Как найти синус угла решу егэ

Всего: 29    1–20 | 21–29

Добавить в вариант









В параллелограмме ABCD высота, опущенная на сторону AB, равна 4, AD=8. Найдите синус угла B.


Основания равнобедренной трапеции равны 51 и 65. Боковые стороны равны 25. Найдите синус острого угла трапеции.


Большее основание равнобедренной трапеции равно 34. Боковая сторона равна 14. Синус острого угла равен  дробь: числитель: 2 корень из: начало аргумента: 10 конец аргумента , знаменатель: 7 конец дроби . Найдите меньшее основание.





Найдите площадь ромба, если его высота равна 2, а острый угол 30°.


Боковая сторона равнобедренной трапеции равна ее меньшему основанию, угол при основании равен 60°, большее основание равно 12. Найдите радиус описанной окружности этой трапеции.


Основания равнобедренной трапеции равны 6 и 12. Синус острого угла трапеции равен 0,8. Найдите боковую сторону.



Площадь боковой поверхности конуса в  корень из: начало аргумента: 2 конец аргумента раз больше площади основания. Найдите угол между образующей конуса и плоскостью основания. Ответ дайте в градусах.


На клетчатой бумаге с размером клетки 1×1 изображён угол. Найдите синус этого угла.

Источник: ЕГЭ по ма­те­ма­ти­ке  — 2015. До­сроч­ная волна, ва­ри­ант ФИПИ

Всего: 29    1–20 | 21–29

Один из типов задач в задании 3 – это задачи на нахождение углов.

На клетчатой решетке изображен угол, величину которого надо найти.

Это могут быть самые разнообразные углы:

ЕГЭ (профиль). Задание 3. Нахождение углов

Методы вычисления могут быть разные.

Принцип большинства заданий – найти прямоугольный треугольник и вычислить у него стороны и найти угол используя синус или косинус или тангенс (в зависимости от задания)

ЕГЭ (профиль). Задание 3. Нахождение углов

Если необходимо найти тангенс тупого угла, то в начале находим тангенс смежного острого угла и применяем формулу приведения (в ответе появится минус). Напомню, что синус тупого и острого угла имеет один и тот же знак, а вот косинус, так же как и тангенс, тупого и острого угла имеет противоположные знаки.

Если так не получается, то начинаем искать отрезки, треугольники и вычислять стороны. Применять свойство равнобедренных треугольников или теорему косинусов.

ЕГЭ (профиль). Задание 3. Нахождение углов

Если совсем непонятно, что делать, то встройте угол в прямоугольник и посчитайте все стороны и решение придет

ЕГЭ (профиль). Задание 3. Нахождение углов

Мы рассмотрели один из типов задач. Главное, поймите принцип, а тогда решите любую задачу.

Определение синуса угла

Синусом угла в прямоугольном треугольнике называют отношение противолежащего катета к гипотенузе.

Катетами являются стороны, которые образуют прямой угол в треугольнике, соответственно, гипотенузой является третья (самая длинная) сторона.

Для простоты запоминания можно дать такое определение: синус угла — это отношение дальнего от рассматриваемого угла катета к гипотенузе.

1.png

В случае с рисунком, описанным выше: sin⁡α=acsinalpha=frac{a}{c}

Задача 1

В треугольнике, один из углов которого равен 90 градусам, известен катет при угле αalpha и равен он 3 см3text{ см}. Также дано произведение длин катетов и равно 12 см212text{ см}^2. Найдите синус угла αalpha.

Решение

Сначала нужно найти длину неизвестного нам катета. Для этого воспользуемся данным нам произведением. Обозначим неизвестный катет за xx. Тогда, по условию задачи:

3⋅x=123cdot x=12

x=123=4x=frac{12}{3}=4

a=x=4a=x=4

По теореме Пифагора найдем гипотенузу:

a2+b2=c2a^2+b^2=c^2

42+32=c24^2+3^2=c^2

25=c225=c^2

c=5c=5

sin⁡α=ac=45=0.8sinalpha=frac{a}{c}=frac{4}{5}=0.8

Ответ

0.80.8

Задача 2

Вычислите синус 45 градусов.

Решение

Для этого воспользуемся тригонометрической таблицей углов. Находим, что:

sin⁡45∘=π4=0.785sin 45^circ=frac{pi}{4}=0.785

Ответ

0.7850.785

Если в задаче известен косинус угла и нужно найти его синус, то наличие известных длин катетов и гипотенузы не обязательны. Достаточно просто воспользоваться основным тригонометрическим тождеством, которое имеет следующий вид:

Основное тригонометрическое тождество

sin⁡2α+cos⁡2α=1sin^2alpha+cos^2alpha=1

αalpha — любой угол.

Задача 3

Квадрат косинуса угла в треугольнике равен 0.8. Найдите синус данного угла.

Решение

Воспользуемся основным тригонометрическим тождеством:

sin⁡2α+cos⁡2α=1sin^2alpha+cos^2alpha=1

sin⁡2α+0.8=1sin^2alpha+0.8=1

sin⁡2α=0.2sin^2alpha=0.2

sin⁡α=0.2sinalpha=sqrt{0.2}

sin⁡α≈0.447sinalphaapprox0.447

Ответ

0.4470.447

Испытываете проблемы с вычислением синуса? Оформите задачу по математике на заказ у наших экспертов!

Тест по теме «Вычисление синуса»

6. Геометрия на плоскости (планиметрия). Часть II


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Вычисление синуса, косинуса и тангенса угла треугольника

В прямоугольном треугольнике:

(blacktriangleright) Синус острого угла равен отношению противолежащего катета к гипотенузе: [{large{sin alpha =
dfrac{a}{c}}}]

(blacktriangleright) Косинус острого угла равен отношению прилежащего катета к гипотенузе: [{large{cos alpha =
dfrac{b}{c}}}]

(blacktriangleright) Тангенс острого угла равен отношению противолежащего катета к прилежащему: [{large{mathrm{tg}, alpha
= dfrac{a}{b}}}]

(blacktriangleright) Котангенс острого угла равен отношению прилежащего катета к противолежащему: [{large{mathrm{ctg},
alpha =dfrac{b}{a}}}]

Важные формулы:
[{large{begin{array}{|lcl|} hline sin^2 alpha+cos^2 alpha
=1&qquad& mathrm{tg}, alpha cdot mathrm{ctg}, alpha
=1\ &&\
mathrm{tg}, alpha=dfrac{sin alpha}{cos
alpha}&&mathrm{ctg}, alpha
=dfrac{cos alpha}{sin alpha}\&&\
hline
end{array}}}]

[begin{array}{|c|c|c|c|c|c|}
hline & phantom{000}, 0^circ phantom{000}& phantom{000},
30^circ phantom{000} &
phantom{000}, 45^circ phantom{000} & phantom{000}, 60^circ phantom{000}
& phantom{000}, 90^circ phantom{000}\[1ex]
hline sin & 0 &frac12&frac{sqrt2}2&frac{sqrt3}2 & 1\[1ex]
hline cos & 1 & frac{sqrt3}2&frac{sqrt2}2&frac12 & 0\[1ex]
hline mathrm{tg} & 0 & frac{sqrt3}3&1&sqrt3 & text{не сущ.}\[1ex]
hline mathrm{ctg}& text{не сущ.} &sqrt3&1&frac{sqrt3}3 & 0\[1ex]
hline
end{array}]


Задание
1

#612

Уровень задания: Легче ЕГЭ

В треугольнике (ABC): (angle C = 90^{circ}), (sin {angle BAC} = dfrac{2}{3}). Найдите (AC), если (AB = 6sqrt{5}).

Синус острого угла в прямоугольном треугольнике равен отношению противолежащего этому углу катета к гипотенузе, тогда [dfrac{BC}{AB} = dfrac{2}{3}qquadRightarrowqquad BC = dfrac{2}{3}AB = 4sqrt{5}.]

По теореме Пифагора (AC^2 = AB^2 – BC^2 = 36cdot 5 – 16cdot 5 = 20cdot 5 = 10^2), тогда (AC = 10).

Ответ: 10


Задание
2

#2098

Уровень задания: Равен ЕГЭ

Дан прямоугольный треугольник (ABC), причем (angle C=90^circ). Известно, что (cos angle B=dfrac13), (AB=9). Найдите (BC).

По определению косинуса [cosangle B=dfrac{BC}{AB}=dfrac13 quad
Leftrightarrow quad BC=dfrac13cdot AB=dfrac13cdot 9=3]

Ответ: 3


Задание
3

#2099

Уровень задания: Равен ЕГЭ

Дан треугольник (ABC), причем (angle C=90^circ). Найдите длину его гипотенузы, если (AC=8, cos angle A=dfrac45).

По определению косинуса [cos angle A=dfrac{AC}{AB}=dfrac45
quad Leftrightarrow quad AB=ACcdot dfrac54=10]

Ответ: 10


Задание
4

#3320

Уровень задания: Равен ЕГЭ

Большее основание равнобедренной трапеции равно (34). Боковая сторона равна (14). Синус острого угла равен (dfrac{2sqrt{10}}7). Найдите меньшее основание.

Проведем (BHperp AD). Из (triangle ABH): [dfrac{2sqrt{10}}7=sinangle A=dfrac{BH}{AB}quadRightarrowquad
BH=4sqrt{10}]
Тогда по теореме Пифагора [AH=sqrt{14^2-(4sqrt{10})^2}=6] Так как (AH=0,5(AD-BC)), то (BC=AD-2AH=34-12=22).

Ответ: 22


Задание
5

#3305

Уровень задания: Равен ЕГЭ

В треугольнике (ABC) угол (C=90^circ), (CH) – высота, (AB=13), (mathrm{tg},angle A=0,2). Найдите (AH).

Так как по определению из (triangle ABC): [dfrac{BC}{AC}=mathrm{tg},angle A=dfrac 15] то можно принять (BC=x), (AC=5x). Следовательно, по теореме Пифагора [BC^2+AC^2=AB^2quadRightarrowquad x^2+(5x)^2=13^2quadRightarrowquad
x^2=dfrac{13}2]
Из (triangle AHC): [cos angle A=dfrac{AH}{AC}] Из (triangle ABC): [cos angle A=dfrac{AC}{AB}] Следовательно: [dfrac{AH}{AC}=dfrac{AC}{AB}quadRightarrowquad
AH=dfrac{AC^2}{AB}=dfrac{(5x)^2}{13}=dfrac{25}2=12,5]

Ответ: 12,5


Задание
6

#3306

Уровень задания: Равен ЕГЭ

В треугольнике (ABC) угол (C=90^circ), (CH) – высота, (AB=26), (mathrm{tg},angle B=5). Найдите (AH).

По определению из (triangle ABC): [dfrac{AC}{BC}=mathrm{tg},angle B=dfrac 51] Следовательно, можно принять (AC=5x), (BC=x). Тогда по теореме Пифагора (x^2+(5x)^2=26^2), откуда (x=sqrt{26}).
Тогда [sinangle B=dfrac{AC}{AB}=dfrac5{sqrt{26}}] По свойству прямоугольного треугольника (angle B=angle HCA). Следовательно, из (triangle HCA): [dfrac5{sqrt{26}}=sin angle HCA=dfrac{AH}{AC}quadRightarrowquad
AH=25]

Ответ: 25


Задание
7

#3307

Уровень задания: Равен ЕГЭ

В треугольнике (ABC) угол (C=90^circ), (AB=17), (mathrm{tg},angle A=0,25). Найдите высоту (CH).

По определению из (triangle ABC): [dfrac{BC}{AC}=mathrm{tg},angle A=dfrac 14] Следовательно, можно принять (AC=4x), (BC=x). Тогда по теореме Пифагора (x^2+(4x)^2=17^2), откуда (x=sqrt{17}).
Так как площадь прямоугольного треугольника (ABC), с одной стороны, равна (0,5CHcdot AB), а с другой стороны, равна (0,5BCcdot AC), то [CHcdot AB=BCcdot ACquadRightarrowquad CH=dfrac{4x^2}{AB}=4]

Ответ: 4

Уметь оперативно и правильно решать задачи ЕГЭ на вычисление элементов многоугольника необходимо всем выпускникам вне зависимости от того, базовый или профильный уровень экзамена они сдают. Причем этой теме традиционно посвящается несколько заданий. Поэтому, если учащийся рассчитывает получить достойные баллы по итогам прохождения ЕГЭ, то ему обязательно стоит уделить внимание задачам, в которых требуется найти синус, косинус и тангенс угла треугольника.

Вместе с образовательным порталом «Школково» вы сможете восполнить пробелы в знаниях и отточить необходимый навык. Весь теоретический и практический материал составлен и изложен таким образом, чтобы все выпускники могли без особых затруднений справляться с задачами ЕГЭ, в которых требуется вычислить тангенс, синус или косинус угла треугольника.

Основные моменты

Первое, что нужно сделать при решении подобных задач в ЕГЭ, – вспомнить, что такое тангенс, косинус и синус угла треугольника. Далее рекомендуется следовать такому алгоритму:

  • Выделяем треугольник, в который входит сторона или угол, который требуется найти.
  • Определяем известные элементы и выявляем тригонометрическую функцию, которая их связывает.
  • Записываем получившееся соотношение и применяем подходящую формулу.

Научившись правильно выполнять упражнения на вычисление элементов многоугольника, а также, например, по теме «Окружность, описанная около многоугольника», которые представлены в данном разделе образовательного портала «Школково», вы сможете закрепить материал и без труда справляться с подобными заданиями на аттестационном экзамене.

УСТАЛ? Просто отдохни

Синус угла. Таблица синусов.

Синус угла через градусы, минуты и секунды

Синус угла через десятичную запись угла

Как найти угол зная синус этого угла

У синуса есть обратная тригонометрическая функция – arcsin(y)=x

sin(arcsin(y))=y

Пример sin(30°) = 1/2; arcsin(1/2) = 30°

Рассчитать арксинус

Определение синуса

Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

Синусом угла α называется ордината точки B единичной окружности, полученной при повороте точки P(1;0) на угол α.

Синус острого угла

sin(α) = BC/AB

sin(-α) = -sin(α)

Периодичность синуса

Функция y = sin(x) периодична, с периодом 2π

sin(α ± 2π) = sin(α)

Пример sin(5π) = sin(4π + π) = sin(π)

Таблица синусов в радианах

sin(0°) = 0sin(π/12) = sin(15°) = 0.2588190451sin(π/6) = sin(30°) = 0.5sin(π/4) = sin(45°) = 0.7071067812sin(π/3) = sin(60°) = 0.8660254038sin(5π/12) = sin(75°) = 0.9659258263sin(π/2) = sin(90°) = 1sin(7π/12) = sin(105°) = 0.9659258263sin(2π/3) = sin(120°) = 0.8660254038sin(3π/4) = sin(135°) = 0.7071067812sin(5π/6) = sin(150°) = 0.5sin(11π/12) = sin(165°) = 0.2588190451sin(π) = sin(180°) = 0sin(13π/12) = sin(195°) = -0.2588190451sin(7π/6) = sin(210°) = -0.5sin(5π/4) = sin(225°) = -0.7071067812sin(4π/3) = sin(240°) = -0.8660254038sin(17π/12) = sin(255°) = -0.9659258263sin(3π/2) = sin(270°) = -1sin(19π/12) = sin(285°) = -0.9659258263sin(5π/3) = sin(300°) = -0.8660254038sin(7π/4) = sin(315°) = -0.7071067812sin(11π/6) = sin(330°) = -0.5sin(23π/12) = sin(345°) = -0.2588190451

Таблица Брадиса синусы

sin(0) = 0 sin(120) = 0.8660254038 sin(240) = -0.8660254038
sin(1) = 0.01745240644 sin(121) = 0.8571673007 sin(241) = -0.8746197071
sin(2) = 0.0348994967 sin(122) = 0.8480480962 sin(242) = -0.8829475929
sin(3) = 0.05233595624 sin(123) = 0.8386705679 sin(243) = -0.8910065242
sin(4) = 0.06975647374 sin(124) = 0.8290375726 sin(244) = -0.8987940463
sin(5) = 0.08715574275 sin(125) = 0.8191520443 sin(245) = -0.906307787
sin(6) = 0.1045284633 sin(126) = 0.8090169944 sin(246) = -0.9135454576
sin(7) = 0.1218693434 sin(127) = 0.79863551 sin(247) = -0.9205048535
sin(8) = 0.139173101 sin(128) = 0.7880107536 sin(248) = -0.9271838546
sin(9) = 0.156434465 sin(129) = 0.7771459615 sin(249) = -0.9335804265
sin(10) = 0.1736481777 sin(130) = 0.7660444431 sin(250) = -0.9396926208
sin(11) = 0.1908089954 sin(131) = 0.7547095802 sin(251) = -0.9455185756
sin(12) = 0.2079116908 sin(132) = 0.7431448255 sin(252) = -0.9510565163
sin(13) = 0.2249510543 sin(133) = 0.7313537016 sin(253) = -0.956304756
sin(14) = 0.2419218956 sin(134) = 0.7193398003 sin(254) = -0.9612616959
sin(15) = 0.2588190451 sin(135) = 0.7071067812 sin(255) = -0.9659258263
sin(16) = 0.2756373558 sin(136) = 0.6946583705 sin(256) = -0.9702957263
sin(17) = 0.2923717047 sin(137) = 0.6819983601 sin(257) = -0.9743700648
sin(18) = 0.3090169944 sin(138) = 0.6691306064 sin(258) = -0.9781476007
sin(19) = 0.3255681545 sin(139) = 0.656059029 sin(259) = -0.9816271834
sin(20) = 0.3420201433 sin(140) = 0.6427876097 sin(260) = -0.984807753
sin(21) = 0.3583679495 sin(141) = 0.629320391 sin(261) = -0.9876883406
sin(22) = 0.3746065934 sin(142) = 0.6156614753 sin(262) = -0.9902680687
sin(23) = 0.3907311285 sin(143) = 0.6018150232 sin(263) = -0.9925461516
sin(24) = 0.4067366431 sin(144) = 0.5877852523 sin(264) = -0.9945218954
sin(25) = 0.4226182617 sin(145) = 0.5735764364 sin(265) = -0.9961946981
sin(26) = 0.4383711468 sin(146) = 0.5591929035 sin(266) = -0.9975640503
sin(27) = 0.4539904997 sin(147) = 0.544639035 sin(267) = -0.9986295348
sin(28) = 0.4694715628 sin(148) = 0.5299192642 sin(268) = -0.999390827
sin(29) = 0.4848096202 sin(149) = 0.5150380749 sin(269) = -0.9998476952
sin(30) = 0.5 sin(150) = 0.5 sin(270) = -1
sin(31) = 0.5150380749 sin(151) = 0.4848096202 sin(271) = -0.9998476952
sin(32) = 0.5299192642 sin(152) = 0.4694715628 sin(272) = -0.999390827
sin(33) = 0.544639035 sin(153) = 0.4539904997 sin(273) = -0.9986295348
sin(34) = 0.5591929035 sin(154) = 0.4383711468 sin(274) = -0.9975640503
sin(35) = 0.5735764364 sin(155) = 0.4226182617 sin(275) = -0.9961946981
sin(36) = 0.5877852523 sin(156) = 0.4067366431 sin(276) = -0.9945218954
sin(37) = 0.6018150232 sin(157) = 0.3907311285 sin(277) = -0.9925461516
sin(38) = 0.6156614753 sin(158) = 0.3746065934 sin(278) = -0.9902680687
sin(39) = 0.629320391 sin(159) = 0.3583679495 sin(279) = -0.9876883406
sin(40) = 0.6427876097 sin(160) = 0.3420201433 sin(280) = -0.984807753
sin(41) = 0.656059029 sin(161) = 0.3255681545 sin(281) = -0.9816271834
sin(42) = 0.6691306064 sin(162) = 0.3090169944 sin(282) = -0.9781476007
sin(43) = 0.6819983601 sin(163) = 0.2923717047 sin(283) = -0.9743700648
sin(44) = 0.6946583705 sin(164) = 0.2756373558 sin(284) = -0.9702957263
sin(45) = 0.7071067812 sin(165) = 0.2588190451 sin(285) = -0.9659258263
sin(46) = 0.7193398003 sin(166) = 0.2419218956 sin(286) = -0.9612616959
sin(47) = 0.7313537016 sin(167) = 0.2249510543 sin(287) = -0.956304756
sin(48) = 0.7431448255 sin(168) = 0.2079116908 sin(288) = -0.9510565163
sin(49) = 0.7547095802 sin(169) = 0.1908089954 sin(289) = -0.9455185756
sin(50) = 0.7660444431 sin(170) = 0.1736481777 sin(290) = -0.9396926208
sin(51) = 0.7771459615 sin(171) = 0.156434465 sin(291) = -0.9335804265
sin(52) = 0.7880107536 sin(172) = 0.139173101 sin(292) = -0.9271838546
sin(53) = 0.79863551 sin(173) = 0.1218693434 sin(293) = -0.9205048535
sin(54) = 0.8090169944 sin(174) = 0.1045284633 sin(294) = -0.9135454576
sin(55) = 0.8191520443 sin(175) = 0.08715574275 sin(295) = -0.906307787
sin(56) = 0.8290375726 sin(176) = 0.06975647374 sin(296) = -0.8987940463
sin(57) = 0.8386705679 sin(177) = 0.05233595624 sin(297) = -0.8910065242
sin(58) = 0.8480480962 sin(178) = 0.0348994967 sin(298) = -0.8829475929
sin(59) = 0.8571673007 sin(179) = 0.01745240644 sin(299) = -0.8746197071
sin(60) = 0.8660254038 sin(180) = 0 sin(300) = -0.8660254038
sin(61) = 0.8746197071 sin(181) = -0.01745240644 sin(301) = -0.8571673007
sin(62) = 0.8829475929 sin(182) = -0.0348994967 sin(302) = -0.8480480962
sin(63) = 0.8910065242 sin(183) = -0.05233595624 sin(303) = -0.8386705679
sin(64) = 0.8987940463 sin(184) = -0.06975647374 sin(304) = -0.8290375726
sin(65) = 0.906307787 sin(185) = -0.08715574275 sin(305) = -0.8191520443
sin(66) = 0.9135454576 sin(186) = -0.1045284633 sin(306) = -0.8090169944
sin(67) = 0.9205048535 sin(187) = -0.1218693434 sin(307) = -0.79863551
sin(68) = 0.9271838546 sin(188) = -0.139173101 sin(308) = -0.7880107536
sin(69) = 0.9335804265 sin(189) = -0.156434465 sin(309) = -0.7771459615
sin(70) = 0.9396926208 sin(190) = -0.1736481777 sin(310) = -0.7660444431
sin(71) = 0.9455185756 sin(191) = -0.1908089954 sin(311) = -0.7547095802
sin(72) = 0.9510565163 sin(192) = -0.2079116908 sin(312) = -0.7431448255
sin(73) = 0.956304756 sin(193) = -0.2249510543 sin(313) = -0.7313537016
sin(74) = 0.9612616959 sin(194) = -0.2419218956 sin(314) = -0.7193398003
sin(75) = 0.9659258263 sin(195) = -0.2588190451 sin(315) = -0.7071067812
sin(76) = 0.9702957263 sin(196) = -0.2756373558 sin(316) = -0.6946583705
sin(77) = 0.9743700648 sin(197) = -0.2923717047 sin(317) = -0.6819983601
sin(78) = 0.9781476007 sin(198) = -0.3090169944 sin(318) = -0.6691306064
sin(79) = 0.9816271834 sin(199) = -0.3255681545 sin(319) = -0.656059029
sin(80) = 0.984807753 sin(200) = -0.3420201433 sin(320) = -0.6427876097
sin(81) = 0.9876883406 sin(201) = -0.3583679495 sin(321) = -0.629320391
sin(82) = 0.9902680687 sin(202) = -0.3746065934 sin(322) = -0.6156614753
sin(83) = 0.9925461516 sin(203) = -0.3907311285 sin(323) = -0.6018150232
sin(84) = 0.9945218954 sin(204) = -0.4067366431 sin(324) = -0.5877852523
sin(85) = 0.9961946981 sin(205) = -0.4226182617 sin(325) = -0.5735764364
sin(86) = 0.9975640503 sin(206) = -0.4383711468 sin(326) = -0.5591929035
sin(87) = 0.9986295348 sin(207) = -0.4539904997 sin(327) = -0.544639035
sin(88) = 0.999390827 sin(208) = -0.4694715628 sin(328) = -0.5299192642
sin(89) = 0.9998476952 sin(209) = -0.4848096202 sin(329) = -0.5150380749
sin(90) = 1 sin(210) = -0.5 sin(330) = -0.5
sin(91) = 0.9998476952 sin(211) = -0.5150380749 sin(331) = -0.4848096202
sin(92) = 0.999390827 sin(212) = -0.5299192642 sin(332) = -0.4694715628
sin(93) = 0.9986295348 sin(213) = -0.544639035 sin(333) = -0.4539904997
sin(94) = 0.9975640503 sin(214) = -0.5591929035 sin(334) = -0.4383711468
sin(95) = 0.9961946981 sin(215) = -0.5735764364 sin(335) = -0.4226182617
sin(96) = 0.9945218954 sin(216) = -0.5877852523 sin(336) = -0.4067366431
sin(97) = 0.9925461516 sin(217) = -0.6018150232 sin(337) = -0.3907311285
sin(98) = 0.9902680687 sin(218) = -0.6156614753 sin(338) = -0.3746065934
sin(99) = 0.9876883406 sin(219) = -0.629320391 sin(339) = -0.3583679495
sin(100) = 0.984807753 sin(220) = -0.6427876097 sin(340) = -0.3420201433
sin(101) = 0.9816271834 sin(221) = -0.656059029 sin(341) = -0.3255681545
sin(102) = 0.9781476007 sin(222) = -0.6691306064 sin(342) = -0.3090169944
sin(103) = 0.9743700648 sin(223) = -0.6819983601 sin(343) = -0.2923717047
sin(104) = 0.9702957263 sin(224) = -0.6946583705 sin(344) = -0.2756373558
sin(105) = 0.9659258263 sin(225) = -0.7071067812 sin(345) = -0.2588190451
sin(106) = 0.9612616959 sin(226) = -0.7193398003 sin(346) = -0.2419218956
sin(107) = 0.956304756 sin(227) = -0.7313537016 sin(347) = -0.2249510543
sin(108) = 0.9510565163 sin(228) = -0.7431448255 sin(348) = -0.2079116908
sin(109) = 0.9455185756 sin(229) = -0.7547095802 sin(349) = -0.1908089954
sin(110) = 0.9396926208 sin(230) = -0.7660444431 sin(350) = -0.1736481777
sin(111) = 0.9335804265 sin(231) = -0.7771459615 sin(351) = -0.156434465
sin(112) = 0.9271838546 sin(232) = -0.7880107536 sin(352) = -0.139173101
sin(113) = 0.9205048535 sin(233) = -0.79863551 sin(353) = -0.1218693434
sin(114) = 0.9135454576 sin(234) = -0.8090169944 sin(354) = -0.1045284633
sin(115) = 0.906307787 sin(235) = -0.8191520443 sin(355) = -0.08715574275
sin(116) = 0.8987940463 sin(236) = -0.8290375726 sin(356) = -0.06975647374
sin(117) = 0.8910065242 sin(237) = -0.8386705679 sin(357) = -0.05233595624
sin(118) = 0.8829475929 sin(238) = -0.8480480962 sin(358) = -0.0348994967
sin(119) = 0.8746197071 sin(239) = -0.8571673007 sin(359) = -0.01745240644

Похожие калькуляторы

Добавить комментарий