Как найти систему уравнений 7 класс

Прежде чем перейти к разбору как решать системы уравнений, давайте разберёмся, что называют системой уравнений
с двумя неизвестными.

Запомните!
!

Системой уравнений называют два уравнения с двумя неизвестными (чаще всего неизвестные в них называют
«x» и «y»),
которые объединены в общую систему фигурной скобкой.

Например, система уравнений может быть задана следующим образом.

Чтобы решить систему уравнений, нужно найти и «x», и «y».

Как решить систему уравнений

Существуют два основных способа решения систем уравнений. Рассмотрим оба способа решения.

Способ подстановки
или
«железобетонный» метод

Первый способ решения системы уравнений называют способом подстановки или «железобетонным».

Название «железобетонный» метод получил из-за того, что с помощью этого метода практически всегда можно
решить систему уравнений. Другими словами, если у вас не получается решить систему уравнений,
всегда пробуйте решить её методом подстановки.

Разберем способ подстановки на примере.

Выразим из первого уравнения «x + 5y = 7»
неизвестное «x».

Важно!
Галка

Чтобы выразить неизвестное, нужно выполнить два условия:

  • перенести неизвестное, которое хотим выразить, в левую часть уравнения;
  • разделить и левую и правую часть уравнения на нужное число так,
    чтобы коэффициент при неизвестном стал равным единице.

Перенесём в первом уравнении «x + 5 y = 7» всё что
содержит «x» в левую часть,
а остальное в правую часть по
правилу переносу.

При «x» стоит коэффициент равный единице, поэтому дополнительно делить уравнение
на число не требуется.

Теперь, вместо «x» подставим во второе уравнение полученное выражение
«x = 7 − 5y» из первого уравнения.

x = 7 − 5y
3(7 − 5y) − 2y = 4

Подставив вместо «x» выражение «(7 − 5y)»
во второе уравнение,
мы получили обычное линейное уравнение с одним неизвестным «y».
Решим его по правилам
решения линейных уравнений.

Чтобы каждый раз не писать всю систему уравнений заново, решим полученное уравнение
«3(7 − 5y) − 2y = 4» отдельно.
Вынесем его решение отдельно с помощью
обозначения звездочка (*).

x = 7 − 5y
3(7 − 5y) − 2y = 4  (*)

(*)   3(7 − 5y) − 2y = 4
21 − 15y − 2y = 4
− 17y = 4 − 21
                 − 17y = − 17     | :(−17)
y = 1

Мы нашли, что «y = 1».
Вернемся к первому уравнению «x = 7 − 5y» и вместо «y» подставим в него полученное числовое значение.
Таким образом можно найти «x».
Запишем в ответ оба полученных значения.

Ответ: x = 2; y = 1

Способ сложения

Рассмотрим другой способ решения системы уравнений. Метод называется способ сложения.
Вернемся к нашей системе уравнений еще раз.

По правилам математики уравнения системы можно складывать. Наша задача в том, чтобы сложив исходные
уравнения, получить такое уравнение, в котором останется только одно неизвестное.

Давайте сейчас сложим уравнения системы и посмотрим, что из этого выйдет.

Запомните!
!

При сложения уравнений системы
левая часть первого уравнения полностью складывается
с левой частью второго уравнения,
а правая часть полностью складывается с
правой частью.

x + 5y = 7 (x + 5y) + (3x − 2y) = 7 + 4
+          =>     x
+ 5y + 3x
2y = 11
3x − 2y = 4 4x + 3y = 11

При сложении уравнений мы получили уравнение «4x + 3y = 11».
По сути, сложение уравнений в исходном виде нам ничего
не дало, так как в полученном уравнении мы по прежнему имеем оба неизвестных.

Вернемся снова к исходной системе уравнений.

Чтобы при сложении неизвестное «x» взаимноуничтожилось,
нужно сделать так, чтобы в первом уравнении при «x» стоял коэффициент
«−3».

Для этого умножим первое уравнение на «−3».

Важно!
Галка

При умножении уравнения на число, на это число умножается каждый член уравнения.

x + 5y = 7 | ·(−3)
3x − 2y = 4
x ·(−3)
+ 5y · (−3) = 7 · (−3)
3x − 2y = 4
−3x −15y = −21
3x − 2y = 4

Теперь сложим уравнения.

−3x −15y = −21 (−3x −15y ) + (3x − 2y) = −21 + 4
+          =>     3x15y +
3x2y = −21 + 4
3x − 2y = 4 −17y = −17 |:(−17)
y = 1

Мы нашли «y = 1».
Вернемся к первому уравнению и подставим вместо «y» полученное числовое
значение и найдем «x».

Ответ: x = 2; y = 1

Пример решения системы уравнения
способом подстановки

Выразим из первого уравнения «x».

Подставим вместо «x» во второе уравнение полученное выражение.

x = 17 + 3y
(17 + 3y) − 2y = −13 (*)

(*) (17 + 3y) − 2y = −13
17 + 3y − 2y = −13
17 + y = −13
y = −13 − 17
y = −30

Подставим в первое уравнение полученное числовое значение «y = −30» и
найдем «x».

x = 17 + 3 · (−30)
y = −30

Ответ: x = −73; y = −30

Пример решения системы уравнения
способом сложения

Рассмотрим систему уравнений.

3(x − y) + 5x = 2(3x − 2)
4x − 2(x + y) = 4 − 3y

Раскроем скобки и упростим выражения в обоих уравнениях.

3x − 3y + 5x = 6x − 4
4x − 2x − 2y = 4 − 3y
8x − 3y = 6x − 4
2x −2y = 4 − 3y
8x − 3y − 6x = −4
2x −2y + 3y = 4

Мы видим, что в обоих уравнениях есть «2x».
Наша задача, чтобы при сложении уравнений «2x» взаимноуничтожились и в
полученном уравнении осталось только «y».

Для этого достаточно умножить первое уравнение на «−1».

2x − 3y = −4      |·(−1)
2x + y = 4
2x · (−1)
3y · (−1) = −4 · (−1)
2x + y = 4

Теперь при сложении уравнений у нас останется только «y» в уравнении.

−2x + 3y = 4 (−2x + 3y ) + (2x + y) = 4 + 4
+          =>     2x + 3y +
2x + y = 4 + 4
2x + y = 4 4y = 8         | :4
y = 2

Подставим в первое уравнение полученное числовое значение «y = 2» и
найдем «x».

Ответ: x = 1; y = 2


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

8 мая 2020 в 16:20

Алина Козлова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Алина Козлова
Профиль
Благодарили: 0

Сообщений: 1

у-2х=-3
х+у=3

0
Спасибоthanks
Ответить

9 мая 2020 в 21:50
Ответ для Алина Козлова

Evgeny Bayron
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Evgeny Bayron
Профиль
Благодарили: 0

Сообщений: 1


y=3-x
3-x-2x=-3
x=2
y-2*2=-3
y=1

0
Спасибоthanks
Ответить

15 мая 2019 в 13:21

Марина Чернявская
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Марина Чернявская
Профиль
Благодарили: 0

Сообщений: 1

Решительно систему уравнений.
4x+3y =22.
-x+7y =10.
a)графическим способом.
б)способом подстановки
в)способом сложения

0
Спасибоthanks
Ответить

15 мая 2019 в 22:31
Ответ для Марина Чернявская

Лёха Чешуйка
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Лёха Чешуйка
Профиль
Благодарили: 0

Сообщений: 2


в): Домножаем первое на 1, второе на 4:
4x+3y=22
-4x+28y=40
Складываем:
4x+(-4x)+3y+28y=22+40
31y=62
y=62/31
y=2
Подставляем y в первое:
4x+3 · 2=22
4x=22-6
4x=16
x=4

0
Спасибоthanks
Ответить

15 мая 2019 в 22:41
Ответ для Марина Чернявская

Лёха Чешуйка
(^-^)
Профиль
Благодарили: 0

Сообщений: 2

(^-^)
Лёха Чешуйка
Профиль
Благодарили: 0

Сообщений: 2


б): Выражаем из второго x:
-x=10-7y
x=7y-10
Подставляем x в первое:
4(7y-10)+3y=22
28y-40+3y=22
31y=22+40
31y=62
y=2
Подставляем y в первое:
4x+3 · 2=22
4x=22-6
4x=16
x=4

0
Спасибоthanks
Ответить

20 октября 2015 в 13:24

Елена Тутуликова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Елена Тутуликова
Профиль
Благодарили: 0

Сообщений: 1

 Помогите, пожалуйста, решить систему уравнений.{y + sinx = 5; {4y + 2 sinx = 19
Спасибо!

0
Спасибоthanks
Ответить

23 октября 2015 в 21:25
Ответ для Елена Тутуликова

Елизавета Яременко
(^-^)
Профиль
Благодарили: 0

Сообщений: 5

(^-^)
Елизавета Яременко
Профиль
Благодарили: 0

Сообщений: 5


Я думаю{y + sinx  =5; {4y  + 2  sinx =19

0
Спасибоthanks
Ответить

9 июня 2016 в 14:19
Ответ для Елена Тутуликова

Евгений Фёдоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 60

(^-^)
Евгений Фёдоров
Профиль
Благодарили: 0

Сообщений: 60


sinx = 1/2
y = 9/2

0
Спасибоthanks
Ответить


Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.

Пример:

а) (begin{cases}x-2y=5\3x+2y=7end{cases})

г) (begin{cases}3(5-x)-4y=0\y-2x+4=0 end{cases})

б)(begin{cases}3b=13-2a\5a=5-2b end{cases})

д)(begin{cases}frac{p}{3} + frac{m-6}{2} = 1-9m \11p+3(m-p-1)=-2(m+1) end{cases})

в)(begin{cases}3x-8=2y\x+y=6end{cases})

е)(begin{cases}0,02y=1,25-3,21x \1,5x-frac{3}{4}=4-0,1yend{cases})

Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.

Пример:
Пара значений (x=3);(y=-1) является решением первой системы, потому что при подстановке этих тройки и минус единицы в вместо (x) и (y), оба уравнения превратятся в верные равенства (begin{cases}3-2cdot (-1)=5 \3 cdot 3+2 cdot (-1)=7 end{cases})

А вот (x=1); (y=-2) – не является решением первой системы, потому что после подстановки второе уравнение «не сходится» (begin{cases}1-2cdot(-2)=5 \3cdot1+2cdot(-2)≠7 end{cases})

Отметим, что такие пары часто записывают короче: вместо “(x=3); (y=-1)” пишут так: ((3;-1)).

Как решить систему линейных уравнений?

Есть три основных способа решения систем линейных уравнений:

  1. Способ подстановки.
    1. Возьмите любое из уравнений системы и выразите из него любую переменную.

      (begin{cases}x-2y=5\3x+2y=7 end{cases})(Leftrightarrow) (begin{cases}x=5+2y\3x+2y=7end{cases})(Leftrightarrow)

    2. Полученное выражение подставьте вместо этой переменной в другое линейное уравнение системы.

      (Leftrightarrow) (begin{cases}x=5+2y\3(5+2y)+2y=7end{cases})(Leftrightarrow)

    3. Равносильными преобразованиями уравнений найдите  по очереди каждое неизвестное.

      (Leftrightarrow) (begin{cases}x=5+2y\15+6y+2y=7end{cases})(Leftrightarrow)(begin{cases}x=5+2y\8y=-8end{cases})(Leftrightarrow)(begin{cases}x=5+2y\y=-1end{cases})(Leftrightarrow)(begin{cases}x=5-2\y=-1end{cases})(Leftrightarrow)(begin{cases}x=3\y=-1end{cases})

    4. Ответ запишите парой чисел ((x_0;y_0))

      Ответ: ((3;-1))

    Замечание к шагу 1: нет никакой разницы какую переменную и из какого уравнения выражать. Обычно более удобно выражать ту переменную, перед которой нет коэффициента или, говоря точнее, коэффициент которой равен единице (в примере выше это был икс в первом уравнении).

    Почему так? Потому что во всех остальных случаях у нас при выражении переменной получилась бы дробное выражение. Попробуем, например, выразить икс из второго уравнения системы:

    (begin{cases}x-2y=5\3x+2y=7 end{cases})(Leftrightarrow) (begin{cases}x=5+2y\3x=7-2yend{cases})(Leftrightarrow)(begin{cases}x=5+2y\x=frac{7-2y}{3}end{cases})

    И сейчас нам нужно будет эту  дробь
    подставлять в первое уравнение и решать то, что получиться. До верного ответа мы бы всё равно дошли, но идти было бы неудобнее

  2. Способ алгебраического сложения.
    1. Равносильно преобразовывая каждое уравнение в отдельности, запишите систему в виде:(begin{cases}a_1 x+b_1 y=c_1\a_2 x+b_2 y=c_2end{cases}).

      (begin{cases}3y=13-2x\5x=5-2yend{cases})(Leftrightarrow)(begin{cases}2x+3y=13\5x+2y=5end{cases})(Leftrightarrow)

    2. Теперь нужно сделать так, чтоб коэффициенты  при одном из неизвестных стали одинаковы (например, ((3) и (3)) или противоположны по значению (например, (5) и (-5)). В нашем примере уравняем коэффициенты при игреках. Для этого первое уравнение домножим на (2), а второе – на (3).

      (begin{cases}2x+3y=13 |cdot 2\ 5x+2y=5 |cdot 3end{cases})(Leftrightarrow)(begin{cases}4x+6y=26\15x+6y=15end{cases})(Leftrightarrow)

    3. Сложите (или вычтите) почленно обе части уравнения так, чтобы получилось уравнение с одним неизвестным.

      Сложение линейных уравнений

    4. Найдите неизвестное из полученного уравнения.

      (-11x=11)     (|∶(-11))
      (x=-1)                

    5. Подставьте найденное значение неизвестного в любое из исходных уравнений и найдите второе неизвестное.

      (3y=13-2x)
      (3y=13-2·(-1))
      (3y=15)
      (y=5)

    6. Ответ запишите парой чисел ((x_0;y_0)).

      Ответ: ((-1;5))

    Замечание к шагу 3: В каком случае уравнения складывают, а в каком вычитают? Ответ прост – делайте так, чтоб пропала переменная: если «уравненные» коэффициенты имеют один и тот же знак – вычитайте, а если разные – складывайте.

    Пример. Решите систему уравнений: (begin{cases}12x-7y=2\5y=4x-6end{cases})

    Решение:

    (begin{cases}12x-7y=2\5y=4x-6end{cases})

                                  

    Приводим систему к виду (begin{cases}a_1 x+b_1 y=c_1\a_2 x+b_2 y=c_2end{cases}) преобразовывая второе уравнение.

    (begin{cases}12x-7y=2\-4x+5y=-6end{cases})

     

    «Уравняем» коэффициенты при иксах. Для этого домножим второе уравнение на (3).

    (begin{cases}12x-7y=2\-12x+15y=-18end{cases})

     

    Знаки при иксах разные, поэтому чтоб иксы пропали, уравнения надо сложить.

    (0·x+8y=-16)

         

    Делим уравнение на (8), чтобы найти (y).

    (y=-2)

         

    Игрек нашли. Теперь найдем (x), подставив вместо игрека (-2) в любое из уравнений системы.

    (12x-7·(-2)=2)
    (12x+14=2)
    (12x=-12)
    (x=-1)

    Икс тоже найден. Пишем ответ.

    Ответ: ((-1;-2))

  3. Графический способ.
    1. Приведите каждое уравнение к виду линейной функции
       (y=kx+b).

      (begin{cases}3x-8=2y\x+y=6end{cases})(Leftrightarrow)(begin{cases}2y=3x-8 |:2\y=6-xend{cases})(Leftrightarrow)(begin{cases}y=frac{3}{2}x-4\y=-x+6end{cases})

    2. Постройте  графики  этих  функций.  Как?  Можете  прочитать  здесь.

      решение системы линейных уравнений графическим способом

    3. Найдите координаты ((x;y)) точки пересечения графиков и запишите их в ответ в виде ((x_0;y_0 )).
      Ответ: ((4;2))

Матхак. Если сомневаетесь в правильности ответа (неважно каким способом вы решали), проверьте подстановкой значений (x_0) и (y_0) в каждое уравнение. Если оба уравнения превратятся в верные равенства, то ответ правильный.
Пример: решая систему (begin{cases}3x-8=2y\x+y=6end{cases}), мы получили ответ ((4;2)). Проверим его, подставив вместо икса (4), а вместо игрека (2).

(begin{cases}3cdot 4-8=2cdot 2\4+2=6end{cases})(Leftrightarrow)(begin{cases} 12-8=4\6=6end{cases})(Leftrightarrow)(begin{cases} 4=4\6=6end{cases})

Оба уравнения сошлись, решение системы найдено верно.

Пример. Решите систему уравнений: (begin{cases}3(5x+3y)-6=2x+11\4x-15=11-2(4x-y)end{cases})

Решение:

(begin{cases}3(5x+3y)-6=2x+11\4x-15=11-2(4x-y)end{cases})

                              

Раскроем скобки в уравнениях.

(begin{cases}15x+9y-6=2x+11\4x-15=11-8x+2yend{cases})

 

Перенесем все выражения с буквами в одну сторону, а числа в другую.

(begin{cases}15x-2x+9y=11+6\4x+8x-2y=11+15end{cases})

 

Приведем подобные слагаемые.

(begin{cases}13x+9y=17\12x-2y=26end{cases})

     

Во втором уравнении каждое слагаемое – четное, поэтому упрощаем уравнение, деля его на (2).

(begin{cases}13x+9y=17\6x-y=13end{cases})

     

Эту систему линейных уравнений можно решить любым из способов, но мне кажется, что способ подстановки здесь удобнее всего. Выразим y из второго уравнения.

(begin{cases}13x+9y=17\y=6x-13end{cases})

Подставим (6x-13) вместо (y) в первое уравнение.

(begin{cases}13x+9(6x-13)=17\y=6x-13end{cases})

Первое уравнение превратилась в обычное линейное.  Решаем его.

Сначала раскроем скобки.

(begin{cases}13x+54x-117=17\y=6x-13end{cases})

Перенесем (117) вправо и приведем подобные слагаемые.

(begin{cases}67x=134\y=6x-13end{cases})

Поделим обе части первого уравнения на (67).

(begin{cases}x=2\y=6x-13end{cases})

Ура, мы нашли (x)! Подставим его значение во второе уравнение и найдем (y).

(begin{cases}x=2\y=12-13end{cases})(Leftrightarrow)(begin{cases}x=2\y=-1end{cases})

Запишем ответ.

Ответ: ((2;-1))

Скачать статью

Время чтения: 7 минут.

Сегодня мы разберем, что такое система уравнений и какие существуют методы ее решения: быстро, кратко, понятно🧠

Что такое система уравнений?
Что такое система уравнений?

То есть, по итогу решения системы у нас будет пара значений x и y, которые мы можем подставить в два уравнения и получить верное равенство.

Способы решения систем уравнения:

  • Графический метод 📈
  • Способ подстановки 📝
  • Способ сложения ➕

Ниже разберем каждый метод подробнее.

1. Графический метод решения

Графический метод решения
Графический метод решения

Чтобы решить систему графически, нам нужно:

  • Выразить из каждого уравнения переменную y;
  • Построить таблицы значений для каждого уравнения (см. картинку ниже);
Построение таблицы значений для каждого уравнения
Построение таблицы значений для каждого уравнения
  • Построить графики по полученным в таблице точкам;
  • Найти точку пересечения графиков – это и будет решение

Таким образом, решением данного уравнения будет являться точка (3;2), то есть x=3, y=2.

Памятка для системы уравнений графическим методом

По коэффициентам при х сразу можно понять, будет ли система иметь решения.

Памятка для решения систем графическим методом
Памятка для решения систем графическим методом

2. Способ подстановки

Способ подстановки говорит сам за себя – что-то берем и подставляем вместо другого. Ниже представлен алгоритм действий👇

Алгоритм решения способом подстановки
Алгоритм решения способом подстановки

Давай рассмотрим решение на конкретном примере.

Пример решения системы уравнений методом подстановки
Пример решения системы уравнений методом подстановки

То есть, мы выразили y из первого уравнения, подставили его во второе и нашли значение х. После чего нашли значение y. Все просто!💁‍♀️

3. Способ сложения

Напоминаю для тех, кто забыл:

  • коэффициенты – это числа перед x и y;
  • x и y – это переменные.
Алгоритм способа сложения
Алгоритм способа сложения

Получается, наша задача – это избавиться от одной из переменных, чтобы дальше решать обыкновенное уравнение с одной переменной.

Звучит не очень то и сложно. Давай разберем на примере!

Пример решения системы уравнений способом сложения
Пример решения системы уравнений способом сложения

В примере мы умножили первое уравнение на -2, чтобы при х вместо 5 стал коэффициент -10.

А затем сложили первое и второе уравнение: -10x + 10x = 0. Вот мы и избавились от х😏Дальше решение очень напоминает предыдущий способ.

На этом все! Ниже будет несколько примеров для тренировки. Если хочешь закрепить полученные знания, то обязательно реши их.

Остались вопросы? Можешь написать о них в комментариях!

#образование #математика #ОГЭ #егэ #впр

Системы уравнений

Система уравнений — это группа уравнений, в которых одни и те же неизвестные обозначают одни те же числа. Чтобы показать, что уравнения рассматриваются как система, слева от них ставится фигурная скобка:

Решить систему уравнений — это значит, найти общие решения для всех уравнений системы или убедиться, что решения нет.

Чтобы решить систему уравнений, нужно исключить одно неизвестное, то есть из двух уравнений с двумя неизвестными составить одно уравнение с одним неизвестным. Исключить одно из неизвестных можно тремя способами: подстановкой, сравнением, сложением или вычитанием.

Способ подстановки

Чтобы решить систему уравнений способом подстановки, нужно в одном из уравнений выразить одно неизвестное через другое и результат подставить в другое уравнение, которое после этого будет содержать только одно неизвестное. Затем находим значение этого неизвестного и подставляем его в первое уравнение, после этого находим значение второго неизвестного.

Рассмотрим решение системы уравнений:

Сначала найдём, чему равен x в первом уравнении. Для этого перенесём все члены уравнения, не содержащие неизвестное x, в правую часть:

Так как x, на основании определения системы уравнений, имеет такое же значение и во втором уравнении, то подставляем его значение во второе уравнение и получаем уравнение с одним неизвестным:

3x – 2y = 16;
3( 2 + 4y ) – 2y = 16.

Решаем полученное уравнение, чтобы найти, чему равен y. Как решать уравнения с одним неизвестным, вы можете посмотреть в соответствующей теме.

3(2 + 4y) – 2y = 16;
6 + 12y – 2y = 16;
6 + 10y = 16;
10y = 16 – 6;
10y = 10;
y = 10 : 10;
y = 1.

Мы определили что y = 1. Теперь, для нахождения численного значения x, подставим значение y в преобразованное первое уравнение, где мы ранее нашли, какому выражению равен x:

x = 2 + 4y = 2 + 4 · 1 = 2 + 4 = 6.

Способ сравнения

Способ сравнения — это частный случай подстановки. Чтобы решить систему уравнений способом сравнения, нужно в обоих уравнениях найти, какому выражению будет равно одно и то же неизвестное и приравнять полученные выражения друг к другу. Получившееся в результате уравнение позволяет узнать значение одного неизвестного. С помощью этого значения затем вычисляется значение второго неизвестного.

Например, для решение системы:

найдём в обоих уравнениях, чему равен y (можно сделать и наоборот — найти, чему равен x):

x – 4y = 2 3x – 2y = 16
-4y = 2 – x -2y = 16 – 3x
y = (2 – x) : – 4 y = (16 – 3x) : -2

Составляем из полученных выражений уравнение:

Решаем уравнение, чтобы узнать значение x:

2 – x · (-4) = 16 – 3x · (-4)
-4 -2
2 – x = 32 – 6x
x + 6x = 32 – 2
5x = 30
x = 30 : 5
x = 6

Теперь подставляем значение x в первое или второе уравнение системы и находим значение y:

x – 4y = 2 3x – 2y = 16
6 – 4y = 2 3 · 6 – 2y = 16
-4y = 2 – 6 -2y = 16 – 18
-4y = -4 -2y = -2
y = 1 y = 1

Способ сложения или вычитания

Чтобы решить систему уравнений способом сложения, нужно составить из двух уравнений одно, сложив левые и правые части, при этом одно из неизвестных должно быть исключено из полученного уравнения. Неизвестное можно исключить, уравняв при нём коэффициенты в обоих уравнениях.

Уравняем коэффициенты при неизвестном y, умножив все члены второго уравнения на -2:

x – 4y = 2
-6x + 4y = -32

Теперь сложим по частям оба уравнения, чтобы получить уравнение с одним неизвестным:

+ x – 4y = 2
-6x + 4y = -32
-5x = -30

Находим значение x (x = 6). Теперь, подставив значение x в любое уравнение системы, найдём y = 1.

Если уравнять коэффициенты у x, то, для исключения этого неизвестного, нужно было бы вычесть одно уравнение из другого.

Уравняем коэффициенты при неизвестном x, умножив все члены первого уравнения на 3:

(x – 4y) · 3 = 2 · 3

3x – 12y = 6
3x – 2y = 16

Теперь вычтем по частям второе уравнение из первого, чтобы получить уравнение с одним неизвестным:

3x – 12y = 6
3x – 2y = 16
-10y = -10

Находим значение y (y = 1). Теперь, подставив значение y в любое уравнение системы, найдём x = 6:

3x – 2y = 16
3x – 2 · 1 = 16
3x – 2 = 16
3x = 16 + 2
3x = 18
x = 18 : 3
x = 6

Для решения системы уравнений, рассмотренной выше, был использован способ сложения, который основан на следующем свойстве:

Любое уравнение системы можно заменить на уравнение, получаемое путём сложения (или вычитания) уравнений, входящих в систему. При этом получается система уравнений, имеющая те же решения, что и исходная.

Системы линейных уравнений (7 класс)

Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.

Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.

Пример:
Пара значений (x=3);(y=-1) является решением первой системы, потому что при подстановке этих тройки и минус единицы в вместо (x) и (y), оба уравнения превратятся в верные равенства (begin3-2cdot (-1)=5 \3 cdot 3+2 cdot (-1)=7 end)

А вот (x=1); (y=-2) – не является решением первой системы, потому что после подстановки второе уравнение «не сходится» (begin1-2cdot(-2)=5 \3cdot1+2cdot(-2)≠7 end)

Отметим, что такие пары часто записывают короче: вместо “(x=3); (y=-1)” пишут так: ((3;-1)).

Как решить систему линейных уравнений?

Есть три основных способа решения систем линейных уравнений:

Возьмите любое из уравнений системы и выразите из него любую переменную.

Полученное выражение подставьте вместо этой переменной в другое линейное уравнение системы.

Ответ запишите парой чисел ((x_0;y_0))

Замечание к шагу 1: нет никакой разницы какую переменную и из какого уравнения выражать. Обычно более удобно выражать ту переменную, перед которой нет коэффициента или, говоря точнее, коэффициент которой равен единице (в примере выше это был икс в первом уравнении).

Почему так? Потому что во всех остальных случаях у нас при выражении переменной получилась бы дробное выражение . Попробуем, например, выразить икс из второго уравнения системы:

И сейчас нам нужно будет эту дробь подставлять в первое уравнение и решать то, что получиться. До верного ответа мы бы всё равно дошли, но идти было бы неудобнее

Способ алгебраического сложения.

Равносильно преобразовывая каждое уравнение в отдельности, запишите систему в виде:(begina_1 x+b_1 y=c_1\a_2 x+b_2 y=c_2end).

Теперь нужно сделать так, чтоб коэффициенты при одном из неизвестных стали одинаковы (например, ((3) и (3)) или противоположны по значению (например, (5) и (-5)). В нашем примере уравняем коэффициенты при игреках. Для этого первое уравнение домножим на (2), а второе – на (3).

(begin2x+3y=13 |cdot 2\ 5x+2y=5 |cdot 3end)(Leftrightarrow)(begin4x+6y=26\15x+6y=15end)(Leftrightarrow)

Сложите (или вычтите) почленно обе части уравнения так, чтобы получилось уравнение с одним неизвестным.

Найдите неизвестное из полученного уравнения.

Подставьте найденное значение неизвестного в любое из исходных уравнений и найдите второе неизвестное.

Ответ запишите парой чисел ((x_0;y_0)).

Замечание к шагу 3: В каком случае уравнения складывают, а в каком вычитают? Ответ прост – делайте так, чтоб пропала переменная: если «уравненные» коэффициенты имеют один и тот же знак – вычитайте, а если разные – складывайте.

Пример. Решите систему уравнений: (begin12x-7y=2\5y=4x-6end)

Приводим систему к виду (begina_1 x+b_1 y=c_1\a_2 x+b_2 y=c_2end) преобразовывая второе уравнение.

«Уравняем» коэффициенты при иксах. Для этого домножим второе уравнение на (3).

Знаки при иксах разные, поэтому чтоб иксы пропали, уравнения надо сложить.

Делим уравнение на (8), чтобы найти (y).

Игрек нашли. Теперь найдем (x), подставив вместо игрека (-2) в любое из уравнений системы.

Икс тоже найден. Пишем ответ.

Приведите каждое уравнение к виду линейной функции (y=kx+b).

Постройте графики этих функций. Как? Можете прочитать здесь .

  • Найдите координаты ((x;y)) точки пересечения графиков и запишите их в ответ в виде ((x_0;y_0 )).
    Ответ: ((4;2))
  • Матхак. Если сомневаетесь в правильности ответа (неважно каким способом вы решали), проверьте подстановкой значений (x_0) и (y_0) в каждое уравнение. Если оба уравнения превратятся в верные равенства, то ответ правильный.
    Пример: решая систему (begin3x-8=2y\x+y=6end), мы получили ответ ((4;2)). Проверим его, подставив вместо икса (4), а вместо игрека (2).

    Оба уравнения сошлись, решение системы найдено верно.

    Пример. Решите систему уравнений: (begin3(5x+3y)-6=2x+11\4x-15=11-2(4x-y)end)

    Перенесем все выражения с буквами в одну сторону, а числа в другую.

    Во втором уравнении каждое слагаемое – четное, поэтому упрощаем уравнение, деля его на (2).

    Эту систему линейных уравнений можно решить любым из способов, но мне кажется, что способ подстановки здесь удобнее всего. Выразим y из второго уравнения.

    Подставим (6x-13) вместо (y) в первое уравнение.

    Первое уравнение превратилась в обычное линейное . Решаем его.

    Сначала раскроем скобки.

    Перенесем (117) вправо и приведем подобные слагаемые.

    Поделим обе части первого уравнения на (67).

    Ура, мы нашли (x)! Подставим его значение во второе уравнение и найдем (y).

    Как решать систему уравнений

    О чем эта статья:

    8 класс, 9 класс, ЕГЭ/ОГЭ

    Основные понятия

    Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

    Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

    Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

    Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

    Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

    Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

    Линейное уравнение с двумя переменными

    Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

    Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

    Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

    Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

    Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

    Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

    Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

    Провести прямую через эти две точки и вуаля — график готов.

    Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

    Система двух линейных уравнений с двумя переменными

    Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

    Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

    Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

    Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

    Можно записать систему иначе:

    Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

    Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

    Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

    Метод подстановки

    Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

    Выразить одну переменную через другую из более простого уравнения системы.

    Подставить то, что получилось на место этой переменной в другое уравнение системы.

    Решить полученное уравнение, найти одну из переменных.

    Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

    Записать ответ. Ответ принято записывать в виде пар значений (x; y).

    Потренируемся решать системы линейных уравнений методом подстановки.

    Пример 1

    Решите систему уравнений:

    x − y = 4
    x + 2y = 10

    Выразим x из первого уравнения:

    x − y = 4
    x = 4 + y

    Подставим получившееся выражение во второе уравнение вместо x:

    x + 2y = 10
    4 + y + 2y = 10

    Решим второе уравнение относительно переменной y:

    4 + y + 2y = 10
    4 + 3y = 10
    3y = 10 − 4
    3y = 6
    y = 6 : 3
    y = 2

    Полученное значение подставим в первое уравнение вместо y и решим уравнение:

    x − y = 4
    x − 2 = 4
    x = 4 + 2
    x = 6

    Ответ: (6; 2).

    Пример 2

    Решите систему линейных уравнений:

    x + 5y = 7
    3x = 4 + 2y

    Сначала выразим переменную x из первого уравнения:

    x + 5y = 7
    x = 7 − 5y

    Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

    3x = 4 + 2y
    3 (7 − 5y) = 4 + 2y

    Решим второе линейное уравнение в системе:

    3 (7 − 5y) = 4 + 2y
    21 − 15y = 4 + 2y
    21 − 15y − 2y = 4
    21 − 17y = 4
    17y = 21 − 4
    17y = 17
    y = 17 : 17
    y = 1

    Подставим значение y в первое уравнение и найдем значение x:

    x + 5y = 7
    x + 5 = 7
    x = 7 − 5
    x = 2

    Ответ: (2; 1).

    Пример 3

    Решите систему линейных уравнений:

    x − 2y = 3
    5x + y = 4

    Из первого уравнения выразим x:

    x − 2y = 3
    x = 3 + 2y

    Подставим 3 + 2y во второе уравнение системы и решим его:

    5x + y = 4
    5 (3 + 2y) + y = 4
    15 + 10y + y = 4
    15 + 11y = 4
    11y = 4 − 15
    11y = −11
    y = −11 : 11
    y = −1

    Подставим получившееся значение в первое уравнение и решим его:

    x − 2y = 3
    x − 2 (−1) = 3
    x + 2 = 3
    x = 3 − 2
    x = 1

    Ответ: (1; −1).

    Метод сложения

    Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

    При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

    Складываем почленно левые и правые части уравнений системы.

    Решаем получившееся уравнение с одной переменной.

    Находим соответствующие значения второй переменной.

    Запишем ответ в в виде пар значений (x; y).

    Система линейных уравнений с тремя переменными

    Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

    Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

    Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

    Решение задач

    Разберем примеры решения систем уравнений.

    Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0?

    5x − 8y = 4x − 9y + 3

    5x − 8y = 4x − 9y + 3

    5x − 8y − 4x + 9y = 3

    Задание 2. Как решать систему уравнений способом подстановки

    Выразить у из первого уравнения:

    Подставить полученное выражение во второе уравнение:

    Найти соответствующие значения у:

    Задание 3. Как решать систему уравнений методом сложения

    1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
    1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
    1. Найти у, подставив найденное значение в любое уравнение:
    1. Ответ: (1; 1), (1; -1).

    Задание 4. Решить систему уравнений

    Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

    Задание 5. Как решить систему уравнений с двумя неизвестными

    При у = -2 первое уравнение не имеет решений, при у = 2 получается:

    [spoiler title=”источники:”]

    http://cos-cos.ru/math/123/

    http://skysmart.ru/articles/mathematic/reshenie-sistem-uravnenij

    [/spoiler]

    Конспект урока

    Алгебра

    7 класс

    Урок № 48

    Решение систем двух линейных уравнений с двумя неизвестными

    Перечень вопросов, рассматриваемых в теме:

    • Систематизация решений систем уравнений.
    • Использование отношений коэффициентов при решении систем уравнений.
    • Практическое применение теоремы.

    Тезаурус:

    Теорема.

    Пусть дана система уравнений:

    где все коэффициенты отличны от нуля.

    Тогда система:

    а) имеет единственное решение, если ;

    б) не имеет решений, если ;

    в) имеет бесконечно много решений, если , и при этом все решения можно записать в виде , где ─ любое число.

    Основная литература:

    1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.

    Дополнительная литература:

    1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.

    2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.

    3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

    Теоретический материал для самостоятельного изучения.

    Решение систем двух линейных уравнений с двумя неизвестными.

    Пусть дана система двух линейных уравнений с двумя неизвестными.

    Перенеся все члены правых частей этих уравнений в левые части, и приведя подобные члены, получим равносильную данной систему вида:

    где ─ некоторые числа.

    Мы уже знаем, как решать такую систему, когда все коэффициенты при неизвестных отличны от нуля. Мы знаем так же, что если коэффициенты при неизвестных непропорциональны, то решение системы существует и единственно; если же коэффициенты при неизвестных системы пропорциональны, то либо решений бесконечно много, либо нет ни одного решения.

    Нам остаётся рассмотреть те случаи, когда некоторые коэффициенты при неизвестных равны нулю. Рассмотрим это на характерных примерах.

    Пример 1. Решим систему уравнений:

    Второе уравнение этой системы имеет отличные от нуля коэффициенты при неизвестных, а первое уравнение имеет коэффициент при , отличный от нуля, и коэффициент при , равный нулю.

    Эту систему проще решить методом подстановки. Найдем из первого уравнения:

    И подставим его во второе. Получим:

    Откуда

    Таким образом, пара чисел есть единственное решение системы.

    Пример 2. Решим систему уравнений:

    Система есть частный случай системы , где

    Единственным решением этой системы является пара чисел

    Пример 3. Решим систему уравнений:

    Из каждого уравнения системы получим

    Так как систему мы рассматриваем как частный случай системы , где то система может быть записана так:

    Здесь может быть любым числом, а .

    Таким образом, решения системы записываются в виде пар чисел , где ─ любое число.

    Пример 4. Решим систему уравнений

    Эта система противоречива (не имеет решений), потому что не может одновременно равняться и 1, и .

    Пример 5. Решим систему уравнений:

    Если , то эта система противоречива, потому что никакая пара чисел не удовлетворяет второму уравнению системы

    Если , то второе уравнение обращается в верное равенство при любых Остаётся только первое уравнение. Оно уже рассматривалось. Следовательно, все решения первого уравнения являются решениями системы.

    О количестве решений системы двух уравнений первой степени с двумя неизвестными.

    Теорема

    Пусть дана система уравнений:

    где все коэффициенты отличны от нуля.

    Тогда система :

    а) имеет единственное решение, если ;

    б) не имеет решений, если ;

    в) имеет бесконечно много решений, если , и при этом все решения можно записать в виде , где ─ любое число.

    Доказательство.

    Из первого уравнения системы получим, что:

    . Подставив полученное выражение вместо во второе уравнение системы и учитывая, что получим уравнение:

    Здесь возможны три случая.

    1. Если:

    то уравнение имеет единственный корень, поэтому и система имеет единственное решение.

    Так как и то условие можно записать в виде

    1. Если:

    то уравнение не имеет корней и система не имеет решений.

    Так как то условия можно записать в виде

    1. Если:

    то уравнение имеет бесконечно много корней, поэтому и система имеет бесконечно много решений.

    Так как то условия можно записать в виде

    Итак:

    если то система имеет единственное решение;

    если то система не имеет решений;

    если то система имеет бесконечно много решений, и эти решения задаются парами , где любое число.

    Теорема доказана.

    Пример 1. Определим число решений системы уравнений:

    а) б) в)

    Решение.

    а) Так как выполняется условие , то система имеет единственное решение.

    б) Так как выполняется условие , то система имеет бесконечно много решений.

    в) Так как выполняется условие то система не имеет решений.

    Ответ: а) единственное решение; б) бесконечно много решений; в) нет решений.

    Пример 2. При каком значении система

    не имеет решений?

    Решение.

    Система не имеет решений, если выполняется условие

    . Условие выполняется лишь при При этом условие также выполняется. Следовательно, система не имеет решений при

    Ответ: при

    Пример 3. Существует ли значение , при котором система не имеет решений?

    Решение.

    Система не имеет решений, если выполняется условие . Условие выполняется лишь при При этом условие не выполняется. Следовательно, таких не существует.

    Ответ: не существует.

    Разбор решения заданий тренировочного модуля.

    №1. Тип задания: ввод с клавиатуры пропущенных элементов в тексте.

    Впишите пропущенные элементы при решении системы.

    Задание:

    Перенесем из первого уравнения в правую часть 4, получим

    Найдем отношение коэффициентов при х и у в системе:

    ‑ так как отношения __ равны, значит, система имеет одно решение. Решим систему способом подстановки:

    Ответ: ( ___; ___ ).

    Решение.

    Перенесем из первого уравнения в левую часть 4, получим:

    Найдем отношение коэффициентов при х и у в системе:

    ‑ так как отношения не равны, значит, система имеет одно решение. Решим систему способом подстановки:

    Ответ: (4; 16).

    №2. Тип задания: восстановление последовательности элементов горизонтальное / вертикальное.

    Задание:

    Решите систему двух уравнений:

    Варианты ответов:

    Ответ: (1; 0).

    Значит, система имеет единственное решение.

    Так как отношение коэффициентов равно –

    Значит, система имеет единственное решение.

    Решение:

    Так как отношение коэффициентов равно –

    Значит, система имеет единственное решение.

    Перенесем в первом уравнении из левой части в правую 4:

    Ответ: (1; 0).

    Добавить комментарий