Синусом угла в прямоугольном треугольнике называют отношение противолежащего катета к гипотенузе.
Катетами являются стороны, которые образуют прямой угол в треугольнике, соответственно, гипотенузой является третья (самая длинная) сторона.
Для простоты запоминания можно дать такое определение: синус угла — это отношение дальнего от рассматриваемого угла катета к гипотенузе.
В случае с рисунком, описанным выше: sinα=acsinalpha=frac{a}{c}
В треугольнике, один из углов которого равен 90 градусам, известен катет при угле αalpha и равен он 3 см3text{ см}. Также дано произведение длин катетов и равно 12 см212text{ см}^2. Найдите синус угла αalpha.
Решение
Сначала нужно найти длину неизвестного нам катета. Для этого воспользуемся данным нам произведением. Обозначим неизвестный катет за xx. Тогда, по условию задачи:
3⋅x=123cdot x=12
x=123=4x=frac{12}{3}=4
a=x=4a=x=4
По теореме Пифагора найдем гипотенузу:
a2+b2=c2a^2+b^2=c^2
42+32=c24^2+3^2=c^2
25=c225=c^2
c=5c=5
sinα=ac=45=0.8sinalpha=frac{a}{c}=frac{4}{5}=0.8
Ответ
0.80.8
Вычислите синус 45 градусов.
Решение
Для этого воспользуемся тригонометрической таблицей углов. Находим, что:
sin45∘=π4=0.785sin 45^circ=frac{pi}{4}=0.785
Ответ
0.7850.785
Если в задаче известен косинус угла и нужно найти его синус, то наличие известных длин катетов и гипотенузы не обязательны. Достаточно просто воспользоваться основным тригонометрическим тождеством, которое имеет следующий вид:
sin2α+cos2α=1sin^2alpha+cos^2alpha=1
αalpha — любой угол.
Квадрат косинуса угла в треугольнике равен 0.8. Найдите синус данного угла.
Решение
Воспользуемся основным тригонометрическим тождеством:
sin2α+cos2α=1sin^2alpha+cos^2alpha=1
sin2α+0.8=1sin^2alpha+0.8=1
sin2α=0.2sin^2alpha=0.2
sinα=0.2sinalpha=sqrt{0.2}
sinα≈0.447sinalphaapprox0.447
Ответ
0.4470.447
Испытываете проблемы с вычислением синуса? Оформите задачу по математике на заказ у наших экспертов!
Тест по теме «Вычисление синуса»
Что такое синус в треугольнике? Как найти синус острого угла в прямоугольном треугольнике?
Определение.
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
Например,
для угла A треугольника ABC
противолежащий катет — это BC.
Соответственно, синус угла A в треугольнике ABC — это
Для угла B треугольника ABC
противолежащим является катет AC.
Соответственно, синус угла B в треугольнике ABC
равен отношению AC к AB:
Таким образом, синус острого угла в прямоугольном треугольнике — это некоторое число, получаемое в результате деления длины противолежащего катета на длину гипотенузы. Длины отрезков выражаются положительными числами, поэтому синус угла треугольника также является положительным числом.
Поскольку длина катета всегда меньше длины гипотенузы, то синус острого угла прямоугольного треугольника — число, меньшее единицы.
Вывод:
Синус любого острого угла прямоугольного треугольника больше нуля, но меньше единицы:
Синус угла треугольника зависит не от длин сторон треугольника, а от отношения этих длин.
Например,
1) В треугольнике ABC катет BC=3 см, а гипотенуза AB=5 см.
Тогда
2) В треугольнике ABC катет BC=21 дм, гипотенуза AB=35 дм.
Тогда
Длины сторон треугольника изменилось, но отношения длин остались прежними, поэтому и значение синуса угла A не изменилось.
Угол A в обоих треугольниках одинаков.
Синус в треугольнике
Что такое синус в треугольнике? Как найти синус острого угла в прямоугольном треугольнике?
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
для угла A треугольника ABC
противолежащий катет — это BC.
Соответственно, синус угла A в треугольнике ABC — это
Для угла B треугольника ABC
противолежащим является катет AC.
Соответственно, синус угла B в треугольнике ABC
равен отношению AC к AB:
Таким образом, синус острого угла в прямоугольном треугольнике — это некоторое число, получаемое в результате деления длины противолежащего катета на длину гипотенузы. Длины отрезков выражаются положительными числами, поэтому синус угла треугольника также является положительным числом.
Поскольку длина катета всегда меньше длины гипотенузы, то синус острого угла прямоугольного треугольника — число, меньшее единицы.
Синус любого острого угла прямоугольного треугольника больше нуля, но меньше единицы:
Синус угла треугольника зависит не от длин сторон треугольника, а от отношения этих длин.
1) В треугольнике ABC катет BC=3 см, а гипотенуза AB=5 см.
2) В треугольнике ABC катет BC=21 дм, гипотенуза AB=35 дм.
Длины сторон треугольника изменилось, но отношения длин остались прежними, поэтому и значение синуса угла A не изменилось.
Синус угла. Таблица синусов.
Синус угла через градусы, минуты и секунды
Синус угла через десятичную запись угла
Как найти угол зная синус этого угла
У синуса есть обратная тригонометрическая функция – arcsin(y)=x
Пример sin(30°) = 1/2; arcsin(1/2) = 30°
Определение синуса
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
Синусом угла α называется ордината точки B единичной окружности, полученной при повороте точки P(1;0) на угол α.
Периодичность синуса
Функция y = sin(x) периодична, с периодом 2π
Синус угла в обычном треугольнике
Синус (sin) – это одна из прямых тригонометрических функций. Подробнее о ней можно узнать из нашей статьи Что такое синус.
Синус угла в прямоугольном треугольнике
Прежде чем выяснять, как найти синус угла, необходимо определиться с условными обозначениями. Пусть в прямоугольном треугольнике:
- α – острый угол, синус которого нужно найти;
- с – гипотенуза;
- b – прилежащий катет;
- a – противолежащий катет.
Тогда чтобы найти синус острого угла прямоугольного треугольника, достаточно посчитать соотношение длины противолежащего катета к длине гипотенузы: sin(α) = a/c. При этом стоит запомнить, что sin 90° всегда равен 1.
Синус угла в произвольном треугольнике
Находить синус угла в произвольном треугольнике проще всего с использованием теоремы косинусов (cos): квадрат длины любой стороны равен сумме квадратов длин двух других сторон за минусом их удвоенного произведения на косинус угла между ними.
a² = b² + c² – 2*b*c*cos(α)
Из данной формулы можно найти косинус: cos(α) = (b² + c² – a²)/(2*b*c)
А поскольку для одного и того же угла sin(α)² + cos(α)² = 1 и это константа, то можно вывести формулу для определения синуса:
Более детально нахождение синуса угла с использованием косинуса рассмотрено в нашей статье Как найти синус, если известен косинус.
Что такое синус в треугольнике? Как найти синус острого угла в прямоугольном треугольнике?
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
для угла A треугольника ABC
противолежащий катет — это BC.
Соответственно, синус угла A в треугольнике ABC — это
Для угла B треугольника ABC
противолежащим является катет AC.
Соответственно, синус угла B в треугольнике ABC
равен отношению AC к AB:
Таким образом, синус острого угла в прямоугольном треугольнике — это некоторое число, получаемое в результате деления длины противолежащего катета на длину гипотенузы. Длины отрезков выражаются положительными числами, поэтому синус угла треугольника также является положительным числом.
Поскольку длина катета всегда меньше длины гипотенузы, то синус острого угла прямоугольного треугольника — число, меньшее единицы.
Синус любого острого угла прямоугольного треугольника больше нуля, но меньше единицы:
Синус угла треугольника зависит не от длин сторон треугольника, а от отношения этих длин.
1) В треугольнике ABC катет BC=3 см, а гипотенуза AB=5 см.
2) В треугольнике ABC катет BC=21 дм, гипотенуза AB=35 дм.
Длины сторон треугольника изменилось, но отношения длин остались прежними, поэтому и значение синуса угла A не изменилось.
2
Для нахождения синусов углов в произвольном треугольнике, как это ни странно, проще использовать не теорему синусов, а теорему косинусов. Она гласит, что возведенная в квадрат длина любой стороны равна сумме квадратов длин двух других сторон без удвоенного произведения этих длин на косинус угла между ними: А²=В²+С2-2*В*С*cos(α). Из этой теоремы можно вывести формулу для нахождения косинуса: cos(α)=(В²+С²-А²)/(2*В*С) . А поскольку сумма квадратов синуса и косинуса одного и того же угла всегда равна единице, то можно вывести и формулу для нахождения синуса угла α: sin(α)=√(1-(cos(α))²)= √(1-(В²+С²-А²)²/(2*В*С) ²).
[spoiler title=”источники:”]
http://calc-best.ru/matematicheskie/trigonometriya/sinus-ugla
http://dudom.ru/kompjutery/sinus-ugla-v-obychnom-treugolnike/
[/spoiler]
- Главная
- Справочники
- Справочник по геометрии 7-9 класс
- Подобные треугольники
- Синус, косинус и тангенс острого угла прямоугольного треугольника
Рассмотрим прямоугольный треугольник АВС с прямым углом С:
Катет ВС этого треугольника является противолежащим углу А, а катет АС – прилежащим к этому углу.
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе. Синус угла, который равен , обозначается символом , читается: “синус альфа”.
Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. Косинус угла, который равен , обозначается символом , читается: “косинус альфа”.
Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему катету. Тангенс угла, который равен , обозначается символом , читается: “тангенс альфа”.
На рисунке
(1)
(2)
(3)
Из формул (1) и (2) получаем:
Сравнивая с формулой (3), находим:
(4)
Получили, что тангенс угла равен отношению синуса к косинусу этого угла.
Докажем, что если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то синусы этих углов равны, косинусы этих углов равны и тангенсы этих углов равны.
Дано: АВС, А1В1С1, С = С1 = 900, А = А1.
Доказать: sin A = sin A1, cos A = cos A1, tg A = tg A1.
Доказательство:
АВС А1В1С1 по первому признаку подобия треугольников (т.к. С = С1 = 900, А = А1). Из подобия треугольников следует пропорциональность сходственных сторон, поэтому мы можем записать:
Из этих равенств следует, что т.е. sin A = sin A1. Аналогично , т.е. cos A = cos A1, и , т.е. tg A = tg A1, что и требовалось доказать.
Мы получили, что синус, косинус и тангенс острого угла зависит только от величины этого угла.
Докажем основное тригонометрическое тождество:
Из формул (1) и (2) получаем
По теореме Пифагора , поэтому .
Советуем посмотреть:
Пропорциональные отрезки
Определение подобных треугольников
Отношение площадей подобных треугольников
Первый признак подобия треугольников
Второй признак подобия треугольников
Третий признак подобия треугольников
Средняя линия треугольника
Пропорциональные отрезки в прямоугольном треугольнике
Практические приложения подобия треугольников
О подобии произвольных фигур
Значение синуса, косинуса и тангенса для углов 30, 45 и 60
Подобные треугольники
Правило встречается в следующих упражнениях:
7 класс
Задание 17,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 642,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 647,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 676,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 704,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1036,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1104,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1239,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1307,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1310,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Чтобы найти синус и косинус угла в прямоугольном треугольнике, нужно вспомнить определения. Синус угла равен отношению противоположного катета к гипотенузе. Косинус угла равен отношению прилежащего катета к гипотенузе.
Если у нас есть треугольник (ABC), рисунок выше, для которого (С)– прямой угол, то сторонами (BC) и (AC) будут катеты, а сторона (AB) – гипотенуза. Следовательно, по определению, синус угла (ABC) равен отношению катета (АС) к гипотенузе: синус угла (ABC=frac{AC}{AB}) и синус угла (BAC=frac{BC}{AB}).
косинус угла (ABC=frac{BC}{AB}) и косинус угла (BAC=frac{AC}{AB}).
Чаще всего известно лишь часть данных, например катет и угол, нужно выразить неизвестную величину. Подумайте, как это сделать.
Вычислим синус по двум катетам.
Берем тот же треугольник (ACB) с прямым углом (С) в котором мы знаем катеты: (BC = 3), (AC = 4). Для вычисления синуса угла с необходимо разделить катет на гипотенузу: (sin ∠BAC = frac{BC} { AB}).
Гипотенузу вычислим из теоремы Пифагора: (AC^2+BC^2=AB^2) (9+16=25) (AB=5) откуда синус равен:
(sin ∠ BAC = frac{3}{5})
. Вычислим синус угла (ABC) по углу( BAC ) 30° градусов в прямоугольном треугольнике (ACB).
Самое главное помнить, что сумма всех углов в треугольнике равна 180 °.Найдем угол (ABC):
(180)° (-30)° (-90)°(=60)°.
(sin) (60)° возьмем из табличного значения: (frac{ sqrt{3}} { 2})
Табличные значения (sin) и (cos):
Чтобы лучше понимать значения табличные значения синуса и косинуса представим их на координатной окружности: где ось ординат ((y)) линия синуса, ось абсцисс ((x)) – линия косинуса. Если вы забыли значения синуса и косинуса (90) и (180) можно нарисовать рисунок и посмотреть значения, не забывая, что на первом месте стоит (x), на втором (y) ((x,y));
Теорема синусов:
Теорема косинусов:
Больше уроков и заданий по всем школьным предметам в онлайн-школе “Альфа”. Запишитесь на пробное занятие прямо сейчас!
Запишитесь на бесплатное тестирование знаний!