Как найти скорость зная массу и кинетическую энергию?
Андрей Жвалевский
Ученик
(89),
закрыт
6 лет назад
Дополнен 10 лет назад
мне нужна формула!! !
Лучший ответ
Валентина Вавилова(Серкова)
Гений
(62183)
10 лет назад
Ек=m*v^2 / 2. ( Ек -кинетическая энергия, m -масса, v -скорость)
v=корень квадратный из 2*Ек / m.
Остальные ответы
Дед07
Мудрец
(10212)
10 лет назад
W (кинетическая энергия, значит) =mV^2/2
will hoskins
Знаток
(301)
10 лет назад
кинет. энергия= масса*скорость (в квадрате) /2 из неё лекго выразить
Похожие вопросы
Главная Учёба Калькулятор расчётов массы, скорости, кинетической энергии
Калькулятор расчётов массы, скорости, кинетической энергии
Условные обозначения формулы: m – масса тела, V – скорость, E – кинетическая энергия.
Формула расчёта кинетической энергии: E=m*V2/2. Масса тела, умноженная на скорость в квадрате и разделённая на два.
Формула расчёта массы : m=E/V2*2. Кинетическая энергия, разделённая на скорость в квадрате и умноженное на два.
Формула расчёта скорости: V=[квадратный корень][E/(1/2*m)]. Кинетическую энергию, делим на половину массы и извлекаем квадратный корень.
Заполните поля, оставив, пустым, только поле которое вы хотите узнать. Например: чтобы узнать кинетическую энергию, заполните массу и скорость.
Калькулятор расчёта массы, скорости, кинетической энергии, онлайн
Потенциальная энергия тела
Понравилась страница? Поделитесь ссылкой в социальных сетях. Поддержите проект!
Нет комментариев.
Как найти скорость тела, если дана его масса и потенциальная энергия?
-
Потенциальную энергию нужно прировнять к Кинетической энергии и получим,
mgh=mv^2/2,
отсюда, зная потенциальную энергию и массу тела, выведем скорость.
- Комментировать
- Жалоба
- Ссылка
Знаешь ответ на этот вопрос?
Сомневаешься в правильности ответа?
Получи верный ответ на вопрос 🏆 «Как найти скорость тела, если дана его масса и потенциальная энергия? …» по предмету 📕 Физика, используя встроенную систему поиска. Наша обширная база готовых ответов поможет тебе получить необходимые сведения!
Найти готовые ответы
Главная » Физика » Как найти скорость тела, если дана его масса и потенциальная энергия?
Содержание:
Кинетическая энергия:
Иногда значение работы можно найти, не используя понятия силы и перемещения, на основании характеристики изменения энергии тела.
Рассмотрим тело массой m, на которое действует сила F. Направление действия силы совпадает с направлением перемещения. Работа, которую выполняет эта сила,
A = Fs.
Согласно второму закону механики Ньютона значение силы
Как известно, модуль перемещения равен:
Поэтому
Как известно, выражение называется кинетической энергией. Следовательно, для расчета работы достаточно определить только массу тела и его начальную и конечную скорости, т. е. знать изменение кинетической энергии тела. Такой метод удобен, поскольку им можно пользоваться даже в случае переменной силы и произвольной траектории.
Физическая величина, описывающая состояние движущегося тела и изменение которой определяет работу, называется кинетической энергией.
Для измерения энергии, как и работы, используется единица джоуль (Дж), названная в честь английского ученого Д. Джоуля.
Кинетической энергией обладает тело, движущееся в данной системе отсчета с определенной скоростью:
Скорость тела, измеренная в разных системах отсчета, будет иметь разное значение, т. е. она является относительной величиной. Поэтому кинетическая энергия тела постоянной массы тоже величина относительная и в разных системах отсчета имеет разное значение.
Рассмотрим, например, два железнодорожных вагона, массы которых составляют по 2 • кг, движущиеся в одном направлении со скоростями 15 м/с и 10 м/с относительно железнодорожного полотна, причем первый догоняет второго. Их кинетическая энергия соответственно будет:
Если же систему отсчета связать со вторым вагоном, то первый будет двигаться со скоростью 5 м/с , а второй – со скоростью v = 0. В этом случае
Следовательно, при расчетах в разных инерциальных системах отсчета следует учитывать, что кинетическая энергия в случае перехода из одной системы в другую будет изменяться.
Что такое кинетическая энергия
Кинетическая энергия (от греческого слова кинетикос – тот, что приводит в движение) – это энергия, которой тело обладает вследствие собственного движения.
Кинетической энергией обладает ветер, её используют для сообщения движения ветряным двигателям. Движущиеся массы воздуха оказывают давление на наклонные плоскости крыльев ветряных двигателей и заставляют их вращаться. На рисунке 175, а изображена ветряная мельница, в которой за счёт энергии ветра мелют зерно. Современные довольно мощные ветряные двигатели (рис. 175, б) используют для того, чтобы вырабатывать электроэнергию, качать из скважин воду и подавать её в водонапорные башни.
Движущаяся вода или нагретый пар, вращая турбины электростанции, теряет часть своей кинетической энергии и выполняет работу. Самолёт, летящий высоко в небе, кроме потенциальной обладает и кинетическуй энергией. Если тело находится в состоянии покоя, т. е. его скорость относительно Земли равна нулю, то и его кинетическая энергия относительно Земли будет равна нулю.
Опытами установлено, что чем больше масса тела и скорость, с которой оно движется, тем больше его кинетическая энергия. Выявленная зависимость математически выражается такой формулой:
где — кинетическая энергия тела; — масса тела; — скорость движения тела.
Определение кинетической энергии
Наблюдения явлений природы показывают, что работа может выполняться при движении тел. Так, движущийся тепловоз, стыкуясь с вагоном, перемещает его на некоторое расстояние. Выполняется работа и в том случае, когда брошенный камень разбивает лед. Выстреленная из ружья пуля пробивает доску и т. п. Если потенциальной энергией обладают тела, на которые действует сила, то в упомянутых выше случаях работа выполняется потому, что они осуществляли перемещение, двигались.
Какой энергией обладают движущиеся тела
Энергию движущегося тела называют кинетической энергией.
Кинетическая энергия является физической величиной ее значение можно рассчитывать. Для этого необходимо знать, от каких физических величин она зависит.
Как рассчитывают кинетическую энергию
Поставим желоб под некоторым углом к поверхности стола. На некотором расстоянии от его нижнего конца поставим брусок. На средней части желоба разместим маленький стальной шарик и отпустим его. Скатившись по желобу, шарик ударится о брусок и переместит его на некоторое расстояние. Отметим расстояние, на которое сместился брусок.
Поместим шарик в верхней части желоба и отпустим его. В этом случае, скатившись желобом к основе, шарик приобрел большую скорость, чем раньше. Ударившись в брусок, он переместит его на большее расстояние, чем в предыдущем опыте, соответственно выполнив большую работу.
Таким образом, кинетическая энергия тела зависит от его скорости. Эта зависимость нелинейная, что заметно на графике зависимости кинетической энергии тела от его скорости. График имеет вид кривой линии (рис. 126).
Кинетическая энергия тела относительна
Как известно, скорость тела является относительной величиной и зависит от выбора тела отсчета. Поэтому и кинетическая энергия является величиной относительной. Если артиллерийский снаряд, попав в стену, причиняет значительные разрушения, то снаряд, посланный вдогонку сверхзвуковому самолету, не причинит ему существенных повреждений, поскольку скорость снаряда относительно самолета будет небольшой.
Последствия столкновения автомобилей в случае их движения навстречу друг другу будут всегда более ощутимы, чем тогда, когда один автомобиль догоняет другой.
Кинетическая энергия зависит и от массы тела. Если повторим предыдущие опыты с шариком большей массы, то увидим, что перемещения бруска в этом случае будет большим. Эта зависимость линейная, поэтому можно сказать, что кинетическая энергия тела пропорциональна его массе (рис. 127).
Как рассчитать кинетическую энергию
Чтобы рассчитать кинетическую энергию, используют формулу:
где — масса тела; — скорость тела.
Кинетическая энергия разных физических тел используется для выполнения механической работы. Так, опытные водители автомобилей время от времени отсоединяют двигатель от колес, выключая сцепление, и этим экономят топливо. Работа по преодолению сил трения выполняется за счет кинетической энергии автомобиля. Конструкторы работают над моделью городского автобуса, который начинает движение за счет энергии раскрученного во время стоянки большого маховика. Это дает возможность существенно уменьшить выбросы вредных газов в атмосферу и экономить топливо.
В южных областях Украины, в частности на Крымском полуострове, используют ветряные электростанции, которые работают за счет кинетической энергии потоков воздуха — ветра (рис. 128).
- Заказать решение задач по физике
Кинетическая энергия тела
Рассмотрим движение тела массой т под действием нескольких сил, например движение санок (см. рис. 124). Предположим также, что сила натяжения веревок постоянна, а следовательно, постоянной будет и результирующая сила . Она совпадает по направлению с перемещением тела или противоположна ему. Эта сила, естественно, вызывает ускорение санок, т. е. изменяет их скорость. Кроме того, она совершает работу. Следовательно, между работой результирующей силы и изменением скорости санок должна существовать связь.
Рассмотрим случай, когда проекция результирующей силы на направление движения положительна, т. е. санки движутся равноускоренно с ускорением а, которое находится из второго закона Ньютона:
(1)
Работа результирующей силы:
A = Fp△r, (2)
где △r— модуль перемещения тела за некоторый промежуток времени. Подставим выражение (1) в (2). В результате получим:
A = ma△r. (3)
При равноускоренном одномерном движении модуль перемещения △r и изменение скорости связаны соотношением:
(4)
где и — начальная и конечная скорости тела, которое совершило перемещение △r с ускорением а.
Соотношение (3) с учетом (4) примет вид:
(5)
Полученная формула связывает работу результирующей силы, действующей на тело, с изменением величины . Эта величина называется кинетической энергией тела и обычно обозначается К.
Кинетическая энергия тела — это энергия движения. Она равна половине произведения массы тела на квадрат его скорости:
(6)
Тогда формула (5) примет вид:
(7)
Итак, работа результирующей силы, действующей на тело, равна изменению кинетической энергии тела. Как вы уже знаете, изменение какой-то величины равно разности конечного значения и начального. Из формулы (7) очевидно следует, что кинетическая энергия выражается в тех же единицах, что и работа, т. е. в СИ в джоулях.
Когда результирующая сила действует по направлению движения тела и, следовательно, совершает положительную работу, то K2>K1. Это означает, что кинетическая энергия тела увеличивается. Понятно, что, если результирующая сила направлена в сторону, противоположную движению, она совершает отрицательную работу, и кинетическая энергия тела уменьшается. Следует отметить, что, хотя мы получили формулу (7) для частного случая равноускоренного и прямолинейного движения, она справедлива и в случае изменяющейся во времени результирующей силы. Поэтому формулу (7) часто называют теоремой о кинетической энергии.
Итак, любое движущееся тело (рис. 127, 128) обладает кинетической энергией. Поскольку скорость тела зависит от выбора инерциальной системы отсчета, то и кинетическая энергия также зависит от выбора системы отсчета. Очевидно, что, как и работа, кинетическая энергия является скалярной физической величиной. Она не зависит от направления движения тела, а определяется его массой и квадратом скорости.
Главные выводы:
- Кинетическая энергия тела — это энергия движения. Она равна половине произведения массы тела на квадрат его скорости и зависит от выбора системы отсчета.
- Изменение кинетической энергии равно работе всех сил, действующих на тело.
- Кинетическая энергия измеряется в тех же единицах, что и работа.
- Закон сохранения и превращения механической энергии
- Работа, мощность и энергия
- Движение и силы
- Давление в физике
- Взаимодействие тел
- Механическая энергия и работа
- Золотое правило механики
- Потенциальная энергия