Скорость | |
---|---|
Размерность | LT−1 |
Единицы измерения | |
СИ | м/с |
СГС | см/с |
Примечания | |
вектор |
Классическая механика |
---|
История… |
Фундаментальные понятия
|
Формулировки
|
Разделы
|
Учёные
|
См. также: Портал:Физика |
Ско́рость (стандартное обозначение: , от англ. velocity, исходно от лат. vēlōcitās) — векторная физическая величина, характеризующая быстроту перемещения и направление движения материальной точки относительно выбранной системы отсчёта. По определению, равна производной радиус-вектора точки по времени[1]. В СИ измеряется в метрах в секунду.
В русском языке этим же словом называют и скалярную величину — либо модуль вектора скорости, либо алгебраическую скорость точки, то есть проекцию вектора на касательную к траектории точки[2]. В некоторых других языках для скалярной скорости имеются отдельные наименования, например англ. speed, лат. celeritas[значимость факта?].
Термин «скорость» используют в науке и в широком смысле, понимая под ним быстроту изменения какой-либо величины (не обязательно радиус-вектора) в зависимости от другой (чаще подразумеваются изменения во времени, но также в пространстве или любой другой). Так, например, говорят об угловой скорости, скорости изменения температуры, скорости химической реакции, групповой скорости, скорости соединения и т. д. Математически «быстрота изменения» характеризуется производной рассматриваемой величины.
Понятие «скорость» в классической механике[править | править код]
Случай материальной точки[править | править код]
Вектор скорости (мгновенной скорости) материальной точки в каждый момент времени определяется как производная по времени радиус-вектора текущего положения этой точки, так что[3]:
где — единичный вектор касательной, проходящей через текущую точку траектории (он направлен в сторону возрастания дуговой координаты движущейся точки), а — проекция вектора скорости на направление упомянутого единичного вектора, равная производной дуговой координаты по времени и именуемая алгебраической скоростью точки. В соответствии с приведёнными формулами, вектор скорости точки всегда направлен вдоль касательной, а алгебраическая скорость точки может отличаться от модуля этого вектора лишь знаком[4]. При этом:
Пройденный точкой путь за промежуток времени от до , находится как
- .
Когда алгебраическая скорость точки всё время неотрицательна, путь совпадает с приращением дуговой координаты за время от до (если же при этом начало отсчёта дуговой координаты совпадает с начальным положением движущейся точки, то будет просто совпадать с ).
Иллюстрация средней и мгновенной скорости
Если алгебраическая скорость точки не меняется с течением времени (или, что то же самое, модуль скорости постоянен), то движение точки называется[5] равномерным (алгебраическое касательное ускорение при этом тождественно равно нулю).
Предположим, что . Тогда при равномерном движении скорость точки (алгебраическая) будет равна отношению пройденного пути к промежутку времени , за который этот путь был пройден:
В общем же случае аналогичные отношения
- и
определяют соответственно среднюю скорость точки[6] и её среднюю алгебраическую скорость; если термином «средняя скорость» пользуются, то о величинах и говорят (чтобы избежать путаницы) как о мгновенных скоростях.
Различие между двумя введёнными выше понятиями средней скорости состоит в следующем. Во-первых, — вектор, а — скаляр. Во-вторых, эти величины могут не совпадать по модулю. Так, пусть точка движется по винтовой линии и за время своего движения проходит один виток; тогда модуль средней скорости этой точки будет равен отношению шага винтовой линии (то есть расстояния между её витками) ко времени движения, а модуль средней алгебраической скорости — отношению длины витка ко времени движения.
Случай тела конечных размеров[править | править код]
Для тела протяжённых размеров понятие «скорости» (тела как такового, а не одной из его точек) не может быть определено; исключение составляет случай мгновенно-поступательного движения. Говорят, что абсолютно твёрдое тело совершает мгновенно-поступательное движение, если в данный момент времени скорости всех составляющих его точек равны[7]; тогда можно, разумеется, положить скорость тела равной скорости любой из его точек. Так, например, равны скорости всех точек кабинки колеса обозрения (если, конечно, пренебречь колебаниями кабинки).
В общем же случае скорости точек, образующих твёрдое тело, не равны между собой. Так, например, для катящегося без проскальзывания колеса модули скоростей точек на ободе относительно дороги принимают значения от нуля (в точке касания с дорогой) до удвоенного значения скорости центра колеса (в точке, диаметрально противоположной точке касания). Распределение скоростей точек абсолютно твёрдого тела описывается кинематической формулой Эйлера.
Начальная скорость[править | править код]
Начальная скорость () — это скорость материальной точки в момент, принимаемый за нуль по шкале времени (то есть при )[8].
Истолкование как скорости, с которой тело начинает движение, не вполне корректно, поскольку покоившееся тело в принципе не может начать двигаться с отличной от нуля скоростью. При такой формулировке неявно подразумевается, что в короткий промежуток времени действовала большая по величине сила, на пренебрежимо малом участке разогнавшая тело до скорости к моменту .
Запись скорости в разных системах координат[править | править код]
В декартовых координатах[править | править код]
В прямоугольной декартовой системе координат[9]:
При этом , следовательно,
Таким образом, компоненты вектора скорости — это скорости изменения соответствующих координат материальной точки[9]:
В цилиндрических координатах[править | править код]
Скорость в полярных координатах
В цилиндрических координатах [9]:
носит название поперечной скорости, — радиальной.
В сферических координатах[править | править код]
В сферических координатах [9]:
Для описания плоского движения иногда используются полярные координаты, которые можно рассматривать как частный случай цилиндрических (c const) или сферических (с ).
Физическая и координатная скорости[править | править код]
В аналитической механике вышеприведённые и другие криволинейные координаты играют роль обобщённых координат; изменение положение тела описывается их зависимостью от времени. Производные от координат тела по времени при этом называются координатными скоростями (они могут иметь размерность отличную от м/c). Физической же скоростью является производная радиус-вектора по времени, а её составляющие в каждом случае задаются всем стоящим перед соответствующим ортом выражением.
Некоторые связанные со скоростью понятия[править | править код]
Ряд величин в классической механике выражается через скорость.
Импульс, или количество движения, — это мера механического движения точки, которая определяется как произведение массы точки на её скорость
- .
Импульс является векторной величиной, его направление совпадает с направлением скорости. Для замкнутой системы выполняется закон сохранения импульса.
От скорости также зависит кинетическая энергия механической системы. Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения[10][11]:
где — масса тела, — скорость центра масс тела, — момент инерции тела, — угловая скорость тела.
Изменение скорости во времени характеризуется ускорением. Ускорение отражает изменение скорости как по величине (тангенциальное ускорение), так и по направлению (центростремительное ускорение)[12]:
где — радиус кривизны траектории точки.
Преобразования Галилея и Лоренца для скорости[править | править код]
В классической механике Ньютона скорости преобразуются при переходе из одной инерциальной системы отсчёта в другую согласно преобразованиям Галилея. Если скорость тела в системе отсчёта была равна , а скорость системы отсчёта относительно системы отсчёта равна , то скорость тела при переходе в систему отсчёта будет равна[9]
Для скоростей, близких к скорости света, преобразования Галилея становятся несправедливы. При переходе из системы в систему необходимо использовать преобразования Лоренца для скоростей[9]:
в предположении, что скорость направлена вдоль оси системы . В пределе нерелятивистских скоростей преобразования Лоренца сводятся к преобразованиям Галилея.
Скорость в релятивистской механике[править | править код]
Четырёхмерная скорость[править | править код]
Одним из обобщений понятия скорости является четырёхмерная скорость (скорость в релятивистской механике[9]). В специальной теории относительности каждому событию ставится в соответствие точка пространства Минковского, три координаты которого представляют собой декартовы координаты трёхмерного евклидова пространства, а четвёртая ― временну́ю координату , где ― скорость света, ― время события. Компоненты четырёхмерного вектора скорости связаны с проекциями трёхмерного вектора скорости следующим образом[9]:
Четырёхмерный вектор скорости является времениподобным вектором, то есть лежит внутри светового конуса[9].
Существует также понятие четырёхимпульс, временна́я компонента которого равна (где — энергия). Для четырёхмерного импульса выполняется равенство[13]:
- ,
где — четырёхмерная скорость.
Понятие «быстрота»[править | править код]
В релятивистской механике угол между касательной к мировой линии частицы и осью времени в базовой системе отсчёта носит название быстроты (обозначается ). Быстрота выражается формулой
где — ареатангенс, или гиперболический арктангенс. Быстрота стремится к бесконечности когда скорость стремится к скорости света. В отличие от скорости, для которой необходимо пользоваться преобразованиями Лоренца, быстрота аддитивна, то есть
где — быстрота системы отсчёта относительно системы отсчёта .
Некоторые скорости[править | править код]
Космические скорости[править | править код]
Анализ первой и второй космической скорости по Исааку Ньютону. Снаряды A и B падают на Землю. Снаряд C выходит на круговую орбиту, D — на эллиптическую. Снаряд E улетает в открытый космос
Небесная механика изучает поведение тел Солнечной системы и других небесных тел. Движение искусственных космических тел изучается в астродинамике. При этом рассматривается несколько вариантов движения тел, для каждого из которых необходимо придание определённой скорости. Для вывода спутника на круговую орбиту ему необходимо придать первую космическую скорость (например, искусственный спутник Земли); преодолеть гравитационное притяжение позволит вторая космическая скорость (например, объект запущенный с Земли, вышедший за её орбиту, но находящийся в Солнечной системе); третья космическая скорость нужна чтобы покинуть звёздную систему, преодолев притяжение звезды (например, объект запущенный с Земли, вышедший за её орбиту и за пределы Солнечной системы); четвёртая космическая скорость позволит покинуть галактику.
В небесной механике под орбитальной скоростью понимают скорость вращения тела вокруг барицентра системы.
Скорости распространения волн[править | править код]
Скорость звука[править | править код]
Скорость звука — скорость распространения упругих волн в среде, определяется упругостью и плотностью среды. Скорость звука не является постоянной величиной и зависит от температуры (в газах), от направления распространения волны (в монокристаллах). При заданных внешних условиях обычно не зависит от частоты волны и её амплитуды. В тех случаях, когда это не выполняется и скорость звука зависит от частоты, говорят о дисперсии звука. Впервые измерена Уильямом Дерхамом. Как правило, в газах скорость звука меньше, чем в жидкостях, а в жидкостях скорость звука меньше, чем в твёрдых телах, поэтому при сжижении газа скорость звука возрастает.
Отношение скорости течения в данной точке газового потока к местной скорости распространения звука в движущейся среде называется числом Маха по имени австрийского учёного Эрнста Маха. Упрощённо, скорость, соответствующая 1 Маху при давлении в 1 атм (у земли на уровне моря), будет равна скорости звука в воздухе. Движение аппаратов со скоростью, сравнимой со скоростью звука, сопровождается рядом явлений, которые называются звуковой барьер. Скорости от 1,2 до 5 Махов называются сверхзвуковыми, скорости выше 5 Махов — гиперзвуковыми.
Скорость света[править | править код]
Время распространения светового луча в масштабной модели Земля-Луна. Для преодоления расстояния от поверхности Земли до поверхности Луны свету требуется 1,255 секунды.
Скорость света в вакууме — абсолютная величина скорости распространения электромагнитных волн в вакууме. Традиционно обозначается латинской буквой «c» (произносится как [це]). Скорость света в вакууме — фундаментальная постоянная, не зависящая от выбора инерциальной системы отсчёта (ИСО). Она относится к фундаментальным физическим постоянным, которые характеризуют не просто отдельные тела или поля, а свойства пространства-времени в целом. По современным представлениям, скорость света в вакууме — предельная скорость движения частиц и распространения взаимодействий.
Наиболее точное измерение скорости света 299 792 458 ± 1,2 м/с на основе эталонного метра было проведено в 1975 году. Теперь ввиду современного определения метра скорость света считается равной точно 299792458 м/с[14].
Скорость гравитации[править | править код]
Скорость гравитации — скорость распространения гравитационных воздействий, возмущений и волн. До сих пор остаётся не определённой экспериментально, но согласно общей теории относительности должна совпадать со скоростью света.
Единицы измерения скорости[править | править код]
Линейная скорость:
- Метр в секунду, (м/с), производная единица системы СИ
- Километр в час, (км/ч)
- узел (морская миля в час)
- Число Маха, 1 Мах равен скорости звука; Max n в n раз быстрее. Как единица, зависящая от конкретных условий, должна дополнительно определяться.
- Скорость света в вакууме (обозначается c)
Угловая скорость:
- Радианы в секунду, принята в системах СИ и СГС. Физическая размерность 1/с.
- Обороты в секунду (в технике)
- градусы в секунду, грады в секунду
Соотношения между единицами скорости[править | править код]
- 1 м/с = 3,6 км/ч
- 1 узел = 1,852 км/ч = 0,514 м/c
- Мах 1 ~ 330 м/c ~ 1200 км/ч (зависит от условий, в которых находится воздух)
- c = 299 792 458 м/c
Исторический очерк[править | править код]
Две стадии движения брошенного тела по теории Авиценны: отрезок АВ — период «насильственного стремления», отрезок ВС — период «естественного стремления» (падение вертикально вниз)
Автолик из Питаны в IV веке до н. э. определил равномерное движение так: «О точке говорится, что она равномерно перемещается, если в равные времена она проходит равные и одинаковые величины». Несмотря на то, что в определении участвовали путь и время, их отношение считалось бессмысленным[15], так как сравнивать можно было только однородные величины и скорость движения являлась чисто качественным, но не количественным понятием[16]. Живший в то же время Аристотель делил движение на «естественное», когда тело стремится занять своё естественное положение, и «насильственное», происходящее под действием силы. В случае «насильственного» движения произведение величины «двигателя» и времени движения равно произведению величины «движимого» и пройденного пути, что соответствует формуле , или [15]. Этих же взглядов придерживался Авиценна в XI веке, хотя и предлагал другие причины движения[17], а также Герард Брюссельский в конце XII —
начале XIII века. Герард написал трактат «О движении» — первый европейский трактат по кинематике — в котором сформулировал идею определения средней скорости движения тела (при вращении прямая, параллельная оси вращения, движется «одинаково с любой своей точкой», а радиус — «одинаково со своей серединой»)[18].
В 1328 году увидел свет «Трактат о пропорциях или о пропорциях скоростей при движении» Томаса Брадвардина, в котором он нашёл несоответствие в физике Аристотеля и связи скорости с действующими силами. Брадвардин заметил, что по словесной формуле Аристотеля если движущая сила равна сопротивлению, то скорость равна 1, в то время как она должна быть равна 0. Он также представил свою формулу изменения скорости, которая хоть и была не обоснована с физической точки зрения, но представляла собой первую функциональную зависимость скорости от причин движения. Брадвардин называл скорость «количеством движения»[19]. Уильям Хейтсбери, в трактате «О местном движении» ввёл понятие мгновенной скорости. В 1330—1340 годах он и другие ученики Брадвардина доказали так называемое «мертонское правило», которое означает равенство пути при равноускоренном движении и равномерном движении со средней скоростью[20].
Всякая широта движения, униформно приобретаемая или теряемая, соответствует своему среднему градусу, так что столько же в точности будет пройдено благодаря этой приобретаемой широте, сколько и благодаря среднему градусу, если бы тело двигалось всё время с этим средним градусом.
— «Мертонское правило» в формулировке Суайнсхеда[20]
В XIV веке Жан Буридан ввёл понятие импетуса[21], благодаря чему была определена величина изменения скорости — ускорение. Николай Орем, ученик Буридана, предложил считать, что благодаря импетусу ускорение остаётся постоянным (а не скорость, как полагал сам Буридан), предвосхитив, таким образом, второй закон Ньютона[22]. Орем также использовал графическое представление движения. В «Трактате о конфигурации качеств и движения» (1350) он предложил изображать отрезками перпендикулярных прямых количество и качество движения (время и скорость), иными словами, он нарисовал график изменения скорости в зависимости от времени[23].
По мнению Тартальи, только вертикальное падение тела является «естественным» движением, а все остальные — «насильственные», при этом у первого типа скорость постоянно возрастает, а у второго — убывает. Два этих типа движения не могут проистекать одновременно. Тарталья считал, что «насильственные» движения вызваны ударом, результатом которого является «эффект», определяемый скоростью[24]. С критикой работ Аристотеля и Тартальи выступал Бенедетти, который вслед за Оремом пользовался понятиями импетуса и ускорения[25].
В 1609 году в работе «Новая астрономия» Кеплер сформулировал закон площадей, согласно которому секторная скорость планеты (площадь, описываемая отрезком планета — Солнце, за единицу времени) постоянна[26]. В «Началах философии» Декарт сформулировал закон сохранения количества движения, которое в его понимании есть произведение количества материи на скорость[27], при этом Декарт не принимал во внимание тот факт, что количество движения имеет не только величину, но и направление[28]. В дальнейшем понятие «количество движения» развивал Гук, который понимал его как «степень скорости, присущей в определённом количестве вещества»[29]. Гюйгенс, Валлис и Рен добавили к этому определению направление. В таком виде во второй половине XVII века количество движения стало важным понятием в динамике, в частности в работах Ньютона и Лейбница[30]. При этом Ньютон не определял в своих работах понятие скорости[31]. По-видимому, первая попытка явного определения скорости была сделана Валлисом в его трактате «Механика или геометрический трактат о движении» (1669—1671): «Скорость есть свойство движения, отражающееся в сравнении длины и времени; а именно, она определяет, какая длина в какое время проходится»[32].
В XVII веке были заложены основы математического анализа, а именно интегрального и дифференциального исчисления. В отличие от геометрических построений Лейбница, теория «флюксий» Ньютона строится на потребностях механики и имеет в своём основании понятие скорости. В своей теории Ньютон рассматривает переменную величину «флюенту» и её скорость изменения — «флюксию»[33].
Скорости в природе и технике[править | править код]
Основной источник: [34]
Метры в секунду | |
---|---|
Скорость улитки | |
Скорость черепахи | |
Средняя скорость здорового человека (произвольный темп) | |
Рекорд скорости человека в ходьбе на 50 км | () |
Рекорд скорости человека в беге на дистанции 100 м | () |
Скорость гепарда | |
Максимальная скорость полёта сокола | |
Максимальная скорость локомотива на железной дороге | |
Максимальная скорость автомобиля | [35] |
Средняя скорость молекулы азота при температуре 0 °C | |
Максимальная скорость пассажирского реактивного самолёта | |
Скорость движения Луны по орбите вокруг Земли | |
Скорость искусственного спутника Земли | |
Скорость движения Земли по орбите вокруг Солнца | |
Скорость движения Солнца по орбите вокруг центра Галактики | |
Скорость электронов в кинескопе телевизора | |
Скорость движения самых далёких галактик | |
Максимальная скорость протонов в Большом адронном коллайдере | 299 792 455 |
Скорость частицы Oh-My-God | 299792457,9999999999999985310169558 |
Скорость безмассовых частиц (фотонов, глюонов, гравитонов) | 299 792 458 |
Скорость тахионов и сверхбрадионов | > 299792458 |
Скорости движения живых существ[править | править код]
- Сапсан (самое быстрое животное): самая высокая зарегистрированная скорость — 389 км/ч[36];
- Гепард (самое быстрое наземное животное): самая высокая зарегистрированная скорость — 98 км/ч[37];
- Меч-рыба: от 100 до 130 км в час[37];
- Чёрный марлин: самая высокая зарегистрированная скорость — 105 км/ч[36];
- Вилорогая антилопа: самая высокая зарегистрированная скорость — 88,5 км/ч[36];
- Лошадь (американский квортерхорс): 88 км/ч[36];
- Человек: самая высокая зарегистрированная скорость — 44,72 км/ч (Усэйн Болт)[37].
Рекорды скорости транспортных средств[править | править код]
Самый быстрый рукотворный объект — Parker Solar Probe, 150 км/с (относительно Солнца) в 2021 году[38].
Абсолютный рекорд скорости в воздухе был поставлен в 1976 году американским самолетом-разведчиком Lockheed SR-71 Blackbird — 3529,56 км/ч.
Рекорд скорости на земле был установлен в 2003 году на ракетных санях и составил 10 325 км/ч или 2868 м/с (по другим данным, 10 430 км/ч)[39]
Самая высокая скорость на наземном управляемом транспортном средстве была достигнута на реактивном автомобиле Thrust SSC в 1997 году — 1228 км/ч.
Рекорд скорости на воде был поставлен в 1978 году австралийским судном с реактивным газотурбинным двигателем Spirit of Australia[en] — 511,11 км/ч[40]
См. также[править | править код]
- Кинематика
Примечания[править | править код]
- ↑ Маркеев, 1990, с. 15.
- ↑ Старжинский, 1980, с. 154.
- ↑ Маркеев, 1990, с. 15—17.
- ↑ Старжинский, 1980, с. 154—155.
- ↑ Старжинский, 1980, с. 163.
- ↑ Старжинский, 1980, с. 152.
- ↑ Маркеев, 1990, с. 46—47.
- ↑ См. Всегда ли начальная скорость равна нулю? в справочнике «Студворк».
- ↑ 1 2 3 4 5 6 7 8 9 Скорость // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- ↑ Главный редактор А. М. Прохоров. Кинетическая энергия // Физический энциклопедический словарь. — Советская энциклопедия. — М., 1983. Физическая энциклопедия
- ↑ Главный редактор А. М. Прохоров. Вращательное движение // Физический энциклопедический словарь. — Советская энциклопедия. — М., 1983. Физическая энциклопедия
- ↑ Главный редактор А. М. Прохоров. Ускорение // Физический энциклопедический словарь.. — 1983. Физическая энциклопедия
- ↑ Главный редактор А. М. Прохоров. Импульс // Физический энциклопедический словарь. — Советская энциклопедия. — М., 1983. Физическая энциклопедия
- ↑ Определение метра Архивная копия от 26 июня 2013 на Wayback Machine (англ.) Резолюция 1 XVII Генеральной конференции по мерам и весам (1983)
- ↑ 1 2 Яковлев, 2001, с. 21.
- ↑ Яковлев, 2001, с. 34.
- ↑ Яковлев, 2001, с. 29.
- ↑ Яковлев, 2001, с. 31—32.
- ↑ Яковлев, 2001, с. 32—34.
- ↑ 1 2 Яковлев, 2001, с. 35.
- ↑ Яковлев, 2001, с. 35—36.
- ↑ Яковлев, 2001, с. 37.
- ↑ Яковлев, 2001, с. 37—38.
- ↑ Яковлев, 2001, с. 43.
- ↑ Яковлев, 2001, с. 45.
- ↑ Яковлев, 2001, с. 51—52.
- ↑ Яковлев, 2001, с. 59.
- ↑ Яковлев, 2001, с. 68.
- ↑ Яковлев, 2001, с. 77.
- ↑ Яковлев, 2001, с. 91.
- ↑ Яковлев, 2001, с. 96.
- ↑ Яковлев, 2001, с. 72—73.
- ↑ Яковлев, 2001, с. 64—66.
- ↑ Кабардин О.Ф., Орлов В.А., Пономарёва А.В. Факультативный курс физики. 8 класс. — М.: Просвещение, 1985. — Тираж 143 500 экз. — С. 44
- ↑ FIA World Land Speed Records (англ.). Federation Internationale de l’Automobile (10 июня 2012). Дата обращения: 3 декабря 2020. Архивировано 31 марта 2019 года.
- ↑ 1 2 3 4 12 самых быстрых животных в мире. Дата обращения: 17 июня 2022. Архивировано 29 июля 2021 года.
- ↑ 1 2 3 12 самых быстрых животных в мире. Дата обращения: 17 июня 2022. Архивировано 22 сентября 2020 года.
- ↑ Самый быстрый объект, созданный человеком. Зонд Parker Solar Probe развил скорость около 150 км/с. Дата обращения: 17 июня 2022. Архивировано 17 мая 2021 года.
- ↑ Test sets world land speed record. www.af.mil. Дата обращения: 19 апреля 2016.
- ↑ Назло рекордам: почему люди не хотят передвигаться очень быстро
Литература[править | править код]
- Маркеев А. П. Теоретическая механика. — М.: Наука, 1990. — 416 с. — ISBN 5-02-014016-3.
- Старжинский В. М. Теоретическая механика. — М.: Наука, 1980. — 464 с.
- Яковлев В. И. Предыстория аналитической механики. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. — 328 с. — ISBN 5-93972-063-3.
Загрузить PDF
Загрузить PDF
Скорость — это векторная величина, которая характеризует быстроту перемещения и направление движения предмета (тела). В математике скорость определяется как изменение положения тела в зависимости от изменения времени.[1]
Скорость можно найти во множестве физических и математических задач. Выбор правильной формулы зависит от данных значений, поэтому внимательно читайте условие задачи.
Формулы
-
1
-
2
Запишите формулу, содержащую положение и время. Скорость можно вычислить по изменению положения тела и времени. Такую формулу можно применить к любой задаче. Обратите внимание, что если скорость тела меняется, вы найдете среднюю скорость за все время движения, а не конкретную скорость в определенный момент времени.
-
3
Вычислите расстояние между начальным и конечным положениями. То есть между точками начала и окончания движения; они, наряду с направлением движения, указывают на «перемещение» или «изменение положения».[3]
При этом траектория движения тела между этими точками значения не имеет.-
Пример 1: автомобиль, едущий на восток, начинает движение в положении x = 5 м. Через 8 с машина находится в положении х = 41 м. Каково перемещение автомобиля?
- Автомобиль переместился на 41-5 = 36 м на восток.
-
Пример 2: трамплин подбрасывает пловца на 1 метр вверх, и пловец летит до воды 5 м. Каково перемещение пловца?
- Пловец оказался на 4 м ниже начальной точки, поэтому его перемещение равно -4 м (0 + 1 – 5 = -4). Несмотря на то, что пройденное пловцом расстояние составило 6 м (1 м вверх и 5 м вниз), конечная точка находится на 4 м ниже начальной точки.
-
Пример 1: автомобиль, едущий на восток, начинает движение в положении x = 5 м. Через 8 с машина находится в положении х = 41 м. Каково перемещение автомобиля?
-
4
Вычислите изменение времени. Время, которое потребовалось для достижения конечной точки, будет, скорее всего, дано в задаче; если нет, просто вычтите начальное время из конечного.
- Пример 1 (продолжение): в задаче сказано, что машине потребовалось 8 с, чтобы переместиться из начальной точки в конечную, поэтому изменение времени равно 8 с.
- Пример 2 (продолжение): если пловец прыгнул в момент времени t = 7 с и коснулся воды в момент времени t = 8 с, изменение времени: 8 – 7 = 1 с.
-
5
Разделите перемещение на изменение времени. Сделайте это, чтобы найти скорость движущегося тела. Теперь укажите направление движения, и вы получите среднюю скорость.
-
6
Решите задачу, когда направление движения меняется. Не во всех задачах тело движется вдоль одной линии. Если тело совершило поворот, нарисуйте схему движения и решите геометрическую задачу, чтобы найти расстояние.
-
Пример 3: человек бежит 3 м на восток, затем поворачивает на 90° и бежит 4 м на север. Каково перемещение человека?
- Нарисуйте схему и соедините начальную и конечную точки прямой линией. Это гипотенуза треугольника, которую можно найти с помощью теоремы Пифагора или других формул. В нашем примере перемещение составит 5 м на северо-восток.
- Возможно, учитель математики попросит вас найти точное направление движения (в виде угла над горизонтальной прямой). В этом случае воспользуйтесь геометрическими законами или векторами.[4]
Реклама
-
Пример 3: человек бежит 3 м на восток, затем поворачивает на 90° и бежит 4 м на север. Каково перемещение человека?
-
1
Запомните формулу для вычисления скорости ускоряющегося тела. Ускорение — это быстрота изменения скорости. Если ускорение постоянное, скорость меняется с одинаковой быстротой.[5]
Формула включает произведение ускорения и времени, а также начальную скорость: -
2
Умножьте ускорение на изменение времени. Так вы вычислите, насколько скорость увеличилась (или уменьшилась) за это время.
-
Пример: лодка, плывущая на север со скоростью 2 м/с, ускоряется на 10 м/с2. Насколько увеличится скорость лодки в течение 5 с?
- a = 10 м/с 2
- t = 5 с
- (a * t) = 10 * 5 = 50 м/с.
-
Пример: лодка, плывущая на север со скоростью 2 м/с, ускоряется на 10 м/с2. Насколько увеличится скорость лодки в течение 5 с?
-
3
Прибавьте начальную скорость. Вы нашли общее изменение скорости. Прибавьте это значение к начальной скорости тела, чтобы вычислить конечную скорость.
-
4
Укажите направление движения. Помните, что скорость является векторной величиной, то есть имеет направление. Поэтому в ответе укажите направление.
- В нашем примере лодка начала движение на север и не изменила направление, поэтому ее конечная скорость равна 52 м/с на север.
-
5
Используйте данную формулу, чтобы вычислить другие величины, которые входят в нее. Если известны ускорение и скорость в определенный момент времени, с помощью формулы можно найти скорость в другой момент времени. Например, вычислим начальную скорость:
- Поезд ускоряется на 7 м/с2 в течение 4 секунд и достигает скорости 35 м/с. Какова начальная скорость поезда?
Реклама
-
1
Запомните формулу для вычисления круговой скорости. Круговая скорость — это скорость, которую должно иметь тело, чтобы постоянно вращаться вокруг другого тела, обладающего гравитацией, например, планеты.[6]
- Круговая скорость равна отношению длины круглого пути к периоду времени, в течение которого тело движется.
- Формула для вычисления круговой скорости:
- v = (2πr) / T
- Обратите внимание, что 2πr — это длина окружности.
- r — радиус.
- T — период времени.
-
2
Умножьте радиус окружности на 2π. Сначала необходимо вычислить длину окружности. Для этого умножьте радиус на 2π. В качестве значения π можно использовать 3, 14.
- Пример: найдите круговую скорость тела, движущегося по круговой траектории с радиусом 8 м в течение 45 с.
- r = 8 м
- T = 45 с
- Длина окружности = 2πr ≈ (2)(3,14)(8) = 50,24 м
- Пример: найдите круговую скорость тела, движущегося по круговой траектории с радиусом 8 м в течение 45 с.
-
3
Разделите полученное значение на время. Сделайте это, чтобы вычислить круговую скорость тела.
- Пример: v = (2πr) / T = 50,24 / 45 = 1,12 м/с
- Круговая скорость тела равна 1,12 м/с.
Реклама
- Пример: v = (2πr) / T = 50,24 / 45 = 1,12 м/с
Советы
- Метры в секунду (м/с) — это единица измерения скорости.[7]
. Перед решением задачи убедитесь, что все единицы измерения соответствуют друг другу, например, значения даны в метрах (м), секундах (с), метрах в секунду (м/с) и метрах в квадратных секундах (м/с2). - Средняя скорость характеризует среднюю скорость, которую имеет тело на протяжении всего пути. Мгновенная скорость — это скорость тела в определенный момент времени.
Реклама
Об этой статье
Эту страницу просматривали 17 699 раз.
Была ли эта статья полезной?
Содержание:
- Определение и формула скорости
- Скорость в разных системах координат
- Частные случаи формул для вычисления скорости
- Единицы измерения скорости
- Примеры решения задач
Определение и формула скорости
Определение
Мгновенной скоростью (или чаще просто скоростью) материальной точки называется физическая величина равная первой производной от радиус–вектора
$bar{r}$ точки по времени (t). Обозначают скорость обычно буквой v.
Это векторная величина. Математически определение вектора мгновенной скорости записывается как:
$$bar{v}=frac{d bar{r}}{d t}=dot{bar{r}}(1)$$
Скорость имеет направление указывающее направление движения материальной точки и лежит на касательной к траектории ее движения.
Модуль скорости можно определить как первую производную от длины пути (s) по времени:
$$v=frac{d s}{d t}=dot{s}(2)$$
Скорость характеризует быстроту перемещения в направлении движения точки по отношениюк рассматриваемой системе координат.
Скорость в разных системах координат
Проекции скорости на оси декартовой системы координат запишутся как:
$$v_{x}=dot{x} ; v_{y}=dot{y} ; v_{z}=dot{z}(3)$$
Следовательно, вектор скоростив декартовых координатах можно представить:
$$bar{v}=dot{x} bar{i}+dot{y} bar{j}+dot{z} bar{k}(4)$$
где $bar{i}, bar{j}, bar{k}$ единичные орты. При этом модуль вектора скорости находят при помощи формулы:
$$v=sqrt{(dot{x})^{2}+(dot{y})^{2}+(dot{z})^{2}}(5)$$
В цилиндрических координатах модуль скорости вычисляют при помощи формулы:
$$v=sqrt{(dot{rho})^{2}+(rho dot{varphi})^{2}+(dot{z})^{2}}(6)$$
в сферической системе координат:
$$v=sqrt{(r)^{2}+(r dot{theta})^{2}+(r dot{varphi} sin theta)^{2}}(7)$$
Частные случаи формул для вычисления скорости
Если модуль скорости не изменяется во времени, то такое движение называют равномерным (v=const).
При равномерном движении скорость можно вычислить, применяя формулу:
$$v=frac{s}{t}(8)$$
где s– длина пути, t – время, за которое материальная точка преодолела путь s.
При ускоренном движении скорость можно найти как:
$$bar{v}=int_{t_{1}}^{t_{2}} bar{a} d t(9)$$
где $bar{a}$ – ускорение точки,
$t_{1} leq t leq t_{2}$ – отрезок времени, в течение которого рассматривается скорость.
Если движение является равнопеременным, то применяется следующая формула для вычисления скорости:
$$bar{v}=bar{v}_{0}+bar{a} t$$
где $bar{v}_0$ – начальная скорость движения,
$bar{a} = const$ .
Единицы измерения скорости
Основной единицей измерения скорости в системе СИ является: [v]=м/с2
В СГС: [v]=см/с2
Примеры решения задач
Пример
Задание. Движение материальной точки А задано уравнением:
$x=2 t^{2}-4 t^{3}$ . Точка начала свое движение при
t0=0 c.Как будет двигаться рассматриваемая точка по отношению к оси X в момент времени t=0,5 с.
Решение. Найдем уравнение, которое будет задавать скорость рассматриваемой материальной точки, для
этого от функции x=x(t), которая задана в условиях задачи, возьмем первую производную по времени, получим:
$$v=frac{d x}{d t}=4 t-12 t^{2}(1.1)$$
Для определения направления движения подставим в полученную нами функцию для скорости v=v(t) в (1.1) указанный в условии момент
времении сравним результат с нулем:
$$v(t=0,5)=4 cdot 0,5-12(0,5)^{2}=-1 lt 0$$
Так как мы получили, что скорость в указанный момент времени отрицательна, следовательно, материальная точка движется против оси X.
Ответ. Против оси X.
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. Скорость материальной точки является функцией от времени вида:
$$v=10left(1-frac{t}{5}right)$$
где скорость в м/с, время в c. Какова координата точки в момент времени равный 10 с, в какой момент времени точка будет на расстоянии
10 м от начала координат? Считайте, что при t=0 c точка началадвижение из начала координат по оси X.
Решение. Точка движется по оси X, cвязь координаты x и скорости движения определена формулой:
$$x=int_{0}^{t} v d t=int_{0}^{t} 10left(1-frac{t}{5}right) d t=10 t-frac{10 t^{2}}{2 cdot 5}=10 t-t^{2}(2.1)$$
Для ответа на первый вопрос задачи подставим в выражение (2.1) время t=10 c, имеем:
$$x=10 cdot 10-(10)^{2}=0(m)$$
Для того чтобы определить в какой момент времени точка будет находиться на расстоянии 10 м от начала координат
приравняем выражение (2.1) к 10 и решим, полученное квадратное уравнение:
$$
begin{array}{c}
10 t-t^{2}=10(2.2) \
t_{1}=5+sqrt{15} approx 8,8(c) ; t_{2}=5-sqrt{15} approx 1,13(c)
end{array}
$$
Рассмотрим второй вариант нахождения точки на расстоянии 10 м от начала координат, когда x=-10. Решим квадратное уравнение:
$$10 t-t^{2}=-10(2.3)$$
При решении уравнения (2.3) нам подойдет корень равный:
$$t_{3}=5+6=11 (c)$$
Ответ. 1) $x=0 mathrm{~m}$ 2) $t_{1}=8,8 mathrm{c}, t_{2}=1,13 c, t_{3}=11 c$
Читать дальше: Формула средней скорости.
From Wikipedia, the free encyclopedia
This article is about the property of moving bodies. For other uses, see Speed (disambiguation).
Speed | |
---|---|
Speed can be thought of as the rate at which an object covers distance. A fast-moving object has a high speed and covers a relatively large distance in a given amount of time, while a slow-moving object covers a relatively small amount of distance in the same amount of time. |
|
Common symbols |
v |
SI unit | m/s, m s−1 |
Dimension | L T−1 |
In everyday use and in kinematics, the speed (commonly referred to as v) of an object is the magnitude of the change of its position over time or the magnitude of the change of its position per unit of time; it is thus a scalar quantity.[1] The average speed of an object in an interval of time is the distance travelled by the object divided by the duration of the interval;[2] the instantaneous speed is the limit of the average speed as the duration of the time interval approaches zero. Speed is not the same as velocity.
Speed has the dimensions of distance divided by time. The SI unit of speed is the metre per second (m/s), but the most common unit of speed in everyday usage is the kilometre per hour (km/h) or, in the US and the UK, miles per hour (mph). For air and marine travel, the knot is commonly used.
The fastest possible speed at which energy or information can travel, according to special relativity, is the speed of light in vacuum c = 299792458 metres per second (approximately 1079000000 km/h or 671000000 mph). Matter cannot quite reach the speed of light, as this would require an infinite amount of energy. In relativity physics, the concept of rapidity replaces the classical idea of speed.
Definition
Historical definition
Italian physicist Galileo Galilei is usually credited with being the first to measure speed by considering the distance covered and the time it takes. Galileo defined speed as the distance covered per unit of time.[3] In equation form, that is
where is speed, is distance, and is time. A cyclist who covers 30 metres in a time of 2 seconds, for example, has a speed of 15 metres per second. Objects in motion often have variations in speed (a car might travel along a street at 50 km/h, slow to 0 km/h, and then reach 30 km/h).
Instantaneous speed
Speed at some instant, or assumed constant during a very short period of time, is called instantaneous speed. By looking at a speedometer, one can read the instantaneous speed of a car at any instant.[3] A car travelling at 50 km/h generally goes for less than one hour at a constant speed, but if it did go at that speed for a full hour, it would travel 50 km. If the vehicle continued at that speed for half an hour, it would cover half that distance (25 km). If it continued for only one minute, it would cover about 833 m.
In mathematical terms, the instantaneous speed is defined as the magnitude of the instantaneous velocity , that is, the derivative of the position with respect to time:[2][4]
If is the length of the path (also known as the distance) travelled until time , the speed equals the time derivative of :[2]
In the special case where the velocity is constant (that is, constant speed in a straight line), this can be simplified to . The average speed over a finite time interval is the total distance travelled divided by the time duration.
Average speed
Different from instantaneous speed, average speed is defined as the total distance covered divided by the time interval. For example, if a distance of 80 kilometres is driven in 1 hour, the average speed is 80 kilometres per hour. Likewise, if 320 kilometres are travelled in 4 hours, the average speed is also 80 kilometres per hour. When a distance in kilometres (km) is divided by a time in hours (h), the result is in kilometres per hour (km/h).
Average speed does not describe the speed variations that may have taken place during shorter time intervals (as it is the entire distance covered divided by the total time of travel), and so average speed is often quite different from a value of instantaneous speed.[3] If the average speed and the time of travel are known, the distance travelled can be calculated by rearranging the definition to
Using this equation for an average speed of 80 kilometres per hour on a 4-hour trip, the distance covered is found to be 320 kilometres.
Expressed in graphical language, the slope of a tangent line at any point of a distance-time graph is the instantaneous speed at this point, while the slope of a chord line of the same graph is the average speed during the time interval covered by the chord. Average speed of an object is
Vav = s÷t
Difference between speed and velocity
Speed denotes only how fast an object is moving, whereas velocity describes both how fast and in which direction the object is moving.[5] If a car is said to travel at 60 km/h, its speed has been specified. However, if the car is said to move at 60 km/h to the north, its velocity has now been specified.
The big difference can be discerned when considering movement around a circle. When something moves in a circular path and returns to its starting point, its average velocity is zero, but its average speed is found by dividing the circumference of the circle by the time taken to move around the circle. This is because the average velocity is calculated by considering only the displacement between the starting and end points, whereas the average speed considers only the total distance travelled.
Tangential speed
Linear speed is the distance travelled per unit of time, while tangential speed (or tangential velocity) is the linear speed of something moving along a circular path.[6] A point on the outside edge of a merry-go-round or turntable travels a greater distance in one complete rotation than a point nearer the center. Travelling a greater distance in the same time means a greater speed, and so linear speed is greater on the outer edge of a rotating object than it is closer to the axis. This speed along a circular path is known as tangential speed because the direction of motion is tangent to the circumference of the circle. For circular motion, the terms linear speed and tangential speed are used interchangeably, and both use units of m/s, km/h, and others.
Rotational speed (or rotational frequency) involves the number of revolutions per unit of time. All parts of a rigid merry-go-round or turntable turn about the axis of rotation in the same amount of time. Thus, all parts share the same rate of rotation, or the same number of rotations or revolutions per unit of time. It is common to express rotational rates in revolutions per minute (RPM).
When a direction is assigned to rotational speed, it is known as rotational velocity, a vector whose magnitude is the rotational speed.
(Angular speed and angular velocity are related to the rotational speed and velocity by a factor of 2π, the number of radians turned in a full rotation.)
Tangential speed and rotational speed are related: the greater the “RPMs”, the larger the speed in metres per second. Tangential speed is directly proportional to rotational speed at any fixed distance from the axis of rotation.[6] However, tangential speed, unlike rotational speed, depends on radial distance (the distance from the axis). For a platform rotating with a fixed rotational speed, the tangential speed in the centre is zero. Towards the edge of the platform the tangential speed increases proportional to the distance from the axis.[7] In equation form:
where v is tangential speed and ω (Greek letter omega) is rotational speed. One moves faster if the rate of rotation increases (a larger value for ω), and one also moves faster if movement farther from the axis occurs (a larger value for r). Move twice as far from the rotational axis at the centre and you move twice as fast. Move out three times as far, and you have three times as much tangential speed. In any kind of rotating system, tangential speed depends on how far you are from the axis of rotation.
When proper units are used for tangential speed v, rotational speed ω, and radial distance r, the direct proportion of v to both r and ω becomes the exact equation
Thus, tangential speed will be directly proportional to r when all parts of a system simultaneously have the same ω, as for a wheel, disk, or rigid wand.
Units
Units of speed include:
- metres per second (symbol m s−1 or m/s), the SI derived unit;
- kilometres per hour (symbol km/h);
- miles per hour (symbol mi/h or mph);
- knots (nautical miles per hour, symbol kn or kt);
- feet per second (symbol fps or ft/s);
- Mach number (dimensionless), speed divided by the speed of sound;
- in natural units (dimensionless), speed divided by the speed of light in vacuum (symbol c = 299792458 m/s).
m/s | km/h | mph | knot | ft/s | |
---|---|---|---|---|---|
1 m/s = | 1 | 3.600000 | 2.236936* | 1.943844* | 3.280840* |
1 km/h = | 0.277778* | 1 | 0.621371* | 0.539957* | 0.911344* |
1 mph = | 0.44704 | 1.609344 | 1 | 0.868976* | 1.466667* |
1 knot = | 0.514444* | 1.852 | 1.150779* | 1 | 1.687810* |
1 ft/s = | 0.3048 | 1.09728 | 0.681818* | 0.592484* | 1 |
(* = approximate values)
Examples of different speeds
Speed | m/s | ft/s | km/h | mph | Notes |
---|---|---|---|---|---|
Global average sea level rise | 0.00000000011 | 0.00000000036 | 0.0000000004 | 0.00000000025 | 3.5 mm/year[8] |
Approximate rate of continental drift | 0.0000000013 | 0.0000000042 | 0.0000000045 | 0.0000000028 | 4 cm/year. Varies depending on location. |
Speed of a common snail | 0.001 | 0.003 | 0.004 | 0.002 | 1 millimetre per second |
A brisk walk | 1.7 | 5.5 | 6.1 | 3.8 | |
A typical road cyclist | 4.4 | 14.4 | 16 | 10 | Varies widely by person, terrain, bicycle, effort, weather |
A fast martial arts kick | 7.7 | 25.2 | 27.7 | 17.2 | Fastest kick recorded at 130 milliseconds from floor to target at 1 meter distance. Average velocity speed across kick duration[9] |
Sprint runners | 12.2 | 40 | 43.92 | 27 | Usain Bolt’s 100 metres world record. |
Approximate average speed of road race cyclists | 12.5 | 41.0 | 45 | 28 | On flat terrain, will vary |
Typical suburban speed limit in most of the world | 13.8 | 45.3 | 50 | 30 | |
Taipei 101 observatory elevator | 16.7 | 54.8 | 60.6 | 37.6 | 1010 m/min |
Typical rural speed limit | 24.6 | 80.66 | 88.5 | 56 | |
British National Speed Limit (single carriageway) | 26.8 | 88 | 96.56 | 60 | |
Category 1 hurricane | 33 | 108 | 119 | 74 | Minimum sustained speed over 1 minute |
Average peak speed of a cheetah | 33.53 | 110 | 120.7 | 75 | |
Speed limit on a French autoroute | 36.1 | 118 | 130 | 81 | |
Highest recorded human-powered speed | 37.02 | 121.5 | 133.2 | 82.8 | Sam Whittingham in a recumbent bicycle[10] |
Average speed of Human sneeze | 44.44 | 145.82 | 160 | 99.42 | |
Muzzle velocity of a paintball marker | 90 | 295 | 320 | 200 | |
Cruising speed of a Boeing 747-8 passenger jet | 255 | 836 | 917 | 570 | Mach 0.85 at 35000 ft (10668 m) altitude |
Speed of a .22 caliber Long Rifle bullet | 326.14 | 1070 | 1174.09 | 729.55 | |
The official land speed record | 341.1 | 1119.1 | 1227.98 | 763 | |
The speed of sound in dry air at sea-level pressure and 20 °C | 343 | 1125 | 1235 | 768 | Mach 1 by definition. 20 °C = 293.15 kelvins. |
Muzzle velocity of a 7.62×39mm cartridge | 710 | 2330 | 2600 | 1600 | The 7.62×39mm round is a rifle cartridge of Soviet origin |
Official flight airspeed record for jet engined aircraft | 980 | 3215 | 3530 | 2194 | Lockheed SR-71 Blackbird |
Space Shuttle on re-entry | 7800 | 25600 | 28000 | 17,500 | |
Escape velocity on Earth | 11200 | 36700 | 40000 | 25000 | 11.2 km·s−1 |
Voyager 1 relative velocity to the Sun in 2013 | 17000 | 55800 | 61200 | 38000 | Fastest heliocentric recession speed of any humanmade object.[11] (11 mi/s) |
Average orbital speed of planet Earth around the Sun | 29783 | 97713 | 107218 | 66623 | |
The fastest recorded speed of the Helios probes | 70,220 | 230,381 | 252,792 | 157,078 | Recognized as the fastest speed achieved by a man-made spacecraft, achieved in solar orbit. |
Orbital speed of the Sun relative to the center of the galaxy | 251000 | 823000 | 904000 | 561000 | |
Speed of the Galaxy relative to the CMB | 550000 | 1800000 | 2000000 | 1240000 | |
Speed of light in vacuum (symbol c) | 299792458 | 983571056 | 1079252848 | 670616629 | Exactly 299792458 m/s, by definition of the metre |
Psychology
According to Jean Piaget, the intuition for the notion of speed in humans precedes that of duration, and is based on the notion of outdistancing.[12] Piaget studied this subject inspired by a question asked to him in 1928 by Albert Einstein: “In what order do children acquire the concepts of time and speed?”[13] Children’s early concept of speed is based on “overtaking”, taking only temporal and spatial orders into consideration, specifically: “A moving object is judged to be more rapid than another when at a given moment the first object is behind and a moment or so later ahead of the other object.”[14]
See also
- Air speed
- List of vehicle speed records
- Typical projectile speeds
- Speedometer
- V speeds
References
Wikiquote has quotations related to Speed.
Wikimedia Commons has media related to Speed.
- Richard P. Feynman, Robert B. Leighton, Matthew Sands. The Feynman Lectures on Physics, Volume I, Section 8–2. Addison-Wesley, Reading, Massachusetts (1963). ISBN 0-201-02116-1.
- ^ Wilson, Edwin Bidwell (1901). Vector analysis: a text-book for the use of students of mathematics and physics, founded upon the lectures of J. Willard Gibbs. Yale bicentennial publications. C. Scribner’s Sons. p. 125. hdl:2027/mdp.39015000962285. This is the likely origin of the speed/velocity terminology in vector physics.
- ^ a b c Elert, Glenn. “Speed & Velocity”. The Physics Hypertextbook. Retrieved 8 June 2017.
- ^ a b c Hewitt (2006), p. 42
- ^ “IEC 60050 – Details for IEV number 113-01-33: “speed”“. Electropedia: The World’s Online Electrotechnical Vocabulary. Retrieved 2017-06-08.
- ^ Wilson, Edwin Bidwell (1901). Vector analysis: a text-book for the use of students of mathematics and physics, founded upon the lectures of J. Willard Gibbs. Yale bicentennial publications. C. Scribner’s Sons. p. 125. hdl:2027/mdp.39015000962285. This is the likely origin of the speed/velocity terminology in vector physics.
- ^ a b Hewitt (2006), p. 131
- ^ Hewitt (2006), p. 132
- ^ NASA’s Goddard Space Flight Center. “Satellite sea level observations”. Global Climate Change. NASA. Retrieved 20 April 2022.
- ^ “Improve Kicking Speed for Martial Arts | Get Fast Kicks!”. Archived from the original on 2013-11-11. Retrieved 2013-08-14.
- ^ “The Recumbent Bicycle and Human Powered Vehicle Information Center”. Archived from the original on 2013-08-11. Retrieved 2013-10-12.
- ^ Darling, David. “Fastest Spacecraft”. Retrieved August 19, 2013.
- ^ Jean Piaget, Psychology and Epistemology: Towards a Theory of Knowledge, The Viking Press, pp. 82–83 and pp. 110–112, 1973. SBN 670-00362-x
- ^ Siegler, Robert S.; Richards, D. Dean (1979). “Development of Time, Speed, and Distance Concepts” (PDF). Developmental Psychology. 15 (3): 288–298. doi:10.1037/0012-1649.15.3.288.
- ^ Early Years Education: Histories and Traditions, Volume 1. Taylor & Francis. 2006. p. 164. ISBN 9780415326704.
Механическое движение имеет множество характеристик. Вы уже узнали, что оно относительно и бывает разных видов: прямолинейное и криволинейное, равномерное и неравномерное.
Тела движутся по воображаемым линиям, которые называются траекториями, а длина траектории – это путь, который проходит тело.
В этом уроке мы рассмотрим новую физическую величину, характеризующую движение – скорость.
Скорость при равномерном движении
Взгляните на рисунок 1. Если мы предположим, что бегуны, велосипедисты и автомобили двигаются равномерно, то чем будет отличаться их движение?
В таких случаях обычно мы говорим, что машина будет двигаться быстрее, чем велосипедист, а велосипедист – быстрее, чем бегун. Здесь в физике появляется такая величина, как скорость.
Скорость – это физическая величина, характеризующая быстроту движения тел.
В нашем случае люди пробегают 15 км за 1 час, велосипедисты проезжают 25 км за 1 час, а машина за то же время – 60 км, то есть движутся с различными скоростями.
Что показывает скорость при равномерном движении?
Скорость при равномерном движении тела показывает, какой путь проходит тело в единицу времени.
Скорость при равномерном движении постоянна.
Как вычислить скорость
По какой формуле определяют скорость тела, если известен его путь и время, за которое он пройден?
Чтобы определить скорость при равномерном движении, нужно путь, пройденный телом за выбранный промежуток времени, разделить на этот промежуток времени:
$Скорость = frac{Путь}{Время}$
или
$upsilon = frac{S}{t}$.
Здесь $upsilon$ — скорость, $S$ – путь, $t$ — время.
Дадим определение.
Cкорость тела при равномерном движении – это величина, равная отношению пути ко времени, за которое пройден этот путь.
Соответственно, если автомобиль проезжает в течение 10 с путь, равный 20 метрам (рисунок 2), то его скорость будет равна $frac{20 space м}{10 space с} = 2 frac{м}{с}$ (2 метра в секунду).
Скорость при неравномерном движении
При неравномерном движении тело проходит разные пути за равные промежутки времени, т.е. скорость тела изменяется от одного участка пути к другому.
Как же определить скорость на всем пути? Здесь нам поможет понятие средней скорости.
Как определяют среднюю скорость при неравномерном движении?
Чтобы определить среднюю скорость тела при неравномерном движении, надо весь пройденный путь разделить на все время движения:
$upsilon_{ср} = frac{S}{t}$.
Отметим, что средняя скорость описывает движение тела за весь промежуток времени. В это время тело можно замедляться, разгоняться, останавливаться.
Например, если вы выезжаете на автомобиле из Москвы в Санкт-Петербург (рисунок 3), то весь путь займет у вас 10 ч. В это время машина будет то набирать скорость, то тормозить, сделает остановку. Общий путь, который вы при этом проедите, будет равен 600 км.
Средняя скорость движения автомобиля будет равна:
$upsilon_{ср} = frac{S}{t} = frac{600 space км}{10 space ч} = 60 frac{км}{ч}$.
Взгляните на таблицу 1, где приведены различные средние скорости.
Тело | Скорость, $frac{м}{с}$ | Тело | Скорость, $frac{м}{с}$ |
---|---|---|---|
Улитка | 0,0014 | Пассажирский самолет | 220 |
Черепаха | 0,05-0,14 | Звук в воздухе при $0 degree C$ | 332 |
Муха | 5 | Пуля автомата Калашникова | 760 |
Пешеход | 1,5 | Луна вокруг Земли | 1000 |
Конькобежец | 13 | Молекула водорода при $0 degree C$ | 1693 |
Скворец | 20 | Молекула водорода при $25 degree C$ | 1770 |
Страус | 22 | Земля вокруг Солнца | 30 000 |
Автомобиль | 20 | Свет и радиоволны | 300 000 000 |
Единицы измерения скорости
Какова единица измерения скорости в СИ?
В Международной системе (СИ) скорость измеряется в метрах в секунду $frac{м}{с}$.
За единицу скорости принимают скорость такого равномерного движения, при котором за 1 секунду тело проходит путь длиной 1 метр.
Следственно, скорость в системе СИ — количество метров, которое тело пройдёт за 1 секунду.
В повседневной жизни мы чаще видим, что скорость измеряют в километрах в час $frac{км}{ч}$. Также можно использовать километры в секунду $frac{км}{с}$ и сантиметры в секунду $frac{см}{с}$.
Наиболее часто встречаемое ограничение скорости в городах – $ 60 frac{км}{ч}$. Переведем это значение в $frac{м}{с}$:
$60 frac{км}{ч} = 60 cdot frac{1 space км}{1 space ч} = 60 cdot frac{1000 space м}{3600 space с} = frac{60 cdot 1000}{3600} frac{м}{с} approx 17 frac{м}{с}$
Так мы увидели, что числовое значение скорости зависит от выбранной единицы измерения.
Скорость как вектор
Чем, кроме числового значения, характеризуется скорость тела?
Логично, что, кроме числового значения, скорость имеет и направление. Например, чтобы узнать, где будет находиться велосипедист через 1 час после того, как он выехал из дома, нам необходимо знать скорость движения и ее направление.
Физические величины делятся на те, которые имеют направление и те, которые его не имеют — на векторные и скалярные:
1. Векторные величины – это величины, которые, кроме числового значения (модуля), имеют еще и направление.
Скорость – это векторная физическая величина
Векторные величины обозначаются буквами со стрелочками. Скорость обозначается как $vec{upsilon}$, а модуль скорости — $upsilon$.
На рисунке 4 стрелкой показано направление скорости (направление движение тела).
2. Скалярные величины – это физические величины, которые не имеют направления и характеризуются только числовым значением. Это путь, объем, время, длина, масса и др.
Примеры задач на нахождение скорости
Задача №1
Равномерно двигаясь, поезд за 3 часа прошел путь длиной 152 км. Найдите скорость движения поезда в единицах СИ.
Дано:
$S = 152 space км$
$t = 3 space ч$
$upsilon -?$
Показать решение и ответ
Скрыть
Решение:
Скорость рассчитывается по формуле:
$upsilon = frac{S}{t}$.
$upsilon = frac{152}{3} frac{км}{ч} approx 51 frac{км}{ч}$.
Выразим в единицах СИ:
$51 frac{км}{ч} = frac{51 000}{3600} frac{м}{c} approx 14 frac{м}{c}$.
Ответ: $upsilon = 14 frac{м}{с}$.
Задача №2
Скорость лыжника первую часть пути составляла $20 frac{км}{ч}$ в течение 15 мин. Следующие 45 мин его скорость была $10 frac{км}{ч}$. Найдите среднюю скорость лыжника.
Обозначим первую часть пути как $s_1$, вторую как $s_2$. Время, соответствующее движению на этих участках, $t_1$ и $t_2$ (рисунок 5). Скорости — $upsilon_1$ и $upsilon_2$.
Дано:
$upsilon_1 = 20 frac{км}{ч}$
$t_1 = 15 space мин$
$upsilon_2 = 10 frac{км}{ч}$
$t_2 = 45 space мин$
$upsilon_{ср} -?$
Показать решение и ответ
Скрыть
Решение:
Скорость лыжника на первой и второй частях пути:
$upsilon_1 = frac{S_1}{t_1}$; $upsilon_2 = frac{S_2}{t_2}$.
Выразим из этих уравнений неизвестные $s_1$ и $s_2$:
$s_1 = upsilon_1t_1$; $s_2 = upsilon_2t_2$.
Чтобы найти среднюю скорость лыжника, нужно его полный путь разделить на все время движения:
$upsilon_{ср} = frac{s_1+s_2}{t_1+t_2} = frac{upsilon_1t_1+upsilon_2t_2}{ t_1+t_2}$.
Выпишем отдельно часть выражения и переведем в часы:
$t_1+t_2 = 15 space мин + 45 space мин = 1space ч$.
Тогда:
$t_1 = frac{1}{4} space ч = 0.25 space ч$,
$t_2 = frac{3}{4} space ч = 0.75 space ч$.
$upsilon_{ср} = frac{20 frac{км}{ч} cdot 0.25 space ч+10 frac{км}{ч} cdot 0.75 space ч}{1 space ч} = frac{5 space км +7.5 space км}{1 space ч} = 12.5 frac{км}{ч}$.
Ответ: $upsilon_{ср} = 12,5 frac{км}{ч}$.
Упражнения
Упражнение №1
Выразите скорости тел: $90 frac{км}{ч}$ и $36 frac{км}{ч}$ в $frac{м}{с}$.
Показать решение
Скрыть
Решение:
$upsilon_1 = 90 frac{км}{ч} = 90 cdot frac{1000 space м}{3600 space с} = frac{1000}{40} frac{м}{с} = 25 frac{м}{с}$.
$upsilon_2 = 36 frac{км}{ч} = 36 cdot frac{1000 space м}{3600 space с} = frac{1000}{100} frac{м}{с} = 10 frac{м}{с}$.
Упражнение №2
Поезд идет со скоростью $72 frac{км}{ч}$. Выразите его скорость в $frac{м}{с}$.
Показать решение
Скрыть
Решение:
$upsilon = 72 frac{км}{ч} = 72 cdot frac{1000 space м}{3600 space с} = frac{1000}{50} frac{м}{с} = 20 frac{м}{с}$.
Упражнение №3
Гоночный автомобиль за $10 space мин$ проезжает путь, равный $50 space км$. Определите его среднюю скорость.
Дано:
$t = 10 space мин$
$S = 50 space км$
СИ:
$t = 600 space с$
$S = 50 space 000 space м$
$upsilon_{ср} — ?$
Показать решение и ответ
Скрыть
Решение:
Средняя скорость при неравномерном движении рассчитывается по формуле:
$upsilon_{ср} = frac{S}{t}$.
$upsilon_{ср} = frac{50 space 000 space м}{600 space с} approx 83.3 frac{м}{с}$.
Ответ: $upsilon_{ср} approx 83.3 frac{м}{с}$.
Упражнение №4
Лучшие конькобежцы дистанцию $1500 space м$ пробегают за $1 space мин$ и $52.5 space с$. С какой средней скоростью они проходят эту дистанцию?
Дано:
$t =1 space мин space 52.5 space с$
$S = 1500 space м$
СИ:
$t = 112.5 space с$
$upsilon_{ср} — ?$
Показать решение и ответ
Скрыть
Решение:
Средняя скорость при неравномерном движении рассчитывается по формуле:
$upsilon_{ср} = frac{S}{t}$.
$upsilon_{ср} = frac{1500 space м}{112.5 space с} approx 13.3 frac{м}{с}$.
Ответ: $upsilon_{ср} approx 13.3 frac{м}{с}$.
Упражнение №5
Лыжник, спускаясь с горы, проходит $50 space м$ за $5 space с$. Спустившись с горы и продолжая двигаться, он до полной остановки проходит еще $30 space м$ за $15 space с$. Найдите среднюю скорость лыжника за все время движения.
Дано:
$S_1 = 50 space м$
$t_1 = 5 space с$
$S_2 = 30 space м$
$t_2 = 15 space с$
$upsilon_{ср} — ?$
Показать решение и ответ
Скрыть
Решение:
Средняя скорость при неравномерном движении рассчитывается по формуле:
$upsilon_{ср} = frac{S}{t}$, где $S$ — весь путь, пройденный лыжником, $t$ — общее время движения.
Общий путь равен: $S = S_1 + S_2$.
Общее время движения: $t = t_1 + t_2$.
Подставим эти значения в формулу для средней скорости и рассчитаем ее:
$upsilon_{ср} = frac{S_1 + S_2}{t_1 + t_2}$,
$upsilon_{ср} = frac{50 space м + 30 space м}{5 space с + 15 space с} = frac{80 space м}{20 space с} = 4 frac{м}{с}$.
Ответ: $upsilon_{ср} = 4 frac{м}{с}$.
Задание
Найдите с помощью интернета фамилии советских летчиков, совершивших впервые в мире беспосадочный перелет Москва-Северный полюс-США. Известно, что расстояние в $8582 space км$ они пролетели за $63 space ч$ и $16 space мин$. Определите, с какой скоростью летел самолет.
Первый беспосадочный перелет Москва-Северный полюс-США совершили советские авиаторы 18-20 июня в 1937 году. Перелет был совершен на самолете АНТ-25. Состав: командир экипажа В. П. Чкалов, второй пилот Г. Ф. Байдуков и штурман А. В. Беляков.
Дано:
$S = 8582 space км$
$t = 63 space ч space 16 space мин$
СИ:
$S = 8 space 582 space 000 space м$
$t = 227 space 760 space с$
$upsilon — ?$
Показать решение и ответ
Скрыть
Решение:
Рассчитаем скорость:
$upsilon = frac{S}{t}$,
$upsilon = frac{8 space 582 space 000 space м}{227 space 760 space с} approx 37.7 frac{м}{с}$.
Ответ: $upsilon approx 37.7 frac{м}{с}$.