Как найти синус прямого угла трапеции


1. Формулы длины диагонали равнобедренной трапеции через ее стороны

a – нижнее основание

b – верхнее основание

c – равные боковые стороны

d – диагональ трапеции

Формула диагонали трапеции (d ):

2. Формулы длины диагонали равнобедренной трапеции по теореме косинусов

a – нижнее основание

b – верхнее основание

c – равные боковые стороны

α, β углы трапеции

d – диагональ трапеции

Формулы диагонали трапеции (d ):


3. Формула длины диагонали равнобедренной трапеции

a – нижнее основание

b – верхнее основание

α, β углы между диагоналями

h – высота трапеции

m – средняя линия трапеции

S – площадь трапеции

d – диагональ трапеции

Формулы диагонали трапеции (d ):

Справедливо для данного случая :


4. Формулы длины диагонали трапеции через высоту и стороны

a – нижнее основание

b – верхнее основание

c – равные боковые стороны

h – высота трапеции

α – угол при нижнем основании

d – диагональ трапеции

Формулы диагонали трапеции (d ):



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии


Найти длину диагонали трапеции

зная все четыре стороны

или две стороны и угол

или высоту, сторону и угол

или площадь, другую диагональ и угол

и еще много других формул.

1. Формулы длины диагоналей трапеции по теореме косинусов или через четыре стороны

Формулы диагонали трапеции по теореме косинусов

a – нижнее основание

b – верхнее основание

c , d – боковые стороны

α, β углы трапеции

d1 , d2 – диагонали трапеции

Формулы диагоналей трапеции по теореме косинусов:

Все формулы диагонали трапеции

Все формулы диагонали трапеции

Формулы диагоналей трапеции через четыре стороны:

Формулы диагонали трапеции через стороны

Формулы диагонали трапеции через стороны

2. Формула длины диагоналей трапеции через высоту

Формула длины диагоналей трапеции через высоту

a – нижнее основание

b – верхнее основание

c , d – боковые стороны

α, β углы трапеции

h – высота трапеции

d1 , d2 – диагонали трапеции

Формулы диагоналей трапеции через высоту:

Формулы диагонали трапеции через высоту

Формулы диагонали трапеции через высоту

Формулы диагонали трапеции через высоту

Формулы диагонали трапеции через высоту

Формулы диагонали трапеции через высоту

Формулы диагонали трапеции через высоту


3. Формула длины диагонали трапеции через другую диагональ

Формула длины диагонали трапеции через другую диагональ

a – нижнее основание

b – верхнее основание

α, β углы между диагоналями

h – высота трапеции

m – средняя линия трапеции

S – площадь трапеции

d1 , d2 – диагонали трапеции

Формулы диагоналей трапеции :

Формулы диагонали трапеции через другую диагональ

Формулы диагонали трапеции через другую диагональ

Справедливо для данного случая :


4. Формулы длины диагонали трапеции через сумму квадратов диагоналей

Формулы длины диагоналей трапеции через сумму квадратов диагоналей

a – нижнее основание

b – верхнее основание

c , d – боковые стороны

d1 , d2 – диагонали трапеции

Формула суммы квадратов диагоналей :

Сумма квадратов диагоналей трапеции

Формулы диагоналей трапеции :

Формула длины диагонали через сумму квадратов диагоналей трапеции

Формула длины диагонали через сумму квадратов диагоналей трапеци



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии


1. Формула средней линии трапеции через основания (для всех видов трапеции)

Формула средней линии трапеции через основания

a – нижнее основание

b – верхнее основание

m – средняя линия

Формула средней линии, (m ):

Формула средней линии трапеции через основания

2. Формулы средней линии через основания, высоту и угол при нижнем основании

Формулы средней линии прямоугольной трапеции через основание, высоту и углы

a, b – основания трапеции

c – боковая сторона под прямым углом к основаниям

d – боковая сторона

α – угол при основании

h – высота трапеции

m – средняя линия

Формулы средней линии трапеции, (m ):

Формулы средней линии прямоугольной трапеции через высоту

Формулы средней линии прямоугольной трапеции через боковую сторону

Формулы средней линии прямоугольной трапеции через боковые стороны


3. Формула средней линии трапеции через диагонали, высоту и угол между диагоналями

Формула средней линии прямоугольной трапеции через диагонали, высоту и угол между диагоналями

d1 , d2 – диагонали трапеции

α , β – углы между диагоналями

h – высота трапеции

m – средняя линия

Формулы средней линии трапеции, (m ):

Формула средней линии трапеции через диагонали, высоту и угол между диагоналями


4. Формула средней линии трапеции через площадь и высоту (для всех видов трапеции)

Формула средней линии трапеции через площадь и высоту

S – площадь трапеции

h – высота трапеции

m – средняя линия

Формула средней линии трапеции, (m ):

Формула средней линии трапеции через площадь и высоту



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии


1. Формула боковой стороны (с) прямоугольной трапеции через другие стороны и угол при нижнем основании

боковая сторона (с) прямоугольной трапеции через другие стороны и угол при нижнем основании

a – нижнее основание

b – верхнее основание

d – боковая сторона

α – угол при нижнем основании

h – высота трапеции

c – боковая сторона под прямым углом к основаниям

Формулы длины боковой стороны (с) :

Формула боковой стороны (с) прямоугольной трапеции

Формула боковой стороны (с) прямоугольной трапеции

Формула боковой стороны (с) прямоугольной трапеции

Формула боковой стороны (с) прямоугольной трапеции

2. Формулы боковой стороны (с) прямоугольной трапеции через диагонали  и угол между ними

боковая сторона (с) прямоугольной трапеции через диагонали  и угол между ними

a – нижнее основание

b – верхнее основание

d1 , d2 – диагонали трапеции

α , β – углы между диагоналями

c – боковая сторона под прямым углом к основаниям

Формулы длины боковой стороны (с):

Формула боковой стороны (с) прямоугольной трапеции


3. Формулы боковой стороны (с) прямоугольной трапеции через площадь

боковая сторона (с) прямоугольной трапеции через площадь

a – нижнее основание

b – верхнее основание

m – средняя линия трапеции

c – боковая сторона под прямым углом к основаниям

Формула длины боковой стороны (с) :


4. Формулы боковой стороны (d) прямоугольной трапеции через другие стороны и угол при нижнем основании

боковая сторона (d) прямоугольной трапеции через другие стороны и угол при нижнем основании

a – нижнее основание

b – верхнее основание

c – боковая сторона под прямым углом к основаниям

α – угол при нижнем основании

h – высота трапеции

d – боковая сторона

Формулы длины боковой стороны (d) :


5. Формула боковой стороны (d) прямоугольной трапеции через площадь

боковая сторона (d) прямоугольной трапеции через площадь

a – нижнее основание

b – верхнее основание

m – средняя линия трапеции

α – угол при нижнем основании

d – боковая сторона

Формула длины боковой стороны (d) :

Формула боковой стороны (d) прямоугольной трапеции через площадь



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии


1. Формула длины оснований прямоугольной трапеции через среднюю линию

длина оснований прямоугольной трапеции через среднюю линию

a – нижнее основание

b – верхнее основание

m – средняя линия

Формулы длины оснований :

2. Формулы длины оснований через боковые стороны и угол при нижнем основании

длина оснований через боковые стороны и угол при нижнем основании

a – нижнее основание

b – верхнее основание

c , d – боковые стороны

α – угол при нижнем основании

Формулы длины оснований :


3. Формулы длины оснований трапеции через диагонали  и угол между ними

длина оснований трапеции через диагонали  и угол между ними

a – нижнее основание

b – верхнее основание

c – боковая сторона под прямым углом к основаниям

d1 , d2 – диагонали трапеции

α , β – углы между диагоналями

Формулы длины оснований :


4. Формулы длины оснований трапеции через площадь

длина оснований трапеции через площадь

a – нижнее основание

b – верхнее основание

c – боковая сторона под прямым углом к основаниям

h – высота трапеции

Формулы длины оснований :



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии


1. Формула средней линии равнобедренной трапеции через основания

средняя линия равнобедренной трапеции через основания

a – нижнее основание

b – верхнее основание

m – средняя линия

Формула средней линии, (m ):

Формула средней линии равнобедренной трапеции через основания

2. Формулы средней линии через основание, высоту и углы при нижнем основании

средняя линия через основание, высоту и углы при нижнем основании

a – нижнее основание

b – верхнее основание

c – боковая сторона

α – угол при нижнем осровании

h – высота трапеции

m – средняя линия

Формулы средней линии трапеции, (m ):

Формулы средней линии через основание, высоту и углы при нижнем основании

Формулы средней линии через основание, высоту и углы при нижнем основании

Формулы средней линии через основание, высоту и углы при нижнем основании

Формулы средней линии через основание, высоту и углы при нижнем основании


3. Формула средней линии трапеции через диагонали, высоту и угол между диагоналями

средняя линия трапеции через диагонали, высоту и угол между диагоналями

d – диагонали трапеции

α , β – углы между диагоналями

h – высота трапеции

m – средняя линия

Формула средней линии трапеции, (m ):


4. Формула средней линии трапеции через площадь и высоту

средняя линия трапеции через площадь и высоту

S – площадь трапеции

h – высота трапеции

α – угол при нижнем осровании

m – средняя линия

Формула средней линии трапеции, (m ):

Формула средней линии трапеции через площадь и высоту



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии


1. Формула высоты равнобедренной трапеции через стороны и углы при основании

Высота равнобедренной трапеции через стороны и углы при основании

a – нижнее основание

b – верхнее основание

c – равные боковые стороны

α – угол при нижнем основании

h – высота трапеции

Формулы длины высоты, (h ):

Формула высоты равнобедренной трапеции через стороны

Формула высоты равнобедренной трапеции через стороны и угол

2. Формула высоты равнобедренной трапеции через диагонали и углы между ними

Высота равнобедренной трапеции через диагонали и углы между ними

d – диагонали трапеции

α , β – углы между диагоналями

a , b – основания

h – высота трапеции

m – средняя линия

Формулы длины высоты, (h ):

Формулы длины высоты равнобедренной трапеции

Формулы длины высоты равнобедренной трапеции


3. Формула высоты равнобедренной трапеции через площадь

Высота равнобедренной трапеции через площадь

S – площадь трапеции

a , b – основания

h – высота трапеции

m – средняя линия

Формулы длины высоты, (h ):

Формула высоты равнобедренной трапеции через площадь



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии


1. Формула длины основания равнобедренной трапеции через среднюю линию

Основания равнобедренной трапеции

a – нижнее основание

b – верхнее основание

m – средняя линия

Формулы длины основания:

Формула длины стороны трапецииФормула длины стороны трапеции

2. Формулы длины сторон через высоту и угол при нижнем основании

Длина сторон равнобедренной трапеции

a – нижнее основание

b – верхнее основание

c – равные боковые стороны

α угол при основании трапеции

h – высота трапеции

Формулы всех четырех сторон трапеции:

Формула длины сторон равнобедренной трапеции через высоту

Формула длины сторон равнобедренной трапеции через высоту

Формула длины сторон равнобедренной трапеции через боковую сторону


3. Формула длины сторон трапеции через диагонали, высоту и угол между диагоналями

Длина сторон равнобедренной трапеции через диагональ

a – нижнее основание

b – верхнее основание

c – равные боковые стороны

d – диагонали

α , β – углы между диагоналями

h – высота трапеции

Формулы длины сторон трапеции:

Формула длины основания равнобедренной трапеции через диагонали

справедливо для данной ситуации:


4. Формулы длины сторон равнобедренной трапеции через площадь

Стороны равнобедренной трапеции через площадь

a – нижнее основание

b – верхнее основание

c – равные боковые стороны

α , β – углы при основаниях

m – средняя линия

h – средняя линия

Формулы длины сторон равнобедренной трапеции через площадь:

Формулы длины сторон  равнобедренной трапеции через площадьФормулы длины сторон  равнобедренной трапеции через площадь

Формулы длины сторон  равнобедренной трапеции через площадь

Формулы длины сторон  равнобедренной трапеции через площадь



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии

Трапеция это фигура, которая имеет четыре стороны, две из которых параллельны, а две другие, нет. Параллельные стороны называются – верхнее основание и нижнее основание. Две другие, называются боковыми сторонами.
Высота трапеции это отрезок, длина которого, равна кратчайшему расстоянию между основаниями и следовательно расположенному перпендикулярно к этим основаниям.


1. Формула высоты трапеции через стороны и углы при основании

Формула высоты произвольной трапеции

a – нижнее основание

b – верхнее основание

c , d – боковые стороны

α, β углы трапеции

h – высота трапеции

Формулы длины высоты, (h ):

Формула высоты произвольной трапеции

Формула высоты произвольной трапеции

2. Формула высоты трапеции через диагонали и углы между ними

Формула высоты трапеции через диагонали

d1 , d2 – диагонали трапеции

α , β – углы между диагоналями

a , b – основания

h – высота трапеции

m – средняя линия

Формулы длины высоты, (h ):


3. Формула высоты трапеции через площадь

Формула высоты трапеции через площадь

S – площадь трапеции

a , b – основания

h – высота трапеции

m – средняя линия

Формулы длины высоты, (h ):

Формула высоты произвольной трапеции через площадь



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии

Трапеция это фигура, которая имеет четыре стороны, две из которых параллельны, а две другие, нет. Параллельные стороны называются – верхнее основание и нижнее основание. Две другие, называются боковыми сторонами.
Средняя линия трапеции – отрезок соединяющий середины боковых сторон и расположен параллельно к основаниям. Длина средней линии, равна полу сумме оснований.


1. Формула средней линии трапеции через основания

Формула средней линии трапеции через основания

b – верхнее основание

a – нижнее основание

m– средняя линия

Формула средней линии, (m ):

Формула средней линии трапеции через основания

2. Формулы средней линии через основание, высоту и углы при нижнем основании

Формула средней линии трапеции через основание, высоту и углы

b – верхнее основание

a – нижнее основание

α, β углы трапеции

h – высота трапеции

m – средняя линия

Формулы средней линии трапеции, (m):

Формулы средней линии через основание, высоту и углы при нижнем основании

Формулы средней линии через основание, высоту и углы при нижнем основании


3. Формула средней линии трапеции через диагонали, высоту и угол между диагоналями

Формула средней линии трапеции через диагонали, высоту и угол между диагоналями

αβ – углы между диагоналями

d1 , d2 – диагонали трапеции

h – высота трапеции

m – средняя линия

Формулы средней линии трапеции, (m ):

Формула средней линии трапеции через диагонали, высоту и угол между диагоналями


4. Формула средней линии трапеции через площадь и высоту

Формула средней линии трапеции через площадь и высоту

S – площадь трапеции

h – высота трапеции

m – средняя линия

Формула средней линии трапеции, (m):

Формула средней линии трапеции через площадь и высоту



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии


1. Формула длины основания трапеции через среднюю линию

Длина основания трапеции через среднюю линию

a – нижнее основание

b – верхнее основание

m – средняя линия

Формулы длины оснований :

Формула длины стороны трапецииФормула длины стороны трапеции

2. Формулы длины сторон через высоту и углы при нижнем основании

Длина стороны трапеции

a – нижнее основание

b – верхнее основание

c , d – боковые стороны

α, β углы трапеции

h – высота трапеции

Формулы всех четырех сторон трапеции:

Формула длины стороны трапеции

Формула длины стороны трапеции

Формула длины стороны трапеции

Формула длины стороны трапеции

Формула длины стороны трапеции Формула длины стороны трапеции


3. Формула длины сторон трапеции через диагонали, высоту и угол между диагоналями

Длина сторон трапеции через диагонали и высоту

a – нижнее основание

b – верхнее основание

d1 , d2 – диагонали трапеции

α , β – углы между диагоналями

h – высота трапеции

Формулы длины сторон трапеции:

Формула длины сторон трапеции через диагонали, высоту и угол между диагоналями

Формула длины сторон трапеции через диагонали, высоту и угол между диагоналями



Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии

ЗАДАЧА

Прежде чем приступить к решению задачи, мы:

–  рассмотрим трапецию, вспомним ее основные характеристики;

– перенесем данные задачи на чертеж;

– внимательно прочитаем вопрос.

Как мы видим нам дана трапеция АВСD. Что мы знаем об этой фигуре? Давайте рассуждать:

По условию задачи СЕ- высота трапеции. 

    Проведем ещё одну высоту из точки D. Что нам это даст? Во- первых отметим ,что эти высоты равны друг другу. Во- вторых, построенная нами высота «отрезает» из нижнего основания кусочек равный 51. Наглядно это выглядит так;

    Напомню, по условию, нам нужно найти синус острого угла трапеции. В нашей трапеции, как мы определили ранее, острые углы – А и В.  Рассмотрим подробнее угол В в прямоугольном треугольнике СЕВ. Также вспомним, что синус острого угла – это отношение противоположного катета к гипотенузе прямоугольного .  Продолжение решения…..

Синус угла трапеции.



Ученик

(228),
на голосовании



9 лет назад

Голосование за лучший ответ

Татьяна Козлова

Искусственный Интеллект

(331801)


9 лет назад

Высоты проведите, получатся прямоугольные треугольники, нижнее основание разобьется на отрезки 12, 1, 12, т. е. в прямоугольном треугольнике прилежащий катет 12, гипотенуза 15, по теореме Пифагора противолежащий катет 9, далее синус по определению 3/5

Трапеция —  геометрическая фигура представляет собой выпуклый четырехугольник с параллельными
противоположными сторонами. Они называются основаниями. Две другие стороны — боковые.
Трапеция, у которой они одинакового размера, называется равнобедренной. Если одна из боковых сторон
образует у основания угол в 90 градусов-прямоугольной.

Прямая линия, проведенная от одного основания
к другому, именуется высотой трапеции. Величина ее высчитывается делением суммы оснований на 2.
Диагонали — это отрезки, соединяющие противоположные углы фигуры. У равнобедренной трапеции
они равны по длине. Средняя линия-прямая, делящая пополам боковые стороны.

  • Угол трапеции при основании через высоту и прилегающую
    боковую сторону
  • Угол трапеции через нижнее основание, боковую сторону и
    диагональ
  • Угол равнобедренной трапеции через нижнее основание,
    среднию линию и боковую сторону
  • Угол равнобедренной трапеции через среднию линию, верхнее
    основание и боковую сторону
  • Острый угол при нижнем основании прямоугольной трапеции
    через высоту и два основания
  • Острый угол при нижнем основании прямоугольной трапеции
    через два основания и боковую сторону

Угол трапеции при основании через высоту и прилегающую боковую сторону

Рис 1

Введем обозначения: h-высота, с — боковая сторона. Угол трапеции α при основании вычисляется с
помощью формулы

sin α = h/с

где: h — высота трапеции, c — боковая сторона.

Цифр после
запятой:

Результат в:

Пример. Заменим буквенные обозначения условными цифрами. Пример: если высота равна
9см, боковая сторона-11см, получим: sin α = 9 / 11 = 0,818 , отсюда α =
55º. Указанное значение находим в таблице синусов. Данный показатель синуса угла соответствует
величине 55 градусов.

Через нижнее основание, среднию линию и боковую сторону в равнобедренной трапеции

Рис 3

Угол равнобедренной трапеции через нижнее основание, среднюю линию и боковую сторону находится по
формуле:

cos α = (2a-2m) / 2c

где а — нижнее основание, m — средняя линия, с — боковая сторона.

Цифр после
запятой:

Результат в:

Пример.Заменим буквы условными цифровыми значениями. Если нижнее основание равно 8
см, средняя линия-6, а боковая сторона-4,8 см, то косинус угла равен 0,41666, что соответствует 65
градусам. cos α = (2 * 8 — 2 * 6) / 2 * 4,8 = 0, 41666, отсюда α =
65º. Равнобедренная трапеция — геометрическая фигура с нижними острыми углами. Это ее
особенность.

Угол трапеции, зная размер нижнего основания, боковой стороны и диагонали

Рис 2

Если известны эти величины, воспользуемся формулой:

cos α= (a²+c²-d²) / 2ac

где а-нижнее основание, d-диагональ, с-боковая сторона.

Цифр после
запятой:

Результат в:

Пример. При условной величине нижнего основания 4 см, диагонали — 5.7 см,
боковой стороны — 4,4 см косинус равняется 0,081534, что соответствует углу 85 градусов по
таблице функций. cos α= (4² + 4,4² — 5,7²) / 2*4*4,4 = 0,081534,
отсюда α = 85º.

Через среднюю линию, верхнее основание и боковую сторону в равнобедренной трапеции

Рис 4

Нахождение угла равнобедренной трапеции через среднюю линию, верхнее основание и боковую сторону
выполняется по предложенной формуле:

cos α = (2m-2b) / 2c

где m — средняя линия, b — верхнее основание, c — боковая сторона.

Цифр после
запятой:

Результат в:

Пример. Введем условные цифровые значения. Допустим, что у равнобедренной трапеции
верхнее основание равно 4 см, средняя линия-6, боковая сторона-4 см. Косинус составляет 0,5.
Значение соответствует 60 градусам по таблице Брадиса. cos α = (2 * 6 — 2 * 4) / 2 * 4 = 0,5,
отсюда α = 60º

Вычисление острого угла при нижнем основании, если известны величины обоих оснований и боковой
стороны в прямоугольной трапеции

Рис 6

Находится по формуле

cos α = (a — b) / c

где a,b — основания, c — боковая сторона.

Цифр после
запятой:

Результат в:

Пример. Если буквенные выражения заменить условными цифровыми, получится наглядный
пример вычисления. Допустим, длина нижнего основания а 8 см, верхнего b-5,8 см, размер боковой
стороны с-4,8. Подставив в формулу цифровые значения, получим итог: косинус равен 0,45833.
Сравниваем показатель с таблицей вычисления Брадиса: он соответствует углу 63 градуса. cos α=(8 — 5,8) / 4,8 = 0,45833, отсюда α = 63º

Острый угол при нижнем основании, зная высоту и размеры двух оснований прямоугольной трапеции

Рис 5

При известных указанных величинах воспользуемся следующей формулой:

tg(α) = h / (a-b)

где h — высота, a,b — верхнее и нижнее основания.

Цифр после
запятой:

Результат в:

Пример. Введя условные цифровые значения h = 15, a = 11, b = 10 получим tg(α) = 15 / (11-10) = 15. При вычислении получим значение тангенса: 15.
По таблице функций показатель соответствует 86 градусам.

Следует знать несколько закономерностей данной геометрической конструкции. У трапеции четыре угла,
общая сумма которых составляет 360 градусов.

Равнобедренная отличается двумя равными острыми, прилегающими к нижнему основанию, и тупыми
одинаковой величины-к верхнему. У прямоугольной трапеции два угла по 90 градусов, другие —
острый и тупой. Если он прилегает к нижнему основанию, величина такого угла определяется делением
высоты на разность между нижним и верхним основаниями. Угол трапеции при основании равен отношению
высоты к боковой стороне.

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ  ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 5

МУНИЦИПАЛЬНОГО
ОБРАЗОВАНИЯ                                                                                                           
город – курорт АНАПА

                                                                        
Рассмотрено и

                                                  
рекомендовано к использованию

                                                  
на заседании МО от _______________

                                                                 
Протокол №______

                           Подготовка
к ОГЭ и ЕГЭ.

                             «Формулы
и свойства трапеции»

                              Методическая разработка

                              учителя
математики

              
           Снегуровой Амины Мугиновны

                                            
2018 год.

Оглавление

     Введение 3

1.    
Определения  4

2.    
Частные случаи трапеции  5

3.    
Свойства  произвольной трапеции   6-7

4.    
Свойства равнобедренной трапеции  8-10

5.     Свойства
биссектрисы угла трапеции  10-12

6.    
Свойства треугольников, образованных диагоналями трапеции 12-13

7.    
Формулы нахождения диагоналей трапеции 13-14

8.    
Трапеция и окружность 14-17

9.    
Дополнительные построения в трапеции  17-23

10. Для
тех, кому интересно. Теоремы. 23-27

11.
Задачи с решениями.27-35

12.  Список используемой литературы .

Введение   

  Дорогой ученик!  

В материалах различных контрольных работ и экзаменов очень часто встречаются
задачи на трапецию, решение которых требует от учащихся
знаний
«непрограммных» свойств трапеции. (Программными считаются
свойство средней
линии трапеции, свойства диагоналей и углов

равнобедренной
трапеции.)
Свойства, необходимые для решения задач, отсутствуют в
учебниках или перенесены в задачи и не воспринимаются как теоретические
положения.

Какими же замечательными свойствами обладает трапеция?
Как решать геометрические задачи, требующие глубоких знаний?
Трапеция
обладает рядом интересных и полезных для решения задач свойствами. Если
овладеть ими и рассмотреть дополнительные построения в трапеции, то возникает
объективная возможность для решения задач повышенной сложности.

В планиметрии существует целый класс таких задач,
к которым традиционные методы (метод цепочек равных треугольников, метод
геометрических преобразований, векторный метод и др.) либо вовсе не применимы,
либо дают сложные и громоздкие решения. Во многих случаях решать такого рода
задачи помогает введение в чертеж дополнительных линий – так называемое
дополнительное построение. В одних случаях эти построения напрашиваются сами
собой, в других они не так очевидны и требуют от решающего достаточно большого
опыта, изобретательности, геометрической интуиции.

Так, чертеж данной в задаче фигуры можно
достраивать до фигуры другого типа, можно с многоугольной фигурой связывать
окружность, а можно целью дополнительного построения ставить выделение на
чертеже равных, равновеликих или подобных фигур.

Знание метода дополнительных построений в
большинстве случаев позволяет решать, казалось бы, сложные геометрические
задачи просто, понятно и красиво.

В этой
разработке собраны формулы, свойства и подсказки для решения задач связанных с
трапецией. Надеюсь, что ты здесь найдешь для себя много полезной информации.

1.Определения.


Трапецией называется четырехугольник, у которого две стороны
параллельны, а две другие не параллельны.

Параллельные
стороны
называются её основаниями, а две другие стороны – боковыми
сторонами
.


Высотой трапеции называется расстояние между основаниями.

            

Kаждый
из этих отрезков  EF,
BM, DK, PQ является высотой трапеции ABCD.

                                                                
Картинки по запросу во всякой трапеции четыре точки лежат на одной прямой

Обозначения элементов произвольной трапеции для использования в формулах

В
формулах используются следующие обозначения:

a,
b
 – основания трапеции

c,
d
 – боковые стороны трапеции

d1
d2
 – диагонали трапеции

α
β
 – углы при большем основании трапеции

h
высота.

2.Частные
случаи трапеции.

                                  

Прямоугольной
трапецией называется трапециия, в которой одна из боковых сторон перпендикулярна
основаниям.

У
нее два прямых угла при меньшей боковой стороне.

Эта
сторона одновременно является и высотой трапеции.

                 

                          
произвольная

Трапецией
называется четырехугольник, у которого две стороны
параллельны, а две другие не параллельны.

                        

У
равнобедренной трапеции так же, как и у равнобедренного треугольника, углы при
основании равны.

Трапеция,
у которой боковые стороны равны, называется равнобедренной

(равнобокой,
равнобочной).

3.Свойства произвольной
трапеции.

1. Во всякой трапеции сумма углов , прилежащих к
одной ее боковой стороне, равна 1800.

      

2. Во всякой трапеции средняя линия параллельна ее
основаниям, равна полусумме этих оснований и делит диагонали трапеции пополам.

Картинки по запросу свойства отрезка соединяющего середины оснований трапеции  

                         MК =          

3.Четыре замечательные
точки трапеции
:

 Во всякой трапеции середины
оснований, точка пересечения диагоналей и точка пересечения продолжений боковых
сторон лежат на одной прямой.

 ÐšÐ°Ñ€Ñ‚инки по запросу во всякой трапеции четыре точки лежат на одной прямой  

4. Во всякой трапеции если
сумма углов при большем основании равна 900, то боковые стороны
лежат на перпендикулярных прямых. Длина отрезка, соединяющего середины
оснований,  равна полуразности оснований.

Картинки по запросу если сумма углов при одном из оснований трапеции равна 90

5.
Свойства отрезка, соединяющего основания трапеции

Свойства отрезка, соединяющего середины оснований трапеции и проходящего через точку пересечения диагоналей трапецииОтрезок,
соединяющий основания всякой трапеции, и проходящий через точку пересечения
диагоналей трапеции, делится этой точкой в пропорции, равной соотношению длин оснований
трапеции.

Если провести отрезок, концы которого лежат на основаниях
трапеции, который лежит на точке пересечения диагоналей трапеции (KN), то
соотношение составляющих его отрезков от стороны основания до точки пересечения
диагоналей ( KO/ON ) будет равно соотношению оснований трапеции:   

6.Свойства отрезка, параллельного основаниям всякой трапеции.

Свойство отрезка, параллельного основаниям трапеции и проходящего через точку пересечения диагоналей трапецииЕсли
провести отрезок, параллельный основаниям трапеции и проходящий через точку
пересечения диагоналей трапеции, то он будет обладать следующими свойствами:

*Заданный отрезок (KM) делится точкой пересечения диагоналей
трапеции пополам, то есть КО=ОМ

*Длина отрезка,
проходящего через точку пересечения диагоналей трапеции и параллельного
основаниям, равна 

               
  KM =
.

 7.Во всякой трапеции с основаниями   a и b отрезок, параллельный
основаниям, концы которого лежат на  боковых сторонах, равен среднему
геометрическому оснований,  если он делит  трапецию на две трапеции, подобные
между собой.

8. Во всякой трапеции с основаниями   a и b отрезок, параллельный
основаниям, концы которого лежат на  боковых сторонах, равен среднему
квадратичному оснований,  если он делит трапецию на две трапеции равной площади
(равновеликие).

http://free.megacampus.ru/xbookM0005/files/21-04r.gif                           
http://free.megacampus.ru/xbookM0005/files/21-03f.gif

9.Сумма
квадратов диагоналей трапеции равна сумме квадратов боковых сторон плюс
удвоенное произведение ее оснований
.

d12
+
d22
=
c2 + d2+
2
ab, d– боковая сторона. d1 и
d2
диагонали.

Свойства
равнобедренной трапеции.

Трапеция является равнобедренной
тогда и только тогда, когда

*углы, прилежащие к одному
основанию, равны

*сумма противолежащих углов 1800;

*диагонали равны;

 

AC = BD

*отрезки диагоналей, соединяющих точку пересечения
с концами одного основания, равны;      
BO = OC, AO = OD.

*вокруг этой трапеции можно
описать окружность.

       BC // ADAB = CD. ABCDвписанная трапеция.

* высота, проведенная из вершины меньшего основания, разбивает
большее основание на отрезки, один из которых равен полуразности оснований, а
другой полусумме оснований трапеции, т. е. средней линии трапеции.

*если в равнобедренной трапеции диагонали перпендикулярны,
то

    1)квадрат ее диагонали равен половине квадрата суммы
оснований, а также  удвоенному квадрату высоты и удвоенному квадрату
средней линии.

    2)высота трапеции равна полусумме оснований. 

    3)ее высота равна средней линии.

   4)
площадь равнобедренной трапеции, диагонали которой взаимно перпендикулярны,
равна квадрату её высоты.

 (или квадрату полусуммы оснований, или квадрату средней линии).
 
  

Картинки по запросу если сумма углов при одном из оснований трапеции равна 90             

 ÐšÐ°Ñ€Ñ‚инки по запросу площадь равнобедренной трапеции, диагонали которой взаимно перпендикулярны  

http://egetrener.ru/files/C4/_59.jpg*если в равнобокой трапеции высота равна средней линии, то
диагонали трапеции взаимно перпендикулярны.

  BH = HD = h =.                                     

*высота, проведённая через
точку пересечения
 диагоналей, в
равнобедренной трапеции лежит на оси симметрии и разбивает трапецию на две
равные прямоугольные трапеции, то есть основания этой высотой делятся пополам.

Картинки по запросу высота, проведённая через точку пересечения диагоналей, в равнобедренной трапеции

равнобедренной трапеции прямая, проходящая через середины
оснований,  перпендикулярна им и является осью симметрии трапеции.

Картинки по запросу высота, проведённая через точку пересечения диагоналей, в равнобедренной трапеции  Картинки по запросу высота, проведённая через точку пересечения диагоналей, в равнобедренной трапеции  ÐšÐ°Ñ€Ñ‚Ð¸Ð½ÐºÐ¸ по запросу оси симметрии трапеции

*отрезки, последовательно соединяющие середины смежных сторон
равнобедренной трапеции, образуют ромб.

Картинки по запросу отрезки, последовательно соединяющие середины смежных сторон равнобедренной трапеции, образуют ромб.           
MNKEромб,
то есть

             MN=NK=KE=
ME.

*в равнобедренной трапеции квадрат диагонали равен квадрату его
боковой стороны плюс произведение оснований:     
d2
= c2 + a b

hello_html_1ac9a1cd.png*площадь
равнобедренной трапеции с радиусом вписанной окружности равным   r  и углом при
основании   α:

                   S =

                  Свойства
биссектрисы угла трапеции.

 *биссектриса угла отсекает
от трапеции равнобедренный треугольник.

   

*точка пересечения биссектрис
тупых углов при основании трапеции принадлежит другому основанию.

*если диагональ трапеции является биссектрисой ее острого угла, то
меньшее основание равно боковой стороне трапеции, прилежащей к этому углу.

*биссектриса угла трапеции, пересекающая основание, отсекает от
трапеции равнобедренный треугольник.

*биссектрисы углов при боковой стороне трапеции пересекаются под
прямым углом.

* точка пересечения биссектрис трапеции, прилежащих к  боковой
стороне, лежит на средней линии трапеции.

*если биссектриса тупого угла трапеции является диагональю, то
боковая сторона равна большему основанию трапеции.

Картинки по запросу Если биссектриса тупого угла является диагональю, то боковая сторона равна большему основанию трапеции.

*если меньшее основание трапеции равно ее
боковой стороне, то диагональ трапеции является биссектрисой прилежащего к этой
боковой стороне острого угла.

боковая сторона трапеции равна основанию

Если в условии задачи сказано, что основание трапеции равно ее боковой
стороне, то отсюда следует, что диагональ трапеции является биссектрисой ее
угла.

*если меньшее основание трапеции равно ее
боковой стороне, то диагональ трапеции является биссектрисой прилежащего к этой
боковой стороне острого угла.

основание трапеции равно боковой стороне*если большее основание
трапеции равно ее боковой стороне, то диагональ трапеции является биссектрисой
прилежащего к этой боковой стороне тупого угла.

*если большее основание прямоугольной трапеции
равно ее меньшей боковой стороне, диагональ является биссектрисой прямого угла,
прилежащего к меньшему основанию.

* если меньшее основание прямоугольной трапеции
равно ее меньшей боковой стороне, диагональ является биссектрисой прямого угла,
прилежащего к большему основанию.

основание трапеции равно боковой стороне

* если меньшее основание прямоугольной трапеции равно ее
большей боковой стороне, диагональ является биссектрисой прилежащего к этой
боковой стороне острого угла.

* если большее основание прямоугольной трапеции
равно ее большей боковой стороне, диагональ является биссектрисой прилежащего к
этой боковой стороне тупого угла.

в прямоугольной трапеции

*если меньшее основание равнобедренной трапеции
равно ее боковой стороне, то диагональ является биссектрисой острого угла
трапеции.

* если большее основание равнобедренной трапеции
равно ее боковой стороне, то диагональ является биссектрисой тупого угла
трапеции.

основание равнобедренной трапеции равно боковой стороне

Свойства
треугольников, образованных диагоналями трапеции

Подобие треугольников, образованных пересечением диагоналей трапеции 

Треугольники, которые образованы основаниями трапеции и точкой
пересечения диагоналей трапеции – являются подобными


Треугольники BOC и AOD являются подобными. Поскольку углы BOC и AOD являются
вертикальными – они равны. 
Углы OCB и OAD являются внутренними накрест лежащими при параллельных прямых AD
и BC (основания трапеции параллельны между собой) и секущей прямой AC,
следовательно, они равны.  
Углы OBC и ODA равны по той же самой причине (внутренние накрест лежащие).

Так как все три угла одного треугольника равны соответствующим
углам другого треугольника, то данные треугольники подобны.

Что из этого следует?

Для
решения задач по геометрии подобие треугольников используется следующим
образом.

*Если
нам известны значения длин двух соответствующих элементов подобных
треугольников, то мы находим коэффициент подобия (делим одно на другое). Откуда
длины всех остальных элементов соотносятся между собой точно таким же
значением.

*В подобных треугольниках
длины всех линейных элементов пропорциональны, а именно:

отношения периметров, радиусы
вписанных окружностей, радиусы описанных окружностей, соответствующих высот, биссектрис,
медиан (проведенных из равных углов) подобных треугольников равны отношению
соответствующих сторон (лежащих против равных углов) или равны коэффициенту
подобия.

*Площади подобных
треугольников относятся как квадраты соответствующих сторон или равно квадрату
коэффициента подобия.

*Площади треугольников,
образованных боковыми сторонами и точкой пересечения диагоналей трапеции равны
, то есть треугольники являются равновеликими.

S12= S2 S3

S3: S2 = 2 

Рассмотрим два треугольника, лежащих на боковых сторонах трапеции
AB и CD. Это – треугольники AOB и COD. Несмотря на то, что размеры отдельных
сторон у данных треугольников могут быть совершенно различны, но площади
треугольников, образованных боковыми сторонами и точкой пересечения диагоналей
трапеции равны
, то есть треугольники являются равновеликими.

Если продлить боковые стороны трапеции в сторону меньшего
основания, то они пересекутся в одной точке с прямой, соединяющей середины
оснований

Формулы для нахождения диагоналей трапеции

Далее приведены формулы, отображающие зависимость между сторонами,
углами трапеции и величиной ее диагоналей. Эти формулы пригодятся для решения
задач по геометрии на тему “диагонали трапеции”

Обозначения элементов произвольной трапеции для использования в формулах 

Далее, в формулах используются следующие обозначения:

a, b –
основания трапеции

c, d –
боковые стороны трапеции

d1 d2 –
диагонали трапеции

α β –
углы при большем основании трапеции

hвысота

Формулы нахождения диагоналей трапеции
через основания, боковые стороны и углы при основании

Нахождение диагоналей трапеции через ее основания, стороны и углы при большем основании Нахождение диагоналей трапеции через ее основания, стороны и углы при большем основанииНахождение диагоналей трапеции через ее основания, стороны и углы при большем основании

Эта группа формул отражает одно из основных свойств диагоналей
трапеции: 

*Сумма квадратов диагоналей трапеции равна
сумме квадратов боковых сторон плюс удвоенное произведение ее оснований
.
Данное свойство диагоналей трапеции может быть доказано как отдельная теорема

Используем
теорему косинусов.

*Данная
формула получена путем преобразования предыдущей формулы. Квадрат второй
диагонали переброшен через знак равенства, после чего из левой и правой части
выражения извлечен квадратный корень.

*Эта формула
нахождения длины диагонали трапеции аналогична предыдущей, с той разницей, что
в левой части выражения оставлена другая диагональ

   4.В прямоугольной трапеции разность квадратов диагоналей равна
разности квадратов оснований
          
                   

                       
d1
d2
= a2
b2

*Если
диагонали трапеции взаимно перпендикулярны, то длина отрезка, соединяющего
середины оснований трапеции равна полусумме оснований.

http://free.megacampus.ru/xbookM0005/files/21-16r.gif

MH =

BDCE и FAOD прямоугольники, а диагонали
прямоугольника равны.

 Трапеция и окружность.

1) Если в равнобокую трапецию можно вписать окружность, то средняя
линия трапеции равна боковой стороне.

Высота равнобедренной трапеции, в которую можно вписать окружность,
является средним геометрическим её оснований

                                        h2
=
ab

2)
Если в равнобедренную трапецию вписана окружность, то её боковая сторона равна
средней линии.
Площадь трапеции определяется произведением средней линии на
высоту трапеции.

http://free.megacampus.ru/xbookM0005/files/21-23f.gif

3. Высота трапеции равна длине диаметра вписанной
окружности или двум ее радиусам.

радиус вписанной в трапецию окружности

MK —
высота трапеции, MK=2r, где r — радиус вписанной в трапецию окружности.

4. Центр вписанной
окружности является точкой пересечения биссектрис углов трапеции.

[OF = sqrt {CF cdot FD} ]. CF =m,
FD =n, OF = r.

как найти радиус вписанной в трапецию окружностиCOD=90º, т.к. ADC+BCD=180º – так

как сумма
внутренних односторонних углов при параллельных прямых AD и BC и секущей CD
равна 1800.

Отсюда
радиус вписанной в трапецию окружности выражается через длины отрезков, как
которые боковая сторона делится точкой касания, как
r = .

А так как
высота трапеции равна ее диаметру, то и высоту трапеции можно выразить через
длины этих отрезков:
h = 2 .

5.Если в трапецию можно вписать окружность и около трапеции можно
описать окружность, то проекция диагонали на большее основание, равна боковой
стороне и равна средней линии трапеции.

Если в трапецию вписана окружность, в задаче появляется несколько
путей, по которым можно повести рассуждение.

1.В четырехугольник можно вписать окружность тогда и только тогда,
когда суммы длин его противолежащих сторон равны. Отсюда следует, что если в трапецию вписана окружность, то сумма
ее оснований равна сумме боковых сторон.

 AB+CD=AD+BC

свойство трапеции, в которую вписана окружность2. Отрезки касательных,
проведенных из одной точки, равны. Отсюда следует, что

AL=AK      BL=BM

CM=CF       DF=DK

                                      Описанная окружность.

 Когда трапецию можно вписать в
окружность? Четырехугольник можно вписать в окружность тогда и только тогда,
когда сумма его противолежащих углов равна 180º. Отсюда следует, что вписать
в окружность можно только равнобокую трапецию.

Радиус окружности, описанной около трапеции, можно найти как
радиус окружности, описанной около из одного из двух треугольников, на которые
трапецию делит ее диагональ.

Где находится центр окружности, описанной около трапеции? Это
зависит от угла между диагональю трапеции и ее боковой стороной.

трапеция в окружности1)Если диагональ трапеции
перпендикулярна ее боковой стороне, то центр окружности, описанной около
трапеции, лежит на середине ее большего основания. Радиус описанной около
трапеции окружности в этом случае равен половине ее большего основания:

  [R = frac{1}{2}AD]

центр окружности, описанной около трапеции2) Если диагональ трапеции образует с
боковой стороной острый угол, центр окружности, описанной около трапеции, лежит
внутри трапеции.

центр окружности, описанной около трапеции

3) Если
диагональ трапеции образует с боковой стороной тупой угол, центр описанной
около трапеции окружности лежит вне трапеции, за большим основанием.

4)Радиус описанной около трапеции окружности можно найти по
следствию из теоремы синусов. Из треугольника ACD

радиус описанной около трапеции окружности  [R = frac{{AC}}{{2sin angle D}} = frac{{CD}}{{2sin angle CAD}} = frac{{AD}}{{2sin angle ACD}}]

Из треугольника ABC

  [R = frac{{AB}}{{2sin angle ACB}} = frac{{BC}}{{2sin angle BAC}} = frac{{AC}}{{2sin angle B}}]

Другой вариант найти радиус описанной окружности —

  [R = frac{{AC cdot CD cdot AD}}{{4{S_{ACD}}}}]                 [R = frac{{AB cdot BC cdot AC}}{{4{S_{ABC}}}}]

окружность описана около трапецииСинусы
угла D и угла CAD можно найти, например, из прямоугольных треугольников CFD и
ACF:

  [sin angle D = frac{{CF}}{{CD}}]                                [sin angle CAD = frac{{CF}}{{AC}}]

 При решении задач на трапецию, вписанную в окружность, можно
также использовать то, что вписанный угол равен половине соответствующего ему
центрального угла. Например,

Трапеция, вписанная в окружность  [angle CAD = frac{1}{2}angle COD]

Использовать углы COD и CAD можно и для нахождения площади
трапеции. По формуле нахождения площади четырехугольника через его диагонали

  [S = frac{1}{2}{d_1}{d_2}sin varphi ]                         
[{S_{ABCD}} = frac{1}{2}A{C^2}sin angle CMD]

5)Если диагонали вписанной в окружность трапеции
(четырехугольника) взаимно перпендикулярны, то сумма квадратов его
противоположных сторон равна квадрату диаметра описанной окружности или
удвоенному квадрату боковой стороны:      

                                a2
+
b2
= 4
R2
= 2
c2.

6) Если в трапецию вписана окружность, то вершина трапеции, центр
вписанной в нее окружности и основание перпендикуляра, опущенного из другой
вершины на основание, лежат на одной прямой.

Дополнительные построения
как прием при решении задач

Дополнительные
построения являются эффективным методом решения геометрических задач. Наиболее
часто используются при решении задач:

 1.
Опускание высот из концов одного основания на другое основание

2.
Проведение через вершины трапеции прямой, параллельной боковой стороне, не
содержащей эту вершину

3.
Проведение через середину меньшего основания прямых, параллельных боковым
сторонам

4.
Проведение через вершину трапеции прямой, параллельной диагонали, не содержащей
эту вершину .

5.
Продолжение боковых сторон до пересечения.

Рассмотрим
каждое их них.

При
решении задач на отыскание площади дополнительным построением считается
построение ее высоты или высот. Если построение высоты не помогает решить
задачу, то нужно построить прямую, параллельную одной из ее диагоналей. Потом
найти площадь полученного треугольника, который будет равновеликим исходной
трапеции.

1.
Проведение через вершину трапеции прямой, параллельной диагонали, не содержащей
эту вершину.

При
дополнительном построении, когда переносится диагональ, образуется треугольник,
площадь которого равна площади трапеции.

                                           
S
1 = S2

Задача.

Найдите
площадь трапеции, дмагонали которой равны 8 и 15, а средняя линия равна 8,5.

                                     
Решение.

Построим
CF // BD и
получим
SACF = SABCD.
Почему?

 ABC
=  
CDF, так как DF = BC и эти треугольники имеют одинаковую высоту.

Значит,
для того, чтобы найти площадь трапеции нам достаточно найти площадь    
ACF.

АF
= А
D + ВС  – сумма оснований трапеции. По условию задачи средняя линия
трапеции 8,5. Значит сумма оснований А
F = 8,52=17.

Рассмотрим     ACF.
Проверим, является ли он прямоугольным? В этом нам поможет теорема Пифагора:

172
= 82 + 152

289
= 64 + 225.

289
= 289.

     ACF
– прямоугольный.
SACF =   AC*CF
=
  8*15 = 60.           SABCD=
60.

Если     ACF
разносторонний, то его площадь вычислим по формуле Герона.

                                                 
                                  Ответ:60.

2.
Продолжение боковых сторон до пересечения
.

             Свойства трапеции,
достроенной до треугольника

Свойства трапеции, достроенной до треугольника 

Если продлить стороны трапеции в сторону меньшего основания, то
точка пересечения сторон будет совпадать с прямой линией, которая
проходит через середины оснований

Таким образом, любая трапеция может быть достроена до
треугольника. При этом:

*Треугольники, образованные основаниями трапеции с общей вершиной
в точке пересечения продленных боковых сторон являются подобными

*Прямая, соединяющая середины оснований трапеции, является,
одновременно, медианой построенного треугольника.

*Если ABCD равнобедренная трапеция, то KL
является биссектрисой, медианой и высотой одновременно.

Это
дополнительное построение позволяет перейти от трапеции к треугольнику. Если
сумма углов при большем основании равна 900, топродолжив боковые
стороны мы получим прямоугольный треугольник.

Похожее изображение

 Задача.

В
трапеции
ABCD основания АD и ВС равны соответственно 72 и 18, а сумма углов при основании АD равна
900. Найдите радиус окружности, проходящей через точки А и В и
касающейся прямой
CD, если  АВ = 18.

Картинки по запросу В трапеции ABCD основания АD и ВС равны соответственно 72 и 18, а сумма углов при основании АD равна 900. Найдите радиус окружности, проходящей через точки А и В и касающейся прямой CD, если АВ = 18.

Решение.

Центром
О данной окружности будет точка пересечения серединного
перпендикуляра к АВ и перпендикуляра, возведенного к стороне
CD
из точки касания окружности.   АВО равнобедренный: АО = ВО. Продлим боковые
стороны трапеции и получим прямоугольный треугольник АМ
D.
KMNO – прямоугольник, где KM = MN
=
NO =КО = R.

  BMC 
 AMD.

  = , то есть  и x
= 6. Тогда
R = КВ + 6 = 9 + 6 = 15.

                                                                                                                     
Ответ:15.

3. Опускание высот из концов одного основания на другое основание.

Дополнительное
построение 1,2  позволяет разбить трапецию на прямоугольник (стороны которого –
одно из оснований и высота трапеции) и два прямоугольных треугольника (в
которых один из катетов – высота трапеции, а гипотенузы – боковые стороны
трапеции)

Построение
1                                          Построение   2

                                              
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     
        

Задача. Найдите площадь трапеции с основаниями 8 и 13 и
боковыми сторонами 3 и 4.

  ÐšÐ°Ñ€Ñ‚инки по запросу трапеция                 

Решение.

Проведем ВН и СM – высоты и получим     ABD (египетский
треугольник) со сторонами 3,4,5, так как
АD – ВС=13 – 8=5.

S=   АВ* BD= 6.

Найдем высоту
трапеции: 
h= 2S:5 = 2*6:5=
2,4.

SABCD= 6+2,4*8=25,2.               Ответ:25,2.

4. Проведение
через середину меньшего основания прямых, параллельных боковым сторонам.

Дополнительное построение 4
делит трапецию на параллелограммы и треугольник. Боковые стороны соединяются в
треугольник.
    

  

 

5. Проведение через вершины трапеции прямой, параллельной боковой
стороне, не содержащей эту вершину.

Задача. Основания трапеции равны 30см и 15см, а боковые стороны равны 9 см
и 12 см. Найдите высоту трапеции.

Решение.
Пусть АВСД трапеция, заданная в условии.

Проведем
через вершину С прямую, которая параллельна АВ. Пусть эта прямая пересекает АД
в точке М.

Тогда
АВСМ – параллелограмм и СМ=9, АМ=ДМ=15.

Так
как 92+122=152, то, применив обратную теорему
Пифагора, приходим к выводу, что СМ перпендикулярна СД.

Заметим,
что высота трапеции и треугольника МСД, проведенная из вершины С, совпадают.
Для определения искомой высоты применим метод площадей. Пусть искомая высота
равна х. Тогда для определения х составим уравнение, дважды вычислив площадь
треугольника МСД:

.

Решив
это уравнение находим: х=7,2.                 Ответ: 7,2.

Задача.
Боковые стороны AB и CD трапеции ABCD равны 15 и 12
соответственно. Найдите градусную величину угла D, если одно из оснований
трапеции на 9 больше другого.

http://free.megacampus.ru/xbookM0005/files/21-25r.gif

                                              
Решение.

Из вершины угла проведем
прямую линию, параллельную стороне. Трапеция разделена данной прямой линией на
параллелограмм и треугольник. Противоположные стороны параллелограмма равны,
значит, длина стороны треугольника равна разности длин оснований трапеции. Данный
треугольник определен по трем сторонам. По теореме косинусов определим искомый
угол. Вычисления показывают, что боковая сторона перпендикулярна к основанию,
искомый угол прямой.

http://free.megacampus.ru/xbookM0005/files/21-27f.gifОтвет: http://free.megacampus.ru/xbookM0005/files/21-27f.gif

Для
тех, кому интересно.

   

Теорема.

                                          
Задачи с решениями.

Пример
1.Найдите площадь равнобедренной трапеции, описанной около окружности с
радиусом 4, если известно, что боковая сторона трапеции равна 10.

Решение.

Дано: ABCD —
равнобедренная трапеция, r = 4, AB = 10

Найти: SABCD

http://free.megacampus.ru/xbookM0005/files/21-11r.gif

1.    
AB = CD = 10 по условию.

2.    
AB + CD = AD + BC по свойству вписанной
окружности.

3.    
AD + BC = 10 + 10 = 20.

4.    
FE = 2r = 2 · 4 = 8.

5.    
SABCD=1/2(BC + AD)·FE, SABCD = 1/2 · 20
· 8 = 20/2 · 8 = 10 · 8 = 80.

Пример
2.Основания трапеции
равны 10 м и 31 м, а
боковые стороны —
20
м и 13 м. Найдите
высоту трапеции.

http://free.megacampus.ru/xbookM0005/files/21-12r.gif

Решение.

Пусть HK
=
BC = 10 м, BH
=
CK = x, AH
=
y, тогда KD
= 21 –
y

По
теореме Пифагора:
x2 +
y2 =
132
x2 +
(21 –
y)2 =
202
x2 +
y2 =
169 (1)

x2 +
441 – 42
y + y2 =
400 (2)

Вычтем
из (2) уравнения (1):441 – 42
y =
23142
y = 210y
= 5
AH = 5 м

По
теореме Пифагора:
BH2 =
AB2 
AH2BH2 =
132 – 52
BH2 =
169 – 25
BH2 =
144

BH
= 12  

Пример
3.Большее основание трапеции равно 24. Найдите длину меньшего основания, если
расстояние между серединами диагоналей равно 4.

http://free.megacampus.ru/xbookM0005/files/21-13r.gif

Решение.

http://free.megacampus.ru/xbookM0005/files/21-14f.gif 

Пример
4.Диагонали AC и BD трапеции ABCD пересекаются в точке O.

Найдите
площадь трапеции, если BC < AD и площади треугольников BOC и ABO равны
соответственно равны 2 и 8.

Анализ.

Рассмотреть подобие
треугольников.

Квадраты соответствующих
сторон относятся как площади треугольников.

Введем параметры
треугольников: стороны оснований и высоты треугольников.

Площади трапеции и
треугольников определим по известным формулам.

                                             
Решение.

http://free.megacampus.ru/xbookM0005/files/21-14r.gifhttp://free.megacampus.ru/xbookM0005/files/21-15f.gifОтвет: http://free.megacampus.ru/xbookM0005/book/files/illustration.gif

Пример
5.В трапеции большее основание равно 10. Диагонали трапеции, равные 8, перпендикулярны
боковым сторонам. Найдите площадь трапеции.
http://free.megacampus.ru/xbookM0005/files/21-15r.gif

Анализ.

Длины диагоналей равны и
перпендикулярны боковым сторонам. Имеем равенство прямоугольных треугольников
по катету и гипотенузе: 
http://free.megacampus.ru/xbookM0005/files/21-07f.gifABD
http://free.megacampus.ru/xbookM0005/files/21-07f.gifACD,
поэтому трапеция равнобедренная, т.е. АВ = СD.

Применим теорему Пифагора для
определения боковой стороны трапеции.

Высоту трапеции определим из
равенства площадей.

Проекцию боковой стороны на
большее основание легче определить из подобия треугольников, чем по теореме
Пифагора.

Длину средней линии в равнобокой
трапеции можно определять как разность большего основания и проекции боковой
стороны на основание.

Площадь трапеции находим как
площадь прямоугольника АМСК, который получим, если достроим трапецию.

http://free.megacampus.ru/xbookM0005/files/21-16f.gif 

Пример
6.Диагонали трапеции взаимно перпендикулярны, а длина ее средней линии равна 9.
Найдите длину отрезка, соединяющего середины оснований трапеции.

http://free.megacampus.ru/xbookM0005/files/21-16r.gifАнализ.

Задача решается построением.

Достроим прямоугольники и
используем свойство прямоугольника: диагонали прямоугольника равны и в точке
пересечения делятся пополам.

Длина средней линии равна
полусумме длин оснований.

Длина отрезка, соединяющая
середины оснований, равна полусумме длин диагоналей двух построенных
треугольников.

http://free.megacampus.ru/xbookM0005/files/21-17f.gif

 Пример
7.Длины оснований трапеции равны 1 и 7. Найдите длину отрезка, параллельного
основаниям и заключенного между боковыми сторонами, который делит трапецию на
две равновеликие части.

http://free.megacampus.ru/xbookM0005/files/21-17r.gif

Анализ.

Провести из вершины тупого
угла трапеции прямую линию, параллельную боковой стороне.

Рассмотреть отношение площадей
трапеций.

Определить отношение при
подобии треугольников.

Рациональные алгебраические
преобразования приведут к результату.

Решение.http://free.megacampus.ru/xbookM0005/files/21-18f.gifОтвет: http://free.megacampus.ru/xbookM0005/book/files/illustration.gif

Пример
11.Равнобедренная трапеция ABCD описана около окружности. Боковая сторона
трапеции равна 10, а основания относятся как 1: 4. Найдите площадь трапеции.
http://free.megacampus.ru/xbookM0005/files/21-18r.gif

Анализ.

Сумма противоположных сторон
трапеции равна между собой — свойство описанного четырехугольника.

Трапеция равнобедренная.

Боковая сторона равна длине
средней линии.

Применяем теорему Пифагора для
нахождения высоты трапеции.

Площадь трапеции определяем по
доступной формуле.

http://free.megacampus.ru/xbookM0005/files/21-19f.gif 

Пример
8.Длины боковых сторон трапеции равны 6 и 10. Известно, что в трапецию можно
вписать окружность, а средняя линия делит ее на части, площади которых
относятся как 5: 11. Найдите длину большего основания трапеции.

http://free.megacampus.ru/xbookM0005/files/21-19r.gifАнализ.

Трапеция является описанной.

Сумма длин оснований равна
сумме боковых сторон.

Средняя линия делит трапецию
на две трапеции, высоты которых равны.

Задача сводится к системе
уравнений.

Длина средней линии равна
половине суммы длин боковых сторон.

http://free.megacampus.ru/xbookM0005/files/21-20f.gif

Пример
9.Площадь равнобедренной трапеции, описанной около окружности равна 15. Найдите
среднюю линию трапеции, если косинус острого угла при ее основании равен 4/5.

http://free.megacampus.ru/xbookM0005/files/21-20r.gifАнализ.

Трапеция равнобедренная.

Длина средней линии равна
боковой стороне.

Площадь трапеции определяется
произведением средней линии на высоту трапеции.

Опустим высоту трапеции из
тупого угла. Через заданный косинус угла определим синус угла.

По синусу угла выразим высоту
трапеции через боковую сторону.

http://free.megacampus.ru/xbookM0005/files/21-21f.gif 

Пример
10.В прямоугольной трапеции, описанной около окружности, большая боковая
сторона равна 13, а средняя линия равна 12,5. Найдите меньшее основание
трапеции.

http://free.megacampus.ru/xbookM0005/files/21-21r.gif

                                                    
Анализ.

Необходимо использовать
свойство сторон четырехугольника, описанной около окружности: сумма длин
противоположных сторон равна между собой.

Кроме того, длина средней
линии равна полусумме длин сторон оснований.

Проведем из вершины тупого
угла высоту трапеции.

Воспользуемся теоремой
Пифагора и определим проекцию наклонной боковой стороны на основание.

http://free.megacampus.ru/xbookM0005/files/21-22f.gif

 Пример
11.В равнобедренную трапецию, один из углов которой равен 60°, а площадь
равна 
http://free.megacampus.ru/xbookM0005/files/21-25f.gif,
вписана окружность. Найдите радиус этой окружности.

http://free.megacampus.ru/xbookM0005/files/21-22r.gif 

                                                 
Анализ.

Важное положение, что трапеция
является равнобедренной и имеет ось симметрии. Тогда длина боковой стороны
равна длине средней линии.

Введем параметр боковой
стороны, из прямоугольного треугольника по заданному углу определим высоту
трапеции, которая является диаметром вписанной окружности. Площадь трапеции
определяется как произведение средней линии на высоту трапеции.

.http://free.megacampus.ru/xbookM0005/files/21-23f.gif

Пример
12.Найдите площадь равнобедренной трапеции, у которой большее основание равно
13, средняя линия равна 8, а биссектриса тупого угла является диагональю
трапеции.

http://free.megacampus.ru/xbookM0005/files/21-24r.gif

Анализ.

При проведении биссектрисы
тупого угла боковая сторона равна большему основанию трапеции. Проекция боковой
стороны равнобедренной трапеции равна полуразности длин оснований.

По теореме Пифагора найдем
высоту трапеции.

Площадь трапеции находим по
формул.
http://free.megacampus.ru/xbookM0005/files/21-26f.gif

Список используемой литературы

1.    

2.    

3.    
 

Добавить комментарий