Как найти скорость через кпд

Сила, перемещающая тело, совершает работу. Работа – это разность энергии тела в начале процесса и в его конце. А мощность – это работа за одну секунду. Коэффициент полезного действия (КПД) – это дробное число. Максимальный КПД равен единице, однако, часто, КПД меньше единицы.

Работы силы, формула

Сила, приложенная к телу и перемещающая его, совершает работу (рис. 1).

Сила совершает работу по перемещению тела

Рис. 1. Сила перемещает тело и совершает работу

Работа силы — это скалярное произведение вектора силы на вектор перемещения.

Работу, совершаемую силой, можно посчитать, используя векторный или скалярный вид записи такой формулы:

Векторный вид записи

[ large boxed{ A = left( vec{F} , vec{S} right) }]

Для решения задач правую часть этой формулы удобно записывать в скалярном виде:

[ large boxed{ A = left| vec{F} right| cdot left| vec{S} right| cdot cos(alpha) }]

( F left( H right) ) – сила, перемещающая тело;

( S left( text{м} right) ) – перемещение тела под действием силы;

( alpha ) – угол между вектором силы и вектором перемещения тела;

Работу обозначают символом (A) и измеряют в Джоулях. Работа – это скалярная величина.

В случае, когда сила постоянная, формула позволяет рассчитать работу, совершенную силой за полное время ее действия.

Если сила изменяется со временем, то в каждый конкретный момент времени будем получать мгновенную работу. Эти, мгновенные значения для разных моментов времени будут различаться.

Рассмотрим несколько случаев, следующих из формулы:

  1. Когда угол между силой и перемещением острый, работа силы положительная;
  2. А если угол тупой — работа отрицательная, так как косинус тупого угла отрицательный;
  3. Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!

Работа — разность кинетической энергии

Работу можно рассчитать еще одним способом — измеряя кинетическую энергию тела в начале и в конце процесса движения. Рассмотрим такой пример. Пусть автомобиль, движется по горизонтальной прямой и, при этом увеличивает свою скорость (рис. 2). Масса автомобиля 1000 кг. В начале его скорость равнялась 1 м/с. После разгона скорость автомобиля равна 10 метрам в секунду. Найдем работу, которую пришлось проделать, чтобы ускорить этот автомобиль.

Машина увеличивает скорость, двигаясь по прямой горизонтально

Рис. 2. Автомобиль движется прямолинейно и увеличивает свою скорость

Для этого посчитаем энергию движения автомобиля в начале и в конце разгона.

( E_{k1} left(text{Дж} right) )  – начальная кинетическая энергия машины;

( E_{k2} left(text{Дж} right) )  – конечная кинетическая энергия машины;

( m left( text{кг}right) ) – масса автомобиля;

( displaystyle v left( frac{text{м}}{c}right) ) – скорость, с которой машина движется.

Кинетическую энергию будем вычислять, используя формулу:

[ large E_{k} = m cdot frac{v^{2}}{2} ]

[ large E_{k1} = 1000 cdot frac{1^{2}}{2} = 500 left(text{Дж} right) ]

[ large E_{k2} = 1000 cdot frac{10^{2}}{2} = 50000 left(text{Дж} right) ]

Теперь найдем разницу кинетической энергии в конце и вначале разгона.

[ large boxed{ A = Delta E_{k} }]

[ large Delta E_{k} = E_{k2} — E_{k1} ]

[ large Delta E_{k} = 50000 – 500 = 49500 left(text{Дж} right) ]

Значит, работа, которую потребовалось совершить, чтобы разогнать машину массой 1000 кг от скорости 1 м/с до скорости 10 м/с, равняется 49500 Джоулям.

Примечание: Работа – это разность энергии в конце процесса и в его начале. Можно находить разность кинетической энергии, а можно — разность энергии потенциальной.

[ large boxed{ A = Delta E }]

Работа силы тяжести — разность потенциальной энергии

Рассмотрим теперь следующий пример. Яблоко массой 0,2 кг упало на садовый стол с ветки, находящейся на высоте 3 метра от поверхности земли. Столешница располагается на высоте 1 метр от поверхности (рис. 3). Найдем работу силы тяжести в этом процессе.

Зная конечную высоту и начальную, на которой находилось тело, можно посчитать работу по вертикальному перемещению тела

Рис. 3. На рисунке указано начальное 1 положение тела (яблока) и его конечное 2 положение, отмечены высоты для подсчета работы по вертикальному перемещению тела

Посчитаем потенциальную энергию яблока до его падения и энергию яблока на столешнице.

( E_{p1} left(text{Дж} right) )  – начальная потенциальная энергия яблока;

( E_{p2} left(text{Дж} right) )  – конечная потенциальная энергия яблока;

Примечание: Работу можно рассчитать через разность потенциальной энергии тела.

Потенциальную энергию будем вычислять, используя формулу:

[ large E_{p} = m cdot g cdot  h]

( m left( text{кг}right) ) – масса яблока;

Величина ( displaystyle g approx 10 left(frac{text{м}}{c^{2}} right) ) – ускорение свободного падения.

( h left( text{м}right) ) – высота, на которой находится яблоко относительно поверхности земли.

Начальная высота яблока над поверхностью земли равна 3 метрам

[ large E_{p2} = 0,2 cdot 10 cdot  3 = 6 left(text{Дж} right) ]

Потенциальная энергия яблока на столе

[ large E_{p1} = 0,2 cdot 10 cdot  1 = 2 left(text{Дж} right) ]

Теперь найдем разницу потенциальной энергии яблока в конце падения и перед его началом.

[ large Delta E_{p} = E_{p2} — E_{p1} ]

[ large Delta E_{p} = 2 – 6 = — 4 left(text{Дж} right) ]

Важно помнить: Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!

Чтобы работа получилась положительной, в правой части формулы перед ( Delta  E_{p}) дополнительно допишем знак «минус».

[ large boxed{ A = — Delta E_{p} }]

Значит, работа, которую потребовалось совершить силе тяжести, чтобы яблоко массой 0,2 кг упало с высоты 3 м на высоту 1 метр, равняется 4 Джоулям.

Примечания:

  1. Если тело падает на землю, работа силы тяжести положительна;
  2. Когда мы поднимаем тело над землей, мы совершаем работу против силы тяжести. Наша работа при этом положительна, а работа силы тяжести будет отрицательной;
  3. Сила тяжести относится к консервативным силам. Для консервативных сил перед разностью потенциальной энергии мы дописываем знак «минус»;
  4. Работа силы тяжести не зависит от траектории, по которой двигалось тело;
  5. Работа для силы (displaystyle F_{text{тяж}}) зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени.

Рисунок 4 иллюстрирует факт, что для силы (displaystyle F_{text{тяж}}) работа зависит только от разности высот и не зависит от траектории, по которой тело двигалось.

Работа силы тяжести зависит только от разности высот между начальным и конечным положением тела, поэтому, для всех траекторий на рисунке работа по перемещению будет одинаковой

Рис. 4. Разность высот между начальным и конечным положением тела во всех случаях на рисунке одинакова, поэтому, работа силы тяжести для представленных случаев будет одинаковой

Мощность

В механике мощность часто обозначают символами N или P и измеряют в Ваттах в честь шотландского изобретателя Джеймса Уатта.

Примечание: Символ (vec{N}) используется для обозначения силы реакции опоры — она измеряется в Ньютонах и является векторной величиной. Чтобы не возникло путаницы, мощность вместо N будем обозначать символом P. Символ P – первая буква в английском слове power – мощность.

Мощность – это работа, совершенная за одну секунду (энергия, затраченная за 1 сек).

Расчет работы осуществляем, используя любую из формул:

[ large A = Delta E_{k} ]

[ large A = Delta E_{p} ]

[ large A = F cdot S cdot cos(alpha) ]

Разделив эту работу на время, в течение которого она совершалась, получим мощность.

[ large boxed{ P = frac{A}{Delta t} }]

Если работа совершалась равными частями за одинаковые интервалы времени – мощность будет постоянной величиной.

Мощность переменная, когда в некоторые интервалы времени совершалось больше работы.

Еще одна формула для расчета мощности

Есть еще один способ расчета мощности, когда сила перемещает тело и при этом скорость тела не меняется:

[ large P = left( vec{F} , vec{v} right) ]

Формулу можно записать в скалярном виде:

[ large P = left| vec{F} right| cdot left| vec{v} right| cdot cos(alpha) ]

( F left( H right) ) – сила, перемещающая тело;

( displaystyle v left( frac{text{м}}{c} right) ) – скорость тела;

( alpha ) – угол между вектором силы и вектором скорости тела;

Когда векторы (vec{F}) и (vec{v}) параллельны, запись формулы упрощается:

[ large boxed{ P = F cdot v }]

Примечание: Такую формулу для расчета мощности можно получить из выражения для работы силы, разделив обе части этого выражения на время, в течение которого работа совершалась (а если точнее, найдя производную обеих частей уравнения).

КПД

КПД – коэффициент полезного действия. Обычно обозначают греческим символом (eta) «эта». Единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах.

Примечания:

  1. Процент – это дробь, у которой в знаменателе число 100.
  2. КПД — это либо правильная дробь, или дробь, равная единице.

Вычисляют коэффициент (eta) для какого-либо устройства, механизма или процесса.

[ large boxed{ eta = frac{ A_{text{полезная}}}{ A_{text{вся}}} }]

(eta) – КПД;

( large A_{text{полезная}} left(text{Дж} right)) – полезная работа;

(large A_{text{вся}} left(text{Дж} right)) – вся затраченная для выполнения работы энергия;

Примечание: КПД часто меньше единицы, так как всегда есть потери энергии. Коэффициент полезного действия не может быть больше единицы, так как это противоречит закону сохранения энергии.

[ large boxed{ eta leq 1 }]

Величина (eta) является дробной величиной. Если числитель и знаменатель дроби разделить на одно и то же число, полученная дробь будет равна исходной. Используя этот факт, можно вычислять КПД, используя мощности:

[ large boxed{ eta = frac{ P_{text{полезная}}}{ P_{text{вся затраченная}}} }]

Выводы

  1. Сила, приложенная к телу и перемещающая его, совершает работу;
  2. Когда угол между силой и перемещением острый, работа силы положительная, а если угол тупой — работа отрицательная; Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!
  3. Работу можно вычислить, измеряя кинетическую энергию тела в начале и в конце его движения;
  4. Вычислить работу можно через разность потенциальной энергии тела в начальной и в конечной высотах над землей;
  5. Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!
  6. Мы совершаем работу против силы тяжести, когда поднимаем тело над землей. При этом наша работа положительная, а работа силы тяжести — отрицательная;
  7. Сила тяжести — это консервативная сила. Поэтому, работа силы (displaystyle F_{text{тяж}}) не зависит от траектории, по которой двигалось тело, а зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени;
  8. Мощность – это работа, совершенная за одну секунду, или затраченная за 1 сек. энергия;
  9. Коэффициент полезного действия обозначают греческим символом (eta) «эта», единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах;
  10. КПД — это либо правильная дробь, или дробь, равная единице.
  11. Можно вычислять КПД, подставляя в формулу работу, или мощности

КПД теплового двигателя рассчитывается по формуле $eta = frac{A_п}{Q_1}$ или $eta = frac{Q_1 — Q_2}{Q_1} cdot 100 %$, где
$A_п$ — полезная работа,
$Q_1$ — количество теплоты, полученное от нагревателя,
$Q_2$ — количество теплоты, отданное холодильнику.

Когда говорят о коэффициенте полезного действия теплового двигателя, часто используют понятие мощности или полезной мощности: $N = frac{A_п}{t}$. Эту величину в жизни использовать удобнее, чем говорить о полезной работе. 

На данном уроке мы разберем решение задач, используя формулы, приведенные выше.

Для решения задач, в условиях которых, говорится о сжигании топлива ($Q = qm$), вам понадобятся табличные значения удельной теплоты сгорания топлива.

Задача №1

Какая работа совершена внешними силами при обработке железной заготовки массой $300 space г$, если она нагрелась на $200 degree C$?

Дано:
$m = 300 space г$
$Delta t = 200 degree C$
$c = 460 frac{Дж}{кг cdot degree C}$

СИ:
$m = 0.3 space кг$

$A — ?$

Показать решение и ответ

Скрыть

Решение:

Для того чтобы нагреть железную деталь, необходимо сообщить ей некоторое количество теплоты:
$Q = cm(t_2 — t_1) = cm Delta t$.

Рассчитаем эту энергию:
$Q = 460 frac{Дж}{кг cdot degree C} cdot  0.3 space кг cdot 200 degree C = 27 space 600 space Дж = 27.6 space кДж$.

Сообщенная энергия будет эквивалентна работе внешних сил:
$A = Q = 27.6 space кДж$.

Ответ: $A = 27.6 space кДж$.

Задача №2

Приняв, что вся тепловая энергия угля обращается в полезную работу, рассчитайте какого количества каменного угля в час достаточно для машины мощностью $733 space Вт$?

Дано:
$t = 1 space ч$
$N = 733 space Вт$
$q = 2.7 cdot 10^7 frac{Дж}{кг}$

СИ:
$t = 3600 space с$

$m — ?$

Показать решение и ответ

Скрыть

Решение:

Мощность по определению:
$N = frac{A_п}{t}$.

Выразим отсюда полезную работу, совершаемую машиной, и рассчитаем ее:
$A_п = Nt$,
$A_п = 733 space Вт cdot 3600 space с = 2 space 638 space 800 space Дж approx 0.26 cdot 10^7 space Дж$.

По условиям задачи количество теплоты, которое выделяется при сжигании каменного угля, равно полезной работе:
$A_п = Q = qm$.

Выразим отсюда массу угля и рассчитаем ее:
$m = frac{A_п}{q}$,
$m = frac{0.26 cdot 10^7 space Дж}{2.7 cdot 10^7 frac{Дж}{кг}} approx 0.1 space кг approx 100 space г$.

Ответ: $m approx 100 space г$.

Задача №3

Нагреватель за некоторое время отдает тепловому двигателю количество теплоты, равное $120 space кДж$. Тепловой двигатель совершает при этом полезную работу $30 space кДж$. Определите КПД теплового двигателя.

Дано:
$Q_1 = 120 space кДж$
$A_п = 30 space кДж$

СИ:
$Q_1 = 120 cdot 10^3 space Дж$
$A_п = 30 cdot 10^3  space Дж$

$eta — ?$

Показать решение и ответ

Скрыть

Решение:

Запишем формулу для расчета КПД теплового двигателя:
$eta = frac{A_п}{Q_1}$.

Рассчитаем:
$eta = frac{30 cdot 10^3  space Дж}{120 cdot 10^3  space Дж} = 0.25$,
или в процентах $eta = 25 %$.

Ответ: $eta = 25 %$.

Задача №4

Нагреватель  отдает тепловому двигателю за $30 space мин$ количество теплоты, равное $460 space МДж$, а тепловой двигатель отдает количество теплоты, равное $280 space МДж$. Определите полезную мощность двигателя.

Дано:
$t = 30 space мин$
$Q_1 = 460 space МДж$
$Q_2 = 280 space МДж$

СИ:
$t = 1800 space с$
$Q_1 = 460 cdot 10^6 space Дж$
$Q_2 = 280 cdot 10^6 space Дж$

Показать решение и ответ

Скрыть

Решение:

Запишем формулу для расчета КПД теплового двигателя:
$eta = =frac{A_п}{Q_1} = frac{Q_1 — Q_2}{Q_1}$, где
$A_п$ — полезная работа,
$Q_1$ — количество теплоты, полученное от нагревателя,
$Q_2$ — количество теплоты, отданное холодильнику.

Из этой формулы, мы можем сделать вывод, что $Q_1 — Q_2 = A_п$ — количество теплоты, которое пошло на совершение работы.

Величина работы также присутствует в определении мощности:
$N = frac{A_п}{t}$.

Когда мощность определяется полезной работой, мы называем ее полезной мощностью.

Подставим в формулу мощности определение работы из формулы для КПД и рассчитаем ее:
$N = frac{Q_1 — Q_2}{t}$,
$N = frac{460 cdot 10^6 space Дж — 280 cdot 10^6 space Дж}{1800 space с} = frac{180 cdot 10^6 space Дж}{1800 space с} = 0.1 cdot 10^6 space Вт = 100 space кВт$.

Ответ: $N = 100 space кВт$.

Задача №5

Паровой молот мощностью $367 space кВт$ получает от нагревателя в час количество теплоты, равное $6720 space МДж$. Какое количество теплоты в час получает холодильник?

Дано:
$N = 367 space кВт$
$t = 1 space ч$
$Q_1 = 6720 space МДж$

СИ:
$N = 367 cdot 10^3 space Вт$
$t = 3600 space с$
$Q_1 = 6720 cdot 10^6 space Дж$

$Q_2 — ?$

Показать решение и ответ

Скрыть

Решение:

Полезная работа, совершенная тепловым двигателем, определяется разностью количества теплоты, отданному холодильнику, и количества теплоты, полученного от нагревателя:
$A_п = Q_1 — Q_2$.

Тогда, количество теплоты, которое получает холодильник будет равно:
$Q_2 = Q_1 — A_п$.

Совершенную работу мы можем определить через мощность:
$N = frac{A_п}{t}$,
$A_п = Nt$.

Подставим в формулу для количества теплоты, получаемого холодильником:
$Q_2 = Q_1 — Nt$.

Рассчитаем эту энергию:
$Q_2 = 6720 cdot 10^6 space Дж — 367 cdot 10^3 space Вт cdot 3600 space с = 6720 cdot 10^6 space Дж — 1321.2 cdot 10^6 space Дж = 5398.8 cdot 10^6 space Дж approx 5400 space МДж$.

Ответ: $Q_2 approx 5400 space МДж$.

Задача №6

Мопед, едущий со скоростью $20 frac{км}{ч}$, за $100 space км$ пути расходует $1 space кг$ бензина. КПД его двигателя равен $22 %$. Какова полезная мощность двигателя?

Дано:
$upsilon = 20 frac{км}{ч}$
$s = 100 space км$
$m = 1 space кг$
$eta = 22 % = 0.22$
$q = 4.6 cdot 10^7 frac{Дж}{кг}$

СИ:
$upsilon approx 5.6 frac{м}{с}$
$s = 100 cdot 10^3 space м$

$N — ?$

Показать решение и ответ

Скрыть

Решение:

Мощность по определению:
$N = frac{A_п}{t}$.

Полезную работу мы можем выразить из формулы для расчета КПД теплового двигателя:
$eta = frac{A_п}{Q_1}$.

Количество теплоты $Q_1$, выделившееся при сгорании бензина, мы можем найти по формуле:
$Q = qm$.

Подставим в формулу для расчета КПД:
$eta = frac{A_п}{qm}$.

Выразим отсюда полезную работу:
$A_п = eta cdot qm$.

Время, которое необходимо нам для расчета мощности, мы можем найти через перемещение и скорость:
$t = frac{s}{upsilon}$.

Подставим найденные формулы для величин $A_п$ и $t$ в формулу для расчета мощности:
$N = frac{eta cdot qm}{frac{s}{upsilon}} = frac{eta cdot qm cdot upsilon}{s}$.

Рассчитаем эту мощность:
$N = frac{0.22 cdot 4.6 cdot 10^7 frac{Дж}{кг} cdot 1 space кг cdot 5.6 frac{м}{с}}{100 cdot 10^3 space м} approx frac{5.67 cdot 10^7 space Дж cdot с}{0.01 cdot 10^7} approx 567 space Вт$.

Ответ: $N approx 567 space Вт$.

Задача №7

Определите КПД двигателя внутреннего сгорания мощностью $36.6 space кВт$, который сжигает в течение одного часа $10 space кг$ нефти.

Дано:
$N = 36.6 space кВт$
$t = 1 space ч$
$m = 10 space кг$
$q = 4.4 cdot 10^7 frac{Дж}{кг}$

СИ:
$N = 36.6 cdot 10^3 space Вт$
$t = 3600 space с$

Показать решение и ответ

Скрыть

Решение:

Запишем формулу для расчета КПД теплового двигателя:
$eta = frac{A_п}{Q_1} cdot 100 %$.

Полезную работу, совершенную двигателем мы можем определить через его мощность и время, за которое эта работа была совершена:
$A_п = Nt$.

Количество теплоты $Q_1$, полученное от нагревателя, — это энергия, которая выделится при сгорании топлива:
$Q_1 = qm$.

Подставим эти выражения в формулу КПД и рассчитаем его:
$eta = frac{Nt}{qm} cdot 100%$,
$eta = frac{36.6 cdot 10^3 space Вт cdot 3600 space с}{4.4 cdot 10^7 frac{Дж}{кг} cdot 10 space кг} cdot 100 % = frac{13.176 cdot 10^7 space Дж}{44 cdot 10^7 space Дж} cdot 100 % approx 30 %$.

Ответ: $eta approx 30 %$.

Паровая машина мощностью $220 space кВт$ имеет КПД $15 %$. Сколько каменного угля сгорает в ее топке за $8 space ч$?

Дано:
$N = 220 space кВт$
$t = 8 space ч$
$eta = 15 % = 0.15$
$q = 2.7 cdot 10^7 frac{Дж}{кг}$

СИ:
$N = 220 cdot 10^3 space Вт$
$t = 28.8 cdot 10^3 space с$

Показать решение и ответ

Скрыть

Решение:

Запишем формулу для расчета КПД:
$eta = frac{A_п}{Q_1}$.

Полезную работу $A_п$ мы можем выразить через мощность и время, за которое эта работа была совершена:
$A_п = Nt$.

Количество теплоты, полученное от нагревателя — это энергия, выделившаяся при сгорании каменного угля:
$Q_1 = qm$.

Подставим эти выражения в формулу для КПД:
$eta = frac{Nt}{qm}$.

Выразим отсюда массу каменного угля:
$m = frac{Nt}{q eta}$.

Рассчитаем ее:
$m = frac{220 cdot 10^3 space Вт cdot 28.8 cdot 10^3 space с}{2.7 cdot 10^7 frac{Дж}{кг} cdot 0.15} = frac{633.6 cdot 10^7 space Дж}{0.405 cdot 10^7 frac{Дж}{кг}} approx 1564 space кг$.

Ответ: $m approx 1564 space кг$.

Задача №9

Современные паровые механизмы расходуют $12.57 space МДж$ в час на $735 space Вт$. Вычислите КПД таких механизмов.

Дано:
$Q_1 = 12.57 space МДж$
$t = 1 space ч$
$N = 735 space Вт$

СИ:
$Q_1 = 12.57 cdot 10^6 space Дж$
$t = 3600 space с$

$eta- ?$

Показать решение и ответ

Скрыть

Решение:

Запишем формулу для расчета КПД теплового двигателя:
$eta = frac{A_п}{Q_1} cdot 100 %$.

Полезную работу, совершенную двигателем мы можем определить через его мощность и время, за которое эта работа была совершена:
$A_п = Nt$.

Количество теплоты $Q_1$, полученное от нагревателя, нам дано в условиях задачи.

Подставим выражение для полезной работы в формула для КПД и рассчитаем его:
$eta = frac{Nt}{Q_1} cdot 100 %$,
$eta = frac{735 space Вт cdot 3600 space с}{12.57 cdot 10^6 space Дж} cdot 100 % approx 21 %$.

Ответ: $eta approx 21 %$.

Задача №10

Мощность дизельного двигателя $367 space кВт$, КПД $30 %$. На сколько суток непрерывной работы хватит запаса нефти $60 space т$ такому двигателю?

Дано:
$N = 367 space кВт$
$m = 60 space т$
$eta = 30 % = 0.3$
$q = 4.4 cdot 10^7 frac{Дж}{кг}$

СИ:
$N = 367 cdot 10^3 space Вт$
$m = 60 cdot 10^3 space кг$

$t — ?$

Показать решение и ответ

Скрыть

Решение:

Формула для расчета КПД теплового двигателя:
$eta = frac{A_п}{Q_1}$.

Полезную работу $A_п$ мы можем выразить через мощность и время, за которое эта работа была совершена:
$A_п = Nt$.

Количество теплоты, полученное от нагревателя — это энергия, выделившаяся при сгорании нефти:
$Q_1 = qm$.

Подставим эти выражения в формулу для КПД:
$eta = frac{Nt}{qm}$.

Выразим отсюда время, за которое была совершена полезная работа:
$t = frac{qm eta}{N}$.

Рассчитаем его:
$t = frac{4.4 cdot 10^7 frac{Дж}{кг} cdot 60 cdot 10^3 space кг cdot 0.3}{367 cdot 10^3 space Вт} = frac{79.2 cdot 10^7 space Дж}{367 space Вт} approx 2.16 cdot 10^6 space с$.

Переведем в сутки. В одном дне $60 cdot 60 cdot 24 space с = 86 space 400 space с$. Тогда,
$t = frac{2.16 cdot 10^6}{86 space 400} = 25 space сут$.

Ответ: $t = 25 space сут$.

Что такое коэффициент полезного действия, его определение по формуле

Трактовка понятия

Электродвигатель и другие механизмы выполняют определённую работу, которая называется полезной. Устройство, функционируя, частично растрачивает энергию. Для определения эффективности работы применяется формула ɳ= А1/А2×100%, где:

  • А1 — полезная работу, которую выполняет машина либо мотор;
  • А2 — общий цикл работы;
  • η – обозначение КПД.

Показатель измеряется в процентах. Для нахождения коэффициента в математике используется следующая формула: η= А/Q, где А — энергия либо полезная работа, а Q — затраченная энергия. Чтобы выразить значение в процентах, КПД умножается на 100%. Действие не несёт содержательного смысла, так как 100% = 1. Для источника тока КПД меньше единицы.

В старших классах ученики решают задачи, в которых нужно найти КПД тепловых двигателей. Понятие трактуется следующим образом: отношение выполненной работы силового агрегата к энергии, полученной от нагревателя. Расчет производится по следующей формуле: η= (Q1-Q2)/Q1, где:

  • Q1 — теплота, полученная от нагревательного элемента;
  • Q2 — теплота, отданная холодильной установке.

Что такое КПД

Максимальное значение показателя характерно для циклической машины. Она оперирует при заданных температурах нагревательного элемента (Т1) и холодильника (Т2). Измерение осуществляется по формуле: η= (Т1-Т2)/Т1. Чтобы узнать КПД котла, который функционирует на органическом топливе, используется низшая теплота сгорания.

Плюс теплового насоса как нагревательного прибора заключается в возможности получать больше энергии, чем он может затратить на функционирование. Показатель трансформации вычисляется путём деления тепла конденсации на работу, затрачиваемую на выполнение данного процесса.

Мощность разных устройств

По статистике, во время работы прибора теряется до 25% энергии. При функционировании двигателя внутреннего сгорания топливо сгорает частично. Небольшой процент вылетает в выхлопную трубу. При запуске бензиновый мотор греет себя и составные элементы. На потерю уходит до 35% от общей мощности.

При движении механизмов происходит трение. Для его ослабления используется смазка. Но она неспособна полностью устранить явление, поэтому затрачивается до 20% энергии. Пример на автомобиле: если расход составляет 10 литров топлива на 100 км, на движение потребуется 2 л, а остаток, равный 8 л — потеря.

Если сравнивать КПД бензинового и дизельного моторов, полезная мощность первого механизма равна 25%, а второго — 40%. Агрегаты схожи между собой, но у них разные виды смесеобразования:

Применение показателя в физике для цепи, в электродвигателе

  1. Поршни бензинового мотора функционируют на высоких температурах, поэтому нуждаются в хорошем охлаждении. Тепло, которое могло бы перейти в механическую энергию, тратится впустую, что способствует снижению КПД.
  2. В цепи дизельного устройства топливо воспламеняется в процессе сжатия. На основе данного фактора можно сделать вывод, что давление в цилиндрах высокое, при этом мотор экологичнее и меньше первого аналога. Если проверить КПД при низком функционировании и большом объёме, результат превысит 50%.

Асинхронные механизмы

Расшифровка термина «асинхронность» — несовпадение по времени. Понятие используется во многих современных машинах, которые являются электрическими и способны преобразовывать соответствующую энергию в механическую. Плюсы устройств:

  • простое изготовление;
  • низкая цена;
  • надёжность;
  • незначительные эксплуатационные затраты.

Чтобы рассчитать КПД, используется уравнение η = P2 / P1. Для расчёта Р1 и Р2 применяются общие данные потери энергии в обмотках мотора. У большинства агрегатов показатель находится в пределах 80−90%. Для быстрого расчёта используется онлайн-ресурс либо личный калькулятор. Для проверки возможного КПД у мотора внешнего сгорания, который функционирует от разных источников тепла, используется силовой агрегат Стирлинга. Он представлен в виде тепловой машины с рабочим телом в виде жидкости либо газа. Вещество движется по замкнутому объёму.

Принцип его функционирования основан на постепенном нагреве и охлаждении объекта за счёт извлечения энергии из давления. Подобный механизм применяется на косметическом аппарате и современной подводной лодке. Его работоспособность наблюдается при любой температуре. Он не нуждается в дополнительной системе для запуска. Его КПД возможно расширить до 70%, в отличие от стандартного мотора.

Значения показателя

Инженер Карно дал определение КПД

В 1824 году инженер Карно дал определение КПД идеального двигателя, когда коэффициент равен 100%. Для трактовки понятия была создана специальная машина со следующей формулой: η=(T1 — Т2)/ T1. Для расчёта максимального показателя применяется уравнение КПД макс = (T1-T2)/T1x100%. В двух примерах T1 указывает на температуру нагревателя, а T2 — температуру холодильника.

На практике для достижения 100% коэффициента потребуется приравнять температуру охладителя к нулю. Подобное явление невозможно, так как T1 выше температуры воздуха. Процедура повышения КПД источника тока либо силового агрегата считается важной технической задачей. Теоретически проблема решается путём снижения трения элементов двигателя и уменьшения теплопотери. В дизельном моторе подобное достигается турбонаддувом. В таком случае КПД возрастает до 50%.

Мощность стандартного двигателя увеличивается следующими способами:

  • подключение к системе многоцилиндрового агрегата;
  • применение специального топлива;
  • замена некоторых деталей;
  • перенос места сжигания бензина.

Способы нахождения значения, проверка результата

КПД зависит от типа и конструкции мотора. Современные учёные утверждают, что будущее за электродвигателями. На практике работа, которую совершает любое устройство, превышает полезную, так как определённая её часть выполняется против трения. Если используется подвижный блок, совершается дополнительная работа: поднимается блок с верёвкой, преодолеваются силы трения в блоке.

Решение примеров

Задача 1. Поезд на скорости 54 км/ч развивает мощность 720 кВт. Нужно вычислить силу тяги силовых агрегатов. Решение: чтобы найти мощность, используется формула N=F x v. Если перевести скорость в единицу СИ, получится 15 м/с. Подставив данные в уравнение, определяется, что F равно 48 kН.

Задача 2. Масса транспортного средства соответствует 2200 кг. Машина, поднимаясь в гору под уклоном в 0,018, проходит расстояние 100 м. Скорость развивается до 32,4 км/ч, а коэффициент трения соответствует 0,04. Нужно определить среднюю мощность авто при движении. Решение: вычисляется средняя скорость — v/2. Чтобы определить силу тяги мотора, выполняется рисунок, на котором отображаются силы, воздействующие на машину:

  • тяжесть — mg;
  • реакция опоры — N;
  • трение — Ftr;
  • тяга — F.

Второй закон Ньютона

Первая величина вычисляется по второму закону Ньютона: mg+N+Ftr+F=ma. Для ускорения используется уравнение a=v2/2S. Если подставить последние значение и воспользоваться cos, получится средняя мощность. Так как ускорение считается постоянной величиной и равно 9,8 м/с2, поэтому v= 9 м/с. Подставив данные в первую формулу, получится: N= 9,5 kBt.

При решении сложных задач по физике рекомендуется проверить соответствие предоставленных в условиях единиц измерения с международными стандартами. Если они отличаются, необходимости перевести данные с учётом СИ.

Второй закон Ньютона в импульсной форме позволяет определить, как меняется скорость тела по модулю и направлению, если в течение некоторого времени на него действует определенная сила:

Работа силы

В механике также важно уметь вычислять изменение скорости по модулю, если при перемещении тела на некоторый отрезок на него действует некоторая сила. Воздействия на тела сил, приводящих к изменению модуля их скорости, характеризуется величиной, зависящей как от сил, так и от перемещений. Эту величину в механике называют работой силы.

Работа силы обозначается буквой А. Это скалярная физическая величина. Единица измерения — Джоуль (Дж).

Работа силы равна произведению модуля силы, модуля перемещения и косинусу угла между ними:


Важно!

Механическая работа совершается, если:

  1. На тело действует сила.
  2. Под действием этой силы тело перемещается.
  3. Угол между вектором силы и вектором перемещения не равен 90 градусам (потому что косинус прямого угла равен нулю).

Внимание! Если к телу приложена сила, но под ее действием тело не начинает движение, механическая работа равна нулю.

Пример №1. Груз массой 1 кг под действием силы 30 Н, направленной вертикально вверх, поднимается на высоту 2 м. Определить работу, совершенной этой силой.

Так как перемещение и вектор силы имеют одно направление, косинус угла между ними равен единице. Отсюда:

Работа различных сил

Любая сила, под действием которой перемещается тело, совершает работу. Рассмотрим работу основных сил в таблице.

Работа силы тяжести

Модуль силы тяжести: Fтяж = mg

Работа силы тяжести: A = mgs cosα

Работа силы трения скольжения

Модуль силы трения скольжения: Fтр = μN = μmg

Работа силы трения скольжения: A = μmgs cosα

Работа силы упругости

Модуль силы упругости: Fупр = kx

Работа силы упругости:

Работа силы упругости

Работа силы упругости не может быть определена стандартной формулой, так как она может применяться только для постоянной по модулю силы. Сила же упругости меняется по мере сжатия или растяжения пружины. Поэтому берется среднее значение, равное половине суммы сил упругости в начале и в конце сжатия (растяжения):

Нужно также учесть, что перемещение тела под действием силы упругости равно разности удлинения пружины в начале и конце:

s = x1 – x2

Перемещение и направление силы упругости всегда сонаправлены, поэтому угол между ними нулевой. А косинус нулевого угла равен 1. Отсюда работа силы упругости равна:

Работы силы трения покоя

Работы силы трения покоя всегда равна 0, так как под действием этой силы тело не сдвигается с места. Исключение составляет случай, когда покоящееся тело лежит на подвижном предмете, на который действует некоторая сила. Относительно системы координат, связанной с подвижным предметом, работа силы трения покоя будет нулевой. Но относительно системы отсчета, связанной с Землей, эта сила будет совершать работу, так как тело будет двигаться, оставаясь на поверхности движущегося предмета.

Пример №2. Груз массой 100 кг волоком перетащили на 10 м по плоскости, поверхность которой имеет коэффициент трения 0,4. Найти работу, совершенной силой трения скольжения.

A = μmgs cosα = 0,4∙100∙10∙10∙(–1) = –4000 (Дж) = –4 (кДж)

Знак работы силы

Знак работы силы определяется только косинусом угла между вектором силы и вектором перемещения:

  1. Если α = 0о, то cosα = 1.
  2. Если 0о < α < 90o, то cosα > 0.
  3. Если α = 90о, то cosα = 0.
  4. Если 90о < α < 180o, то cosα < 0.
  5. Если α = 180о, то cosα = –1.

Работа силы трения скольжения всегда отрицательна, так как сила трения скольжения направлена противоположно перемещению тела (угол равен 180о). Но в геоцентрической системе отсчета работа силы трения покоя будет отличной от нуля и выше нуля, если оно будет покоиться на движущемся предмете (см. рис. выше). В таком случае сила трения покоя будет направлена с перемещением относительно Земли в одну сторону (угол равен 0о). Это объясняется тем, что тело по инерции будет пытаться сохранить покой относительно Земли. Это значит, что направление возможного движения противоположно движению предмета, на котором лежит это тело. А сила трения покоя направлена противоположно направлению возможного движения.

Геометрический смысл работы

Графическое определение

Механическая работа численно равна площади фигуры, ограниченной графиком с осями OF и OX.

A = Sфиг

Мощность

Определение

Мощность — физическая величина, показывающая, какую работу совершает тело в единицу времени. Мощность обозначается буквой N. Единица измерения: Ватт (Вт). Численно мощность равна отношению работы A, совершенной телом за время t:

Рассмотрим частные случаи определения мощности в таблице.

Мощность при равномерном прямолинейном движении тела

Работа при равномерном прямолинейном движении определяется формулой:

A = Fтs

Fт — сила тяги, s — перемещение тела под действием этой силы. Отсюда мощность равна:

Мощность при равномерном подъеме груза

Когда груз поднимается, совершается работа, по модулю равная работе силе тяжести. За перемещение в этом случае можно взять высоту. Поэтому:

Мгновенная мощность при неравномерном движении

Выше мы уже получили, что мощность при постоянной скорости равна произведению этой скорости на силу тяги. Но если скорость постоянно меняется, можно вычислить мгновенную мощность. Она равна произведению силы тяги на мгновенную скорость:

Мощность силы трения при равномерном движении по горизонтали

Мощность силы трения отрицательна так же, как и работа. Это связано с тем, что угол между векторами силы трения и перемещения равен 180о (косинус равен –1). Учтем, что сила трения скольжения равна произведению силы нормальной реакции опоры на коэффициент трения:

Пример №3. Машина равномерно поднимает груз массой 10 кг на высоту 20 м за 40 с. Чему равна ее мощность?

Коэффициент полезного действия

Не вся работа, совершаемая телами, может быть полезной. В реальном мире на тела действует несколько сил, препятствующих совершению работы другой силой. К примеру, чтобы переместить груз на некоторое расстояние, нужно совершить работу гораздо большую, чем можно получить при расчете по формулам выше.

Определения:

  • Работа затраченная — полная работа силы, совершенной над телом (или телом).
  • Работа полезная — часть полной работы силы, которая вызывает непосредственно перемещение тела.
  • Коэффициент полезного действия (КПД) — процентное отношение полезной работы к работе затраченной. КПД обозначается буквой «эта» — η. Единицы измерения эта величина не имеет. Она показывает эффективность работы механизма или другой системы, совершающей работу, в процентах.

КПД определяется формулой:

Работа может определяться как произведение мощности на время, в течение которого совершалась работа:

A = Nt

Поэтому формулу для вычисления КПД можно записать в следующем виде:

Частые случаи определения КПД рассмотрим в таблице ниже:

Устройство

Работа полезная и полная

КПД

Неподвижный блок, рычаг

Aполезн = mgh

Асоверш.

Наклонная плоскость

Aполезн = mgh

Асоверш. = Fl

l — совершенный путь (длина наклонной плоскости).

Пример №4. Определите полезную мощность двигателя, если его КПД равен 40%, а его мощность по паспорту равна 100 кВт.

В данном случае необязательно переводить единицы измерения в СИ. Но в таком случае ответ мы тоже получим в кВт. Из этой формулы выразим полезную мощность:

Задание EF17557

Какую мощность развивает сила тяги трактора, перемещая прицеп со скоростью 18 км/ч, если она составляет 16,5 кН?

Ответ:

а) 916 Вт

б) 3300 Вт

в) 82500 Вт

г) 297000 Вт


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

2.Записать формулу для расчета мощности.

3.Выполнить общее решение задачи.

4.Подставить известные данные и выполнить вычисления.

Решение

Запишем исходные данные:

 Сила тяги, перемещающая прицеп, равна: Fт = 16,5 кН.

 Скорость перемещения прицепа под действием силы тяги: v = 18 км/ч.

Переведем единицы измерения в СИ:

16,5 кН = 16,5∙103 Н

18 км/ч = 18000/3600 м/с = 5 м/с

Мощность равна отношению работы ко времени, в течение которого эта работа совершалась:

N=At

Но работа равна произведению силы, перемещения и косинуса угла между векторами силы и перемещения. В данном случае будем считать, что угол равен нулю, следовательно косинус — единице. Тогда работа равна:

A = Fs

Тогда мощность равна:

N=Fst=Fv=16,5·103·5=82500 (Вт)

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17574

С вершины наклонной плоскости из состояния покоя скользит с ускорением лёгкая коробочка, в которой находится груз массой m (см. рисунок). Как изменятся время движения, ускорение и модуль работы силы трения, если с той же наклонной плоскости будет скользить та же коробочка с грузом массой m/2? Для каждой величины определите соответствующий характер изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Время движения

Ускорение

Модуль работы силы трения


Алгоритм решения

1.Установить наличие и характер зависимости кинематических характеристик движения от массы тела.

2.Вывести формулу для модуля работы силы трения.

3.Установить, как изменится модуль работы силы трения при уменьшении массы тела вдвое.

Решение

При скольжении с наклонной плоскости происходит равноускоренное движение. Положение тела в любой момент времени при таком движении можно определить с помощью кинематических уравнений:

x=xo+v0xt+axt22

y=yo+v0yt+ayt22

Из этих уравнений видно, что ускорение и время никак не зависят от массы тела. Следовательно, при уменьшении массы тела в 2 раза его время движения и ускорение не изменятся.

Чтобы выразить модуль работы силы трения, выберем такую систему отсчета, чтобы вектор силы трения был расположен вдоль оси Ox.Тогда сила трения будет равна:

Fтр = μmg

Известно, что работа определяется формулой:

A = Fs cosα

Тогда работа силы трения равна:

A = μmgs cosα

Вектор силы трения всегда направлен противоположно вектору перемещения. Поэтому косинус угла между ними равен –1. Но нас интересует только модуль работы. Поэтому будем считать, что он равен:

A = μmgs

Модуль работы силы трения и масса тела зависят прямо пропорционально. Следовательно, если массу тела уменьшить вдвое, то и модуль работы силы трения уменьшится вдвое.

Поэтому правильная последовательность цифр в ответе: 332.

Ответ: 332

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18646

В первой серии опытов брусок перемещают при помощи нити равномерно и прямолинейно вверх по наклонной плоскости. Во второй серии опытов на бруске закрепили груз, не меняя прочих условий.

Как изменятся при переходе от первой серии опытов ко второй сила натяжения нити и коэффициент трения между бруском и плоскостью?

Для каждой величины определите соответствующий характер её изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.

Сила натяжения нити Коэффициент трения

Алгоритм решения

  1. Определить, какая величина изменилась во второй серии опытов.
  2. Определить, как зависит от этой величины сила натяжения нити.
  3. Определить, как зависит от этой величины коэффициент трения.

Решение

Когда к бруску подвесили груз, увеличилась масса. Когда тело на нити перемещается вверх прямолинейно и равномерно, сила натяжения нити определяется модулем силы тяжести:

T = mg

Эта формула показывает, что сила натяжения нити и масса тела зависят прямо пропорционально. Если, добавив к бруску груз, масса увеличится, то сила натяжения нити тоже увеличится.

Коэффициент трения — это величина, которая зависит только от материалов и типа поверхности. Поэтому увеличение массы тела на него никак не повлияют.

Верная последовательность цифр в ответе: 13.

Ответ: 13

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18271

Определите коэффициент полезного действия атомной электростанции, расходующей за неделю уран-235 23592U массой 1,4 кг, если её мощность равна 38 МВт. При делении одного ядра урана-235 выделяется энергия 200 МэВ.


Алгоритм решения

1.Записать исходные данные и перевести их в СИ.

2.Записать формулу для определения КПД атомной электростанции.

3.Решить задачу в общем виде.

4.Подставить известные данные и вычислить искомую величину.

5.Массовое число: A = 235.

6.Зарядовое число: Z = 92.

Решение

Запишем исходные данные:

 Энергия, выделяемая при делении одного ядра урана-235: Q0 = 200 МэВ.

 Масса урана-235: m = 1,4 кг.

 Время, в течение которого происходит деление: t = 1 неделя.

 Мощность атомной электростанции: N = 38 МВт.

Переведем все единицы измерения в СИ:

1 эВ = 1,6∙10–19 Дж

200 МэВ = 200∙106∙1,6∙10–19 Дж = 320∙10–13 Дж

1 неделя = 7∙24∙60∙60 с = 604,8∙103 с

38 МВт = 38∙106 Вт

КПД атомной электростанции есть отношение полезной работы к выделенной за это же время энергии:

η=AполезнQ100%

Полезную работу мы можем вычислить по формуле:

A=Nt

Выделенное количество теплоты мы можем рассчитать, вычислив количество атомов, содержащихся в 1,4 кг урана-235 и умножив их на энергию, выделяемую при делении одного такого атома.

Количество атомов равно произведению количество молей на постоянную Авогадро:

Nкол.атомов = νNA

Количество молей равно отношения массы вещества к его молярной массе, следовательно:

Молярная масса численно равна массовому числу в граммах на моль. Следовательно:

M = A (г/моль) = A∙10–3 (кг/моль)

Отсюда количество атомов равно:

Энергия, выделенная всеми атомами, равна:

Теперь можем вычислить КПД:

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 11.7k

Формула КПД (коэффициента полезного действия) в физике

Формула КПД (коэффициента полезного действия)

В реальной действительности работа, совершаемая при помощи какого – либо устройства, всегда больше полезной работы, так как часть работы выполняется против сил трения, которые действуют внутри механизма и при перемещении его отдельных частей. Так, применяя подвижный блок, совершают дополнительную работу, поднимая сам блок и веревку и, преодолевая силы трения в блоке.

Введем следующие обозначения: полезную работу обозначим $A_p$, полную работу – $A_{poln}$. При этом имеем:

[A_p < A_{poln} ; frac{A_p}{A_{poln}}<1left(1right).]

Определение и формула КПД

Определение

Коэффициентом полезного действия (КПД) называют отношение полезной работы к полной. Обозначим КПД буквой $eta $, тогда:

[eta =frac{A_p}{A_{poln}} left(2right).]

Чаще всего коэффициент полезного действия выражают в процентах, тогда его определением является формула:

[eta =frac{A_p}{A_{poln}}cdot 100% left(2right).]

При создании механизмов пытаются увеличить их КПД, но механизмов с коэффициентом полезного действия равным единице (а тем более больше единицы) не существует.

И так, коэффициент полезного действия – это физическая величина, которая показывает долю, которую полезная работа составляет от всей произведенной работы. При помощи КПД оценивают эффективность устройства (механизма, системы), преобразующей или передающей энергию, совершающего работу.

Для увеличения КПД механизмов можно пытаться уменьшать трение в их осях, их массу. Если трением можно пренебречь, масса механизма существенно меньше, чем масса, например, груза, который поднимает механизм, то КПД получается немного меньше единицы. Тогда произведенная работа примерно равна полезной работе:

[A_papprox A_{poln}left(3right).]

Золотое правило механики

Необходимо помнить, что выигрыша в работе, используя простой механизм добиться нельзя.

Выразим каждую из работ в формуле (3) как произведение соответствующей силы на путь, пройденный под воздействием этой силы, тогда формулу (3) преобразуем к виду:

[F_1s_1approx F_2s_2left(4right).]

Выражение (4) показывает, что используя простой механизм, мы выигрываем в силе столько же, сколько проигрываем в пути. Данный закон называют «золотым правилом» механики. Это правило сформулировал в древней Греции Герон Александрийский.

Это правило не учитывает работу по преодолению сил трения, поэтому является приближенным.

КПД при передаче энергии

Коэффициент полезного действия можно определить как отношение полезной работы к затраченной на ее выполнение энергии ($Q$):

[eta =frac{A_p}{Q}cdot 100% left(5right).]

Для вычисления коэффициента полезного действия теплового двигателя применяют следующую формулу:

[eta =frac{Q_n-Q_{ch}}{Q_n}left(6right),]

где $Q_n$ – количество теплоты, полученное от нагревателя; $Q_{ch}$ – количество теплоты переданное холодильнику.

КПД идеальной тепловой машины, которая работает по циклу Карно равно:

[eta =frac{T_n-T_{ch}}{T_n}left(7right),]

где $T_n$ – температура нагревателя; $T_{ch}$ – температура холодильника.

Примеры задач на коэффициент полезного действия

Пример 1

Задание. Двигатель подъемного крана имеет мощность $N$. За отрезок времени равный $Delta t$ он поднял груз массой $m$ на высоту $h$. Каким является КПД крана?textit{}

Решение. Полезная работа в рассматриваемой задаче равна работе по подъему тела на высоту $h$ груза массы $m$, это работа по преодолению силы тяжести. Она равна:

[A_p=mgh left(1.1right).]

Полную работу, которая выполняется при поднятии груза, найдем, используя определение мощности:

[N=frac{A_{poln}}{Delta t}to A_{poln}=NDelta tleft(1.2right).]

Воспользуемся определением коэффициента полезного действия для его нахождения:

[eta =frac{A_p}{A_{poln}}cdot 100%left(1.3right).]

Формулу (1.3) преобразуем, используя выражения (1.1) и (1.2):

[eta =frac{mgh}{NDelta t}cdot 100%.]

Ответ. $eta =frac{mgh}{NDelta t}cdot 100%$

   

Пример 2

Задание. Идеальный газ выполняет цикл Карно, при этом КПД цикла равно $eta $. Какова работа в цикле сжатия газа при постоянной температуре? Работа газа при расширении равна $A_0$

Решение. Коэффициент полезного действия цикла определим как:

[eta =frac{A_p}{Q}left(2.1right).]

Рассмотрим цикл Карно, определим, в каких процессах тепло подводят (это будет $Q$).

Формула КПД, пример 1

Так как цикл Карно состоит из двух изотерм и двух адиабат, можно сразу сказать, что в адиабатных процессах (процессы 2-3 и 4-1) теплообмена нет. В изотермическом процессе 1-2 тепло подводят (рис.1 $Q_1$), в изотермическом процессе 3-4 тепло отводят ($Q_2$). Получается, что в выражении (2.1) $Q=Q_1$. Мы знаем, что количество теплоты (первое начало термодинамики), подводимое системе при изотермическом процессе идет полностью на выполнение газом работы, значит:

[Q=Q_1=A_{12}left(2.2right).]

Газ совершает полезную работу, которую равна:

[A_p=Q_1-Q_2left(2.3right).]

Количество теплоты, которое отводят в изотермическом процессе 3-4 равно работе сжатия (работа отрицательна) (так как T=const, то $Q_2=-A_{34}$). В результате имеем:

[A_p=A_{12}+A_{34}left(2.4right).]

Преобразуем формулу (2.1) учитывая результаты (2.2) – (2.4):

[eta =frac{A_{12}+A_{34}}{A_{12}}to A_{12}eta =A_{12}+A_{34}to A_{34}=(eta -1)A_{12}left(2.4right).]

Так как по условию $A_{12}=A_0, $окончательно получаем:

[A_{34}=left(eta -1right)A_0.]

Ответ. $A_{34}=left(eta -1right)A_0$

   

Читать дальше: формула линейной скорости.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Добавить комментарий