Как найти скорость движения заряженных частиц

Пусть в однородном магнитном поле, индукция которого begin mathsize 18px style B with rightwards arrow on top end style, движется частица со скоростью begin mathsize 18px style upsilon with rightwards arrow on top end style, направленной перпендикулярно линиям индукции. Масса частицы m и заряд q. Так как сила Лоренца begin mathsize 18px style F with rightwards arrow on top subscript straight Л end style перпендикулярна скорости begin mathsize 18px style upsilon with rightwards arrow on top end style движения частицы (см. рис. 170), то эта сила изменяет только направление скорости, сообщая частице центростремительное ускорение, модуль которого согласно второму закону Ньютона:

begin mathsize 18px style a equals F subscript straight Л over m equals fraction numerator B q upsilon over denominator m end fraction. end style

В результате частица движется по окружности, радиус которой можно определить из формулы begin mathsize 18px style a equals upsilon squared over R end style:

begin mathsize 18px style R equals upsilon squared over a equals fraction numerator upsilon squared m over denominator B q upsilon end fraction equals fraction numerator m upsilon over denominator B q end fraction. end style

Период Т обращения частицы, движущейся по окружности в однородном магнитном поле:

begin mathsize 18px style T equals fraction numerator 2 straight pi R over denominator upsilon end fraction equals fraction numerator 2 straight pi over denominator upsilon end fraction times fraction numerator m upsilon over denominator B q end fraction equals fraction numerator 2 straight pi m over denominator B q end fraction. end style

(30.2)

Как следует из выражения (30.2), период обращения частицы не зависит от модуля скорости её движения и радиуса траектории, а определяется только модулем заряда частицы, её массой и значением индукции магнитного поля.

От теории к практике

В однородном магнитном поле, модуль индукции которого В = 4,0 мТл, перпендикулярно линиям индукции поля движется электрон. Чему равен модуль ускорения электрона, если модуль скорости его движения begin mathsize 18px style upsilon equals 2 comma 5 times 10 to the power of 6 space straight м over straight с end style? Масса и модуль заряда электрона mе = 9,1 · 10–31 кг и е = 1,6 · 10–19 Кл соответственно.

Материал повышенного уровня

Подобное явление происходит в магнитном поле Земли, которое является защитой для всего живого от потоков заряженных частиц из космического пространства. Движущиеся с огромными скоростями заряженные частицы из космоса захватываются магнитным полем Земли и образуют так называемые радиационные пояса (рис. 170.2), в которых частицы перемещаются по винтообразным траекториям между северным и южным магнитными полюсами туда и обратно за промежуток времени порядка долей секунды. Лишь в полярных областях некоторая часть частиц вторгается в верхние слои атмосферы, вызывая полярные сияния (рис. 170.3).

Если заряженная частица в момент возникновения внешнего электрического поля покоилась, то fraction numerator m v squared over denominator 2 end fraction equals q U, где U — напряжение между точками, в которых находилась частица в моменты возникновения внешнего электрического поля и выхода из него, q — модуль заряда частицы. Поэтому модуль скорости частицы при выходе из электрического поля:

v equals square root of fraction numerator 2 q U over denominator m end fraction end root.

Если после этого частица попадает в однородное магнитное поле, индукция B with rightwards arrow on top которого перпендикулярна направлению её скорости, то радиус окружности, по дуге которой будет двигаться частица, R equals fraction numerator m v over denominator B q end fraction, откуда

q over m equals fraction numerator 2 U over denominator R squared B squared end fraction.

Величину q over m называют удельным зарядом частицы. Поэтому если опытным путём определить радиус траектории движения частицы в магнитном поле, то, зная индукцию магнитного поля и ускоряющее напряжение электрического поля, можно рассчитать удельный заряд частицы. Этот метод используют при конструировании приборов, которые называют масс–спектрометрами.

Интересно знать

Поскольку сила Лоренца направлена под углом 90° к скорости движения заряженной частицы в каждой точке траектории (рис. 171), то работа этой силы при движении заряженной частицы в магнитном поле равна нулю. Поэтому кинетическая энергия частицы, движущейся в стационарном (не изменяющемся во времени) магнитном поле, не изменяется, т. е. стационарное магнитное поле нельзя использовать для ускорения заряженных частиц.

Увеличение кинетической энергии частицы, т. е. её разгон, возможно под действием электрического поля (в этом случае изменение кинетической энергии частицы равно работе силы поля). Поэтому в современных ускорителях (рис. 172) заряженных частиц электрическое поле используют для ускорения, а магнитное — для «формирования» траектории движения заряженных частиц.

img

img

1. Как определить модуль силы, действующей со стороны магнитного поля на движущуюся в нём заряженную частицу?

2. Как определяют направление силы Лоренца?

3. Заряженная частица движется в однородном магнитном поле со скоростью, направленной перпендикулярно линиям индукции. По какой траектории движется частица?

4. От чего зависит период обращения заряженной частицы в однородном магнитном поле?

Материал повышенного уровня

5. Почему сила Лоренца изменяет направление скорости движения частицы, но не влияет на её модуль?

Рис.
Рис. 172.1

6. На рисунке 172.1 представлены траектории движения двух частиц, имеющих одинаковые заряды. Частицы влетают в однородное магнитное поле из одной точки А с одинаковыми скоростями. Определите знак заряда частиц. Объясните причину несовпадения траекторий их движения.

Как известно, электрическое поле принято характеризовать величиной силы, с которой оно действует на пробный единичный электрический заряд. Магнитное поле традиционно характеризуют силой, с которой оно действует на проводник с «единичным» током. Однако при его протекании происходит упорядоченное движение заряженных частиц в магнитном поле. Поэтому мы можем определить магнитное поле B в какой-то точке пространства с точки зрения магнитной силы FB, которую поле оказывает на частицу при ее движении в нем со скоростью v.

Общие свойства магнитной силы

Эксперименты, в которых наблюдалось движение заряженных частиц в магнитном поле, дают такие результаты:

  • Величина FB магнитной силы, действующей на частицу пропорциональна заряду q и скорости v частицы.
  • Если движение заряженной частицы в магнитном поле происходит параллельно вектору этого поля, то сила, действующая на нее, равна нулю.
  • Когда вектор скорости частицы составляет любой Угол θ ≠ 0 с магнитным полем, то сила действует в направлении, перпендикулярном к v и B; то есть, FB перпендикулярна плоскости, образованной v и B (см.рис. ниже).
  • Величина и направление FB зависит от скорости частицы и от величины и направления магнитного поля B.
  • Направление силы, действующей на положительный заряд, противоположно направлению такой же силы, действующей на отрицательный заряд, движущийся в ту же сторону.
  • Величина магнитной силы, действующей на движущуюся частицу, пропорциональна sinθ угла θ между векторами v и B.

Сила Лоренца

Мы можем суммировать вышеперечисленные наблюдения путем записи магнитной силы в виде FB = qv х B.

Когда происходит движение заряженной частицы в магнитном поле, сила Лоренца FB при положительном q направлена вдоль векторного произведения v x B. Оно по определению перпендикулярно как v, так и B. Считаем это уравнение рабочим определением магнитного поля в некоторой точке в пространстве. То есть оно определяется в терминах силы, действующей на частицу при ее движении. Таким образом, движение заряженной частицы в магнитном поле кратко можно определить как перемещение под действием этой силы.

Заряд, движущийся со скоростью v в присутствии как электрического поля E, так и магнитного B, испытывает действие как электрической силы qE, так и магнитной qv х В. Полное приложенное к нему воздействие равно FЛ = qE + qv х В. Его принято называть так: полная сила Лоренца.

Движение заряженных частиц в однородном магнитном поле

Рассмотрим теперь частный случай положительно заряженной частицы, движущейся в однородном поле, с начальным вектором скорости, перпендикулярным ему. Предположим, что вектор B поля направлен за страницу. Рисунок ниже показывает, что частица движется по кругу в плоскости, перпендикулярной к B.

движение заряженной частицы в магнитном поле по окружности

Движение заряженной частицы в магнитном поле по окружности происходит потому, что магнитная сила FB направлена под прямым углом к v и B и имеет постоянную величину qvB. Поскольку сила отклоняет частицы, направления v и FB изменяются непрерывно, как показано на рисунке. Так как FB всегда направлена к центру окружности, она изменяет только направление v, а не ее величину. Как показано на рисунке, движение положительно заряженной частицы в магнитном поле происходит против часовой стрелки. Если q будет отрицательным, то вращение произойдет по часовой стрелке.

Динамика кругового движения частицы

Какие же параметры характеризуют вышеописанное движение заряженной частицы в магнитном поле? Формулы для их определения мы можем получить, если возьмем предыдущее уравнение и приравняем FB центробежной силе, требуемой для сохранения круговой траектории движения:

движение заряженной частицы в магнитном поле формулы

То есть радиус окружности пропорционален импульсу mv частицы и обратно пропорционален величине ее заряда и величине магнитного поля. Угловая скорость частицы

движение заряженной частицы в магнитном поле формулы

Период, с которым происходит движение заряженной частицы в магнитном поле по кругу, равен длине окружности, разделенной на ее линейную скорость:

движение заряженной частицы в магнитном поле формулы

Эти результаты показывают, что угловая скорость частицы и период кругового движения не зависит от линейной скорости или от радиуса орбиты. Угловую скорость ω часто называют циклотронной частотой (круговой), потому что заряженные частицы циркулируют с ней в типе ускорителя под названием циклотрон.

Движение частицы под углом к вектору магнитного поля

Если вектор v скорости частицы образует некоторый произвольный угол по отношению к вектору B, то ее траектория является винтовой линией. Например, если однородное поле будет направлено вдоль оси х, как показано на рисунке ниже, то не существует никакой компоненты магнитной силы FB в этом направлении. В результате составляющая ускорения ax= 0, и х-составляющая скорости движения частицы является постоянной. Однако магнитная сила FB = qv х В вызывает изменение во времени компонентов скорости vy и vz. В результате имеет место движение заряженной частицы в магнитном поле по винтовой линии, ось которой параллельна магнитному полю. Проекция траектории на плоскости yz (если смотреть вдоль оси х) представляет собой круг. Проекции ее на плоскости ху и xz являются синусоидами! Уравнения движения остаются такими же, как и при круговой траектории, при условии, что v заменяется на ν = у2 + νz2).

движение заряженной частицы в магнитном поле по винтовой линии

Неоднородное магнитное поле: как в нем движутся частицы

Движение заряженной частицы в магнитном поле, являющемся неоднородным, происходит по сложным траекториям. Так, в поле, величина которого усиливается по краям области его существования и ослабляется в ее середине, как, например, показано на рисунке ниже, частица может колебаться вперед и назад между конечными точками.

движение заряженной частицы в магнитном поле

Заряженная частица стартует с одного конца винтовой линии, накрученной вдоль силовых линий, и движется вдоль нее, пока не достигнет другого конца, где она поворачивает свой ​​путь обратно. Эта конфигурация известна как “магнитная бутылка”, поскольку заряженные частицы могут быть захвачены в нее. Она была использована, чтобы ограничить плазму, газ, состоящий из ионов и электронов. Такая схема плазменного заключения может выполнять ключевую роль в контроле ядерного синтеза, процессе, который представит нам почти бесконечный источник энергии. К сожалению, “магнитная бутылка” имеет свои проблемы. Если в ловушке большое число частиц, столкновения между ними вызывают утечку их из системы.

Как Земля влияет на движение космических частиц

Околоземные пояса Ван Аллена состоят из заряженных частиц (в основном электронов и протонов), окружающих Землю в форме тороидальных областей (см. рис. ниже). Движение заряженной частицы в магнитном поле Земли происходит по по спирали вокруг силовых линий от полюса до полюса, покрывая это расстояние в несколько секунд. Эти частицы идут в основном от Солнца, но некоторые приходят от звезд и других небесных объектов. По этой причине они называются космическими лучами. Большинство их отклоняется магнитным полем Земли и никогда не достигает атмосферы. Тем не менее, некоторые из частиц попадают в ловушку, именно они составляют пояса Ван Аллена. Когда они находятся над полюсами, иногда происходят столкновения их с атомами в атмосфере, в результате чего последние излучают видимый свет. Так возникают красивые Полярные сияния в Северном и Южном полушариях. Они, как правило, происходят в полярных регионах, потому что именно здесь пояса Ван Аллена расположены ближе всего к поверхности Земли.

Иногда, однако, солнечная активность вызывает большее число заряженных частиц, входящих в эти пояса, и значительно искажает нормальные силовые линии магнитного поля, связанные с Землей. В этих ситуациях полярное сияние можно иногда увидеть в более низких широтах.

движение заряженной частицы в магнитном поле земли

Селектор скоростей

Во многих экспериментах, в которых происходит движение заряженных частиц в однородном магнитном поле, важно, чтобы все частицы двигались с практически одинаковой скоростью. Это может быть достигнуто путем применения комбинации электрического поля и магнитного поля, ориентированного так, как показано на рисунке ниже. Однородное электрическое поле направлено вертикально вниз (в плоскости страницы), а такое же магнитное поле приложено в направлении, перпендикулярном к электрическому (за страницу).

движение заряженных частиц в однородном магнитном поле

Для положительного q магнитная сила FB=qv х В направлена вверх, а электрическая сила qE – вниз. Когда величины двух полей выбраны так, что qE = qvB, то частица движется по прямой горизонтальной линии через область поля. Из выражения qE = qvB мы находим, что только частицы, имеющие скорость v=E/B, проходят без отклонения через взаимно перпендикулярные электрическое и магнитное поля. Сила FB, действующая на частицы, движущиеся со скоростью большей, чем v=E/B, оказывается больше электрической, и они отклоняются вверх. Те же из них, которые движутся с меньшей скоростью, отклоняются вниз.

Масс-спектрометр

Этот прибор разделяет ионы в соответствии с соотношением их массы к заряду. По одной из версий этого устройства, известного как масс-спектрометр Бэйнбриджа, пучок ионов проходит сначала через селектор скоростей и затем поступает во второе поле B0, также однородное и имеющее то же направление, что и поле в селекторе (см. рис. ниже). После входа в него движение заряженной частицы в магнитном поле происходит по полукругу радиуса r перед ударом в фотопластинку Р. Если ионы заряжены положительно, луч отклоняется вверх, как показано на рисунке. Если ионы заряжены отрицательно, луч будет отклоняться вниз. Из выражения для радиуса круговой траектории частицы, мы можем найти отношение m/q

движение заряженной частицы в магнитном поле формулы

и затем, используя уравнение v=E/B, мы находим, что

движение заряженной частицы в магнитном поле формулы

Таким образом, мы можем определить m/q путем измерения радиуса кривизны, зная поля величин B, B0, и E. На практике, так обычно измеряет массы различных изотопов данного иона, поскольку все они несут один заряд q. Таким образом, отношение масс может быть определено, даже если q неизвестно. Разновидность этого метода была использована Дж. Дж. Томсоном (1856-1940) в 1897 году для измерения отношение е/mе для электронов.

Циклотрон

Он может ускорить заряженные частицы до очень высоких скоростей. И электрические, и магнитные силы играют здесь ключевую роль. Полученные высокоэнергетические частицы используются для бомбардировки атомных ядер, и тем самым производят ядерные реакции, представляющие интерес для исследователей. Ряд больниц использует циклотронное оборудование для получения радиоактивных веществ для диагностики и лечения.

движение заряженной частицы в магнитном поле по спирали

Схематическое изображение циклотрона показан на рис. ниже. Частицы движутся внутри двух полуцилиндрических контейнеров D 1 и D 2, называемых дуантами. Высокочастотная переменная разность потенциалов приложена к дуантам, разделенным зазором, а однородное магнитное поле направлено вдоль оси циклотрона (южный полюс его источника на рис. не показан).

Положительный ион, выпущенный из источника в точке Р вблизи центра устройства в первом дуанте, перемещается по полукруглой траектории (показана пунктирной красной линией на рисунке) и прибывает обратно в щель в момент времени Т / 2, где Т – время одного полного оборота внутри двух дуантов.

Частота приложенной разности потенциалов регулируется таким образом, что полярность дуантов меняется на обратную в тот момент времени, когда ион выходит из одного дуанта. Если приложенная разность потенциалов регулируется таким образом, что в этот момент D2 получает более низкий электрический потенциал, чем D1 на величину qΔV, то ион ускоряется в зазоре перед входом в D2, и его кинетической энергии увеличивается на величину qΔV. Затем он движется вокруг D2 по полукруглой траектории большего радиуса (потому что его скорость увеличилась).

Через некоторое время T / 2 он снова поступает в зазор между дуантами. К этому моменту полярность дуантов снова изменяется, и иону дается еще один “удар” через зазор. Движение заряженной частицы в магнитном поле по спирали продолжается, так что при каждом проходе одного дуанта ион получает дополнительную кинетическую энергию, равную qΔV. Когда радиус его траектории становится близким к радиусу дуантов, ион покидает систему через выходную щель. Важно отметить, что работа циклотрона основана на том, что Т не зависит от скорости иона и радиуса круговой траектории. Мы можем получить выражение для кинетической энергии иона, когда он выходит из циклотрона в зависимости от радиуса R дуантов. Мы знаем, что скорость кругового движения частицы – ν = qBR /m. Следовательно, ее кинетическая энергия

движение заряженной частицы в магнитном поле формулы

Когда энергии ионов в циклотрон превышает около 20 МэВ, в игру вступают релятивистские эффекты. Мы отмечаем, что T увеличивается, и что движущиеся ионы не остаются в фазе с приложенной разностью потенциалов. Некоторые ускорители решают эту проблему, изменяя период прикладываемой разности потенциалов, так что она остается в фазе с движущимися ионами.

Эффект Холла

Когда проводник с током помещается в магнитное поле, то дополнительная разность потенциалов создается в направлении, перпендикулярном к направлению тока и магнитного поля. Это явление, впервые наблюдаемое Эдвином Холлом (1855-1938) в 1879 году, известно как эффект Холла. Он всегда наблюдается, когда происходит движение заряженной частицы в магнитном поле. Это приводит к отклонению носителей заряда на одной стороне проводника в результате магнитной силы, которую они испытывают. Эффект Холла дает информацию о знаке носителей заряда и их плотности, он также может быть использован для измерения величины магнитных полей.

Устройство для наблюдения эффекта Холла состоит из плоского проводника с током I в направлении х, как показано на рисунке ниже.

движение заряженной частицы в магнитном поле сила лоренца

Однородное поле B приложено в направлении у. Если носителями заряда являются электроны, движущиеся вдоль оси х со скоростью дрейфа vd, то они испытывают направленную вверх (с учетом отрицательного q) магнитную силу FB = qvd х B, отклоняются вверх и накапливаются на верхнем краю плоского проводника, в результате чего появляется избыток положительного заряда на нижнем краю. Это накопление заряда на краях увеличивается до тех пор, пока электрическая сила, появившаяся в результате разделения зарядов, не уравновешивает магнитную силу, действующую на носители. Когда это равновесие будет достигнуто, электроны больше не отклоняются вверх. Чувствительный вольтметр или потенциометр, подключенный к верхней и нижней граням проводника, может измерить разность потенциалов, известную как ЭДС Холла.

Как найти скорость частицы

Часто при изучении школьного курса электромагнетизма или при научных исследованиях возникает необходимость установить скорость, с которой двигалась какая-нибудь элементарная частица, например, электрон или протон.

Как найти скорость частицы

Инструкция

Допустим, дана следующая задача: электрическое поле с напряженностью Е и магнитное поле с индукцией В, возбуждены перпендикулярно друг другу. Перпендикулярно им, равномерно и прямолинейно движется заряженная частица с зарядом q и скоростью v. Требуется определить ее скорость.

Решение очень простое. Если частица по условиям задачи движется равномерно и прямолинейно, значит, ее скорость v постоянная. Таким образом, в соответствии с первым законом Ньютона, величины действующих на нее сил взаимно уравновешены, то есть в сумме они равны нулю.

Какие силы действуют на частицу? Во-первых, электрическая составляющая силы Лоренца, которая вычисляется по формуле: Fэл = qE. Во-вторых, магнитная составляющая силы Лоренца, которую вычисляют по формуле: Fм = qvBSinα. Поскольку по условиям задачи частица движется перпендикулярно магнитному полю, угол α = 90 градусам, и соответственно, Sinα = 1. Тогда магнитная составляющая силы Лоренца Fм = qvB.

Электрическая и магнитная составляющие уравновешивают друг друга. Следовательно, величины qE и qvB численно равны. То есть Е = vB. Следовательно, скорость частицы вычисляется по такой формуле: v = E/B. Подставив в формулу значения Е и В, вы вычислите искомую скорость.

Или, например, у вас такая задача: частица с массой m и зарядом q, двигаясь со скоростью v, влетела в электромагнитное поле. Его силовые линии (как электрические, так и магнитные) параллельны. Частица влетала под углом α к направлению силовых линий и после этого началась двигаться с ускорением а. Требуется вычислить, с какой скоростью она двигалась первоначально. Согласно второму закону Ньютона, ускорение тела с массой m вычисляется по формуле: a = F/m.

Массу частицы вы знаете по условиям задачи, а F – результирующая (суммарная) величина сил, действующих на нее. В данном случае на частицу действуют электрическая и магнитная оставляющие силы Лоренца: F = qE + qBvSinα.

Но поскольку силовые линии полей (по условию задачи) параллельны, то вектор электрической силы перпендикулярен вектору магнитной индукции. Следовательно, суммарная сила F вычисляется по теореме Пифагора: F = [(qE)^2 + (qvBSinα)^2]^1/2

Преобразуя, получите: am = q[E^2 +B^2v^2Sin^2α]^1/2. Откуда: v^2 = (a^2m^2 – q^2E^2)/(q^2B^2Sin^2α). После вычисления и извлечения квадратного корня, получите искомую величину v.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Движение заряженных
частиц в магнитном поле.

На
заряженную частицу в электростатическом
поле действует кулоновская сила, которую
можно найти, зная напряженность поля в
данной точке:  .
Эта сила сообщает ускорение

  

где
m — масса заряженной частицы. Как видно,
направление ускорения будет совпадать
с направлением  ,
если заряд частицы положителен (q > 0),
и будет противоположно  ,
если заряд отрицателен (q<0).

Если
электростатическое поле однородное
 =
const), то ускорение  a= const и частица
будет совершать равноускоренное
движение
 (при
отсутствии других сил).

Вид
траектории частицы зависит от начальных
условий. Если вначале заряженная частица
покоилась  или
ее начальная скорость сонаправлена с
ускорением , то частица будет совершать
равноускоренное прямолинейное движение
вдоль поля и ее скорость будет расти.
Если  ,
то частица будет тормозиться в этом
поле.

Если
угол между начальной скоростью и
ускорением острый 0 < α < 90° (или тупой),
то заряженная
частица
  будет
двигаться по параболе.
  

Во
всех случаях при движении заряженной
частицы будет изменяться модуль скорости,
а следовательно, и кинетическая энергия
частицы.

1.  Заряженная
частица влетает в магнитное поле со
скоростью , направленной вдоль поля
 или противоположно
  направлению
магнитной индукции поля
  .

В
этих случаях сила Лоренца     и
частица будет продолжать двигаться
равномерно прямолинейно.

2.
Заряженная частица движется перпендикулярно
линиям магнитной индукции

тогда
сила Лоренца  ,
следовательно, и сообщаемое ускорение
будут постоянны по модулю и перпендикулярны
к скорости частицы.

В
результате частица
будет двигаться по окружности
 ,
радиус которой можно найти на основании
второго закона Ньютона:

  

Отношение
     —
называют удельным зарядом частицы.

  

Период
вращения частицы

то
есть период вращения не зависит от
скорости частицы и радиуса траектории.

3.
Скорость заряженной частицы направлена
под углом  к вектору.

  

Движение
частицы можно представить в виде
суперпозиции равномерного прямолинейного
движения вдоль поля со скоростью  и
движения по окружности с постоянной по
модулю скоростью  в плоскости,
перпендикулярной полю.

Радиус
окружности определяется аналогично
предыдущему случаю, только надо  заменить
 на  ,
то есть

В
результате сложения этих движений
возникает движение по винтовой линии,
ось которой параллельна магнитному
полю. Шаг винтовой линии

Направление,
в котором закручивается спираль, зависит
от знака заряда частицы.

Если
скорость заряженной частицы составляет
угол α с направлением вектора
   неоднородного
магнитного поля, индукция которого
возрастает в направлении движения
частицы, тο R и h уменьшаются с ростом B.
На этом основана фокусировка заряженных
частиц в магнитном поле.

Если
на движущуюся заряженную частицу помимо
магнитного поля с индукцией  действует
одновременно и электростатическое поле
с напряженностью , то равнодействующая
сила, приложенная к частице, равна
векторной сумме электрической силы и
силы Лоренца:  .
Характер движения и вид траектории
зависят в данном случае от соотношения
этих сил и от направления электростатического
и магнитного полей.

Соседние файлы в папке fizika

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Сегодня у нас на рассмотрении вопрос касающийся электричества, а именно: с какой скоростью электроны движутся по проводам.

С какой скоростью электроны "бегают" по проводам?

Думаю ни для никого не секрет, что носителями заряда в металле являются свободные электроны, которых там очень много. Если человек задастся сегодняшним вопросом, то может ответить, что скорость электронов в проводнике очень большая, сравнимая со скоростью света. Ведь как только мы переключаем выключатель, чтобы включить свет в комнате, тот в свою очередь появляется мгновенно. Можно простить обывателя за такой вывод, ведь мало кто изучал физику на серьезном уровне.

С какой скоростью электроны "бегают" по проводам?

Сейчас мы с вами разберемся, где зарыта правда. Делать выводы мы будем исходя из классической теории металлов, не учитывая квантовых аспектов. В чем же суть классической теории металлов?

Классическую теорию металлов разработал Пауль Друде. Он предположил, что электроны проводимости в металле ведут себя словно молекулы идеального газа и в промежутках между соударениями движутся свободно. Но в отличие от молекул газа, пробег которых определяется соударениями друг с другом, электроны сталкиваются преимущественно с ионами, образующими кристаллическую решетку металла. Эти столкновения приводят к установлению теплового равновесия между электронами и кристаллической решеткой.

С какой скоростью электроны "бегают" по проводам?

Полагая, что на электронный газ могут быть распространены результаты кинетической теории газов, можно оценить их среднюю скорость теплового движения. Вычисляется она по следующей формуле:

k- постоянная Больцмана T- температура в Кельвинах m- масса электрона
k- постоянная Больцмана T- температура в Кельвинах m- масса электрона

Подставим все величины, температуру примем за комнатную (27 градусов Цельсия или 300 Кельвин)

С какой скоростью электроны "бегают" по проводам?

И мы получаем величину хоть как-то сравнимую со скоростью света (скорость света равняется 3*10^8 м/сек). Но мы посчитали скорость их хаотического, то есть беспорядочного движения. А насколько мы знаем, электрический ток – это упорядоченное движение частиц. Поэтому я предлагаю рассчитать максимально возможную скорость упорядоченного движения электронов.

С какой скоростью электроны "бегают" по проводам?

Чтобы мы могли говорить боле общо, речь вести будем не о токе, а о плотности тока. Это величина равная силе тока, которая проходит через какое-либо поперечное сечение проводника (обозначается она буквой j). Например: пусть по проводу с площадью поперечного сечения 2 мм^2 течет ток силой 1 Ампер. Тогда плотность тока в данном случае будет составлять j= 1/2 = 0,5 А/мм^2. Плотность тока вычисляется по следующей формуле:

n - концентрация электронов в единице объема e - заряд электрона u - средняя скорость упорядоченного движения.
n – концентрация электронов в единице объема e – заряд электрона u – средняя скорость упорядоченного движения.
Пример
Пример

Максимально возможная конструктивная плотность тока составляет около 10 А/мм^2, если ток выше этого значения, то медные провода просто начнут плавиться. Ну и среднее значение концентрации электронов в металле составляет около 10^23 в каждом кубическом сантиметре. Выразив все в одной системе единиц и подставив в это уравнение, найдем максимальное значение скорости упорядоченного движения:

С какой скоростью электроны "бегают" по проводам?

И как вы видите она составляет всего 1 мм в секунду! Явно не по этой причине лампочка загорается так быстро. Но мы так и не ответили на вопрос: почему так происходит?

На самом деле ответ на данный вопрос, в отличие от предыдущего, довольно прост. Представьте себе огромную очередь битком набитую людьми. И пусть с конца очереди кто-то большой и массивный начал сильно толкать всех вперед. В этом случае начало очереди довольно быстро придет в движение, хоть и хулиган, который толкал всех сзади, двигался очень медленно.

С какой скоростью электроны "бегают" по проводам?

Тоже самое происходит в проводах: когда электроны от источника начали свое движение, их импульс быстро, практически со скоростью света, передался электронам у приемника. Только в очереди людей вы передаете взаимодействие путем толчков, а электроны взаимодействуют при помощи электромагнитных сил.

С какой скоростью электроны "бегают" по проводам?

Думаю теперь тема полностью раскрыта. Поддержите статью вашим драгоценным лайком, это очень поможет каналу! А также обязательно подписывайтесь на канал, чтобы не пропускать новых выпусков! Всего вам доброго и до скорых встреч!

Добавить комментарий