Как найти скорость через силу тяжести

Когда объект падает с определенной высоты, сила тяжести в значительной степени влияет на его достижение. скорость. Итак, ясно, что высота — это сущность, влияющая на движение.

Свободно падающий объект сначала достигает нуля скорость, и когда он начинает двигаться вниз, он набирает скорость. Предположим, мы знаем единственную высоту падающего объекта, как найти скорость с высотой, а также вместе с высотой, как другие объекты влияют на скорость, объясняется в этом посте.

Как найти скорость по высоте?

Рассмотрим книгу, которую держат на столе на высоте h от земли. Когда книга падает со стола, скорость падения книги на землю определяется скоростью. Поскольку книга находится на высоте h, как найти скорость с высотой?

как найти скорость по высоте

Свободная диаграмма тела, чтобы показать, как найти скорость с высотой
Книга о падении с определенной высоты, чтобы показать, как найти скорость с высотой

Мы знаем, что скорость можно вычислить, зная расстояние, пройденное телом, и время, затрачиваемое им на преодоление этого расстояния. Математически это можно записать как,

В приведенном выше примере нам предоставлена ​​высота h. высота тела связана с потенциалом энергия. Таким образом, основное уравнение неверно.

Учитывая потенциальную энергию, которой обладает книга до того, как она упадет, выражение можно записать в виде

PE = мгч.

Но книга находится в движении; следовательно, потенциальная энергия теперь превращается в кинетическую энергию, как

Таким образом, потенциальная энергия и кинетическая энергия равны по закону сохранения энергии. Следовательно, уравнение можно записать в виде

Преобразовав уравнение, мы получим скорость как

v2 = 2гх

В приведенном выше уравнении g — это ускорение свободного падения. Любой объект, падающий с определенной высоты, находится под влиянием гравитации и постоянно ускоряется из-за гравитации.

Как найти скорость через ускорение и высоту?

Мы знаем, как найти скорость с ускорением и расстоянием из предыдущей статьи. Но мы дали с ускорением и высотой, тогда как найти скорость с ускорением и высотой вместо расстояния?

Ускорение и скорость пропорциональны друг другу, поскольку производная скорости по времени есть ускорение. Если у нас есть средства ускорения, при интегрировании ускорения мы можем получить скорость. Но в данном случае у нас есть ускорение и высота. Обсудим, как найти скорость с высотой, если задано ускорение.

Предположим, что мяч находится на определенной высоте над землей. Мяч падает с высоты «h», и он начинает ускоряться на «а» в направлении ускорения под действием силы тяжести; это означает, что мяч падает с высоты h в направлении силы тяжести.

Поскольку и ускорение, и ускорение свободного падения имеют одно и то же направление, общее ускорение тела равно сумме обоих ускорений тела и ускорения свободного падения A = g+a. Теперь скорость мяча можно рассчитать, используя уравнение движения.

Мы знаем из кинематического уравнения движения, что расстояние, пройденное телом, можно записать в терминах математического уравнения как

Но у нас есть высота мяча и ускорение. Расстояние можно записать через высоту как

Начальное положение мяча, когда он начинает двигаться, и конечное положение мяча определяют расстояние.

Следовательно, x = h – 0, т. е. x=h, можно сказать, что расстояние по вертикали – это высота. Теперь подставив x = h, мы получим уравнение вида

Преобразовывая приведенное выше уравнение, мы имеем

Уравнение, полученное выше, дает скорость мяча с учетом ускорения и высоты.

Приведем другой пример, если снаряд движется к земле с высоты h и его ускорение больше, чем ускорение свободного падения, так как снаряд преодолевается за счет трения о воздух, то уравнение скорости будет вычисляться как

В уравнениях кинематики скорость определяется выражением

v2 = 2Ах

Где х – расстояние. Но здесь х = h, тогда

v2 = 2Ач

Рассмотрим другой случай; если подбросить мяч в воздух, то после достижения высоты h мяч начнет ускоряться вниз под действием силы тяжести; движение называется движение снаряда; как в этой ситуации найти скорость через ускорение и высоту? Движение мяча в воздухе показано на рисунке ниже.

как найти скорость через ускорение и высоту

Диаграмма, показывающая, как найти скорость с ускорением и высотой, используя движение снаряда.

Из приведенного выше рисунка высота объекта равна h, а расстояние — это не высота, но у нас есть высота в терминах расстояния с использованием уравнения движения снаряда. Связь между расстоянием и высотой можно записать как

Подставив значение расстояния в уравнение движения, получим

Преобразовывая уравнение, мы получаем скорость как

Как найти начальную скорость, зная ускорение и высоту?

Начальная скорость может быть получена из ускорения и высоты, учитывая уравнение движения.

Тело ускоряется, значит, должно быть изменение скорости тела в данном случае, что также говорит о том, что изначально тело имеет некоторую скорость, которая продолжает меняться со временем. Таким образом, чтобы найти Начальная скорость, нам нужно знать конечную скорость тела.

Когда мы подбрасываем мяч в воздух, он достигает определенной высоты h с определенной скоростью и приобретает ускорение а. Изначально; мяч движется со скоростью vi. Наконец, скорость будет vf. Уравнение начальной скорости запишем с помощью уравнения движения мяча, которое можно рассчитать следующим образом.

Скорость может быть

Конечная скорость мяча определяется как vf, следовательно, из средней скорости.

Но на высоте h мяч приобретает нулевую конечную скорость, падая обратно на землю под действием силы тяжести.

Но мы не знаем, сколько времени потребуется мячу, чтобы достичь высоты h, поэтому мы можем использовать ускорение. Первоначально мяч ускоряется против силы тяжести; его ускорение станет отрицательным.

Мы знаем, конечная скорость равно нулю, то

Таким образом, мы получаем фактор времени как

Подставляя в уравнение средней начальной скорости, получаем

Преобразовывая уравнение, получаем

Мы можем вычислить начальную скорость, когда конечная скорость отлична от нуля. Рассмотрим уравнение

В приведенном выше уравнении подставив значение t как

т = (vf+vi) / а

Получаем уравнение в виде

(vf+vi) (вf-vi) = 2ah

Приведенное выше уравнение можно записать как

vf2-vi2 = 2ah

Переставляя условия, чтобы получить начальную скорость как

vi2 = Vf2– 2 часа

Как рассчитать скорость по высоте и времени?

При вертикальном движении путь, пройденный телом, равен высоте, с которой тело начинает движение.

Скорость можно рассчитать, используя высоту и время. Расстояние, пройденное телом с время всегда описывает скорость тела. Физические объекты, такие как ускорение и высота, также способствуют нахождению скорости.

Мы можем вычислить скорость по высоте и времени тремя способами.

  • При вертикальном движении тела
  • При метательном движении тела
  • График зависимости роста от времени

При вертикальном движении тела

Если баскетбольный мяч падает из корзины на высоте h и ускоряется в направлении силы тяжести, то скорость можно определить как

Но ускорение задается

Подставляя значение a и заменяя член расстояния высотой h, мы получаем

При перестановке членов скорость с высотой и временем равна

По движению снаряда

Рассмотрим другой пример; баскетболист бросает мяч в корзину, стоящую на расстоянии d от корзины. Мяч делает движение снаряда добраться до корзины; то мы можем рассчитать скорость следующим образом:

Общее выражение скорости дается выражением

Использование движущегося изображения Projectile, иллюстрирующего как найти скорость с ускорением и высота

Мяч проходит расстояние d на высоте h; если пренебречь трением, расстояние можно записать как

Подставляя значение x в общее уравнение скорости, получаем

График зависимости роста от времени

Если мы построим график с высотой по оси y и временем по оси x, график называется графиком высота-время.

Мы можем рассчитать скорость по графику высота-время. Наклон графика высота-время дает скорость тела.

Высота против. Время график для определения скорости

Из приведенного выше графика наклон определяется выражением

Из графика AB параллелен высоте h, а BC параллелен времени t; следовательно, мы можем сказать, что

АВ = h и ВС = t;

Из определения скорости мы можем сказать, что наклон есть не что иное, как скорость. Таким образом, наклон равен скорости.

Как найти скорость по высоте и массе?

Хотя масса не влияет на скорость, она вносит энергию и силу, необходимые телу для достижения определенной скорости.

Высота и масса — это объекты, связанные с объектом. потенциальная энергия. Масса также вносит вклад в кинетическую энергию, приобретаемую объектом при движении. Зная массу, давайте поймем, как найти скорость с высотой.

Объект на определенной высоте обладает потенциалом, который заставляет тело двигаться, и он равен кинетической энергии тела при движении.

Поскольку и потенциальная энергия, и кинетическая энергия равны, мы можем их приравнять.

Ep= Ek

Кинетическая энергия тела равна

Преобразовывая уравнение, получаем

В начале мы сказали, что потенциальная энергия = кинетическая энергия,

Поэтому уравнение можно переписать как

В общем случае потенциальная энергия равна Е.p= мгх.

Ответ, который мы получили из потенциальной энергии, можно подставить в приведенное выше уравнение, чтобы получить скорость тела.

Как найти скорость с учетом высоты и силы тяжести?

Когда вы бросаете камень в воздух, он падает на землю под действием силы тяжести. Это общий процесс. Но заметили ли вы, что скорость мяча? Скорость камня при движении вниз немного меньше скорости того же камня при падении назад.

Приведенное выше утверждение поясняет, что скорость может меняться и под действием силы тяжести. Гравитация вступает в действие, когда тело находится на определенной высоте; поскольку гравитация является силой притяжения, она пытается поднять тело на высоту к земле, поэтому, основываясь на этих данных, как найти скорость через высоту и расстояние?

В предыдущем разделе обсуждался один из способов нахождения скорость с высотой и силой тяжести. Обсудим, как найти скорость по высоте и расстоянию, рассматривая кинематическое уравнение движения.

Высота всегда равна расстоянию из кинематического уравнения расстояния. Следовательно, мы можем рассматривать расстояние как высоту. Таким образом, уравнение будет

Если камень движется в направлении силы тяжести, то ускорение происходит только благодаря силе тяжести; следовательно, уравнение можно переписать как

Переставив члены, уравнение будет

Приведенное выше уравнение дает скорость с высотой и силу тяжести с временным фактором. Если тело движется с ускорением против силы тяжести, то

г = -г

Как найти скорость по высоте и углу?

Когда тело начинает падать с некоторой высоты на поверхность, оно образует с точкой падения некоторый угол θ. Угол, создаваемый объектом, помогает нам найти ответ на вопрос, как найти скорость с высотой.

Компания смещение тела в вертикальном положении – высота. Вертикальную составляющую скорости можно записать как

v = v sinθ

Если тело вырабатывает некоторые горизонтальное смещение, то скорость

v = v cos θ

Из уравнения движения вертикальную и горизонтальную скорости можно записать как

vx = v cosθ

vy = v sinθ-gt; где g – ускорение свободного падения

На максимальной высоте vy= 0 = v sinθ –gt

v sinθ = gt

Когда тело падает под углом θ и движется со скоростью v, его дальность действия определяется выражением

Поэтому, используя значение R,

Следовательно, скорость можно переписать как

Решенные задачи о том, как рассчитать скорость с высотой

Задача 1) Мяч падает с высоты 15 м и достигает земли с определенной скоростью. Вычислите скорость мяча.

Решение:

Нам предоставляется только высота h = 15м.

Поскольку мяч движется к земле, движение происходит за счет ускорения силы тяжести g. Величина ускорения свободного падения g = 9.8 м/с.2. Скорость мяча

Подставляя значения h и g;

v = 17.14 м / с.

Задача 2) Вычислите начальную скорость камня, падающего с высоты 3 м, и его ускорение 2 м/с.2, и, следовательно, найти время, за которое камень достигнет земли.

Решение:

Приведенные данные: Высота h = 3м

Ускорение камня a = 2 м/с2.

Скорость камня определяется выражением

v = 3.46 м / с.

Время, необходимое камню, чтобы достичь земли, определяется уравнением

t = 1.79 с.

Задача 3) Тело массой 3 кг падает с высоты 7 м, ускоряясь под действием силы тяжести. Вычислите скорость объекта.

Решение:

Даны данные – масса объекта m = 3кг.

Высота, с которой упал предмет, h = 7 м.

Ускорение свободного падения g = 9.8 м/с.2.

Поскольку движение объекта обусловлено массой, высотой и гравитацией, то совершаемая работа равна потенциальной энергии. это дано

Ep = мгх

Объект движется, поэтому объект обладает кинетической энергией; это представлено формулой,

Из закона сохранения энергии, когда объект начинает двигаться, его потенциальная энергия теперь называется кинетической энергией.

Поэтому Еp = Ek

Потенциальная энергия Еp = 3 × 9.8 × 7

Ep = 205.8 Дж

Подставив Ep = Ek = 205.8 Дж.

v2 = 137.2

v = 11.71 м / с.

Задача 4) Спортсмен стреляет толканием ядра в воздух в вертикальном направлении, и ему требуется время 3 секунды, чтобы упасть на землю вертикально с высоты 7 м от земли. Рассчитайте скорость, с которой толкатель ядра возвращается на землю.

Решение:

Приведенные данные – высота от земли h = 7 м.

Время, необходимое для достижения земли = 3 секунды.

Скорость определяется выражением

v = 2.33 м / с.

Задача 5) Тело массой 4 кг падает с высоты 11 м над землей под углом 20°. Вычислите скорость тела. (Примите ускорение свободного падения равным 10 м/с.2)

Решение:

Приведены данные – масса тела m = 4 кг.

Высота h = 11 м.

Угол θ = 20°.

Ускорение свободного падения g = 10 м/с.2.

Скорость определяется выражением

v = 43.45 м / с.

Движение тела под действием силы тяжести: определение, формулы

Движение тела под действием силы тяжести является одной из центральных тем в динамической физике. О том, что раздел динамики базируется на трех законах Ньютона, знает даже обычный школьник. Давайте постараемся разобрать эту тему досконально, а статья, подробно описывающая каждый пример, поможет нам сделать изучение движения тела под действием силы тяжести максимально полезным.

Немного истории

Испокон веков люди с любопытством наблюдали за различными явлениями, происходящими в нашей жизни. Человечество долгое время не могло понять принципы и устройство многих систем, однако длительный путь изучения окружающего мира привел наших предков к научному перевороту. В наши дни, когда технологии развиваются с неимоверной скоростью, люди почти не задумываются о том, каким образом работают те или иные механизмы.

А между тем наши предки всегда интересовались загадками природных процессов и устройством мира, искали ответы на самые сложные вопросы и не переставали изучать, пока не находили на них ответы. Так, например, известный ученый Галилео Галилей еще в 16 веке задался вопросами: “Почему тела всегда падают вниз, какая же сила притягивает их к земле?” В 1589 году он поставил ряд опытов, результаты которых оказались весьма ценными. Он подробно изучал закономерности свободного падения различных тел, сбрасывая предметы со знаменитой башни в городе Пизе. Законы, которые он вывел, были улучшены и более детально описаны формулами еще одним известным английским ученым – сэром Исааком Ньютоном. Именно ему принадлежат три закона, на которых основана практически вся современная физика.

Тот факт, что закономерности движения тел, описанные более 500 лет назад, актуальны и по сей день, означает, что наша планета подчиняется неизменным законам. Современному человеку необходимо хотя бы поверхностно изучить основные принципы обустройства мира.

Основные и вспомогательные понятия динамики

Для того чтобы полностью понять принципы подобного движения, следует сначала ознакомиться с некоторыми понятиями. Итак, самые необходимые теоретические термины:

  • Взаимодействие – это воздействие тел друг на друга, при котором происходит изменение или начало их движения относительно друг друга. Различают четыре вида взаимодействия: электромагнитное, слабое, сильное и гравитационное.
  • Скорость – это физическая величина, обозначающая быстроту, с которой двигается тело. Скорость является вектором, то есть имеет не только значение, но также и направление.
  • Ускорение – та величина, которая показывает нам быстроту изменения скорости тела в промежуток времени. Она также является векторной величиной.
  • Траектория пути – это кривая, а иногда – прямая линия, которую очерчивает тело при движении. При равномерном прямолинейном движении траектория может совпадать со значением перемещения.
  • Путь – это длина траектории, то есть ровно столько, сколько прошло тело за определенное количество времени.
  • Инерциальная система отсчета – это среда, в которой выполняется первый закон Ньютона, то есть тело сохраняет свою инерцию, при условии, что полностью отсутствуют все внешние силы.

Вышеуказанных понятий вполне достаточно для того, чтобы грамотно начертить или представить в голове моделирование движения тела под действием силы тяжести.

Что значит сила?

Давайте перейдем к основному понятию нашей темы. Итак, сила – это величина, смысл которой заключается в воздействии или влиянии одного тела на другое количественно. А сила тяжести – это та сила, которая действует абсолютно на каждое тело, находящееся на поверхности или вблизи нашей планеты. Возникает вопрос: откуда же берется эта самая сила? Ответ заключается в законе всемирного тяготения.

А что такое сила тяжести?

На любое тело со стороны Земли оказывает влияние гравитационная сила, которая сообщает ему некоторое ускорение. Сила тяжести всегда имеет вертикальное направление вниз, к центру планеты. Иначе говоря, сила тяжести притягивает предметы к Земле, вот почему предметы всегда падают вниз. Получается, что сила тяжести – это частный случай силы всемирного тяготения. Ньютон вывел одну из главных формул для нахождения силы притяжение между двумя телами. Выглядит она таким образом: F = G * (m1 х m2) / R 2 .

Чему равно ускорение свободного падения?

Тело, которое отпустили с некоторой высоты, всегда летит вниз под действием силы притяжения. Движение тела под действием силы тяжести вертикально вверх и вниз можно описать уравнениями, где основной константой будет являться значение ускорения “g”. Эта величина обусловлена исключительно действием силы притяжения, и ее значение приблизительно равно 9,8 м/с 2 . Получается, что тело, брошенное с высоты без начальной скорости, будет двигаться вниз с ускорением равным значению “g”.

Движение тела под действием силы тяжести: формулы для решения задач

Основная формула нахождения силы тяжести выглядит следующим образом: Fтяжести = m х g, где m – это масса тела, на которое действует сила, а “g” – ускорение свободного падения (для упрощения задач его принято считать равным 10 м/с 2 ).

Есть еще несколько формул, используемых для нахождения того или иного неизвестного при свободном движении тела. Так, например, для того чтобы вычислить пройденный телом путь, необходимо подставить известные значения в эту формулу: S = V0 х t + a х t 2 / 2 (путь равен сумме произведений начальной скорости умноженной на время и ускорения на квадрат времени, деленной на 2).

Уравнения для описания вертикального движения тела

Движение тела под действием силы тяжести по вертикали можно описать уравнением, которое выглядит так: x = x0 + v0 х t + a х t 2 / 2. Используя данное выражение, можно найти координаты тела в известный момент времени. Необходимо просто подставить известные в задаче величины: начальное местоположение, начальную скорость (если тело не просто отпустили, а толкнули с некоторой силой) и ускорение, в нашем случае оно будет равно ускорению g.

Таким же образом можно найти и скорость тела, которое движется под действием силы притяжения. Выражение для нахождения неизвестной величины в любой момент времени: v = v0 + g х t (значение начальной скорости может быть равным нулю, тогда скорость будет равна произведению ускорения свободного падения на значение времени, за которое тело совершает движение).

Движение тел под действием силы тяжести: задачи и способы их решений

При решении многих задач, связанных с силой тяжести, рекомендуем воспользоваться следующим планом:

  1. Определить для себя удобную инерциальную систему отсчета, обычно принято выбирать Землю, потому как она отвечает многим требованиям к ИСО.
  2. Нарисовать небольшой чертеж или рисунок, на котором изображены основные силы, действующие на тело. Движение тела под действием силы тяжести подразумевает набросок или схему, на которой указано, в каком направлении движется тело, если на него действует ускорение, равное g.
  3. Затем следует выбрать направление для проецирования сил и полученных ускорений.
  4. Записать неизвестные величины и определить их направление.
  5. И наконец, используя указанные выше формулы для решения задач, вычислить все неизвестные величины, подставив данные в уравнения для нахождения ускорения или пройденного пути.

Готовое решение легкой задачи

Когда речь идет о таком явлении, как движение тела под действием силы тяжести, определение того, каким способом практичнее решать поставленную задачу, может быть затруднительным. Однако есть несколько хитростей, используя которые, можно с легкостью решить даже самое сложное задание. Итак, разберем на живых примерах, как следует решать ту или иную задачу. Начнем с легкой для понимания задачи.

Некоторое тело отпустили с высоты 20 м без начальной скорости. Определить, за какое количество времени оно достигнет поверхности земли.

Решение: нам известен путь, пройденный телом, известно, что начальная скорость была равна 0. Также можем определить, что на тело действует только сила тяжести, получается, что это движение тела под действием силы тяжести, и поэтому следует воспользоваться этой формулой: S = V0 х t + a х t 2 /2. Так как в нашем случае a = g, то после некоторых преобразований получаем следующее уравнение: S = g х t 2 / 2. Теперь осталось только выразить время через эту формулу, получаем, что t 2 = 2S / g. Подставим известные величины (при этом считаем, что g = 10 м/с 2 ) t 2 = 2 х 20 / 10 = 4. Следовательно, t = 2 с.

Итак, наш ответ: тело упадет на землю за 2 секунды.

Трюк, позволяющий быстро решить задачу, состоит в следующем: можно заметить, что описанное движение тела в приведенной задаче происходит в одном направлении (вертикально вниз). Оно весьма схоже с равноускоренным движением, так как на тело не действует никакая сила, кроме силы тяжести (силой сопротивления воздуха пренебрегаем). Благодаря этому можно воспользоваться легкой формулой для нахождения пути при равноускоренном движении, минуя изображения чертежей с расстановкой действующих на тело сил.

Пример решения более сложной задачи

А теперь давайте посмотрим, как лучше решать задачи на движение тела под действием силы тяжести, если тело движется не вертикально, а имеет более сложный характер перемещения.

Например, следующая задача. Некоторый предмет массой m движется с неизвестным ускорением вниз по наклонной плоскости, коэффициент трения которой равен k. Определить значение ускорения, которое имеется при движении данного тела, если угол наклона α известен.

Решение: Следует воспользоваться планом, который описан выше. В первую очередь начертить рисунок наклонной плоскости с изображением тела и всех действующих на него сил. Получится, что на него действуют три составляющие: сила тяжести, трения и сила реакции опоры. Выглядит общее уравнение равнодействующих сил так: Fтрения + N + mg = ma.

Главной изюминкой задачи является условие наклонности под углом α. При проецировании сил на ось ox и ось oy необходимо учесть данное условие, тогда у нас получится следующее выражение: mg х sin α – Fтрения = ma (для оси ох) и N – mg х cos α = Fтрения (для оси oy).

Fтрения легко вычислить по формуле нахождения силы трения, она равна k х mg (коэффициент трения, умноженный на произведение массы тела и ускорения свободного падения). После всех вычислений остается только подставить найденные значения в формулу, получится упрощенное уравнение для вычисления ускорения, с которым движется тело вдоль наклонной плоскости.

Движение под действием силы тяжести

Подбросим мяч вертикально вверх. Он поднимется на какую-то высоту, после чего упадет вниз.

Земля притягивает мяч, значит на мяч действует нескомпенсированная сила притяжения. Как гласит второй закон Ньютона, скорость мяча из-за этого меняется.

Движение тела под действием силы тяжести, называется свободным падением. Когда тело падает свободно, оно испытывает невесомость.

Для удобства будем рассматривать отдельно свободное движение мяча вверх и, его свободное падение вниз.

Движение вверх

Рассмотрим рисунок 1. В левой части рисунка — 1а) изображено движение мяча вверх, а в правой – 1б) – движение вниз. Сплошным кружком обозначено начальное положение мяча, а пунктирным – конечное. Красными стрелками обозначена скорость мяча на различных высотах.

При движении вверх скорость тела уменьшается, так как вектор ускорения и вектор скорости направлены в противоположные стороны (рис. 1а). Движение вверх равнозамедленное.

Выражение для скорости при движении мяча вверх:

Вертикальное перемещение мяча при его движении вверх выражается такой формулой:

В верхней точке траектории скорость мяча будет равна нулю. Эта точка для движения вверх будет конечной, а для движения вниз – начальной.

Поэтому, для движения вверх нулю равна конечная скорость мяча (v_=0), а для движения вниз – его начальная скорость (v_<0y>=0).

Движение вниз

При движении вниз – наоборот, скорость будет увеличиваться, так как векторы скорости и ускорения сонаправлены (рис. 1б). Движение вниз равноускоренное.

Выражение для скорости при движении мяча вниз:

Вертикальное перемещение при движении вниз выражается формулой:

Таким образом, под действием силы тяжести мяч движется по вертикали, меняя свою скорость.

Пока мяч находится в полете, он не давит на опору и не растягивает подвес. Проще говоря, он находится в невесомости (ссылка) – то есть, не имеет веса.

Масса есть всегда, а вес тела (ссылка) может отсутствовать! Кроме того, одна и та же масса в различных ситуациях может обладать разным весом.

Из рисунка 1 так же, следует, что

если тело при падении вернется на уровень, с которого оно стартовало, то:

— скорость, с которой мы подбросим тело, по модулю будет равна скорости, с которой тело упадет ( large left|vec> right|= left|vec> right|) ;

— время подъема равняется времени спуска ( large t_<text<вверх>> = t_<text<вниз>> );

Когда перемещение вверх не равно перемещению вниз

Рассмотрим теперь следующий рисунок. На рисунке 2а представлен случай, когда путь, пройденный вверх больше пути, пройденного при движении вниз. Предположим, мы подбросили мяч вертикально вверх и, он упал на крышу какого-то строения, например, гаража.

В таком случае на подъем потребуется больше времени, чем на спуск

И скорость, с которой мяч подбрасывали вверх будет больше скорости, с которой мяч ударится о крышу

На рисунке 2б путь при движении вверх меньше пути вниз. Такое может быть, если мы заберемся на крышу гаража и, находясь на крыше, подбросим мяч вертикально вверх.

Теперь на спуск мяча до земли потребуется больше времени, чем на подъем

Закон всемирного тяготения. Движение тел под действием силы тяжести

Исходя из трактовки второго закона Ньютона, можно сделать вывод, что изменение движения происходит посредствам силы. Механика рассматривает силы различной физической природы. Многие из них определяются с помощью действия сил тяготения.

Закон всемирного тяготения. Формулы

В 1862 году был открыт закон всемирного тяготения И. Ньютоном. Он предположил, что силы, удерживающие Луну, той же природы, что и силы, заставляющие яблоко падать на Землю. Смысл гипотезы состоит в наличии действия сил притяжения, направленных по линии и соединяющих центры масс, как изображено на рисунке 1 . 10 . 1 . Шаровидное тело имеет центр массы, совпадающий с центром шара.

Рисунок 1 . 10 . 1 . Гравитационные силы притяжения между телами. F 1 → = – F 2 → .

Далее, Ньютон искал физическое объяснение законам движения планет, которые открыл И. Кеплер в начале XVII века, и давал количественное выражение для гравитационных сил.

При известных направлениях движений планет Ньютон пытался выяснить, какие силы действуют на них. Этот процесс получил название обратной задачи механики.

Основная задача механики – определение координат тела известной массы с его скоростью в любой момент времени при помощи известных сил, действующих на тело, и заданным условием (прямая задача). Обратная же выполняется с определением действующих сил на тело с известным его направлением. Такие задачи привели ученого к открытию определения закона всемирного тяготения.

Ускорение свободного падения

Все тела притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними.

F = G m 1 m 2 r 2 .

Значение G определяет коэффициент пропорциональности всех тел в природе, называемое гравитационной постоянной и обозначаемое по формуле G = 6 , 67 · 10 – 11 Н · м 2 / к г 2 ( С И ) .

Большинство явлений в природе объясняются наличием действия силы всемирного тяготения. Движение планет, искусственных спутников Земли, траектории полета баллистических ракет, движение тел вблизи поверхности Земли – все объясняется законом тяготения и динамики.

Проявлении силы тяготения характеризуется наличием силы тяжести. Так называется сила притяжения тел к Земле и вблизи ее поверхности.

Когда М обозначается как масса Земли, R З – радиус, m – масса тела, то формула силы тяжести принимает вид:

F = G M R З 2 m = m g .

Где g – ускорение свободного падения, равняющееся g = G M R З 2 .

Сила тяжести направлена к центру Земли, как показано в примере Луна-Земля. При отсутствии действия других сил тело движется с ускорением свободного падения. Его среднее значение равняется 9 , 81 м / с 2 . При известном G и радиусе R 3 = 6 , 38 · 10 6 м производятся вычисления массы Земли М по формуле:

M = g R 3 2 G = 5 , 98 · 10 24 к г .

Если тело удаляется от поверхности Земли, тогда действие силы тяготения и ускорения свободного падения меняются обратно пропорционально квадрату расстояния r к центру. Рисунок 1 . 10 . 2 показывает, как изменяется сила тяготения, действующая на космонавта корабля, при удалении от Земли. Очевидно, что F притягивания его к Земле равняется 700 Н .

Рисунок 1 . 10 . 2 . Изменение силы тяготения, действующей на космонавта при удалении от Земли.

Земля-Луна подходит в качестве примера взаимодействия системы двух тел.

Расстояние до Луны – r Л = 3 , 84 · 10 6 м . Оно в 60 раз больше радиуса Земли R З . Значит, при наличии земного притяжения, ускорение свободного падения α Л орбиты Луны составит α Л = g R З r Л 2 = 9 , 81 м / с 2 60 2 = 0 , 0027 м / с 2 .

Оно направлено к центру Земли и получило название центростремительного. Расчет производится по формуле a Л = υ 2 r Л = 4 π 2 r Л T 2 = 0 , 0027 м / с 2 , где Т = 27 , 3 суток – период обращения Луны вокруг Земли. Результаты и расчеты, выполненные разными способами, говорят о том, что Ньютон был прав в своем предположении единой природы силы, удерживающей Луну на орбите, и силы тяжести.

Луна имеет собственное гравитационное поле, которое определяет ускорение свободного падения g Л на поверхности. Масса Луны в 81 раз меньше массы Земли, а радиус в 3 , 7 раза. Отсюда видно, что ускорение g Л следует определять из выражения:

g Л = G M Л R Л 2 = G M З 3 , 7 2 T 3 2 = 0 , 17 g = 1 , 66 м / с 2 .

Такая слабая гравитация характерна для космонавтов, находящихся на Луне. Поэтому можно совершать огромные прыжки и шаги. Прыжок вверх на метр на Земле соответствует семиметровому на Луне.

Искусственные спутники Земли

Движение искусственных спутников зафиксировано за пределами земной атмосферы, поэтому на них оказывают действие силы тяготения Земли. Траектория космического тела может изменяться в зависимости от начальной скорости. Движение искусственного спутника по околоземной орбите приближенно принимается в качестве расстояния до центра Земли, равняющемуся радиусу R З . Они летают на высотах 200 – 300 к м .

Отсюда следует, что центростремительное ускорение спутника, которое сообщается силами тяготения, равняется ускорению свободного падения g . Скорость спутника примет обозначение υ 1 . Ее называют первой космической скоростью.

Применив кинематическую формулу для центростремительного ускорения, получаем

a n = υ 1 2 R З = g , υ 1 = g R З = 7 , 91 · 10 3 м / с .

При такой скорости спутник смог облететь Землю за время, равное T 1 = 2 πR З υ 1 = 84 м и н 12 с .

Но период обращения спутника по круговой орбите вблизи Земли намного больше, чем указано выше, так как существует различие между радиусом реальной орбиты и радиусом Земли.

Спутник движется по принципу свободного падения, отдаленно похожее на траекторию снаряда или баллистической ракеты. Разница заключается в большой скорости спутника, причем радиус кривизны его траектории достигает длины радиуса Земли.

Спутники, которые движутся по круговым траекториям на больших расстояниях, имеют ослабленное земное притяжение, обратно пропорциональное квадрату радиуса r траектории. Тогда нахождение скорости спутника следует по условию:

υ 2 к = g R 3 2 r 2 , υ = g R 3 R З r = υ 1 R 3 r .

Поэтому, наличие спутников на высоких орбитах говорит о меньшей скорости их движения, чем с околоземной орбиты. Формула периода обращения равняется:

T = 2 πr υ = 2 πr υ 1 r R З = 2 πR з υ 1 r R 3 3 / 2 = T 1 2 π R З .

T 1 принимает значение периода обращения спутника по околоземной орбите. Т возрастает с размерами радиуса орбиты. Если r имеет значение 6 , 6 R 3 то Т спутника равняется 24 часам. При его запуске в плоскости экватора, будет наблюдаться, как висит над некоторой точкой земной поверхности. Применение таких спутников известно в системе космической радиосвязи. Орбиту, имеющую радиус r = 6 , 6 R З , называют геостационарной.

Рисунок 1 . 10 . 3 . Модель движения спутников.

[spoiler title=”источники:”]

http://zaochnik.com/spravochnik/fizika/sily-v-prirode/zakon-vsemirnogo-tjagotenija/

[/spoiler]

Второй закон Ньютона это закон который был выведен в результате проведения опытов Ньютоном.

В результате чего были выведена новая формула второго закона ньютона а = F /m

Что такое второй закон Ньютона, масса и вес тела

Второй закон НьютонаОбобщая результаты опытов Галилея по падению тяжелых тел, астрономические законы Кеплера о движении планет, данные собственных исследований.

Ньютон сформулировал второй закон динамики, количественно связывающий изменение движения тела с силами, вызывающими это изменение.

Чтобы исследовать зависимость между силой и ускорением количественно, рассмотрим некоторые опыты.

Ускорение от величины силы

I. Рассмотрим, как зависит ускорение одного и того же тела от величины силы, действующей на это тело. Предположим, что к тележке прикреплен динамометр, по показаниям которого измеряют силу.

Измерив длину пройденного тележкой пути за какой-нибудь промежуток времени t, по формуле s = (at2) : 2 определим ускорение a.

Изменяя величину силы, проделаем опыт несколько раз. Результаты измерения покажут, что ускорение прямо пропорционально силе, действующей на тележку

a1 : a2 = F1 : F2

ИЛИ

а ~ F.

Отношение силы, действующей на тело, к ускорению есть величина постоянная, которую обозначим mЭто отношение назовем массой тела.

Зависимость ускорения от массы

II. Установим зависимость ускорения тела от его массы. Для этого будем действовать на тележку какой-нибудь постоянной силой, изменяя массу (помещая различные грузы на тележку).

Ускорения тележки будем определять так же, как и в первом опыте. Опыт покажет, что ускорение тележки обратно пропорционально массе, то есть

(a1/a2) = (m2/m1), или а ~ (1/m)

Обобщая результаты опытов, можно заметить, что ускорение, приобретаемое телом, прямо пропорционально силе, действующей на тело, и обратно пропорционально массе данного тела (второй закон ньютона формулировка).

Этот вывод называется вторым законом Ньютона. Математически этот закон можно записать так (формула второго закона ньютона):

а = F /m

где а — ускорение, m—масса тела, F — результирующая всех сил, приложенных к телу. В частном случае на тело может действовать и одна сила.

Результирующая сила равна векторной сумме всех сил, приложенных к телу;

= mа.

Следовательно, сила равна произведению массы на ускорение.

Второй закон динамики можно записать в иной более удобной форме. Учитывая, что ускорение

а = (υ2 — υ1) / (t2 — t1)

подставим это выражение в уравнение второго закона Ньютона. Получим

F = ma = (2 — 1) / (t2 — t1) = (∆(mυ))/t

Что такое импульс

Импульсом, или количеством движения, называется вектор, равный произведению массы тела на его скорость (тυ).

Тогда основной закон динамики можно сформулировать следующим образом: сила равна изменению импульса в единицу времени (второй закон ньютона в импульсной форме)

F(∆(mυ))/t

Это и есть наиболее общая формулировка второго закона Ньютона. Массу тела Ньютон определил как количество вещества, содержащегося в данной теле. Это определение несовершенно.

Из второго закона Ньютона вытекает следующее определение массы. Из равенства 

a1/a2m2/m1 

видно, что чем больше масса тела, тем меньше ускорение получает тело, то есть тем труднее изменить скорость этого тела и наоборот.

Следовательно, чем больше масса тела, тем в большей степени это тело способно сохранять скорость неизменной, то есть больше инертности. Тогда можно сказать, что масса есть мера инертности тела.

Эйнштейн доказал, что масса тела остается постоянной только при определенных условиях. В зависимости от скорости движения тела его масса изменяется по такому закону:

Масса тела

где m — масса тела, движущегося со скоростью υ; m0 — масса этого же тела, находящегося в покое; с = 3 • 108м/с скорость света в вакууме.

Проанализируем данное уравнение:

  1. Если υ«с, то величиной —, как очень малой, можно пренебречь и m = m0, то есть при скоростях движения, много меньших скорости света, масса тела не зависит от скорости движения;
  2. Если υ  с, то υ22 ≈ 1, тогда т = m0/0— отсюда вытекает, что m → ∞.

По мере увеличения скорости тела для его дальнейшего ускорения нужно будет прикладывать все увеличивающиеся силы.

Но бесконечно больших сил, которые потребовались бы для сообщения телу скорости, равной скорости света, в природе не существует.

Таким образом, заставить рассматриваемое тело двигаться со скоростью света принципиально невозможно.

Со скоростями, близкими к скорости света, современная физика встречается: так разгоняются, например, элементарные частицы в ускорителях.

Масса тела с ростом скорости

Масса тела с ростом скорости увеличивается, но количество вещества остается неизменным, возрастает инертность. Поэтому массу нельзя путать с количеством вещества.

Покажем связь между силой тяжести, массой тела и ускорением свободного падения. Любое тело, поднятое над Землей и ничем не поддерживаемое, падает снова на Землю.

Это происходит вследствие того, что между телом и Землей существует притяжение (этот вопрос более подробно рассмотрим позже). 

Сила, с которой тело притягивается к Земле, называется силой тяжести. Падение тел в безвоздушном пространстве под действием силы тяжести (при υ0 = 0) называется свободным падением. 

Отметим, что для тел, покоящихся в поле сил тяготения, сила тяжести равна весу тела Р.

Весом тела называется сила, с которой тело давит на горизонтальную подставку, неподвижную относительно Земли, или действует на подвес.

Если Р— сила тяжести, m — масса, g — ускорение силы тяжести (в данной точке Земли оно для всех тел одинаковой среднее его значение равно 9,8м2), то применяя второй закон динамики, получим

P = mg.

Выразим с помощью этой формулы веса двух различных тел. Тогда:

P1 = m1g и Р2 = m2g. Разделив почленно эти два равенства, будем иметь

P1/P2 = m1/m2

Следовательно, веса тел в данной точке земной поверхности прямо пропорциональны их массам.

Задачи на второй закон ньютона

1. Какая сила F действует на автомобиль массой кгm=1000 кг, если он движется с ускорением мсa=1 м/с2.

Дано:
m = 1000 кг
a = 1 м/с2

Найти: F — ?

Решение:

Запишем второй закон Ньютона :

= mа.

= 1000 кг • 1 м/с2 = 1000 Н

Ответ: 1000 Н.

2. На мяч действует сила F = 70Н, масса мяча m = 0,2 кг, найти его ускорение a.

Дано:

m = 0,2 кг,

F = 70Н

Найти:

a — ?

Решение:

Запишем второй закон Ньютона :

= mа.

Следовательно а = / m.

а = 70Н : 0,2 кг = 350 м/с.

Ответ: а = 350 м/с.


Статья на тему Второй закон Ньютона

Есть снаряд 5 грамм, к нему приложили силу в 1.5Н

можно ли узнать его скорость какими-то методами?

Если да, то какие еще параметры должны быть известны?

Давайте представим, что эти параметры у нас есть. По какой формуле тогда будет высчитываться скорость движения данного тела?

бонус за лучший ответ (выдан): 5 кредитов

Никак без дополнительных параметров. Сила является причиной ускорения по второму занону Ньютона a=F/m. Но скорость в каждый момент времени находится по формуле v=v0+a*t. Поэтому, чтобы узнать скорость, требуется ещё знать её начальное значение и сколько времени с этого момента прошло.

Но если речь идёт именно о снаряде, то всё многкратно усложняется. Сила приложена к снаряду только до момента вылета снаряда из ствола и к тому же непостоянна. Сама сила изменяется пропорционально давлению пороховых газов. Кривая давления представлена на рисунке

Расчёт скорости и давления ведётся уже по баллистическим формулам, например таким:

V=(al)/(b+l); v0=(aL)/(b+L); a=(v0(b+L))/L; P=((φmba^2)/S)*(l/(b+l)^3,

где l – путь в стволе, L – длина нарезной части, a,b,φ – пороховые константы, S – площадь поперечного сечения ствола.

Но даже в рогатке возникающая сила не постоянная, а обратно пропорциональна натяжению резины, и начальная скорость будет зависеть от этой переменной силы, массы и времени выстрела. Поэтому по тем данным (только сила и масса) практически ничего не вычислишь.

система выбрала этот ответ лучшим

Kuzmi­ch291­192
[7K]

6 лет назад 

В данном случае необходимо применить 2 закон Ньютона, но не в привычной для нас форме, а в дифференциальной:

F=(p2-p1)/t, где F – сила, приложенная к телу, p1 – импульс тела до приложения силы, p2 – импульс тела после приложения силы, t – время приложения силы.

То есть, результирующее значение силы, приложенное к телу есть изменение импульса этого тела за единицу времени. Именно в таком виде Ньютон вывел свой закон.

Применим данную формулу.

Дано:

m=5*10^(-3) кг

F=1.5 H

Найти:

v-?

Как я понимаю, начальная скорость снаряда равна 0, следовательно второй закон Ньютона примет вид:

F*t=p

Расписав импульс и выразив скорость, имеем:

F*t=m*v

v=F*t/m

Из полученной формулы видно, что для нахождения скорости нам необходимо знать время. Действительно, чем больше времени сила будет прилагаться к телу, тем больше она тело разгонит (или же затормозит, если направление силы и направление скорости разнонаправленны).

Предположим, что t=1 с.

Тогда

v=1.5*1/5*10^(-3)

v=1500/5

v=300 (м/с).

Таким образом, для нахождения скорости тела, в данном случае, мы должны знать силу, действующую на тело, массу тела, и время действия силы на тело (при условии, что тело находилось в состоянии покоя).

SVFE4­8
[7.4K]

4 месяца назад 

Можно рассчитать скорость снаряда, используя силу и массу снаряда, но необходима дополнительная информация. Формула для расчета скорости:

Скорость = сила/масса

В этом случае сила равна 1,5 Н, а масса равна 5 граммам. Чтобы использовать эту формулу, массу необходимо перевести в килограммы.

1 грамм = 0,001 килограмма

5 грамм = 5 * 0,001 = 0,005 килограмма

Таким образом, скорость снаряда можно рассчитать как:

Скорость = 1,5 Н / 0,005 кг = 300 м/с

Важно отметить, что этот расчет дает только начальную скорость снаряда в момент приложения силы. Чтобы рассчитать конечную скорость, необходимо учитывать другие факторы, такие как сопротивление воздуха, гравитация и угол запуска.

Для точного расчета конечной скорости снаряда необходимо знать следующие параметры:

угол запуска

начальная скорость

масса снаряда

сопротивление воздуха

гравитационное ускорение

время полета

Когда эти параметры известны, уравнения движения можно использовать для расчета конечной скорости.

Стоит отметить, что это упрощенный пример, и в реальных сценариях сопротивление воздуха и угол запуска являются критическими факторами, влияющими на конечную скорость снаряда.

dmitr­iy861
[9.1K]

6 лет назад 

Пусть меня кто то поправит если ошибаюсь, но по моему тут второй закон Ньютона. В общем виде это частное от силы разделённой на массу!

Rafai­l
[136K]

6 лет назад 

Если к телу массой 5 г приложить (и не убирать) силу в 1,5 Н, то она, согласно второму закону Ньютона, придаст ему ускорение а=F/m=1,5/0,005=300 м/c^2. Под действием этого ускорения тело начнёт увеличивать скорость по закону v=a*t, где t – время действия силы. Так что, зная формулу Вы можете рассчитать скорость тела в любой момент времени.

Михаи­л Белод­едов
[26.2K]

6 лет назад 

Через секунду – 1,5/0,005 = 300 м/с. Через 2 секунды – 600 м/с. Через 3 секунды – 900 м/с. Через 4 секунды – 1,2 км/с. Через 5 секунд – 1,5 км/с. Через 10 секунд – 3 км/с. Через 20 секунд – 6 км/с. А через полминуты скорость достигнет 8 км/с и, если снаряд к тому времени не воткнётся в Землю, он начнёт удаляться от поверхности Земли.

Если рассматривать данный вопрос с точки зрения школьных знания то F=m*a , F – сила, m – масса, a – ускорение. Что бы найти скорость в какой либо момент времени, достаточно ускорение умножить на время. Если же учитывать, что есть сила трения, то что сила прилагалась не равномерно и не постоянно, то тут нужны дополнительные данные.

Чосик
[208K]

более года назад 

Мы знаем, что сила равна произведению массы объекта на ускорение. Мы знаем приложенную силу и массу объекта.

F= 1.5Н

m = 5 = 0.005 кг

F = m*a

a = F/m

a = 1.5/0.005 = 300 м/с.

Теперь необходимо связать скорость и ускорение.

v=v0+a*t

То есть, чтобы узнать скорость движения в определенный момент, необходимо знать время.

владс­андро­вич
[766K]

более года назад 

Скорость эта такая величина, которая в физике обозначается буковкой «V». Если же вы хотите ее найти, то нужно использовать правильную формулу и этой правильной формулой в конечном итоге является v = Ft/m.

Буква F в ней обозначает силу, а  t – время, а что касается буквы  m, то она массу.  

Aleks­andr6­052
[83.9K]

6 лет назад 

Скорость можно определить по формуле: v = Ft/m.

Здесь v – скорость, F – сила, t – время, m – масса.

То есть, чтобы успешно решить поставленную задачку нам недостаёт ещё одной физической величины, а именно – времени.

Знаете ответ?


1. Формулы максимальной высоты и времени за которое тело поднялось на максимальную высоту

Формулы высоты, скорости, времени тела брошенного вверх

h max
– максимальная высота достигнутая телом за время t

Vк – конечная скорость тела на пике, равная нулю

Vн – начальная скорость тела

t – время подъема тела на максимальную высоту h

g ≈ 9,8 м/с2 – ускорение свободного падения

Формула максимальной высоты (h max):

Формула времени за которое тело достигло максимальную высоту (t):

2. Формулы скорости, высоты и времени тела брошенного вертикально вверх под воздействием силы тяжести

Формулы  при свободном падении

h – расстояние пройденное телом за время t

Vн – начальная скорость тела

V – скорость тела в момент времени t

t – время подъема за которое тело пролетело расстояние h

g ≈ 9,8 м/с2 – ускорение свободного падения

Формула скорости тела в момент времени t (V):

Формула начальной скорости тела (Vн):

Формулы высоты тела в момент времени t (h):

Формулы времени, за которое тело достигло высоту h (t):

Подробности

Опубликовано: 04 августа 2015

Обновлено: 13 августа 2021

Добавить комментарий