Как найти сколько ребер у фигуры


Автор:

John Pratt


Дата создания:

13 Январь 2021


Дата обновления:

19 Май 2023


4 класс. Математика. Геометрические тела: шар, куб, пирамида, призма, цилиндр, конус

Видео: 4 класс. Математика. Геометрические тела: шар, куб, пирамида, призма, цилиндр, конус

В геометрии ребра представляют собой прямые линии, которые проходят снаружи граней или поверхностей фигур в двух или трех измерениях. Вершины – это точки ребер среза. Эти термины используются вместо таких слов, как «сторона» или «угол», поскольку эти термины могут быть неоднозначными и приводить к путанице. Нахождение количества ребер и вершин может быть достигнуто простым подсчетом, однако существуют простые математические формулы для более быстрого и простого решения проблемы.

Подсчитайте края вокруг внешней стороны лица. Отметьте каждый карандашом, чтобы не ошибиться, считая их более одного раза. Сделайте то же самое с вершинами.

Используйте формулу Эйлера, чтобы найти число ребер, используя количество вершин и количество граней в трехмерных призмах. Добавьте количество вершин с количеством граней и вычитаний. Это даст вам количество ребер.

Измените формулу Эйлера, чтобы использовать количество ребер и граней, чтобы найти количество вершин. Подсчитайте количество ребер, вычтите количество граней и сложите два. Это даст вам количество вершин.

Содержание

  1. Полезные советы на все случаи жизни
  2. Как найти длину всех ребер куба. Как найти сумму длин рёбер куба
  3. Вычисление длины ребер куба
  4. Площадь поверхности куба
  5. Инструкция
  6. Инструкция
  7. Как найти сумму длин рёбер куба
  8. Вычислите площадь поверхности и сумму длин всех рёбер куба ребро которого равна 5 см
  9. Ответ или решение 2
  10. Определение Куба
  11. Площадь поверхности куба
  12. Сумма ребер куба

Полезные советы на все случаи жизни

Портал знаний для студента и школьника

Как найти длину всех ребер куба. Как найти сумму длин рёбер куба

Куб — это геометрическое тело, имеющее форму прямоугольного параллелепипеда, но при этом все его грани имеют форму квадрата, поэтому все его ребра равны. У куба 6 граней (равных друг другу по площади), 12 ребер (равных друг другу по длине) и 8 вершин.

Форму куба, например, могут иметь:

  • игральная кость;
  • кубик-Рубика;
  • кубики льда;
  • пуфик;
  • аквариум;
  • коробка;
  • шкатулка;
  • детский строительный кубик.

Вычисление длины ребер куба

Найти: сумму длин ребер куба.

Так как данный куб имеет 12 ребер, каждое из которых равно 11 см, то сумму его длин можно вычислить как произведение количества ребер на длину ребра:

Площадь поверхности куба

Площадь поверхности куба можно находить двумя путями: арифметическим и по формуле.

Рассмотрим первый способ . Поверхность куба состоит из шести одинаковых по площади граней, имеющих форму квадрата. Зная, что ребро куба имеет длину 11 см, сначала вычислим площадь одной грани, то есть площадь квадрата со стороной 11 см (S = a * а или S = a²):

1) 11² = 11 * 11 = 121 (см²) — площадь одной грани куба.

А так как таких граней у куба 6, то:

2) 6 * 121 = 726 (см²) — площадь поверхности куба.

Рассмотрим второй способ . Опираясь на предыдущие рассуждения можно вывести формулу площади поверхности куба S = 6а². Тогда решение будет сведено к одному выражению:

S = 6а² = 6 * 11² = 6 * 121 = 726 (см²).

Нередко встречаются задачи, в которых необходимо найти ребро куба, зачастую это следует проделать на основе информации о его объеме, площади грани или её диагонали. Существует несколько вариантов определения ребра куба.

В том случае, если известна площадь куба, то можно легко определить ребро. Грань куба представляет собой квадрат со стороной, равной ребру куба. Соответственно, её площадь равняется квадрату ребра куба. Следует воспользоваться формулой: а=√S, где а – это длина ребра куба, а S – это площадь грани куба. Найти ребро куба по его объему – еще более простая задача. Нужно учитывать, что объем куба равен кубу (в третьей степени) длины ребра куба. Получается, что длина ребра равняется кубическому корню из его объема. То есть, мы получаем следующую формулу: а=√V, где а – это длина ребра куба, а V – объем куба.


По диагоналям также можно найти ребро куба. Соответственно, нам необходимы: а – длина ребра куба, b – длина диагонали грани куба, c – длина диагонали куба. По теореме Пифагора получаем: a^2+a^2=b^2, и отсюда можно легко вывести следующую формулу: a=√(b^2/2), по которой извлекается ребро куба.


Еще раз по теореме Пифагора (a^2+a^2=b^2) можно получить следующую зависимость: a^2+a^2+a^2=c^2, из которой выводим: 3*a^2=c^2, следовательно, ребро куба можно получить следующим образом: a=√(c^2/3).


«Вычисление объёма параллелепипеда» — 2. Объем прямоугольного параллелепипеда. Задание 1: Вычислить объемы фигур. 1. Математика 5 класс. 3. 4.

«Прямоугольный параллелепипед 5 класс» — Что такое объем? Прямоугольный параллелепипед. Другая формула объема прямоугольного параллелепипеда. Объем прямоугольного параллелепипеда. Формула объема куба. Пример. Объем куба. Вершин — 8. Математика, 5 класс Логунова Л.В. Ребер — 12. Куб. Кубический сантиметр. Ребро куба равно 5 см. Граней — 6.

«Урок Прямоугольный параллелепипед» — 12. С1. В1. Длина. Параллелепипед. Вершины. Ребра. А1. Ширина. D. Грани. D1. 8. В. Прямоугольный параллелепипед.

«Объем параллелепипеда» — Значит, по правилу вычисления объема, получаем: 3х3х3=27 (см3). Еще в древности людям требовалось измерять количества каких-либо веществ. В литрах обычно измеряют объемы жидкостей и сыпучих веществ. В Древнем Вавилоне единицами объемов служили кубы. Теперь определим что же такое единицы объемов? Тема урока: Объем параллелепипеда.

«Прямоугольный параллелепипед» — Параллелепипед. Прямоугольный параллелепипед. МОУ «Гимназия» №6. Слово встречалось у древнегреческих ученых Евклида и Герона. Работу выполнила Ученица 5 «В» класса Мендыгалиева Алина. Длина Ширина Высота. Параллелепипед – шестигранник, все грани которого (основания) – параллелограммы. Вершины. Грани параллелепипеда, не имеющие общих вершин, называются противоположными.

«Объем прямоугольного параллелепипеда» — Ребрами. 3. БЛИЦ – ОПРОС (I часть). A, в, с, d. Объемная. Какие ребра равны ребру АЕ? AE, EF, EH. 1. Любой куб является прямоугольным параллелепипедом. Квадраты. 5. У куба все ребра равны. 8. Прямоугольник. 12. 3. У куба все грани являются квадратами. Назовите ребра, имеющие вершину E.

Всего в теме 35 презентаций

Куб — это многогранник правильной формы с одинаковыми по форме и размерам гранями, представляющими собой квадраты. Из этого вытекает, что как для его построения, так и для расчетов всех связанных параметров достаточно знать всего одну величину. По ней можно найти объем, площадь каждой грани, площадь всей поверхности, длину диагонали, длину ребра или сумму длин всех ребер куба .

Инструкция

  • Посчитайте количество ребер в кубе. У этой объемной фигуры шесть граней, что определяет другое ее название — правильный гексаэдр (hexa означает «шесть»). У фигуры из шести квадратных граней может быть только двенадцать ребер. Так как все грани — это одинаковые по размерам квадраты, то и длины всех ребер равны. Значит для нахождения суммарной длины всех ребер, надо узнать длину одного ребра и увеличить его в двенадцать раз.
  • Умножайте длину одного ребра куба (A) на двенадцать, чтобы вычислить длину всех ребер куба (L): L=12∗A. Это самый простой из возможных способов определения суммарной длины ребер правильного гексаэдра.
  • Если длина одного ребра куба не известна, но есть площадь его поверхности (S), то длину одного ребра можно выразить как квадратный корень из одной шестой части площади поверхности. Для нахождения длины всех ребер (L) полученную таким способом величину надо увеличить в двенадцать раз, а это значит, что в общем виде формула будет выглядеть так: L=12∗√(S/6).
  • Если известен объем куба (V), то длину одной его грани можно определить как кубический корень из этой известной величины. Тогда длину всех граней (L) правильного тетраэдра будут составлять двенадцать кубических корней из известного объема: L=12∗³√V.
  • Если известна длина диагонали куба (D), то для нахождения одного ребра это значение надо разделить на квадратный корень из трех. Длину всех ребер (L) в этом случае можно будет вычислить как произведение числа двенадцать на частное от деления длины диагонали на корень из трех: L=12∗D/√3.
  • Если известна длина радиуса вписанной в куб сферы (r), то длина одной грани будет равна половине этой величины, а суммарная длина всех ребер (L) — этой величине, увеличенной в шесть раз: L=6∗r.
  • Если известна длина радиуса не вписанной, а описанной сферы (R), то длина одного ребра будет определяться как частное от деления удвоенной длины радиуса на квадратный корень из тройки. Тогда длина всех ребер (L) будет равна двадцати четырем длинам радиуса, поделенным на корень из трех: L=24∗R/√3.

Куб — это многогранник правильной формы с одинаковыми по форме и размерам гранями, представляющими собой квадраты. Из этого вытекает, что как для его построения, так и для расчетов всех связанных параметров достаточно знать всего одну величину. По ней можно найти объем, площадь каждой грани, площадь всей поверхности, длину диагонали, длину ребра или сумму длин всех ребер куба .

Инструкция

Посчитайте количество ребер в кубе. У этой объемной фигуры шесть граней, что определяет другое ее название — правильный гексаэдр (hexa означает «шесть»). У фигуры из шести квадратных граней может быть только двенадцать ребер. Так как все грани — это одинаковые по размерам квадраты, то и длины всех ребер равны. Значит для нахождения суммарной длины всех ребер, надо узнать длину одного ребра и увеличить его в двенадцать раз.

Умножайте длину одного ребра куба (A) на двенадцать, чтобы вычислить длину всех ребер куба (L): L=12&lowast-A. Это самый простой из возможных способов определения суммарной длины ребер правильного гексаэдра.

Если длина одного ребра куба не известна, но есть площадь его поверхности (S), то длину одного ребра можно выразить как квадратный корень из одной шестой части площади поверхности. Для нахождения длины всех ребер (L) полученную таким способом величину надо увеличить в двенадцать раз, а это значит, что в общем виде формула будет выглядеть так: L=12&lowast-&radic-(S/6).

Если известен объем куба (V), то длину одной его грани можно определить как кубический корень из этой известной величины. Тогда длину всех граней (L) правильного тетраэдра будут составлять двенадцать кубических корней из известного объема: L=12&lowast-?&radic-V.

Если известна длина диагонали куба (D), то для нахождения одного ребра это значение надо разделить на квадратный корень из трех. Длину всех ребер (L) в этом случае можно будет вычислить как произведение числа двенадцать на частное от деления длины диагонали на корень из трех: L=12&lowast-D/&radic-3.

Если известна длина радиуса вписанной в куб сферы (r), то длина одной грани будет равна половине этой величины, а суммарная длина всех ребер (L) — этой величине, увеличенной в шесть раз: L=6&lowast-r.

Если известна длина радиуса не вписанной, а описанной сферы (R), то длина одного ребра будет определяться как частное от деления удвоенной длины радиуса на квадратный корень из тройки. Тогда длина всех ребер (L) будет равна двадцати четырем длинам радиуса, поделенным на корень из трех: L=24&lowast-R/&radic-3.

Источник

Как найти сумму длин рёбер куба

Куб — это многогранник правильной формы с одинаковыми по форме и размерам гранями, представляющими собой квадраты. Из этого вытекает, что как для его построения, так и для расчетов всех связанных параметров достаточно знать всего одну величину. По ней можно найти объем, площадь каждой грани, площадь всей поверхности, длину диагонали, длину ребра или сумму длин всех ребер куба.

Посчитайте количество ребер в кубе. У этой объемной фигуры шесть граней, что определяет другое ее название — правильный гексаэдр (hexa означает «шесть»). У фигуры из шести квадратных граней может быть только двенадцать ребер. Так как все грани — это одинаковые по размерам квадраты, то и длины всех ребер равны. Значит для нахождения суммарной длины всех ребер, надо узнать длину одного ребра и увеличить его в двенадцать раз.

Умножайте длину одного ребра куба (A) на двенадцать, чтобы вычислить длину всех ребер куба (L): L=12∗A. Это самый простой из возможных способов определения суммарной длины ребер правильного гексаэдра.

Если длина одного ребра куба не известна, но есть площадь его поверхности (S), то длину одного ребра можно выразить как квадратный корень из одной шестой части площади поверхности. Для нахождения длины всех ребер (L) полученную таким способом величину надо увеличить в двенадцать раз, а это значит, что в общем виде формула будет выглядеть так: L=12∗√(S/6).

Если известен объем куба (V), то длину одной его грани можно определить как кубический корень из этой известной величины. Тогда длину всех граней (L) правильного тетраэдра будут составлять двенадцать кубических корней из известного объема: L=12∗³√V.

Если известна длина диагонали куба (D), то для нахождения одного ребра это значение надо разделить на квадратный корень из трех. Длину всех ребер (L) в этом случае можно будет вычислить как произведение числа двенадцать на частное от деления длины диагонали на корень из трех: L=12∗D/√3.

Если известна длина радиуса вписанной в куб сферы (r), то длина одной грани будет равна половине этой величины, а суммарная длина всех ребер (L) — этой величине, увеличенной в шесть раз: L=6∗r.

Если известна длина радиуса не вписанной, а описанной сферы (R), то длина одного ребра будет определяться как частное от деления удвоенной длины радиуса на квадратный корень из тройки. Тогда длина всех ребер (L) будет равна двадцати четырем длинам радиуса, поделенным на корень из трех: L=24∗R/√3.

Источник

Вычислите площадь поверхности и сумму длин всех рёбер куба ребро которого равна 5 см

Ответ или решение 2

Для решения данного задания, вспомним, что куб это шестигранник у которого все грани — квадраты. В куба есть 12 ребер. Площадь квадрата равна квадрату его стороны. S=a^2. Вычислим площадь поверхности куба, зная, что его ребро равно 5 сантиметрам.

S = 6 * 5 * 5 = 6 * 25 = 150 квадратных сантиметров.

Вычислим сумму длин всех ребер куба.

Чтобы решить это задание, нужно дать определение кубу.

Определение Куба

Куб — это правильный многогранник, каждая грань которого представляет квадрат.

Стороны этих квадратов будут являться гранями куба.

Площадь поверхности куба

Площадь поверхности любого многогранника равна сумме площадей всех граней этого многогранника.

Для того, чтобы найти площадь поверхности куба нам нужно:

  1. найти площадь поверхности одной грани куба.
  2. Найти количество граней куба (все они являются равными квадратами)
  3. Умножить площадь поверхности одной грани на их количество.

1. Найдем площадь поверхности одной грани. Грань куба — это квадрат.

Ребро куба — сторона грани куба, то есть сторона квадрата равна 5 см.

2. У куба 6 граней, все они равны между собой.

3. Площадь поверхности равна S * 6 = 6S

6 * S = 6 * 25 = 150 (см2) — площадь полной поверхности куба.

Сумма ребер куба

У куба 12 ребер, длина каждого ребра 5 см (по условию задачи). Значит, чтобы найти длину всех ребер, нужно:

Ответ: Площадь поверхности равна 150 см2, сумма всех ребер равна 60 см.

Источник

Сколько ребер у каждой фигуры.

Сколько ребер у каждой фигуры?

Если вам необходимо получить ответ на вопрос Сколько ребер у каждой фигуры?, относящийся
к уровню подготовки учащихся 1 – 4 классов, вы открыли нужную страницу.
В категории Математика вы также найдете ответы на похожие вопросы по
интересующей теме, с помощью автоматического «умного» поиска. Если после
ознакомления со всеми вариантами ответа у вас остались сомнения, или
полученная информация не полностью освещает тематику, создайте свой вопрос с
помощью кнопки, которая находится вверху страницы, или обсудите вопрос с
посетителями этой страницы.

План урока:

Понятие многогранника

Теорема Эйлера

Призма

Типичные задачи на призмы

Понятие многогранника

Ранее мы уже познакомились с тетраэдром и параллелепипедом. Поверхность тетраэдра состоит из 4 треугольников, а параллелепипеда – из 6 параллелограммов. Они являются частными случаями такой фигуры, как многогранник.

1 mnogogranniki

Надо понимать, что под многогранником понимают одновременно как поверхность, составленную из многоуг-ков, так и тот объем, который эта поверхность ограничивает. Иногда, чтобы отличать два этих понятия, используют термин «поверхность многогранника».

Каждый многоугольник, образующий поверхность многогранника, именуется гранью многогранника. При этом предполагается, что любые две соседние грани находятся в разных плос-тях.

Многоугольники, образующие поверхность многогранника, имеют свои стороны,которые именуют ребрами многогранника. Вершины же этих многоуг-ков именуют вершинами многогранников. Можно утверждать, что ребра – это отрезки, по которым пересекаются соседние грани. В свою очередь вершины – это точки, где пересекаются соседние ребра. Отрезок, соединяющий две вершины, которые не принадлежат одной грани, именуется диагональю многогранника. Важно отметить, что каждое ребро принадлежит ровно 2 граням. Вершина принадлежит как минимум трем граням, однако может принадлежать и большему их числу.

2 mnogogranniki

Если все точки многогранника находятся по одну сторону от любой плос-ти, проходящей через какую-либо грань многогранника, то он называется выпуклым. В противном случае, если через одну из граней проходит плос-ть, «разрезающая» многогранник на две других фигуры, многогранник именуют невыпуклым. На бытовом уровне это означает, что выпуклый многогранник можно поставить на ровную поверхность (например, стол) на любую грань. А вот у невыпуклого многогранника найдется такая грань, на которую его поставить нельзя. Покажем несколько примеров:

3 mnogogranniki

На рисунке у невыпуклых многогранников красным цветом показаны плос-ти, которые рассекают многогранник. На эти грани не получится «поставить» многогранник – будет мешать выступающая часть. Заметим, что в выпуклом многограннике всякая диагональ лежит внутри фигуры. А вот у невыпуклого многогранника можно соединить вершины отрезком, лежащим вне объема фигуры. Добавим, что у выпуклого многогранника каждая грань обязательно является выпуклым многоугольником.

Теорема Эйлера

У каждого многогранника можно подсчитать количество граней, вершин и ребер. Например, у тетраэдра 4 грани, 4 вершины и 6 ребер. В свою очередь у параллелепипеда уже 6 граней, 8 вершин и 12 граней. Есть ли какая-то взаимосвязь между этими числами?

Можно заметить, что если у тетраэдра сложить число вершин и граней, а далее вычесть из суммы количество ребер, то получится число 2:

4 + 4 – 6 = 2

Если выполнить такие же действия для параллелепипеда, то снова получится двойка:

6 + 8 – 12 = 2

Оказывается, это не просто совпадение. Для любого выпуклого многогранника справедлива теорема Эйлера:

4 mnogogranniki

Мы не будем доказывать эту теорему, так как ее доказательство достаточно сложное. Отдельно отметим, что для невыпуклых многогранников эта теорема может и не выполняться.

Задание. Известно, что некоторый выпуклый многогранник состоит из 20 граней и имеет 30 ребер. Сколько у него вершин?

Решение. Запишем теорему Эйлера:

5 mnogogranniki

Задание. Поверхность выпуклого многогранника составлена из 12 пятиугольников. Сколько у такого многогранника ребер и вершин?

Решение. У многогранника будет ровно 12 граней. Попробуем подсчитать количество ребер. Так как каждая представляет собой пятиугольник, то все вместе они имеют 12•5 = 60 ребер. Однако при этом мы каждое ребро подсчитали дважды, ведь любое ребро принадлежит строго 2 граням. То есть на самом деле есть только 60:2 = 30 ребер. По теореме Эйлера легко подсчитаем и количество вершин:

6 mnogogranniki

Задание. Выпуклый многогранник имеет 8 граней, из них 4 – это четырехугольники, а ещё 4 – пятиугольники. Сколько у него ребер и вершин?

Решение. Как и в предыдущей задаче, снова сложим количество сторон всех граней:

7 mnogogranniki

Задание. Существует ли выпуклый многогранник, каждая грань которого является шестиугольником?

Предположим, что такой многогранник существует, и у него Г граней. Тогда его грани имеют в сумме 6Г сторон. Но каждая из этих сторон будет ребром ровно для 2 граней, поэтому всего будет 3Г ребер:

8 mnogogranniki

Теперь вспомним, что в каждой вершине сходятся не менее трех ребер. Значит, если мы посчитаем все ребра, выходящие из каждого ребра, то получим величину, не меньшую 3В. Но, так как каждое ребро проходит строго через 2 вершины, мы снова подсчитали ребра дважды. То есть количество ребер будет не меньше 3/2В, или 1,5В:

9 mnogogranniki

Это неравенство противоречит полученному ранее равенству Р = 3Г. Противоречие показывает, что на самом деле не может существовать выпуклый многогранник, каждая грань которого – шестиугольник, ч. т. д.

Примечание. Аналогично можно продемонстрировать, что не может существовать и выпуклый многогранник, поверхность которого состоит из многоуг-ков, каждый из которых имеет не менее 6 сторон. Другими словами, любой выпуклый многогранник имеет хотя бы одну грань, которая является треугольником, четырехугольником или пятиугольником.

Призма

Пусть в некоторой плос-ти α есть n-угольник с вершинами А1, А2, А3,…, Аn. Пусть в другой плос-ти β, которая параллельна α, есть равный ему многоуг-к В1В2В3…Вn, причем отрезки А1В1, А2В2, А3В3…, АnВпараллельны друг другу:

10 mnogogranniki

В результате мы получили геометрическую фигуру, которую именуют призмой. Многоуг-ки А1А2А3…Аn и В1В2В3…Вименуются основаниями призмы, а все остальные грани – это боковые грани призмы. Можно доказать, что боковые грани – это параллелограммы. Действительно, в четырехуг-ке А1А2В2В1 стороны А1В1 и А2В2 параллельны по условию. Также они равны по теореме 12 из этого урока. Это и значит, что А1А2В2В1 – это параллелограмм (по одному из его признаков). Тоже самое можно доказать и для остальных боковых граней. Теперь мы можем сформулировать определение призмы:

11 mnogogranniki

Ребра призмы, не принадлежащие основанию, именуются боковыми ребрами призмы. Ясно, что любые два соседних ребра параллельны, ведь они являются сторонами параллелограммами. Но тогда по свойству транзитивности параллельности получается, что вообще любые два боковых ребра параллельны. Если из какой-нибудь точки основания построен перпендикуляр к противоположному основанию, то он именуется высотой призмы:

12 mnogogranniki

Естественно, что высота перпендикулярна обоим основаниям. Возможна ситуация, когда высота падает не на основание, а на какую-нибудь точку плос-ти основания, не находящуюся внутри него. Ясно, что все высоты призмы имеют одинаковую длину независимо от того, через какие точки они проведены, ведь высота по своей сути – это расстояние между плос-тями оснований.

Особый интерес вызывают призмы, где боковые ребра и основания перпендикулярны друг другу. Такие призмы именуются прямыми. Ясно, что у них боковые грани оказываются уже не просто параллелограммами, а уже прямоуг-ками. При этом любое боковое ребро одновременно является и высотой. Все остальные призмы именуют наклонными.

13 mnogogranniki

Если в основании призмы находится n-угольник, то призму называют n-угольной. В частности, в основании треугольной призмы лежит треуг-к, в основании десятиугольной призмы находится десятиугольник и т. д. Наконец, в особую группу выделяют прямые призмы, основаниями которых представляют собой правильные многоуг-ки. Их так и именуют – правильные призмы.

14 mnogogranniki

Если сложить площадь всех граней призмы, то получится сумма, которую именуют площадью полной поверхности призмы. Обычно ее обозначают как Sполн. Если же складываются только площади боковых граней, то в сумме получается площадь боковой поверхности призмы, обозначаемая как Sбок. Если площадь основания призмы обозначить как Sосн., то справедлива будет очевидная формула:

15 mnogogranniki

Действительно, пусть есть прямая призма с основаниями А1А2…Аn и B1B2…Bn:

16 mnogogranniki

Так как ее боковые ребра перпендикулярны основаниям, то они должны быть перпендикулярны и тем ребрам, которые образуют основания. Это значит, каждая боковая грань – это прямоуг-к. При этом боковые ребра – это одновременно и высоты призмы. Тогда площадь боковых граней вычисляется так:

17 mnogogranniki

Отметим наконец, что параллелепипед можно считать частным случаем призмы, а прямоугольный параллелепипед – частным случаем прямой призмы.

Типичные задачи на призмы

Призмы нередко встречаются в заданиях ЕГЭ, поэтому важно уметь решать задачи, в которых используются эти фигуры.

Задание. Сколько диагоналей имеет n-угольная призма?

Решение. В любом многограннике диагональ соединяет точки, не лежащие на одной грани. Каждая вершина призмы принадлежит одному из оснований, причем в n-угольной призме каждому основанию принадлежат n вершин.

Возьмем произвольную вершину на одном из оснований и посчитаем, сколько диагоналей из нее можно провести. Если соединять ее отрезками с другими вершинами, принадлежащему тому же основанию, то получатся диагонали грани, но не диагонали призмы (зеленые линии на рисунке):

18 mnogogranniki

Значит, остается только провести прямые к тем вершинами, которые лежат в другом основании. Так как в другом основании находятся n вершин, то и отрезков будет ровно n. Однако три из них не будут диагоналями (показаны на рисунке синим цветом), так как будут либо являться одним из ребер призмы либо одной из диагоналей. Получается, что из вершины можно провести (n – 3) диагоналей. Так как в основании находятся n вершин, то всего можно построить n•(n– 3) диагоналей.

Ответ: n•(n – 3) диагоналей.

Задание. Длина стороны правильной треугольной призмы составляет 8 см, а ее боковое ребро имеет длину 6 см. Через сторону основания проведено сечение, которое пересекает другое основание в противолежащей вершине. Какова площадь этого сечения?

Решение. Выполним построение по условию задачи:

19 mnogogranniki

Здесь сечение проведено через ребро В1С1 и противолежащую ей вершину А. Призма правильная, поэтому ее основания ∆АВС и ∆А1В1С1 – это равносторонние треуг-ки, и все их стороны равны 8 см. По определению правильная призма обязательно ещё и прямая. Тогда боковые грани – прямоуг-ки.

∆АВВ1 – прямоугольный, с помощью теоремы Пифагора мы можем вычислить его гипотенузу АВ1:

20 mnogogranniki

Аналогично можно вычислить, что и диагональ АС1 также равна 10 см. Вообще в правильных призмах все грани – это равные друг другу прямоуг-ки, поэтому и диагонали у них одинаковы.

Длина ребра В1С1 составляет 8 см. Получается, нам надо вычислить площадь равнобедренного ∆АВ1С1 с основанием 8 см и боковыми сторонами 10 см. Это можно сделать множеством способов. Самый простой из них заключается в использовании формулы Герона. Для ее применения сначала вычислим полупериметр ∆АВ1С1:

21 mnogogranniki

Задание. В основании призмы находится равносторонний ∆АВС. Ребро АА1 образует одинаковые углы с ребрами АС и АВ. Докажите, что ребра АА1 и ВС перпендикулярны и что СС1В1В – прямоуг-к.

Решение. Выполняем построение:

22 mnogogranniki

По условию ∠А1АВ и ∠А1АС одинаковы. Проведем диагонали А1В и А1С. В итоге мы получим ∆А1АВ и А1АС. У них есть АА1 – общая сторона, стороны АВ и АС одинаковы (ведь ∆АВС – равносторонний), а углы между ними одинаковы. Значит, ∆А1АВ и А1АС равны, и тогда диагонали А1В и А1С одинаковы.

Получается, что точка А1 равноудалена вершин В и С. Аналогично и точка А равноудалена от В и С, ведь АВ и АС одинаковы. Это значит, что и А1, и А лежат на серединных перпендикулярах, проведенных к отрезку ВС:

23 mnogogranniki

Обозначим середину ВС как Н, тогда НА1 и НА – серединные перпендикулярны. То есть ВС⊥АН и ВС⊥А1Н. Но это значит (по признаку перпендикулярности прямой и плос-ти), что ВС перпендикулярен всей плос-ти АНА1. Из этого вытекает, что ВС⊥АА1, ч. т. д.

Осталось показать, что грань СС1В1В – это прямоуг-к. Так как ВВ1||АА1, и ВС⊥АА1, то и ВС⊥ВВ1. Значит в параллелограмме СС1В1В (напомним, что в призме все боковые грани – параллелограммы) есть прямой угол. Это значит, что он является прямоуг-ком, ч. т. д.

Задание. Призма АВСА1В1С1 – наклонная. Известно, что АС = АВ = 13 и ВС = 10. Боковые ребра призмы образуют с основанием АВС угол 45°. Проекция точки А1 на плос-ть АВС совпадает с точкой пересечения медиан в ∆АВС. Какова площадь грани СС1В1В?

Решение. Снова выполняем построение:

24 mnogogranniki

Здесь О – это проекция точки А1 и одновременно точка пересечения медиан. H– середина отрезка ВС, то есть АН – как раз одна из медиан. Заметим, что так как ∆АВС равнобедренный, и ВС – это его основание, то АН одновременно является и высотой, то есть ∠ВНА = 90°. Раз Н – середина ВС, то ВН будет вдвое короче ВС:

25 mnogogranniki

Напомним, точка пересечения медиан делит их в отношении 2:1, поэтому мы можем найти ОА:

26 mnogogranniki

Понятно, что ОА – это проекция прямой ОА на плос-ть АВС. Тогда угол между ребром АА1 и плос-тью АВС, по условию равный 45° – это ∠ОАА1.

Из прямоугольного ∆АОА1 с помощью тригонометрии мы найдем длину ребра АА1:

27 mnogogranniki

Теперь покажем, что грань СС1В1В – прямоуг-к. Ясно, что ОА1⊥ВН, ведь ОА1 – перпендикуляр ко всей плос-ти АВС. Но также ВН⊥АН. Значит, ВН перпендикулярен плос-ти АОА1, и, в частности, перпендикулярен ребру АА1. Но тогда и ВВ1⊥ВН, ведь ВВ1||АА1. Значит, грань СС1В1В – прямоуг-к, ведь в ней есть прямой угол. Для нахождения площади прямоуг-ка надо перемножить две его смежные стороны:

28 mnogogranniki

Задание. Ребро при основании правильной 6-угольной призмы имеет длину 23, а боковое ребро равно 50. Вычислите площадь поверхности призмы (и полную, и боковую).

Решение.

29 mnogogranniki

Сначала найдем площадь и периметр основания. Формулы для правильных многоуг-ков мы уже изучали:

30 mnogogranniki

Здесь а – сторона шестиугольника, R и r – радиусы описанной и вписанной окружности, n– число сторон шестиугольника. Во второй формуле мы использовали известный факт, что длина стороны правильного 6-угольника совпадает с радиусом описанной около него окружности.

Далее вычисляем площадь боковой поверхности:

31 mnogogranniki

Добавив к этому значению удвоенную площадь поверхности основания, найдем и полную площадь призмы:

32 mnogogranniki

Задание. В правильной треугольной призме АВСА1В1С1, у которой все ребра одинаковы и равны единице, вычислите угол между гранью АВС и сечением АСВ1:

33 mnogogranniki

Решение. Вспомним, что для нахождения угла между плос-тями необходимо построить в этих плос-тях перпендикуляры к линии их пересечения, причем эти перпендикуляры должны падать на одну и ту же точку.

Пересекаются плос-ти АВС и АСВ1 по грани АС. Заметим, что и ∆АВС, и ∆АСВ1 – равнобедренные, причем у них общее основание АС. Действительно, АВ = ВС, так как в основании правильной призмы лежит равносторонний треуг-к, а АВ1 = СВ1, так как это диагонали равных граней АВВ1А1 и ВСС1В1.

Если мы отметим середину отрезка АС (например, точкой Н) и соединим ее с В и В1, то мы получим две медианы НВ и НВ1, которые одновременно будут и высотой. Это значит, что именно ∠ВНВ1 и будет искомым углом между плос-тями:

34 mnogogranniki

Осталось найти ∠ВНВ1. Длину ВВ1 мы уже знаем, она составляет 1.

АН вдвое короче АС:

35 mnogogranniki

Теперь заметим, что ∆НВВ1 – прямоугольный, поэтому для него можно использовать тригонометрию:

36 mnogogranniki

Задание. Найдите угол между прямыми А1D и СD1 в правильной призме, показанной на рисунке:

37 mnogogranniki

Все ребра этой призмы равны единице.

Решение. Сначала внимательно рассмотрим верхнее основание призмы. Так как оно представляет собой правильный многоуг-к, то вокруг него можно описать окружность. Обозначим центр этой окружности как О и проведем радиусы к вершинам:

38 mnogogranniki

Так как в правильном шестиуг-ке радиус описанной окружности равен стороне шестиугольника, то получается, что ∆А1ОВ1, ∆В1ОС1 и ∆С1ОD1 – равносторонние. Тогда ∠А1ОВ1, ∠B1OC1 и ∠С1ОD1 составляют по 60°. Тогда ∠А1ОD1 равен 180°, то есть точки А1, О и D1 находятся на одной прямой А1D1. Также заметим, что эта прямая параллельна ребру В1С1, ведь ∠D1OC1и ∠ОС1B1 являются накрест лежащими для этих прямых (при секущей ОС1) и при том они одинаковы. Так как отрезки А1О и D1O как стороны равносторонних треуг-ков равны 1, то

39 mnogogranniki

Теперь вернемся к призме:

40 mnogogranniki

Так как А1D1||В1С1 и В1С1||ВС, то и А1D1||ВС. Это значит, что через А1D1 и ВС можно провести плос-ть, в которой будут лежать и интересующие нас прямые А1В и СD1. Для нахождения угла между ними надо рассмотреть четырехуг-к А1D1CB. Раз А1D1||ВС, то этот четырехуг-к является трапецией.

Далее найдем длину А1В. Для этого используем ∆АВА1:

41 mnogogranniki

Аналогично из ∆СDD1 можно определить, что СDимеет такую же длину. Это значит, что А1D1CB – равнобедренная трапеция.

Теперь рассмотрим отдельно эту трапецию, чтобы найти искомый угол:

42 mnogogranniki

Опустим из вершин трапеции В и С перпендикуляры на А1D1. В итоге получим прямоуг-к ВСРН, где

43 mnogogranniki

44 mnogogranniki

Сегодня мы более детально изучили понятие многогранника и познакомились с новой геометрической фигурой – призмой. Призма довольно часто встречается в задаче С2 на ЕГЭ. Также мы узнали о теореме Эйлера, из которой вытекают некоторые важные факты. Один из них заключается в том, что не бывает выпуклых многогранников, у которых ни одна грань не является треуг-ком, четырехуг-ком или пятиуг-ком.

Пирамида

Пирамида – многогранник, основание которого — многоугольник , а остальные грани — треугольники, имеющие общую вершину.

По числу углов основания различают пирамиды треугольные , четырёхугольные и т. д.

Вершина пирамиды — точка, соединяющая боковые рёбра и не лежащая в плоскости основания.

Основание — многоугольник, которому не принадлежит вершина пирамиды.

Апофема — высота боковой грани правильной пирамиды, проведенная из ее вершины.

Высота — отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра).

Диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину и диагональ основания.

Некоторые свойства пирамиды

1) Если все боковые ребра равны, то

около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр

боковые ребра образуют с плоскостью основания равные углы

Верно и обратное.

Если боковые ребра образуют с плоскостью основания равные углы, то все боковые ребра пирамиды равны.

Если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны.

2) Если все грани пирамиды наклонены к плоскости основания под одним углом , то в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр

Верно и обратное.

Виды пирамид

Пирамида называется правильной , если основанием её является правильный многоугольник, а вершина проецируется в центр основания.

Для правильной пирамиды справедливо:

– боковые ребра правильной пирамиды равны;

– в правильной пирамиде все боковые грани — равные равнобедренные треугольники;

– в любую правильную пирамиду можно вписать сферу;

– около любой правильной пирамиды можно описать сферу;

– площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

Пирамида называется прямоугольной , если одно из боковых рёбер пирамиды перпендикулярно основанию. Тогда это ребро и есть высота пирамиды.

Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию.

Тетраэдр – треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды.

Пирамида и ее боковые ребра. Формулы. Боковое ребро пирамиды Хеопса

Одной из геометрических фигур, свойства которых изучают в школах в курсе стереометрии, является пирамида. Рассмотрим, что собой представляет эта фигура, а также подробно охарактеризуем важный линейный параметр – боковое ребро пирамиды.

Пирамида как фигура геометрии

Прежде чем рассматривать понятие о боковом ребре пирамиды, следует дать определение этой пространственной фигуры. Если говорить коротко, то пирамида представляет собой поверхность, ограниченную одним n-угольником и n треугольниками. Рисунок ниже показывает один из возможных вариантов этой фигуры.

Вам будет интересно: Микроскопы “Микромед”: обзор, описание, характеристики

С геометрической точки зрения получить пирамиду можно таким способом: взять n-угольник и соединить все его углы с некоторой точкой в пространстве, которая не должна лежать в плоскости n-угольника.

Заметим, что, независимо от количества сторон n в исходном многоугольнике, всегда при соединении его углов с единственной точкой получаются треугольники. Их совокупность образует боковую поверхность пирамиды, а исходный многоугольник является ее основанием. Точка, в которой соединяются все треугольники, получила название вершины пирамиды.

Элементы пирамиды

Каждая пирамида образована тремя главными элементами:

Граней или сторон у фигуры всегда n + 1. Это легко видеть на приведенном в предыдущем пункте рисунке. Шестиугольное основание является одной гранью. Оставшиеся 6 сторон представляют собой треугольники, опирающиеся на стороны основания и пересекающиеся в вершине пирамиды.

Ребра представляют собой совокупность точек пересечения соседних граней. Фигура имеет два типа этих элементов:

  • ребра основания;
  • боковые ребра пирамиды.

Их количества, независимо от числа сторон n основания, всегда равны друг другу, то есть фигура имеет 2 × n ребер. Если с ребрами основания все понятно (они являются сторонами n-угольника), то для боковых ребер следует уточнить, что они представляют собой отрезки, соединяющие углы основания с высотой рассматриваемой фигуры.

Наконец, третьим типом элементов пирамиды будут вершины. У фигуры имеется n + 1 вершина. Однако n из них образованы основанием и двумя боковыми гранями. Лишь одна единственная вершина не связана с основанием. Она играет важную роль при изучении количественных характеристик пирамиды, например, ее высоты или апофемы.

Правильные пирамиды

Пирамиды могут быть наклонными и прямыми, правильными и неправильными, выпуклыми и вогнутыми. Все названные типы фигур отличаются друг от друга многоугольным основанием и особенностями поведения высоты.

Предположим, что имеется пирамида, у которой высота (опущенный из вершины к основанию перпендикуляр) падает на многоугольник точно в его геометрическом центре. В этом случая фигура называется прямой. Если же многоугольник является равносторонним, то помимо прямой, пирамида также будет правильной. Напомним, что центр геометрический плоской фигуры аналогичен центру масс в физике. Для квадрата он совпадает с точкой пересечения диагоналей, а для треугольника – с точкой, где медианы пересекаются.

Пирамиды правильные удобно изучать ввиду их симметрии. Так, боковые ребра правильной пирамиды и ее боковые грани равны друг другу. Частным случаем является ситуация, когда боковые грани будут образованы равносторонними треугольниками.

Далее рассмотрим, какими формулами следует пользоваться, чтобы определить размеры боковых ребер пирамид — правильной четырехугольной и треугольной.

Треугольная пирамида

Существуют четыре линейных параметра, которые описывают размеры правильной пирамиды. К ним относятся сторона основания a, боковое ребро b, высота h и апофема hb. Ниже приведем формулы, которые позволяют рассчитать длину бокового ребра для треугольной пирамиды правильной. Основание этой фигуры представляет треугольник с равными сторонами, что позволяет записать следующие равенства:

Обе формулы являются следствием теоремы Пифагора для треугольников, в которых боковое ребро b является гипотенузой.

Четырехугольная пирамида

Эта фигура, пожалуй, является самой известной среди остальных пирамид благодаря величественным древним египетским сооружениям. Боковое ребро пирамиды четырехугольной правильной можно определить по таким формулам:

Как и в предыдущем случае, эти выражения являются следствием свойства катетов и гипотенузы прямоугольного треугольника.

Отметим, что формула расчета бокового ребра правильной пирамиды четырехугольной через ее апофему и сторону основания аналогична таковой для треугольной фигуры. Это совпадение не является случайным, поскольку боковые грани обеих пирамид – это равнобедренные треугольники.

Задача на определение бокового ребра пирамиды Хеопса

Каждый человек знает, что первое чудо света – пирамида Хеопса, обладает головокружительными размерами. Она является самой большой из всех пирамид, находящихся в египетской Гизе. Стороны ее основания образуют квадрат с точностью до нескольких десятков сантиметров. Средняя длина стороны пирамиды оценивается в 230,363 метра. Высота пирамиды в настоящее время составляет около 137 метров, однако исходная высота каменного гиганта была 146,50 метров.

Воспользуемся приведенными выше цифрами, чтобы определить, чему равно боковое ребро правильной пирамиды четырехугольной, посвященной фараону Хеопсу.

Поскольку нам известна высота h и длина стороны a монумента, то следует применить такую формулу для b:

Подставляя в нее известные данные, получаем, что боковое ребро правильной четырехугольной пирамиды равно 273 метра, что немногим меньше периметра футбольного поля (300 метров).

Формулы и свойства правильной треугольной пирамиды. Усеченная треугольная пирамида

Объемной фигурой, которая часто появляется в геометрических задачах, является пирамида. Самая простая из всех фигур этого класса – треугольная. В данной статье разберем подробно основные формулы и свойства правильной пирамиды треугольной.

Геометрические представления о фигуре

Прежде чем переходить к рассмотрению свойств правильной пирамиды треугольной, разберемся подробнее, о какой фигуре идет речь.

Предположим, что имеется произвольный треугольник в трехмерном пространстве. Выберем в этом пространстве любую точку, которая в плоскости треугольника не лежит, и соединим ее с тремя вершинами треугольника. Мы получили треугольную пирамиду.

Вам будет интересно: Лихой – это: значение и синонимы

Она состоит из 4-х сторон, причем все они являются треугольниками. Точки, в которых соединяются три грани, называются вершинами. Их у фигуры также четыре. Линии пересечения двух граней – это ребра. Ребер у рассматриваемой пирамиды 6. Рисунок ниже демонстрирует пример этой фигуры.

Поскольку фигура образована четырьмя сторонами, ее также называют тетраэдром.

Правильная пирамида

Выше была рассмотрена произвольная фигура с треугольным основанием. Теперь предположим, что мы провели перпендикулярный отрезок из вершины пирамиды к ее основанию. Этот отрезок называется высотой. Очевидно, что можно провести 4 разные высоты для фигуры. Если высота пересекает в геометрическом центре треугольное основание, то такая пирамида называется прямой.

Прямая пирамида, основанием которой будет треугольник равносторонний, называется правильной. Для нее все три треугольника, образующих боковую поверхность фигуры, являются равнобедренными и равны друг другу. Частным случаем правильной пирамиды является ситуация, когда все четыре стороны являются равносторонними одинаковыми треугольниками.

Рассмотрим свойства правильной пирамиды треугольной и приведем соответствующие формулы для вычисления ее параметров.

Сторона основания, высота, боковое ребро и апотема

Любые два из перечисленных параметров однозначно определяют остальные две характеристики. Приведем формулы, которые связывают названные величины.

Предположим, что сторона основания треугольной пирамиды правильной равна a. Длина ее бокового ребра равна b. Чему будут равны высота правильной пирамиды треугольной и ее апотема.

Для высоты h получаем выражение:

Эта формула следует из теоремы Пифагора для прямоугольного треугольника, сторонами которого являются боковое ребро, высота и 2/3 высоты основания.

Апотемой пирамиды называется высота для любого бокового треугольника. Длина апотемы ab равна:

Из этих формул видно, что какими бы ни были сторона основания пирамиды треугольной правильной и длина ее бокового ребра, апотема всегда будет больше высоты пирамиды.

Представленные две формулы содержат все четыре линейные характеристики рассматриваемой фигуры. Поэтому по известным двум из них можно найти остальные, решая систему из записанных равенств.

Объем фигуры

Для абсолютно любой пирамиды (в том числе наклонной) значение объема пространства, ограниченного ею, можно определить, зная высоту фигуры и площадь ее основания. Соответствующая формула имеет вид:

Применяя это выражение для рассматриваемой фигуры, получим следующую формулу:

Где высота правильной треугольной пирамиды равна h, а ее сторона основания – a.

Не сложно получить формулу для объема тетраэдра, у которого все стороны равны между собой и представляют равносторонние треугольники. В таком случае объем фигуры определится по формуле:

То есть он определяется длиной стороны a однозначно.

Площадь поверхности

Продолжим рассматривать свойства пирамиды треугольной правильной. Общая площадь всех граней фигуры называется площадью ее поверхности. Последнюю удобно изучать, рассматривая соответствующую развертку. На рисунке ниже показано, как выглядит развертка правильной пирамиды треугольной.

Предположим, что нам известны высота h и сторона основания a фигуры. Тогда площадь ее основания будет равна:

Получить это выражение может каждый школьник, если вспомнит, как находить площадь треугольника, а также учтет, что высота равностороннего треугольника также является биссектрисой и медианой.

Площадь боковой поверхности, образованной тремя одинаковыми равнобедренными треугольниками, составляет:

Данное равенство следует из выражения апотемы пирамиды через высоту и длину основания.

Полная площадь поверхности фигуры равна:

S = So + Sb = √3/4*a2 + 3/2*√(a2/12+h2)*a

Заметим, что для тетраэдра, у которого все четыре стороны являются одинаковыми равносторонними треугольниками, площадь S будет равна:

Свойства правильной усеченной пирамиды треугольной

Если у рассмотренной треугольной пирамиды плоскостью, параллельной основанию, срезать верх, то оставшаяся нижняя часть будет называться усеченной пирамидой.

В случае правильной пирамиды с треугольным основанием в результате описанного метода сечения получается новый треугольник, который также является равносторонним, но имеет меньшую длину стороны, чем сторона основания. Усеченная треугольная пирамида показана ниже.

Мы видим, что эта фигура уже ограничена двумя треугольными основаниями и тремя равнобедренными трапециями.

Предположим, что высота полученной фигуры равна h, длины сторон нижнего и верхнего оснований составляют a1 и a2 соответственно, а апотема (высота трапеции) равна ab. Тогда площадь поверхности усеченной пирамиды можно вычислить по формуле:

S = 3/2*(a1+a2)*ab + √3/4*(a12 + a22)

Здесь первое слагаемое – это площадь боковой поверхности, второе слагаемое – площадь треугольных оснований.

Объем фигуры рассчитывается следующим образом:

V = √3/12*h*(a12 + a22 + a1*a2)

Для однозначного определения характеристик усеченной пирамиды необходимо знать три ее параметра, что демонстрируют приведенные формулы.

[spoiler title=”источники:”]

http://24simba.ru/zdorove-i-bezopasnost/6790-piramida-i-ee-bokovye-rebra-formuly-bokovoe-rebro-piramidy-heopsa/

http://1ku.ru/obrazovanie/41519-formuly-i-svojstva-pravilnoj-treugolnoj-piramidy-usechennaja-treugolnaja-piramida/

[/spoiler]

Добавить комментарий