем с тригонометрией не будет. Погнали!

1. Ключевые определения

Рассмотрим прямоугольный треугольник с катетами $a$ и $b$, гипотенузой $c$ и острым углом $alpha $:

Прямоугольный треугольник

Мы видим, что острый угол $alpha $ образован гипотенузой $c$ и катетом $b$. Такой катет будем называть прилежащим. А катет $a$, который не участвует в формировании угла $alpha $, назовём противолежащим:

Прилежащий катет, противолежащий катет и гипотенуза

Это общепринятые названия: как только в прямоугольном треугольнике отмечен острый угол, для него немедленно можно указать прилежащий катет и противолежащий. И тут мы переходим к ключевым определениям.

1.1. Синус, косинус, тангенс, котангенс

Итак, пусть дан прямоугольный треугольник с острым углом $alpha $.

Прямоугольный треугольник

Тогда:

Определение 1. Синус угла $alpha $ — это отношение противолежащего катета к гипотенузе:

[sin alpha =frac{text{противолежащий катет}}{text{гипотенуза}}=frac{a}{c}]

Определение 2. Косинус угла $alpha $ — это отношение прилежащего катета к гипотенузе:

[cos alpha =frac{text{прилежащий катет}}{text{гипотенуза}}=frac{b}{c}]

Определение 3. Тангенс угла $alpha $ — это отношение противолежащего катета к прилежащему:

[operatorname{tg}alpha =frac{text{противолежащий катет}}{text{прилежащий катет}}=frac{a}{b}]

Определение 3. Котангенс угла $alpha $ — это отношение прилежащего катета к противолежащему:

[operatorname{ctg}alpha =frac{text{прилежащий катет}}{text{противолежащий катет}}=frac{b}{a}]

Вот так всё просто! Берём один катет, делим его на гипотенузы (или на другой катет) — и получаем выражение для синуса, косинуса, тангенса и котангенса. Все эти выражения называются тригонометрическими («тригонометрия» = «треугольники измеряю»).

Рассмотрим пару примеров.

Задача 1. Дан треугольник $ABC$. Найдите синус, косинус и тангенс угла $alpha $.

Прямоугольный треугольник и острый угол

Решение. Это классический прямоугольный треугольник с катетами 3 и 4 и гипотенузой 5. Угол $alpha $ (он же — угол $A$ или угол $BAC$) образован прилежащим катетом $AB=3$гипотенузой $AC=5$. Следовательно катет $BC=4$ — противолежащий.

Имеем:

[begin{align}sin alpha& =frac{BC}{AC}=frac{5}{4} \ cos alpha& =frac{AB}{AC}=frac{3}{5} \ operatorname{tg}alpha& =frac{BC}{AB}=frac{4}{3} end{align}]

Далеко не всегда будут получаться такие красивые ответы. Чаще они будут содержать корни — это следствие теоремы Пифагора. Но важно понимать: как только мы находим длины катетов и гипотенузу, мы сразу можем найти и синусы, косинусы, тангенсы.

Далее в примерах мы не будем считать котангенсы, потому что из формулы котангенса очевидно, что они легко выражаются через тангенсы:

[operatorname{ctg}alpha =frac{1}{operatorname{tg}alpha }]

Но об этом чуть позже.

Задача 2. Дан треугольник $ABC$. Найдите синус, косинус и тангенс угла $alpha $.

Равнобедренный прямоугольный треугольник

Это равнобедренный прямоугольный треугольник с катетами $AB=BC=1$. Найдём гипотенузу по теореме Пифагора:

[begin{align}{{ AC}^{2}} & ={{AB}^{2}}+{{BC}^{2}}=1+1=2 \ AC & =sqrt{2} \ end{align}]

Теперь найдём синус, косинус и тангенс:

[begin{align}sin alpha &=frac{BC}{AC}=frac{1}{sqrt{2}}=frac{sqrt{2}}{2} \ cos alpha &=frac{AB}{AC}=frac{1}{sqrt{2}}=frac{sqrt{2}}{2} \ operatorname{tg}alpha&=frac{BC}{AB}=frac{1}{1}=1 end{align}]

Простое правило, чтобы не запутаться, где прилежащий катет, а где противолежащий. Просто помните: приставка «ко» означает «вместе», «сообща». Поэтому «косинус» — это «катет, лежащий рядом, к гипотенузе», «котангенс» — это «катет, лежащий рядом, к противолежащему». И никак иначе.:)

1.2. Задачи для тренировки

Перед тем как переходить к следующей части урока, предлагаю 4 примера для тренировки.

Задача 3. ►

Дан прямоугольный треугольник с острым углом $alpha $. Найдите $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.

Cинус, косинус, тангенс острого угла снизу

Решение.

[begin{align}sin alpha &=frac{5}{13} \ cos alpha &=frac{12}{13} \ operatorname{tg}alpha &=frac{5}{12} \ end{align}]

Задача 4. ►

Дан прямоугольный треугольник с острым углом $alpha $. Найдите $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.

Синус, косинус, тангенс острого угла сверху

Решение.

[begin{align}sin alpha &=frac{8}{17} \ cos alpha &=frac{15}{17} \ operatorname{tg}alpha &=frac{8}{15} \ end{align}]

Задача 5. ►

Дан прямоугольный треугольник с острым углом $alpha $. Найдите $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.

Синус, косинус, тангенс и теорема Пифагора

Прилежащий катет по теореме Пифагора:

[begin{align}{{l}^{2}}&={{3}^{2}}-{{1}^{2}}=9-1=8 \ l&=sqrt{8}=2sqrt{2} \ end{align}]

Синус, косинус и тангенс:

[begin{align}sin alpha&=frac{1}{3} \ cos alpha&=frac{2sqrt{2}}{3} \ operatorname{tg}alpha&=frac{1}{2sqrt{2}}=frac{sqrt{2}}{4} \ end{align}]

Задача 6. ►

Дан прямоугольный треугольник с острым углом $alpha $. Найдите $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.

Прямоугольный треугольник и теорема Пифагора

Прилежащий катет по теореме Пифагора:

[begin{align}{{l}^{2}} &={{2}^{2}}-{{1}^{2}}=4-1=3 \ l &=sqrt{3} \ end{align}]

Синус, косинус и тангенс:

[begin{align}sin alpha&=frac{1}{2} \ cos alpha&=frac{sqrt{3}}{2} \ operatorname{tg}alpha&=frac{1}{sqrt{3}}=frac{sqrt{3}}{3} \ end{align}]

Как видим, считать синусы, косинусы и тангенсы совсем несложно. Перейдём теперь к принципиально важному вопросу: а зачем вообще всё это нужно?

2. Теорема о единственности

Ключевая идея: синус, косинус, тангенс и котангенс зависят только от величины угла $alpha $ и никак не зависят от прямоугольного треугольника, в котором идут вычисления.

Такого не произойдёт. Потому что есть теорема о единственности.

2.1. Формулировка теоремы

Теорема. Значение синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике определяются только величиной этого угла и никак не зависят от самого треугольника.

2.2. Доказательство

Рассмотрим произвольный острый угол $alpha $. Для удобства обозначим его вершину буквой $A$:

Острый угол

А затем впишем в него два произвольных прямоугольных треугольника — $ABC$ и $AMN$. Любым удобным способом. Например, можно вписать эти треугольники вот так:

Острый угол и подобные треугольники

А можно и вот так — это не имеет никакого значения:

Острый угол и перевернутые треугольники

Рассмотрим треугольники $ABC$ и $AMN$. Угол $A$ у них общий; углы [angle ABC=angle AMN=90{}^circ ] по условию. Следовательно, треугольники $ABC$ и $AMN$ подобны по двум углам:

[Delta ABCsim Delta AMN]

Из подобия треугольников следует двойное равенство

[frac{AB}{AM}=frac{BC}{MN}=frac{AC}{AN}]

Выпишем второе равенство — получим пропорцию

[frac{BC}{MN}=frac{AC}{AN}]

Попробуем выразить $sin alpha $. Вспомним основное свойство пропорции: произведение крайних членов равно произведению средних. Поэтому

[BCcdot AN=MNcdot AC]

Разделим обе части равенства на длину каждой гипотенузы — $AN$ и $AC$:

[begin{align}frac{BCcdot AN}{ANcdot AC} &=frac{MNcdot AC}{ANcdot AC} \ frac{BC}{AC} &=frac{MN}{AN} end{align}]

Однако по определению синуса имеем:

[begin{align}sin BAC &=frac{BC}{AC} \ sin MAN &=frac{MN}{AN} \ end{align}]

Получается, что $sin BAC=sin MAN$. Другими словами, вне зависимости от выбора треугольника для данного угла $alpha $ мы всегда будем получать одно и то же значение $sin alpha $.

То же самое касается и $cos alpha $, $operatorname{tg}alpha $ и $operatorname{ctg}alpha $ — они зависят лишь от градусной меры угла $alpha $ и никак не зависят от конкретного прямоугольного треугольника, в котором они находятся. Теорема доказана.

3. Стандартные углы

Итак, значения $sin alpha $, $cos alpha $, $operatorname{tg}alpha $ и $operatorname{ctg}alpha $ однозначно определяются величиной угла $alpha $. Нам не важен треугольник — важна только градусная мера угла. Можно один раз посчитать синусы, косинусы и т.д. для нужных углов, а затем просто подставлять их.

Но тут мы сталкиваемся с проблемой, из-за которой многие как раз и не понимают тригонометрию. Проблема состоит из двух пунктов:

  1. Для большинства углов $alpha $ нельзя найти точные значения $sin alpha $, $cos alpha $, $operatorname{tg}alpha $.
  2. Верно и обратное: для большинства «красивых» $sin alpha $, $cos alpha $ и т.д. нельзя подобрать подходящий угол $alpha $.

Звучит немного непонятно, поэтому разберём каждый пункт на конкретных примерах.

3.1. Три стандартных угла

Существует лишь три острых угла, для которых легко считаются синусы, косинусы и т.д. Это 30°, 45°, 60°. Вот их синусы, косинусы и тангенсы:

[begin{array}{c|ccc} alpha& 30{}^circ& 45{}^circ & 60{}^circ \ hlinesin alpha & frac{1}{2} & frac{sqrt{2}}{2} & frac{sqrt{3}}{2} \ cos alpha & frac{sqrt{3}}{2} & frac{sqrt{2}}{2} & frac{1}{2} \ operatorname{tg}alpha& frac{sqrt{3}}{3} & 1 & sqrt{3} \ end{array}]

Чтобы понять, чем эти углы такие особенные, просто посчитаем все эти синусы, косинусы и тангенсы. Начнём с $alpha =45{}^circ $. Для этого рассмотрим равнобедренный прямоугольный треугольник. Мы уже встречались с ним:

Равнобедренный прямоугольный треугольник тригонометрия

Поскольку в равнобедренном треугольнике $angle A=angle B=45{}^circ $, получим:

[begin{align}sin 45{}^circ &=sin A=frac{BC}{AC}=frac{1}{sqrt{2}}=frac{sqrt{2}}{2} \ cos 45{}^circ &=sin A=frac{AB}{AC}=frac{1}{sqrt{2}}=frac{sqrt{2}}{2} \ operatorname{tg}45{}^circ&=sin A=frac{BC}{AB}=frac{1}{1}=1 end{align}]

Это именно те значения, которые указаны в таблице!

Теперь разберёмся с углами $alpha =30{}^circ $ и $alpha =60{}^circ $. Здесь рассуждения будут чуть сложнее. Сначала рассмотрим равносторонний треугольник $ABC$ со стороной $AB=2$ (просто так удобнее) и проведём высоту $BH$:

Равносторонний треугольник тригонометрия

Мы знаем, что высота $BH$ — ещё и медиана, и биссектриса. Поэтому $AH=CH=1$, $angle ABH=angle CBH=30{}^circ $.

Следовательно, треугольник $ABH$ — прямоугольный, да ещё и с острыми углами 30° и 60°. По теореме Пифагора легко найти $BH=sqrt{3}$. Нанесём все данные на чертёж:

Равносторонний треугольник высота

Разберёмся с углом 60°:

[begin{align} sin{60}^circ &=sin A=frac{BH}{AB}=frac{sqrt{3}}{2} \ cos{60}^circ&=cos A=frac{AH}{AB}=frac{1}{2} \ operatorname{tg}{60}^circ&=operatorname{tg}A=frac{BH}{AH}=sqrt{3} \ end{align}]

И с углом 30°:

[begin{align} sin{30}^circ &=sin ABH=frac{AH}{AB} =frac{1}{2} \ cos{30}^circ &=cos ABH=frac{BH}{AB} =frac{sqrt{3}}{2} \ operatorname{tg}{30}^circ &=operatorname{tg} ABH=frac{AH}{BH} =frac{1}{sqrt{3}} =frac{sqrt{3}}{3} \ end{align}]

Попробуйте повторить все эти рассуждения самостоятельно. Это очень полезное упражнение!

Возникает вопрос: как быть с другими углами? Например, можно ли найти $sin {50}^circ $? Или, быть может, $cos {10}^circ $? Спойлер: можно, но это будут очень громоздкие выражения. И у нас пока не хватает технологий, чтобы их найти.

Поэтому идём дальше и посмотрим на ситуацию с другой стороны: как подобрать угол к заданному синусу, косинусу, тангенсу?

3.2. Что с другими углами?

Взгляните ещё раз на «классический» прямоугольный треугольник, с которого мы начинали наши рассуждения:

Стандартная пифагорова тройка

Катеты 4 и 3, гипотенуза 5 — вполне обычный треугольник. Для него можно посчитать, например, синус острого угла $alpha $:

[sin alpha =sin A=frac{BC}{AB}=frac{3}{5}=0,6]

Итак, мы знаем синус. Внимание, вопрос: каким должен быть угол $alpha $, чтобы $sin alpha =0,6$? Сколько градусов должно быть в угле $alpha $? Ответ: неизвестно.:)

Точнее, правильнее сказать, что у нас пока нет технологий, позволяющих найти такой угол $alpha $, чтобы $sin alpha =0,6$. Хотя такой угол точно есть, ведь мы предъявили треугольник, в котором он присутствует.

Из всех этих рассуждений сделаем важный вывод. В тригонометрии мы:

  • Либо берём угол и считаем для него синусы, косинусы и т.д. Но лишь для трёх острых углов — 30°, 45°, 60° — всё будет считаться быстро и красиво. Такие углы называются табличными.
  • Либо берём синус, косинус или тангенс и для него пытаемся подобрать острый угол. Но лишь для табличных значений мы сможем подобрать такие углы. И да: это будут углы 30°, 45°, 60°.

Ещё раз:

Мы можем посчитать лишь синус, косинус и тангенс для трёх табличных углов.

Например, $sin 30{}^circ $, $cos 45{}^circ $, $operatorname{tg}60{}^circ $ и т.д. А всякие $sin 15{}^circ $, $cos 25{}^circ $ или $operatorname{tg}89,5{}^circ $ — не сможем. По крайней мере пока.:)

И наоборот:

Зная $sin alpha $, $cos alpha $ или $operatorname{tg}alpha $, мы сможем назвать точный угол $alpha $ только в том случае, если все эти синусы, косинусы и тангенсы — среди табличных значений.

Например, мы точно знаем, что если $sin alpha =frac{sqrt{2}}{2}$, то $alpha =45{}^circ $. Но когда $sin alpha =0,6$, мы уже не можем назвать угол $alpha $ (хотя всегда можем построить такой угол).

С этой мыслью мы и переходим к следующему пункту — свойства тригонометрических выражений.

4. Свойства синуса, косинуса, тангенса

Мы разберём три ключевых свойства:

  1. Связь между синусом, косинусом и тангенсом.
  2. Связь между острыми углами прямоугольного треугольника.
  3. Основное тригонометрическое тождество.

Свойствам 2 и 3 далее в курсе будут посвящены отдельные уроки. Но основные идеи полезно взять на вооружение уже сейчас.

4.1. Связь между синусом, косинусом и тангенсом

Рассмотрим прямоугольный треугольник с катетами $a$ и $b$, гипотенузой $c$ и острым углом $alpha $:

Прямоугольный треугольник

Выразим синус, косинус:

[sin alpha =frac{a}{c};quad cos alpha =frac{b}{c}]

А теперь выразим тангенс и заметим, что

[operatorname{tg}alpha =frac{a}{b}=frac{a}{c}cdot frac{c}{b}=frac{sin alpha }{cos alpha }]

Точно так же можно выразить и котангенс:

[operatorname{ctg}alpha =frac{b}{a}=frac{b}{c}cdot frac{c}{a}=frac{cos alpha }{sin alpha }]

Более того, сам тангенс и котангенс тоже связаны:

[operatorname{tg}alpha cdot operatorname{ctg}alpha =frac{a}{b}cdot frac{b}{a}=1]

Мы получили три важнейших тригонометрических формулы:

Основные формулы тригонометрии:

[operatorname{tg}alpha =frac{sin alpha }{cos alpha };quad operatorname{ctg}alpha =frac{cos alpha }{sin alpha };quad operatorname{tg}alpha cdot operatorname{ctg}alpha =1]

Эти формулы нужно знать наизусть. И понимать, откуда они берутся.

4.2. Связь между острыми углами

Рассмотрим прямоугольный треугольник $ABC$, где $angle C=90{}^circ $. Пусть градусная мера $angle A=alpha $ градусов:

Острые углы прямоугольного треугольника связь

Мы помним, что сумма острых углов прямоугольного треугольника равна 90°. Поэтому если $angle A=alpha $, то угол $angle B=90{}^circ -alpha $. Но тогда:

[sin alpha =sin A=frac{BC}{AB}=cos B=cos left( 90{}^circ -alpha right)]

То же самое и с косинусами:

[cos alpha =cos A=frac{AC}{AB}=sin B=sin left( 90{}^circ -alpha right)]

И даже с тангенсами и котангенсами:

[begin{align} operatorname{tg}alpha&=operatorname{tg}A=frac{BC}{AC} =operatorname{ctg}B=operatorname{ctg}left( {90}^circ -alpharight) \ operatorname{ctg}alpha&=operatorname{ctg}A=frac{AC}{BC} = operatorname{tg}B=tgleft( {90}^circ -alpha right) \ end{align}]

Другими словами, если вместо $alpha $ поставить ${90}^circ -alpha $, то исходная тригонометрическая функция поменяется на ко-функцию:

[begin{align}sin left( {90}^circ-alpharight) &=cos alpha \ cos left( {90}^circ-alpharight) &=sin alpha \ operatorname{tg}left( {90}^circ-alpharight) &=operatorname{ctg}alpha\ operatorname{ctg}left( {90}^circ-alpharight) &=operatorname{tg}alphaend{align}]

Но это ещё не всё. Есть гораздо более интересная формула.

4.3. Основное тригонометрическое тождество

Вновь рассмотрим прямоугольный треугольник с катетами $a$ и $b$, гипотенузой $c$ и острым углом $alpha $:

Прямоугольный треугольник

Запишем выражения для $sin alpha $ и $cos alpha $:

[sin alpha =frac{a}{c};quad cos alpha =frac{b}{c}]

Далее заметим, что

[begin{align} {{sin }^{2}}alpha +{{cos }^{2}}alpha&={{left( frac{a}{c} right)}^{2}}+{{left( frac{b}{c} right)}^{2}}= \ & =frac{{{a}^{2}}}{{{c}^{2}}} +frac{{{b}^{2}}}{{{c}^{2}}}= \ & =frac{{{a}^{2}}+{{b}^{2}}}{{{c}^{2}}} end{align}]

В числителе можем применить теорему Пифагора: ${{a}^{2}}+{{b}^{2}}={{c}^{2}}$, поэтому

[{{sin }^{2}}alpha +{{cos }^{2}}alpha =frac{{{c}^{2}}}{{{c}^{2}}}=1]

Правая часть этой формулы вообще не зависит от угла $alpha $.

Основное тригонометрическое тождество:

[{{sin }^{2}}alpha +{{cos }^{2}}alpha =1]

Это равенство связывает синус и косинус одного и того же угла и верно для всех $alpha $.

С помощью основного тригонометрического тождества можно вычислять косинус, зная синус, и наоборот.

Задача 7. Найдите $18cos alpha $ для острого угла $alpha $, если $sin alpha =frac{sqrt{65}}{9}$.

Решение. Запишем основное тригонометрическое тождество:

[{{sin }^{2}}alpha +{{cos }^{2}}alpha =1]

Подставим указанное значение $sin alpha $ и выразим $cos alpha $:

[begin{align}{{left( frac{sqrt{65}}{9} right)}^{2}}+{{cos }^{2}}alpha &=1 \ frac{65}{81}+{{cos }^{2}}alpha &=1 \ {{cos }^{2}}alpha &=frac{16}{81} \ cos alpha&=pm frac{4}{9} end{align}]

Поскольку косинус угла в прямоугольном треугольнике не может быть отрицательным, выбираем вариант $cos alpha ={4}/{9};$. Остаётся сделать финальный шаг:

[18cos alpha =18cdot frac{4}{9}=2cdot 4=8]

Вот и всё! Ответ: 8.

В следующем примере мы уже не будем подробно расписывать каждый шаг. Оформим всё так, как надо оформлять на контрольных и экзаменах.

Задача 8. Найдите $48operatorname{tg}alpha $ для острого угла $alpha $, если $cos alpha =frac{8}{sqrt{113}}$.

Решение. Найдём $sin alpha $:

[begin{align}{{sin }^{2}}alpha &=1-{{cos }^{2}}alpha = \ & =1-{{left( frac{8}{sqrt{113}} right)}^{2}}= \ & =1-frac{64}{113}=frac{49}{113} \ sin alpha&=pm frac{7}{sqrt{113}} end{align}]

Но ${0}^circ lt alpha lt {90}^circ $, поэтому $sin alpha gt 0$. Следовательно

[sin alpha =frac{7}{sqrt{113}}]

Найдём $operatorname{tg}alpha $:

[operatorname{tg}alpha =frac{sin alpha }{cos alpha }=frac{7}{sqrt{113}}cdot frac{sqrt{113}}{8}=frac{7}{8}]

Окончательный ответ:

[48operatorname{tg}alpha =48cdot frac{7}{8}=6cdot 7=42]

Ответ: 42.

Заметка на будущее: замечание о том, что угол $alpha $ острый, весьма существенно. То, как мы сейчас определяем синусы, косинусы и тангенсы (через прямоугольный треугольник), называется геометрической тригонометрией. Её проходят в 8—9 классе.

Но в 10—11 классах появится алгебраическая тригонометрия, где синусы, косинусы и т.д. вполне могут быть отрицательными. И уже не получится просто так избавиться от минуса.

Но всё это будет чуть позже. А сейчас потренируемся.

Задача 9. ►

Найдите $52cos alpha $ для острого угла $alpha $, если $sin alpha =frac{5}{13}$.

Решение. Найдём $cos alpha $:

[begin{align}{{cos }^{2}}alpha &=1-{{sin }^{2}}alpha = \ &=1-frac{25}{169}=frac{144}{169} \ cos alpha&=pm frac{12}{13} end{align}]

Поскольку $cos alpha gt 0$ для острых $alpha $, выбираем $cos alpha ={12}/{13};$. Итого

[52cos alpha =52cdot frac{12}{13}=48]

Ответ: 48.

Задача 10. ►

Найдите $1+2operatorname{tg}alpha $ для острого угла $alpha $, если $cos alpha =frac{1}{sqrt{26}}$.

Решение. Найдём $sin alpha $:

[begin{align}{{sin }^{2}}alpha &=1-{{cos }^{2}}alpha = \ & =1-frac{1}{26}=frac{25}{26} \ sin alpha&=pm frac{5}{sqrt{26}} end{align}]

Поскольку $sin alpha gt 0$ для острых $alpha $, выбираем

[sin alpha =frac{5}{sqrt{26}}]

Считаем $operatorname{tg}alpha $:

[operatorname{tg}alpha =frac{sin alpha }{cos alpha }=frac{5}{sqrt{26}}cdot frac{sqrt{26}}{1}=5]

Откуда

[1+2operatorname{tg}alpha =1+2cdot 5=11]

Ответ: 11.

5. Тригонометрия на координатной сетке

Задачи, которые мы сейчас разберём, вполне могут встретиться в ОГЭ и даже ЕГЭ. Часто в них нет прямоугольного треугольника — есть лишь угол, в который этот треугольник предлагается вписать.

Для решения задач на координатной сетке достаточно посмотреть, через какие узлы сетки проходят интересующие нас лучи. И понять, какие из этих узлов имеет смысл соединить дополнительными построениями.

Звучит страшно, но на практике всё легко.:)

Задача 11. Найдите тангенс угла $ABC$, изображённого на координатной сетке:

Координатная сетка угол

Решение. Дополнительное построение: $AHbot BC$ — перпендикуляр из точки $A$ на луч $BC$.

Координатная сетка прямоугольный треугольник

Треугольник $BAH$ — прямоугольный, причём угол $ABC$ — один из его острых углов. Поэтому

[operatorname{tg}ABC=frac{AH}{BH}=frac{3}{4}=0,75]

Это и есть искомый тангенс.

Ответ: 0,75.

Ещё раз: важно, чтобы основание перпендикуляра попадало в узел сетки. Иначе нахождение длины катетов резко усложняется. Попробуйте сами:

Задача 12. ►

Найдите тангенс угла $ABC$, изображённого на координатной сетке:

Координатная сетка угол самостоятельно

Решение.

Дополнительное построение: $AHbot BC$ — перпендикуляр из точки $A$ к лучу $BC$.

Координатная сетка треугольник самостоятельно

Треугольник $BAH$ — прямоугольный с острым углом $ABC$. Поэтому

[operatorname{tg}ABC=frac{AH}{BH}=frac{2}{4}=frac{1}{2}]

Ответ: 0,5.

Разумеется, это были совсем простые задачи. Потому что один из лучей был параллелен линиям сетки.

Куда интереснее (и полезнее) рассмотреть ситуации, где лучи направлены под углом к сетке. Суть та же: ищем и соединяем узлы на лучах. Но тут уже нужна наблюдательность.

Задача 13. Найдите тангенс угла $MNK$, изображённого на координатной сетке:

Координатная сетка наклон

Решение. Луч $KN$ содержит лишь две точки в узлах координатной сетки — собственно, $K$ и $N$. Понятно, что если продолжить луч за точку $K$, мы найдём ещё много таких точек, но будем решать задачу с тем, что есть.

Заметим, что прямая $MN$ наклонена к линиям сетки под углом 45° и образует диагонали квадратов. Это значит, что перпендикуляр к ней тоже будет наклонён под углом 45°.

Дополнительное построение: отрезок $KH$ — диагональ одного из квадратов сетки.

Координатная сетка наклон высота

Очевидно, что угол $NHK$ прямой, поэтому треугольник $KHN$ прямоугольный и содержит искомый острый угол $MNK$. Находим тангенс:

[operatorname{tg}MNK=frac{HK}{HN}=frac{sqrt{2}}{2sqrt{2}}=frac{1}{2}=0,5]

Здесь мы предположили, что сторона квадрата сетки равна 1. Но с тем же успехом можно считать, что сторона квадрата $a$:

[operatorname{tg}MNK=frac{HK}{HN}=frac{asqrt{2}}{2asqrt{2}}=frac{1}{2}=0,5]

Ответ: 0,5.

Подобные задачи считаются довольно сложными. По статистике большинство выпускников 9 классов не способны их решать. Но вы-то теперь точно справитесь. Попробуйте:

Задача 14. ►

Найдите тангенс угла $DEF$, изображённого на координатной сетке:

Координатная сетка наклон самостоятельно

Решение.

Дополнительное построение: отрезок $DH$.

Координатная сетка наклон высота самостоятельно

Очевидно, $EH=DH$, угол $EHD$ прямой. Следовательно, треугольник $EDH$ — прямоугольный и равнобедренный. Поэтому $operatorname{tg}DEF=1$.

Либо можно посчитать «напролом», полагая, что сторона квадрата сетки равна $a$:

[operatorname{tg}DEF=frac{asqrt{10}}{asqrt{10}}=1]

Ответ: 1.

Вообще, поиск «правильных» узлов на координатной сетке — это своего рода искусство. И если углубляться в эту тему, то можно быстро выйти на «полуолимпиадные» задачи.

К тому же не существует «самого правильного» дополнительного построения. Задачу на координатной сетке всегда можно решить множеством различных способов. Так, в последнем примере можно было провести перпендикуляр вот так:

Координатная сетка второе решение

И даже так (хотя вряд ли этот способ можно назвать рациональным):

Координатная сетка третье решение

Во всех случаях ответ будет один и тот же. Поэтому не бойтесь экспериментировать. И переходите к следующему уроку — к действительно важным и полезным свойствам синусов, косинусов, тангенсов и котангенсов.:)

Смотрите также:

  1. Радианная и градусная мера угла
  2. Как быстро запомнить таблицу синусов и косинусов
  3. Сложные логарифмические неравенства
  4. Сложные выражения с дробями. Порядок действий
  5. Задача B5: площадь фигур с вершиной в начале координат
  6. Обход точек в стереометрии — 2

Запросы «sin» и «синус» перенаправляются сюда; у терминов sin и синус есть также другие значения.

Запрос «sec» перенаправляется сюда; см. также другие значения.

Рис. 1.
Графики тригонометрических функций:      синуса,      косинуса,      тангенса,      котангенса,      секанса,      косеканса

Тригонометри́ческие фу́нкции — элементарные функции[1], которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла дуги в круге). Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.

Раздел математики, изучающий свойства тригонометрических функций, называется тригонометрией.

К тригонометрическим функциям традиционно причисляют:

прямые тригонометрические функции:
  • синус (sin x);
  • косинус (cos x);
производные тригонометрические функции:
  • тангенс {displaystyle left(mathrm {tg} ,x={frac {sin x}{cos x}}right)};
  • котангенс {displaystyle left(mathrm {ctg} ,x={frac {cos x}{sin x}}right)};
  • секанс {displaystyle left(sec x={frac {1}{cos x}}right)};
  • косеканс {displaystyle left(mathrm {cosec} ,x={frac {1}{sin x}}right)};
обратные тригонометрические функции:
  • арксинус, арккосинус и т. д.

В типографике литературы на разных языках сокращённое обозначение тригонометрических функций различно, например, в англоязычной литературе тангенс, котангенс и косеканс обозначаются {displaystyle tan x}, {displaystyle cot x}, csc x. До Второй мировой войны в Германии и во Франции эти функции обозначались так же, как принято в русскоязычных текстах[2], но потом в литературе на языках этих стран был принят англоязычный вариант записи тригонометрических функций.

Кроме этих шести широко известных тригонометрических функций, иногда в литературе используются некоторые редко используемые тригонометрические функции (версинус и т. д.).

Синус и косинус вещественного аргумента представляют собой периодические, непрерывные и бесконечно дифференцируемые вещественнозначные функции. Остальные четыре функции на вещественной оси также вещественнозначны, периодичны и бесконечно дифференцируемы, за исключением счётного числа разрывов второго рода: у тангенса и секанса в точках pm pi n + frac{pi}{2}, а у котангенса и косеканса — в точках pm pi n.
Графики тригонометрических функций показаны на рис. 1.

Способы определения[править | править код]

Определение для любых углов[править | править код]

Рис. 2.
Определение тригонометрических функций

Обычно тригонометрические функции определяются геометрически[3]. В декартовой системе координат на плоскости построим окружность единичного радиуса (R=1) с центром в начале координат O. Всякий угол станем рассматривать как поворот от положительного направления оси абсцисс до некоторого луча OB (точку B выбираем на окружности), при этом направление поворота против часовой стрелки считаем положительным, а по часовой стрелке — отрицательным. Абсциссу точки B обозначим x_B, а ординату — y_B (см. рисунок 2).

Синусом угла alpha называется ордината точки {displaystyle M_{alpha }} единичной окружности, где {displaystyle {left(cdot right)}M_{alpha }} получается поворотом {displaystyle {left(cdot right)}M_{0}} на угол alpha в положительном направлении (против часовой стрелки), если alpha >0, и в отрицательном (по часовой стрелке), если {displaystyle alpha <0}.

Косинусом угла alpha называется абсцисса точки {displaystyle M_{alpha }} единичной окружности, где {displaystyle {left(cdot right)}M_{alpha }} получается поворотом {displaystyle {left(cdot right)}M_{0}} на угол alpha в положительном направлении (против часовой стрелки), если alpha >0, и в отрицательном (по часовой стрелке), если {displaystyle alpha <0}.

Тангенсом угла alpha называется отношение ординаты точки {displaystyle M_{alpha }} единичной окружности к её абсциссе, причём точка {displaystyle M_{alpha }} не принадлежит оси ординат.

Котангенсом угла alpha называется отношение абсциссы точки {displaystyle M_{alpha }} единичной окружности к её ординате, причём точка {displaystyle M_{alpha }} не принадлежит оси абсцисс.[4]

Таким образом, определения тригонометрических функций выглядят следующим образом:

Нетрудно видеть, что такое определение также основывается на отношениях прямоугольного треугольника, с тем отличием, что учитывается знак (pm 1). Поэтому тригонометрические функции можно определить и по окружности произвольного радиуса R, однако формулы придётся нормировать. На рисунке 3 показаны величины тригонометрических функций для единичной окружности.

В тригонометрии удобным оказывается вести счёт углов не в градусной мере, а в радианной. Так, угол в {displaystyle 360^{circ }} запишется длиной единичной окружности 2pi . Угол в 180^{circ } равен, соответственно pi и так далее. Заметим, что угол на 2pi отличающийся от alpha по рисунку эквивалентен alpha , вследствие чего заключим, что тригонометрические функции периодичны.

Наконец, определим тригонометрические функции вещественного числа x тригонометрическими функциями угла, радианная мера которого равна x.

Определение для острых углов[править | править код]

Рис. 4.
Тригонометрические функции острого угла

Определение тангенса. Марка СССР 1961 года

В геометрии тригонометрические функции острого угла определяются отношениями сторон прямоугольного треугольника[5]. Пусть {displaystyle triangle AOB} — прямоугольный (угол {displaystyle angle A} прямой), с острым углом {displaystyle angle AOB=alpha } и гипотенузой OB. Тогда:

Данное определение имеет некоторое методическое преимущество, так как не требует введения понятия системы координат, но также и такой крупный недостаток, что невозможно определить тригонометрические функции даже для тупых углов, которые необходимо знать при решении элементарных задач о тупоугольных треугольниках. (См.: теорема синусов, теорема косинусов).

Определение как решений дифференциальных уравнений[править | править код]

Синус и косинус можно определить как единственные функции, вторые производные которых равны самим функциям, взятым со знаком минус:

 left(cos xright)'' = - cos x,
 left(sin  xright)'' = - sin x.

То есть задать их как чётное (косинус) и нечётное (синус) решения дифференциального уравнения

frac{d^2}{dvarphi^2}R(varphi) = - R(varphi),

с дополнительными условиями:
R(0)=1 для косинуса и R'(0)=1 для синуса.

Определение как решений функциональных уравнений[править | править код]

Функции косинус и синус можно определить[7]
как решения (f и g соответственно) системы функциональных уравнений:

left{
begin{array}{rcl}
f(x+y)&=&f(x)f(y)-g(x)g(y)\
g(x+y)&=&g(x)f(y)+f(x)g(y)
end{array}
right.

при дополнительных условиях:

f(x)^{2}+g(x)^{2}=1, g(pi /2)=1, и {displaystyle 0<g(x)<1} при 0<x<pi /2.

Определение через ряды[править | править код]

Используя геометрию и свойства пределов, можно доказать, что производная синуса равна косинусу, и что производная косинуса равна минус синусу. Тогда можно воспользоваться теорией рядов Тейлора и представить синус и косинус в виде степенны́х рядов:

sin x=x-frac{x^3}{3!}+frac{x^5}{5!}-frac{x^7}{7!}+frac{x^9}{9!}-cdots = sum_{n=0}^inftyfrac{(-1)^nx^{2n+1}}{(2n+1)!},
cos x=1-frac{x^2}{2!}+frac{x^4}{4!}-frac{x^6}{6!}+frac{x^8}{8!}-cdots = sum_{n=0}^inftyfrac{(-1)^nx^{2n}}{(2n)!}.

Пользуясь этими формулами, а также равенствами operatorname{tg},x=frac{sin x}{cos x}, operatorname{ctg},x=frac{cos x}{sin x}, sec x=frac{1}{cos x} и operatorname{cosec},x=frac{1}{sin x}, можно найти разложения в ряд и других тригонометрических функций:

{operatorname{tg},x=x+frac{1}{3},x^3 + frac{2}{15},x^5 + frac{17}{315},x^7 + frac{62}{2835},x^9 + cdots = sum_{n=1}^inftyfrac{2^{2n}(2^{2n}-1)|B_{2n}|}{(2n)!}x^{2n-1} quad left(-frac{pi}{2}<x<frac{pi}{2}right),}
{operatorname{ctg},x = frac{1}{x} - frac{x}{3} - frac{x^3}{45} - frac{2x^5}{945} - frac{x^7}{4725} - cdots = frac{1}{x} - sum_{n=1}^infty frac{2^{2n}|B_{2n}|}{(2n)!},x^{2n-1} quad left(-pi < x < piright),}
{sec x=1+frac{1}{2},x^2+frac{5}{24},x^4+frac{61}{720},x^6+frac{277}{8064},x^8+cdots = sum_{n=0}^inftyfrac{|E_{n}|}{(2n)!},x^{2n}, quad left(-frac{pi}{2} < x < frac{pi}{2}right),}
operatorname{cosec} x = frac{1}{x} + frac{1}{6},x + frac{7}{360},x^3 + frac{31}{15120},x^5 + frac{127}{604800},x^7 + cdots = frac{1}{x} + sum_{n=1}^infty frac{2(2^{2n-1}-1) |B_{2n}|}{(2n)!},x^{2n-1} quad left(-pi < x < piright),

где

B_{n} — числа Бернулли,
E_{n} — числа Эйлера.

Значения тригонометрических функций для некоторых углов[править | править код]

Значения синуса, косинуса, тангенса, котангенса, секанса и косеканса для некоторых углов приведены в таблице. («infty » означает, что функция в указанной точке не определена, а в её окрестности стремится к бесконечности).

Значения косинуса и синуса на окружности

Радианы {displaystyle 0} {displaystyle {frac {pi }{6}}} {displaystyle {frac {pi }{4}}} {displaystyle {frac {pi }{3}}} {displaystyle {frac {pi }{2}}} pi {displaystyle {frac {3pi }{2}}} 2pi
Градусы {displaystyle 0^{circ }} {displaystyle 30^{circ }} {displaystyle 45^{circ }} {displaystyle 60^{circ }} {displaystyle 90^{circ }} {displaystyle 180^{circ }} {displaystyle 270^{circ }} {displaystyle 360^{circ }}
{displaystyle sin alpha } {displaystyle 0} {frac {1}{2}} frac{sqrt{2}}{2} frac{sqrt{3}}{2} 1 {displaystyle 0} -1 {displaystyle 0}
cos alpha 1 frac{sqrt{3}}{2} frac{sqrt{2}}{2} {frac {1}{2}} {displaystyle 0} -1 {displaystyle 0} 1
operatorname{tg},alpha {displaystyle 0} {displaystyle {frac {1}{sqrt {3}}}} 1 sqrt{3} infty {displaystyle 0} infty {displaystyle 0}
operatorname{ctg},alpha infty sqrt{3} 1 frac{sqrt{3}}{3} {displaystyle 0} infty {displaystyle 0} infty
{displaystyle sec alpha } 1 {displaystyle {frac {2{sqrt {3}}}{3}}} {sqrt {2}} 2 infty -1 infty 1
{displaystyle operatorname {cosec} ,alpha } infty 2 {sqrt {2}} {displaystyle {frac {2{sqrt {3}}}{3}}} 1 infty -1 infty

Значения тригонометрических функций нестандартных углов[править | править код]

Радианы {displaystyle {frac {2pi }{3}}} {displaystyle {frac {3pi }{4}}} {displaystyle {frac {5pi }{6}}} {displaystyle {frac {7pi }{6}}} {displaystyle {frac {5pi }{4}}} {displaystyle {frac {4pi }{3}}} {displaystyle {frac {5pi }{3}}} {displaystyle {frac {7pi }{4}}} {displaystyle {frac {11pi }{6}}}
Градусы {displaystyle 120^{circ }} {displaystyle 135^{circ }} {displaystyle 150^{circ }} {displaystyle 210^{circ }} {displaystyle 225^{circ }} {displaystyle 240^{circ }} {displaystyle 300^{circ }} {displaystyle 315^{circ }} {displaystyle 330^{circ }}
{displaystyle sin alpha } frac{sqrt{3}}{2} frac{sqrt{2}}{2} {frac {1}{2}} -frac{1}{2} -frac{sqrt{2}}{2} -frac{sqrt{3}}{2} -frac{sqrt{3}}{2} -frac{sqrt{2}}{2} -frac{1}{2}
cos alpha -frac{1}{2} -frac{sqrt{2}}{2} -frac{sqrt{3}}{2} -frac{sqrt{3}}{2} -frac{sqrt{2}}{2} -frac{1}{2} {frac {1}{2}} frac{sqrt{2}}{2} frac{sqrt{3}}{2}
operatorname{tg},alpha -sqrt{3} -1 -frac{sqrt{3}}{3} frac{sqrt{3}}{3} 1 sqrt{3} -sqrt{3} -1 -frac{sqrt{3}}{3}
operatorname{ctg},alpha -frac{sqrt{3}}{3} -1 -sqrt{3} sqrt{3} 1 frac{sqrt{3}}{3} -frac{sqrt{3}}{3} -1 -sqrt{3}
{displaystyle sec alpha } -2 {displaystyle -{sqrt {2}}} {displaystyle -{frac {2{sqrt {3}}}{3}}} {displaystyle -{frac {2{sqrt {3}}}{3}}} {displaystyle -{sqrt {2}}} -2 2 {sqrt {2}} {displaystyle {frac {2{sqrt {3}}}{3}}}
{displaystyle operatorname {cosec} ,alpha } {displaystyle {frac {2{sqrt {3}}}{3}}} {sqrt {2}} 2 -2 {displaystyle -{sqrt {2}}} {displaystyle -{frac {2{sqrt {3}}}{3}}} {displaystyle -{frac {2{sqrt {3}}}{3}}} {displaystyle -{sqrt {2}}} -2
Радианы {displaystyle {frac {pi }{12}}} {displaystyle {frac {pi }{10}}} {displaystyle {frac {pi }{8}}} {displaystyle {frac {pi }{5}}} {displaystyle {frac {3pi }{10}}} {displaystyle {frac {3pi }{8}}} {displaystyle {frac {2pi }{5}}} {displaystyle {frac {5pi }{12}}}
Градусы {displaystyle 15^{circ }} {displaystyle 18^{circ }} {displaystyle 22{,}5^{circ }} {displaystyle 36^{circ }} {displaystyle 54^{circ }} {displaystyle 67{,}5^{circ }} {displaystyle 72^{circ }} {displaystyle 75^{circ }}
{displaystyle sin alpha } {displaystyle {frac {{sqrt {3}}-1}{2{sqrt {2}}}}} frac{sqrt{5}-1}{4} frac{sqrt{2-sqrt{2}}}{2} {displaystyle {frac {sqrt {10-2{sqrt {5}}}}{4}}} frac{sqrt{5}+1}{4} frac{sqrt{2+sqrt{2}}}{2} {displaystyle {frac {sqrt {10+2{sqrt {5}}}}{4}}} {displaystyle {frac {{sqrt {3}}+1}{2{sqrt {2}}}}}
cos alpha {displaystyle {frac {{sqrt {3}}+1}{2{sqrt {2}}}}} {displaystyle {frac {sqrt {10+2{sqrt {5}}}}{4}}} frac{sqrt{2+sqrt{2}}}{2} frac{sqrt{5}+1}{4} {displaystyle {frac {sqrt {10-2{sqrt {5}}}}{4}}} frac{sqrt{2-sqrt{2}}}{2} frac{sqrt{5}-1}{4} {displaystyle {frac {{sqrt {3}}-1}{2{sqrt {2}}}}}
operatorname{tg},alpha 2-sqrt{3} {displaystyle {frac {sqrt {25-10{sqrt {5}}}}{5}}} sqrt{2}-1 {displaystyle {sqrt {5-2{sqrt {5}}}}} {displaystyle {frac {sqrt {25+10{sqrt {5}}}}{5}}} sqrt{2}+1 {displaystyle {sqrt {5+2{sqrt {5}}}}} {displaystyle 2+{sqrt {3}}}
operatorname{ctg},alpha {displaystyle 2+{sqrt {3}}} {displaystyle {sqrt {5+2{sqrt {5}}}}} sqrt{2}+1 {displaystyle {frac {sqrt {25+10{sqrt {5}}}}{5}}} {displaystyle {sqrt {5-2{sqrt {5}}}}} sqrt{2}-1 {displaystyle {frac {sqrt {25-10{sqrt {5}}}}{5}}} 2-sqrt{3}
{displaystyle sec alpha } {displaystyle {sqrt {2}}({sqrt {3}}-1)} {displaystyle {frac {sqrt {50-10{sqrt {5}}}}{5}}} {displaystyle {sqrt {4-2{sqrt {2}}}}} {displaystyle {sqrt {5}}-1} {displaystyle {frac {sqrt {50+10{sqrt {5}}}}{5}}} {displaystyle {sqrt {4+2{sqrt {2}}}}} {displaystyle {sqrt {5}}+1} {displaystyle {sqrt {2}}({sqrt {3}}+1)}
{displaystyle operatorname {cosec} ,alpha } {displaystyle {sqrt {2}}({sqrt {3}}+1)} {displaystyle {sqrt {5}}+1} {displaystyle {sqrt {4+2{sqrt {2}}}}} {displaystyle {frac {sqrt {50+10{sqrt {5}}}}{5}}} {displaystyle {sqrt {5}}-1} {displaystyle {sqrt {4-2{sqrt {2}}}}} {displaystyle {frac {sqrt {50-10{sqrt {5}}}}{5}}} {displaystyle {sqrt {2}}({sqrt {3}}-1)}

Значения тригонометрических функций для некоторых других углов

Свойства тригонометрических функций[править | править код]

Простейшие тождества[править | править код]

Поскольку синус и косинус являются соответственно ординатой и абсциссой точки, соответствующей на единичной окружности углу α, то, согласно уравнению единичной окружности (x^{2}+y^{2}=1) или теореме Пифагора, имеем:

{displaystyle sin ^{2}alpha +cos ^{2}alpha =1.}

Это соотношение называется основным тригонометрическим тождеством.

Разделив это уравнение на квадрат косинуса и синуса соответственно, получим:

{displaystyle 1+mathop {mathrm {tg} } ,^{2}alpha =mathop {mathrm {sec} } ,^{2}alpha ,}
{displaystyle 1+mathop {mathrm {ctg} } ,^{2}alpha =mathop {mathrm {cosec} } ,^{2}alpha .}

Из определения тангенса и котангенса следует, что

 mathop{mathrm{tg}},alpha  cdot mathop{mathrm{ctg}},alpha=1.

Любую тригонометрическую функцию можно выразить через любую другую тригонометрическую функцию с тем же аргументом (с точностью до знака из-за неоднозначности раскрытия квадратного корня). Нижеприведённые формулы верны для {displaystyle 0<x<pi /2}:

  sin cos tg ctg sec cosec
{displaystyle ,sin x=} {displaystyle ,sin x} {displaystyle {sqrt {1-cos ^{2}x}}} {displaystyle {frac {operatorname {tg} x}{sqrt {1+operatorname {tg} ^{2}x}}}} {displaystyle {frac {1}{sqrt {operatorname {ctg} ^{2}x+1}}}} {displaystyle {frac {sqrt {sec ^{2}x-1}}{sec x}}} {displaystyle {frac {1}{operatorname {cosec} x}}}
{displaystyle ,cos x=} {displaystyle ,{sqrt {1-sin ^{2}x}}} {displaystyle ,cos x} {displaystyle ,{frac {1}{sqrt {1+operatorname {tg} ^{2}x}}}} {displaystyle ,{frac {operatorname {ctg} x}{sqrt {operatorname {ctg} ^{2}x+1}}}} {displaystyle ,{frac {1}{sec x}}} {displaystyle ,{frac {sqrt {operatorname {cosec} ^{2}x-1}}{operatorname {cosec} x}}}
{displaystyle ,operatorname {tg} x=} {displaystyle ,{frac {sin x}{sqrt {1-sin ^{2}x}}}} {displaystyle ,{frac {sqrt {1-cos ^{2}x}}{cos x}}} {displaystyle ,operatorname {tg} x} {displaystyle ,{frac {1}{operatorname {ctg} x}}} {displaystyle ,{sqrt {sec ^{2}x-1}}} {displaystyle ,{frac {1}{sqrt {operatorname {cosec} ^{2}x-1}}}}
{displaystyle ,operatorname {ctg} x=} {displaystyle ,{frac {sqrt {1-sin ^{2}x}}{sin x}}} {displaystyle ,{frac {cos x}{sqrt {1-cos ^{2}x}}}} {displaystyle ,{frac {1}{operatorname {tg} x}}} {displaystyle ,operatorname {ctg} x} {displaystyle ,{frac {1}{sqrt {sec ^{2}x-1}}}} {displaystyle ,{sqrt {operatorname {cosec} ^{2}x-1}}}
{displaystyle ,sec x=} {displaystyle ,{frac {1}{sqrt {1-sin ^{2}x}}}} {displaystyle ,{frac {1}{cos x}}} {displaystyle ,{sqrt {1+operatorname {tg} ^{2}x}}} {displaystyle ,{frac {sqrt {operatorname {ctg} ^{2}x+1}}{operatorname {ctg} x}}} {displaystyle ,sec x} {displaystyle ,{frac {operatorname {cosec} x}{sqrt {operatorname {cosec} ^{2}x-1}}}}
{displaystyle ,operatorname {cosec} x=} {displaystyle ,{frac {1}{sin x}}} {displaystyle ,{frac {1}{sqrt {1-cos ^{2}x}}}} {displaystyle ,{frac {sqrt {1+operatorname {tg} ^{2}x}}{operatorname {tg} x}}} {displaystyle ,{sqrt {operatorname {ctg} ^{2}x+1}}} {displaystyle ,{frac {sec x}{sqrt {sec ^{2}x-1}}}} {displaystyle ,operatorname {cosec} x}

Непрерывность[править | править код]

Чётность[править | править код]

Косинус и секанс — чётные. Остальные четыре функции — нечётные, то есть:

 sin left( - alpha right)  =  - sin alpha ,,
 cos left( - alpha right)  =  cos alpha ,,
 mathop{mathrm{tg}}, left( - alpha right)  = - mathop{mathrm{tg}}, alpha ,,
 mathop{mathrm{ctg}}, left( - alpha right)  = - mathop{mathrm{ctg}}, alpha ,,
 sec left( - alpha right)  =  sec alpha ,,
 mathop{mathrm{cosec}}, left( - alpha right)  = - mathop{mathrm{cosec}}, alpha ,.

Периодичность[править | править код]

Функции {displaystyle sin x,;cos x,;sec x,;mathrm {cosec} ,x} — периодические с периодом 2pi , функции {displaystyle mathrm {tg} ,x} и {displaystyle mathrm {ctg} ,x} — c периодом pi .

Формулы приведения[править | править код]

Формулами приведения называются формулы следующего вида:

{displaystyle f(npi +alpha )=pm f(alpha ),}
{displaystyle f(npi -alpha )=pm f(alpha ),}
{displaystyle fleft({frac {(2n+1)pi }{2}}+alpha right)=pm g(alpha ),}
{displaystyle fleft({frac {(2n+1)pi }{2}}-alpha right)=pm g(alpha ).}

Здесь f — любая тригонометрическая функция, g — соответствующая ей кофункция (то есть косинус для синуса, синус для косинуса, тангенс для котангенса, котангенс для тангенса, секанс для косеканса и косеканс для секанса), n — целое число. Перед полученной функцией ставится тот знак, который имеет исходная функция в заданной координатной четверти при условии, что угол alpha острый, например:

 cos left(  frac{ pi}{2} - alpha right)  =   sin alpha,, или что то же самое:  cos left( 90^circ - alpha right)  =   sin alpha,.

Некоторые формулы приведения:

alpha frac{pi}{2} - alpha frac{pi}{2} + alpha {displaystyle pi -alpha } {displaystyle pi +alpha } frac{3,pi}{2} - alpha frac{3,pi}{2} + alpha 2,pi - alpha
sinalpha cosalpha cosalpha sinalpha {displaystyle -sin alpha } {displaystyle -cos alpha } {displaystyle -cos alpha } {displaystyle -sin alpha }
cosalpha sinalpha {displaystyle -sin alpha } {displaystyle -cos alpha } {displaystyle -cos alpha } {displaystyle -sin alpha } sinalpha cosalpha
operatorname{tg},alpha operatorname{ctg},alpha -operatorname{ctg},alpha -operatorname{tg},alpha operatorname{tg},alpha operatorname{ctg},alpha -operatorname{ctg},alpha -operatorname{tg},alpha
operatorname{ctg},alpha operatorname{tg},alpha -operatorname{tg},alpha -operatorname{ctg},alpha operatorname{ctg},alpha operatorname{tg},alpha -operatorname{tg},alpha -operatorname{ctg},alpha

Интересующие формулы приведения так же могут легко быть получены рассмотрением функций на единичной окружности.

Формулы сложения и вычитания[править | править код]

Значения тригонометрических функций суммы и разности двух углов:

 sinleft( alpha pm beta right)= sinalpha , cosbeta pm cosalpha , sinbeta,
 cosleft( alpha pm beta right)= cosalpha , cosbeta mp sinalpha , sinbeta,
 operatorname{tg}left( alpha pm beta right) = frac{operatorname{tg},alpha pm operatorname{tg},beta}{1 mp operatorname{tg},alpha , operatorname{tg},beta},
 operatorname{ctg}left( alpha pm beta right) = frac{operatorname{ctg},alpha,operatorname{ctg},beta mp 1}{operatorname{ctg},beta pm operatorname{ctg},alpha}.

Аналогичные формулы для суммы трёх углов:

sin left( alpha + beta + gamma right) = sin alpha cos beta cos gamma + cos alpha sin beta cos gamma + cos alpha cos beta sin gamma - sin alpha sin beta sin gamma,
cos left( alpha + beta + gamma right) = cos alpha cos beta cos gamma - sin alpha sin beta cos gamma - sin alpha cos beta sin gamma - cos alpha sin beta sin gamma.

Формулы для кратных углов[править | править код]

Формулы двойного угла:

sin 2alpha = 2 sin alpha cos alpha = frac{2,operatorname{tg},alpha }{1 + operatorname{tg}^2alpha} = frac{2,operatorname{ctg},alpha }{1 + operatorname{ctg}^2alpha} = frac{2}{operatorname{tg},alpha + operatorname{ctg},alpha},
cos 2alpha = cos^2 alpha,-,sin^2 alpha = 2 cos^2 alpha,-,1 = 1,-,2 sin^2 alpha = frac{1 - operatorname{tg}^2 alpha}{1 + operatorname{tg}^2alpha} = frac{operatorname{ctg}^2 alpha - 1}{operatorname{ctg}^2alpha + 1} = frac{operatorname{ctg},alpha - operatorname{tg},alpha}{operatorname{ctg},alpha + operatorname{tg},alpha},
operatorname{tg},2 alpha = frac{2,operatorname{tg},alpha}{1 - operatorname{tg}^2alpha} = frac{2,operatorname{ctg},alpha}{operatorname{ctg}^2alpha - 1} = frac{2}{operatorname{ctg},alpha - operatorname{tg},alpha},
operatorname{ctg},2 alpha = frac{operatorname{ctg}^2 alpha - 1}{2,operatorname{ctg},alpha} = frac{operatorname{ctg},alpha - operatorname{tg},alpha}{2}.

Формулы тройного угла:

sin,3alpha=3sinalpha - 4sin^3alpha,
cos,3alpha=4cos^3alpha -3cosalpha,
operatorname{tg},3alpha=frac{3,operatorname{tg},alpha - operatorname{tg}^3,alpha}{1 - 3,operatorname{tg}^2,alpha},
operatorname{ctg},3alpha=frac{operatorname{ctg}^3,alpha - 3,operatorname{ctg},alpha}{3,operatorname{ctg}^2,alpha - 1}.

Прочие формулы для кратных углов:

sin,4alpha=cosalpha left(4sinalpha - 8sin^3alpharight),
cos,4alpha=8cos^4alpha - 8cos^2alpha + 1,
operatorname{tg},4alpha=frac{4,operatorname{tg},alpha - 4,operatorname{tg}^3,alpha}{1 - 6,operatorname{tg}^2,alpha + operatorname{tg}^4,alpha},
operatorname{ctg},4alpha=frac{operatorname{ctg}^4,alpha - 6,operatorname{ctg}^2,alpha + 1}{4,operatorname{ctg}^3,alpha - 4,operatorname{ctg},alpha},
sin,5alpha=16sin^5alpha-20sin^3alpha +5sinalpha,
cos,5alpha=16cos^5alpha-20cos^3alpha +5cosalpha,
operatorname{tg},5alpha=operatorname{tg}alphafrac{operatorname{tg}^4alpha-10operatorname{tg}^2alpha+5}{5operatorname{tg}^4alpha-10operatorname{tg}^2alpha+1},
operatorname{ctg},5alpha=operatorname{ctg}alphafrac{operatorname{ctg}^4alpha-10operatorname{ctg}^2alpha+5}{5operatorname{ctg}^4alpha-10operatorname{ctg}^2alpha+1},
 sin (nalpha)=2^{n-1}prod^{n-1}_{k=0}sinleft( alpha+frac{pi k}{n}right) следует из формулы дополнения и формулы Гаусса для гамма-функции.

Из формулы Муавра можно получить следующие общие выражения для кратных углов:

sin(nalpha)=sum_{k=0}^{[(n-1)/2]}(-1)^kbinom{n}{2k+1}cos^{n-2k-1}alpha,sin^{2k+1}alpha,
cos(nalpha)=sum_{k=0}^{[n/2]}(-1)^kbinom{n}{2k}cos^{n-2k}alpha,sin^{2k}alpha,
mathrm{tg}(nalpha)=frac{sin(nalpha)}{cos(nalpha)}=dfrac{displaystyle{sumlimits_{k=0}^{[(n-1)/2]}(-1)^kbinom{n}{2k+1}mathrm{tg}^{2k+1}alpha}}{displaystyle{sumlimits_{k=0}^{[n/2]}(-1)^kbinom{n}{2k}mathrm{tg}^{2k}alpha}},
mathrm{ctg}(nalpha)=frac{cos(nalpha)}{sin(nalpha)}=dfrac{displaystyle{sumlimits_{k=0}^{[n/2]}(-1)^kbinom{n}{2k}mathrm{ctg}^{n-2k}alpha}}{displaystyle{sumlimits_{k=0}^{[(n-1)/2]}(-1)^kbinom{n}{2k+1}mathrm{ctg}^{n-2k-1}alpha}},

где [n] — целая часть числа n, binom{n}{k} — биномиальный коэффициент.

Формулы половинного угла:

sinfrac{alpha}{2}=sqrt{frac{1-cosalpha}{2}},quad 0 leqslant alpha leqslant 2pi,
cosfrac{alpha}{2}=sqrt{frac{1+cosalpha}{2}},quad -pi leqslant alpha leqslant pi,
operatorname{tg},frac{alpha}{2}=frac{1-cosalpha}{sinalpha}=frac{sinalpha}{1+cosalpha},
operatorname{ctg},frac{alpha}{2}=frac{sinalpha}{1-cosalpha}=frac{1+cosalpha}{sinalpha},
operatorname{tg},frac{alpha}{2}=sqrt{frac{1-cosalpha}{1+cosalpha}},quad 0 leqslant alpha < pi,
operatorname{ctg},frac{alpha}{2}=sqrt{frac{1+cosalpha}{1-cosalpha}},quad 0 < alpha leqslant pi.

Произведения[править | править код]

Формулы для произведений функций двух углов:

sin alpha sin beta ={frac {cos(alpha -beta )-cos(alpha +beta )}{2}},
sinalpha cosbeta = frac{sin(alpha-beta) + sin(alpha+beta)}{2},
cosalpha cosbeta = frac{cos(alpha-beta) + cos(alpha+beta)}{2},
operatorname{tg},alpha,operatorname{tg},beta = frac{cos(alpha-beta) - cos(alpha+beta)}{cos(alpha-beta) + cos(alpha+beta)},
operatorname{tg},alpha,operatorname{ctg},beta = frac{sin(alpha-beta) + sin(alpha+beta)}{sin(alpha+beta) -sin(alpha-beta)},
operatorname{ctg},alpha,operatorname{ctg},beta = frac{cos(alpha-beta) + cos(alpha+beta)}{cos(alpha-beta) - cos(alpha+beta)}.

Аналогичные формулы для произведений синусов и косинусов трёх углов:

sinalpha sinbeta singamma = frac{sin(alpha+beta-gamma) + sin(beta+gamma-alpha) + sin(alpha-beta+gamma) - sin(alpha+beta+gamma)}{4},
sinalpha sinbeta cosgamma = frac{-cos(alpha+beta-gamma) + cos(beta+gamma-alpha) + cos(alpha-beta+gamma) - cos(alpha+beta+gamma)}{4},
sinalpha cosbeta cosgamma = frac{sin(alpha+beta-gamma) - sin(beta+gamma-alpha) + sin(alpha-beta+gamma) - sin(alpha+beta+gamma)}{4},
cosalpha cosbeta cosgamma = frac{cos(alpha+beta-gamma) + cos(beta+gamma-alpha) + cos(alpha-beta+gamma) + cos(alpha+beta+gamma)}{4}.

Формулы для произведений тангенсов и котангенсов трёх углов можно получить, поделив правые и левые части соответствующих равенств, представленных выше.

Степени[править | править код]

{displaystyle sin ^{2}alpha ={frac {1-cos 2,alpha }{2}}={frac {operatorname {tg} ^{2},alpha }{1+operatorname {tg} ^{2},alpha }},}
cos ^{2}alpha ={frac  {1+cos 2,alpha }{2}}={frac  {operatorname {ctg}^{2},alpha }{1+operatorname {ctg}^{2},alpha }},
operatorname {tg}^{2},alpha ={frac  {1-cos 2,alpha }{1+cos 2,alpha }}={frac  {operatorname {sin}^{2},alpha }{1-operatorname {sin}^{2},alpha }},
{displaystyle operatorname {ctg} ^{2},alpha ={frac {1+cos 2,alpha }{1-cos 2,alpha }}={frac {operatorname {cos} ^{2},alpha }{1-operatorname {cos} ^{2},alpha }},}
sin^3alpha = frac{3sinalpha - sin 3,alpha}{4},
cos^3alpha = frac{3cosalpha + cos 3,alpha}{4},
operatorname{tg}^3,alpha = frac{3sinalpha - sin 3,alpha}{3cosalpha + cos 3,alpha},
operatorname{ctg}^3,alpha = frac{3cosalpha + cos 3,alpha}{3sinalpha - sin 3,alpha},
sin^4alpha = frac{cos 4alpha - 4cos 2,alpha + 3}{8},
cos^4alpha = frac{cos 4alpha + 4cos 2,alpha + 3}{8},
operatorname{tg}^4,alpha = frac{cos 4alpha - 4cos 2,alpha + 3}{cos 4alpha + 4cos 2,alpha + 3},
operatorname{ctg}^4,alpha = frac{cos 4alpha + 4cos 2,alpha + 3}{cos 4alpha - 4cos 2,alpha + 3}.

Иллюстрация равенства {displaystyle sin x-cos x={sqrt {2}}cdot sin left(x-{pi  over 4}right)}

Суммы[править | править код]

{displaystyle sin alpha pm sin beta =2sin {frac {alpha pm beta }{2}}cos {frac {alpha mp beta }{2}},}
{displaystyle cos alpha +cos beta =2cos {frac {alpha +beta }{2}}cos {frac {alpha -beta }{2}},}
{displaystyle cos alpha -cos beta =-2sin {frac {alpha +beta }{2}}sin {frac {alpha -beta }{2}},}
{displaystyle operatorname {tg} alpha pm operatorname {tg} beta ={frac {sin(alpha pm beta )}{cos alpha cos beta }},}
{displaystyle operatorname {ctg} alpha pm operatorname {ctg} beta ={frac {sin(beta pm alpha )}{sin alpha sin beta }},}
{displaystyle 1pm sin {2alpha }=(sin alpha pm cos alpha )^{2},}
{displaystyle sin alpha pm cos alpha ={sqrt {2}}cdot sin left(alpha pm {pi  over 4}right).}

Существует представление:

Asin alpha +Bcos alpha ={sqrt  {A^{2}+B^{2}}};sin(alpha +phi ),

где угол phi находится из соотношений:

{displaystyle sin phi ={frac {B}{sqrt {A^{2}+B^{2}}}},}
{displaystyle cos phi ={frac {A}{sqrt {A^{2}+B^{2}}}}.}

Универсальная тригонометрическая подстановка[править | править код]

Все тригонометрические функции можно выразить через тангенс половинного угла:

{displaystyle sin x={frac {sin x}{1}}={frac {2sin {frac {x}{2}}cos {frac {x}{2}}}{sin ^{2}{frac {x}{2}}+cos ^{2}{frac {x}{2}}}}={frac {2operatorname {tg} {frac {x}{2}}}{1+operatorname {tg} ^{2}{frac {x}{2}}}},}

{displaystyle cos x={frac {cos x}{1}}={frac {cos ^{2}{frac {x}{2}}-sin ^{2}{frac {x}{2}}}{cos ^{2}{frac {x}{2}}+sin ^{2}{frac {x}{2}}}}={frac {1-operatorname {tg} ^{2}{frac {x}{2}}}{1+operatorname {tg} ^{2}{frac {x}{2}}}},}

{displaystyle operatorname {tg} ~x={frac {sin x}{cos x}}={frac {2operatorname {tg} {frac {x}{2}}}{1-operatorname {tg} ^{2}{frac {x}{2}}}},}

{displaystyle operatorname {ctg} ~x={frac {cos x}{sin x}}={frac {1-operatorname {tg} ^{2}{frac {x}{2}}}{2operatorname {tg} {frac {x}{2}}}},}

{displaystyle sec x={frac {1}{cos x}}={frac {1+operatorname {tg} ^{2}{frac {x}{2}}}{1-operatorname {tg} ^{2}{frac {x}{2}}}},}

{displaystyle operatorname {cosec} ~x={frac {1}{sin x}}={frac {1+operatorname {tg} ^{2}{frac {x}{2}}}{2operatorname {tg} {frac {x}{2}}}}.}

Исследование функций в математическом анализе[править | править код]

Разложение в бесконечные произведения[править | править код]

Тригонометрические функции могут быть представлены в виде бесконечного произведения многочленов:

{displaystyle sin x=x,prod _{n=1}^{infty }left(1-{frac {x^{2}}{pi ^{2}n^{2}}}right),}
{displaystyle cos x=prod _{n=0}^{infty }left(1-{frac {4x^{2}}{pi ^{2}(2n+1)^{2}}}right).}

Эти соотношения выполняются при любом значении x.

Непрерывные дроби[править | править код]

Разложение тангенса в непрерывную дробь:

{displaystyle mathop {rm {tg}} x={frac {x}{1-{frac {x^{2}}{3-{frac {x^{2}}{5-{frac {x^{2}}{7-{frac {x^{2}}{ddots }}}}}}}}}}}

Производные и первообразные[править | править код]

Все тригонометрические функции непрерывно и неограниченно дифференцируемы на всей области определения:

( sin x )' = cos x ,,

( cos x )' = -sin x ,,

{displaystyle (operatorname {tg} x)'={frac {1}{cos ^{2}x}}=1+operatorname {tg} ^{2}x=sec ^{2}x,}

{displaystyle (operatorname {ctg} x)'=-{frac {1}{sin ^{2}x}}=-operatorname {cosec} ^{2}x,}

{displaystyle (sec x)'={frac {sin x}{cos ^{2}x}}=sec xoperatorname {tg} x,}

( operatorname{cosec}~x)' = -frac{cos x}{sin ^2 x}.

Интегралы тригонометрических функций на области определения выражаются через элементарные функции следующим образом[8]:

intsin x, dx = -cos x + C ,,

intcos x, dx = sin x + C ,,

{displaystyle int operatorname {tg} x,dx=-ln left|cos xright|+C,,}

{displaystyle int operatorname {ctg} x,dx=ln left|sin xright|+C,,}

intsec x, dx=ln left| operatorname{tg} , left( frac {pi}{4}+frac{x}{2}right) right|+ C ,,

int operatorname{cosec}~ x, dx=ln left| operatorname{tg} , frac{x}{2} right|+ C.

Тригонометрические функции комплексного аргумента[править | править код]

Определение[править | править код]

Формула Эйлера:

{displaystyle e^{ivartheta }=cos vartheta +isin vartheta .}

Формула Эйлера позволяет определить тригонометрические функции от комплексных аргументов через экспоненту по аналогии с гиперболическими функциями, или (с помощью рядов) как аналитическое продолжение их вещественных аналогов:

sin z = sum_{n=0}^infty frac{(-1)^{n}}{(2n+1)!}z^{2n+1} = frac{e^{i z} - e^{-i z}}{2i}, = frac{operatorname{sh}  i z }{i};
cos z = sum_{n=0}^infty frac{(-1)^{n}}{(2n)!}z^{2n} = frac{e^{i z} + e^{-i z}}{2}, = operatorname{ch} i z;
operatorname{tg}, z = frac{sin z}{cos z} = frac{e^{i z} - e^{-i z}}{i(e^{i z} + e^{-i z})};
operatorname{ctg}, z = frac{cos z}{sin z} = frac{i(e^{i z} + e^{-i z})}{e^{i z} - e^{-i z}};
sec z = frac{1}{cos z} = frac{2}{e^{i z} + e^{-i z}};
{displaystyle operatorname {cosec} ,z={frac {1}{sin z}}={frac {2i}{e^{iz}-e^{-iz}}},} где {displaystyle i^{2}=-1.}

Соответственно, для вещественного x:

{displaystyle cos x=operatorname {Re} (e^{ix}),}
{displaystyle sin x=operatorname {Im} (e^{ix}).}

Комплексные синус и косинус тесно связаны с гиперболическими функциями:

{displaystyle sin(x+iy)=sin x,operatorname {ch} ,y+icos x,operatorname {sh} ,y,}
{displaystyle cos(x+iy)=cos x,operatorname {ch} ,y-isin x,operatorname {sh} ,y.}

Большинство перечисленных выше свойств тригонометрических функций сохраняются и в комплексном случае. Некоторые дополнительные свойства:

  • комплексные синус и косинус, в отличие от вещественных, могут принимать сколь угодно большие по модулю значения;
  • все нули комплексных синуса и косинуса лежат на вещественной оси.

Комплексные графики[править | править код]

На следующих графиках изображена комплексная плоскость, а значения функций выделены цветом. Яркость отражает абсолютное значение (чёрный — ноль). Цвет изменяется от аргумента и угла согласно карте.

Тригонометрические функции в комплексной плоскости

Complex sin.jpg

Complex cos.jpg

Complex tan.jpg

Complex Cot.jpg

Complex Sec.jpg

Complex Csc.jpg

{displaystyle sin ,z} {displaystyle cos ,z} {displaystyle operatorname {tg} ,z} {displaystyle operatorname {ctg} ,z} {displaystyle sec ,z} {displaystyle operatorname {cosec} ,z}

История названий[править | править код]

Линия синуса (линия AB на рис. 2) у индийских математиков первоначально называлась «арха-джива» («полутетива», то есть половина хорды данной дуги, поскольку дуга с хордой напоминает лук с тетивой). Затем слово «арха» было отброшено и линию синуса стали называть просто «джива». Арабские математики, переводя индийские книги с санскрита, не перевели слово «джива» арабским словом «ватар», обозначающим тетиву и хорду, а транскрибировали его арабскими буквами и стали называть линию синуса «джиба» (جيب‎). Так как в арабском языке краткие гласные не обозначаются, а долгое «и» в слове «джиба» обозначается так же, как полугласная «й», арабы стали произносить название линии синуса как «джайб», что буквально обозначает «впадина», «пазуха». При переводе арабских сочинений на латынь европейские переводчики перевели слово «джайб» латинским словом sinus — «синус», имеющим то же значение (именно в этом значении оно применяется как анатомический термин синус). Термин «косинус» (лат. cosinus) — это сокращение от лат. complementi sinus — дополнительный синус.

Современные краткие обозначения sin, cos введены Уильямом Отредом и Бонавентурой Кавальери и закреплены в трудах Леонарда Эйлера.

Термины «тангенс» (лат. tangens — касающийся) и «секанс» (лат. secans — секущий) были введены датским математиком Томасом Финке в его книге «Геометрия круглого» (Geometria rotundi, 1583).

Сам термин тригонометрические функции введён Клюгелем в 1770 году.

Позднее были введены и термины для обратных тригонометрических функций — арксинус, арккосинус, арктангенс, арккотангенс, арксеканс, арккосеканс — с помощью добавления приставки «арк» (от лат. arcus — дуга), — Ж. Лагранжем и др.

См. также[править | править код]

  • Гиперболические функции
  • Интегральный синус
  • Интегральный косинус
  • Интегральный секанс
  • Обратные тригонометрические функции
  • Редко используемые тригонометрические функции
  • Решение треугольников
  • Синус-верзус
  • Сферическая тригонометрия
  • Тригонометрические тождества
  • Тригонометрические функции от матрицы
  • Тригонометрический ряд Фурье
  • Функция Гудермана
  • Четырёхзначные математические таблицы (Таблицы Брадиса)
  • Эллиптические функции

Литература[править | править код]

  • Бермант А. Ф., Люстерник Л. А. Тригонометрия. — М.: Наука, 1967.
  • Тригонометрические функции — статья из Большой советской энциклопедии.  — М.: Советская энциклопедия, 1977. — Т. 26. — С. 204—206.
  • Бронштейн И. Н., Семендяев К. А. Прямолинейная тригонометрия // Справочник по математике. — Изд. 7-е, стереотипное. — М.: Государственное издательство технико-теоретической литературы, 1967. — С. 179—184.
  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
    • Переиздание: М.: АСТ, 2006. — 509 с. — ISBN 5-17-009554-6 www.alleng.ru/d/math/math42.htm
  • Двайт Г. Б. Тригонометрические функции // Таблицы интегралов и другие математические формулы. — 4-е изд. — М.: Наука, 1973. — С. 70—102.
  • Кожеуров П. А. Тригонометрия. — М.: Физматгиз, 1963.
  • Маркушевич А. И. Замечательные синусы. — М.: Наука, 1974.
  • Математическая энциклопедия / Гл. ред. И. М. Виноградов. — М.: Советская энциклопедия, 1984. — И. М. Виноградов. Тригонометрические функции // Математическая энциклопедия. — М.: Советская энциклопедия. — 1977—1985.
  • Тригонометрические функции // Энциклопедический словарь юного математика / Ред. коллегия, Гнеденко Б. В. (гл. ред.), Савин А. П. и др. — М.: Педагогика, 1985 (1989). — С. 299—301—305. — 352 с., ил. — ISBN 5-7155-0218-7 (С. 342, 343 — таблицы тригонометрических функций 0°-90°, в том числе в радианах)
  • Тригонометрические функции // Справочник по математике (для ср. уч. заведений) / Цыпкин А. Г., под ред. Степанова С. А. — 3-е изд. — М.: Наука, Гл. редакция физ.-мат. литературы, 1983. — С. 240—258. — 480 с.

Ссылки[править | править код]

  • GonioLab — прояснённая единичная окружность, тригонометрические и гиперболические функции (Java Web Start)
  • Weisstein, Eric W. Trigonometric Functions (англ.) на сайте Wolfram MathWorld.
  • Онлайн калькулятор: вычисление значений тригонометрических функций (в том числе нахождение углов треугольника по сторонам)
  • Интерактивная карта значений тригонометрических функций
  • Тригонометрические таблицы (0° — 360°)
  • «Синус и косинус — это проценты» — перевод статьи How To Learn Trigonometry Intuitively | BetterExplained (англ.)

Примечания[править | править код]

  1. Справочник: Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — М.: Наука, 1973. — 720 с. Архивная копия от 19 января 2015 на Wayback Machine относит их к специальным функциям.
  2. Знак математический. // Большая советская энциклопедия. 1-е изд. Т. 27. — М., 1933.
  3. Справочник по элементарной математике, 1978, с. 282—284.
  4. Шахмейстер А. Х. Определение основных тригонометрических функций // Тригонометрия : [рус.] : книга / А. Х. Шахмейстер; под ред. Б. Г. Зива. — 3-е изд., стереотипное. — М. : Издательство МЦНМО ; СПб. : «Петроглиф» : «Виктория плюс», 2013. — С. 11, 14, 18, 20. — 752 с. : илл. — (Математика. Элективные курсы). — 1500 экз. — ББК 22.141я71.6. — УДК 373.167.1:512(G). — ISBN 978-5-4439-0050-6. — ISBN 978-5-98712-042-2. — ISBN 978-5-91673-097-5.
  5. Справочник по элементарной математике, 1978, с. 271—272.
  6. Латинско-русский словарь. Дата обращения: 9 апреля 2023.
  7. Ильин В. А., Позняк Э. Г. Основы математического анализа. Ч. 1. — М.: Наука, 1998. — ISBN 5-02-015231-5.
  8. В формулах, содержащих логарифм в правой части равенств, константы интегрирования scriptstyle C, вообще говоря, различны для различных интервалов непрерывности.

В данной публикации мы рассмотрим соотношения катетов и гипотенузы в прямоугольном треугольнике, выраженные в виде тригонометрических функций острого угла, а также, научимся применять полученные знания на практике для решения задач.

  • Отношения сторон в прямоугольном треугольнике

  • Примеры задач

Отношения сторон в прямоугольном треугольнике

Допустим, у нас есть треугольник (прямоугольный) со сторонами a, b, c и острым углом α.

Острый угол прямоугольного треугольника

Для него верно следующее:

  1. Синус угла α равен отношению противолежащего катета к гипотенузе:
    sin α = b/c
  2. Косинус угла α равен отношению прилежащего катета к гипотенузе:
    cos α = a/c
  3. Тангенс угла α равняется отношению противолежащего катета к прилежащему:
    tg α = b/a
  4. Котангенс угла α равняется отношению прилежащего катета к противолежащему:
    ctg α = a/b
  5. Секанс угла α определяется как отношение гипотенузы к прилежащему катету:
    sec α = c/a
  6. Косеканс угла α определяется как отношение гипотенузы к противолежащему катету:
    cosec α = c/b

Примеры задач

Задание 1
В прямоугольном треугольнике один из катетов равен 3 см, а гипотенуза 5 см. Найдите угол, который расположен напротив заданного катета.

Решение:
Пусть неизвестный угол – это α. Применяем формулу синуса для его нахождения:
sin α = 3 см / 5 см = 0,6. Следовательно, угол α = aarcsin (0,6) ≈ 36,87°.

Задание 2
В прямоугольном один из острых углов равен 45°, а прилежащий к нему катет – 3 см. Найдите гипотенузу.

Решение:
Так как нам известен угол (α) и прилежащий катет (a), выведем длину гипотенузы из формулу косинуса (c): c = a / cos α = 3 см / cos 45° ≈ 4,24 см.

Определение и свойства медианы треугольника

В данной статье мы рассмотрим определение медианы треугольника, перечислим ее свойства, а также разберем примеры решения задач для закрепления теоретического материала.

Определение медианы треугольника

Медиана – это отрезок, соединяющий вершину треугольника с серединой стороны, расположенной напротив данной вершины.

Основание медианы – точка пересечения медианы со стороной треугольника, другими словами, середина этой стороны (точка F).

Свойства медианы

Свойство 1 (основное)

Т.к. в треугольнике три вершины и три стороны, то и медиан, соответственно, тоже три. Все они пересекаются в одной точке (O), которая называется центроидом или центром тяжести треугольника.

В точке пересечения медиан каждая из них делится в отношении 2:1, считая от вершины. Т.е.:

Свойство 2

Медиана делит треугольник на 2 равновеликих (равных по площади) треугольника.

Свойство 3

Три медианы делят треугольник на 6 равновеликих треугольников.

Свойство 4

Наименьшая медиана соответствует большей стороне треугольника, и наоборот.

  • AC – самая длинная сторона, следовательно, медиана BF – самая короткая.
  • AB – самая короткая сторона, следовательно, медиана CD – самая длинная.

Свойство 5

Допустим, известны все стороны треугольника (примем их за a, b и c).

Длину медианы ma, проведенную к стороне a, можно найти по формуле:

Примеры задач

Задание 1
Площадь одной из фигур, образованной в результате пересечения трех медиан в треугольнике, равняется 5 см 2 . Найдите площадь треугольника.

Решение
Согласно свойству 3, рассмотренному выше, в результате пересечения трех медиан образуются 6 треугольников, равных по площади. Следовательно:
S = 5 см 2 ⋅ 6 = 30 см 2 .

Задание 2
Стороны треугольника равны 6, 8 и 10 см. Найдите медиану, проведенную к стороне с длиной 6 см.

Решение
Воспользуемся формулой, приведенной в свойстве 5:

Треугольник. Формулы и свойства треугольников.

Типы треугольников

По величине углов

По числу равных сторон

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a = b = c = 2R
sin α sin β sin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 – 2 bc · cos α

b 2 = a 2 + c 2 – 2 ac · cos β

c 2 = a 2 + b 2 – 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Медианы треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 – a 2

mb = 1 2 √ 2 a 2 +2 c 2 – b 2

mc = 1 2 √ 2 a 2 +2 b 2 – c 2

Биссектрисы треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p – a ) b + c

lb = 2√ acp ( p – b ) a + c

lc = 2√ abp ( p – c ) a + b

где p = a + b + c 2 – полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Высоты треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Окружность вписанная в треугольник

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b – c )( b + c – a )( c + a – b ) 4( a + b + c )

Окружность описанная вокруг треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Связь между вписанной и описанной окружностями треугольника

Средняя линия треугольника

Свойства средней линии треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Периметр треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Формулы площади треугольника

Формула Герона

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Подобие треугольников

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k – коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

math4school.ru

Треугольники

Основные свойства

Треугольник – это геометрическая фигура, которая состоит из трёх точек, не лежащих на одной прямой (вершин треугольника) и трёх отрезков с концами в этих точках (сторон треугольника).

Углами (внутренними углами) треугольника называются три угла, каждый из которых образован тремя лучами, выходящими из вершин треугольника и проходящими через две другие вершины.

Внешним углом треугольника называется угол, смежный внутреннему углы треугольника.

Сумма углов треугольника равна 180°:

Внешний угол равен сумме двух внутренних углов, не смежных с ним, и больше любого внутреннего, с ним не смежного:

Длина каждой стороны треугольника больше разности и меньше суммы длин двух других сторон:

В треугольнике против большего угла лежит большая сторона, против большей стороны лежит больший угол:

Средней линией треугольника называется отрезок, который соединяет середины двух его сторон.

Средняя линия треугольника параллельна одной из его сторон и равна её половине:

Равенство треугольников

Треугольники называются равными, если у них соответствующие стороны равны и соответствующие углы равны:

У равных треугольников все соответствующие элементы равны (стороны, углы, высоты, медианы, биссектрисы, средние линии и т.д.)

В равных треугольниках против равных сторон лежат равные углы, а против равных углов – равные стороны.

Первый признак равенства треугольников.

Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны:

Второй признак равенства треугольников.

Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны:

Третий признак равенства треугольников.

Если три стороны одного треугольника равны соответственно трём сторонам другого треугольника, то такие треугольники равны:

Подобие треугольников

Подобными называются треугольники, у которых соответствующие стороны пропорциональны.

Коэффициент пропорциональности называется коэффициентом подобия:

Два треугольника подобны, если:

  • Два угла одного треугольника равны двум углам другого треугольника.
  • Две стороны одного треугольника пропорциональны двум сторонам другого, и углы, образованные этими сторонами, равны.
  • Стороны одного треугольника пропорциональны сторонам другого.

У подобных треугольников соответствующие углы равны, а соответствующие отрезки пропорциональны:

Отношение периметров подобных треугольников равно коэффициенту подобия.

Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Прямая, пересекающая две стороны треугольника, и параллельная третьей, отсекает треугольник, подобный данному:

Три средние линии треугольника делят его на четыре равных треугольника, подобные данному, с коэффициентом подобия ½:

Медианы треугольника

Медианой треугольника называется отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.

Три медианы треугольника пересекаются в одной точке, делящей медианы в отношении 2:1, считая от вершины:

  • Медиана делит треугольник на два равновеликих (с равными площадями) треугольника.
  • Три медианы треугольника делят его на шесть равновеликих треугольников:

Длины медиан, проведённых к соответствующим сторонам треугольника, равны:

Биссектрисы треугольника

Биссектрисой треугольника, проведённой из данной вершины, называется отрезок биссектрисы угла треугольника, соединяющий эту вершину с точкой на противолежащей стороне.

Биссектрисы внутренних углов треугольника пересекаются в одной точке, находящейся внутри треугольника, равноудалённой от трёх его сторон, которая является центром окружности, вписанной в данный треугольник.

Биссектриса внутреннего угла треугольника делит противолежащую углу сторону на отрезки, пропорциональные двум другим сторонам:

Длина биссектрисы угла А :

Биссектрисы внутреннего и смежного с ним внешнего угла перпендикулярны.

Биссектриса внешнего угла треугольника делит (внешне) противолежащую сторону на отрезки, пропорциональные двум другим сторонам.

BL – биссектриса угла В ;

ВЕ – биссектриса внешнего угла СВК :

Высоты треугольника

Высотой треугольника называется перпендикуляр, опущенный из любой вершины треугольника на противолежащую сторону или на продолжение стороны.

Высоты треугольника пересекаются в одной точке, которая называется ортоцентром треугольника.

Высоты треугольника обратно пропорциональны его сторонам:

Длина высоты, проведённой к стороне а :

Серединные перпендикуляры

Серединный перпендикуляр – это прямая, которая проходит через середину стороны треугольника перпендикулярно к ней.

Три серединных перпендикуляра треугольника пересекаются в одной точке, которая является центром окружности, описанной около данного треугольника.

Точка пересечения биссектрисы угла треугольника с серединным перпендикуляром противолежащей стороны лежит на окружности, описанной около данного треугольника.

Окружность, вписанная в треугольник

Окружность называется вписанной в треугольник, если она касается всех его сторон.

Точки касания вписанной окружности сторон треугольника отсекают от его сторон три пары равных между собой отрезков:

Радиус вписанной в треугольник окружности – расстояние от её центра до сторон треугольника:

Окружность, описанная около треугольника

Окружность называется описанной около треугольника, если она проходит через все его вершины.

Радиус описанной окружности:

Расположение центра описанной окружности

Центр описанной окружности остроугольного треугольника расположен внутри треугольника.
Центр описанной окружности прямоугольного треугольника совпадает с серединой его гипотенузы.
Центр описанной окружности тупоугольного треугольника расположен вне треугольника.

Равнобедренный треугольник

Треугольник называется равнобедренным, если у него две стороны равны. Равные стороны называют боковыми сторонами, а третью – основанием равнобедренного треугольника.

В равнобедренном треугольнике углы при основании равны: ∠ A = ∠ C.

В равнобедренном треугольнике медиана, проведённая к основанию, является и биссектрисой, и высотой: BL – медиана, биссектриса, высота.

Основные формулы для равнобедренного треугольника:

Равносторонний треугольник

Треугольник у которого все стороны равны называется равносторонним или правильным треугольником.

Центры вписанной и описанной окружностей правильного треугольника совпадают.

Все углы равностороннего треугольника равны:

Каждая медиана равностороннего треугольника совпадает с биссектрисой и высотой, которые проведены из той же вершины:

Основные соотношения для элементов равностороннего треугольника

Прямоугольный треугольник

Треугольник называется прямоугольным, если у него есть прямой угол.

Стороны, прилежащие к прямому углу, называются катетами, противолежащая прямому углу – гипотенузой.

Прямоугольные треугольники равны если у них равны:

  • два катета;
  • катет и гипотенуза;
  • катет и прилежащий острый угол;
  • катет и противолежащий острый угол;
  • гипотенуза и острый угол.
  • одному острому углу;
  • из пропорциональности двух катетов;
  • из пропорциональности катета и гипотенузы.

Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу:

Высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное между проекциями катетов на гипотенузу:

Высота прямоугольного треугольника, проведённая из вершины прямого угла, может быть определена через катеты и их проекции на гипотенузу:

Медиана, проведённая из вершины прямого угла, равна половине гипотенузы:

Высота прямоугольного треугольника, проведённая из вершины прямого угла, делит данный треугольник на два треугольника, подобные данному:

Площадь прямоугольного треугольника можно определить

через катеты:

через катет и острый угол:

через гипотенузу и острый угол:

Центр описанной окружности совпадает с серединой гипотенузы.

Радиус описанной окружности:

Радиус вписанной окружности:

Вневписанные окружности

Три окружности, каждая из которых касается одной стороны (снаружи) и продолжений двух других сторон треугольника, называются вневписанными.

Центр вневписанной окружности лежит не пересечении биссектрисы одного внутреннего угла и биссектрис внешних углов при двух других вершинах.

Так точка О1 , центр одной из вневписанных окружностей Δ ABC , лежит на пересечении биссектрисы ∠ A треугольника ABC и биссектрис BО1 и C О1 внешних углов Δ ABC при вершинах B и C .

Таким образом, шесть биссектрис треугольника – три внутренние и три внешние – пересекаются по три в четырёх точках – центрах вписанной и трёх вневписанных окружностей.

Δ ABC является ортоцентричным в Δ О1О2О3 (точки A , B и C – основания высот в Δ О1О2О3 ).

В Δ ABC углы равны 180°–2 О1 , 180°–2 О2 , 180°–2 О3 .

Радиус окружности, описанной около Δ О1О2О3 , равен 2 R , где R – радиус окружности, описанной около Δ ABC .

Δ ABC имеет наименьший периметр среди всех треугольников, вписанных в Δ О1О2О3 .

Если ra , rb , rс – радиусы вневписанных окружностей в Δ ABC , то в Δ ABC верно:

для r

для R –

для S –

для самих ra , rb , rс

Теоремы синусов, косинусов, тангенсов; формулы Мольвейде

Теорема косинусов. Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними:

  • если c 2 > a 2 +b 2 , то угол γ – тупой ( cos γ
  • если c 2 2 +b 2 , то угол γ – острый ( cos γ > 0 );
  • если c 2 = a 2 +b 2 , то угол γ – прямой ( cos γ = 0 ).

Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов. Коэффициент пропорциональности равен диаметру описанной окружности:

Теорема тангенсов (формула Региомонтана):

[spoiler title=”источники:”]

http://ru.onlinemschool.com/math/formula/triangle/

http://math4school.ru/treugolniki.html

[/spoiler]

Добавить комментарий