Как найти скорость эха

Ответы Mail.ru


Образование


ВУЗы, Колледжи
Детские сады

Школы


Дополнительное образование
Образование за рубежом
Прочее образование

Вопросы – лидеры.

frenky

Где найти ответы на ОГЭ 2023?


1 ставка

frenky

Написать экологическое обоснование изделия из кольца


1 ставка

frenky

Помогите с английским 21 упражнением, расставить a,an,the.


1 ставка

frenky

Чем на ваш взгляд лучше заменить ЕГЭ?


1 ставка

Лидеры категории

Лена-пена


Лена-пена

Искусственный Интеллект

М.И.


М.И.

Искусственный Интеллект

Y.Nine


Y.Nine

Искусственный Интеллект

king71alex
Куклин Андрей
Gentleman
Dmitriy
•••

Какова скорость эха?

vlad ?



Знаток

(456),
закрыт



12 лет назад

Лучший ответ

Сергей Жданов

Гуру

(3949)


12 лет назад

У эха нет скорости . Есть скорость у звука.

Остальные ответы

Борис Н.Ерошкин

Оракул

(76355)


12 лет назад

340м/сек.

Пен

Мастер

(1111)


12 лет назад

скорости звука

Марина

Мудрец

(12623)


12 лет назад

Что “забросишь”, мнгновенно получишь этим же оплеуху.

Похожие вопросы

В опытах с резиновым шнуром и шариками, соединенными пружиной, мы наблюдали волны, которые распространялись только в одну сторону. В сплошных средах волны распространяются по всем направлениям. Сплошной средой можно считать любую жидкость, газ или твердой тело, которые сплошь заполняют некоторую область пространства.

В сплошной среде волны всегда являются затухающими. Это связано с тем, что при колебательном движении между частицами возникают силы трения. Поэтому полная механическая энергия колеблющихся частиц уменьшается. Вспомним, что полная механическая энергия колеблющегося тела равна:

W=kx2max2

где xmax — амплитуда колебаний, а k — коэффициент упругости.

Поскольку часть энергии уходит на преодолении сил трения, со временем она уменьшается. Следовательно, уменьшается и амплитуда колебаний частиц. Исключение составляют плоские волны, амплитуда колебаний которых остается постоянной (или почти постоянной).

Плоские волны

Определение

Плоская волна — волна, образованная бесконечно большой плоской пластиной, колеблющейся перпендикулярно к ее нормали в сплошной среде.

Все частицы, лежащие в одной плоскости, параллельной пластине, колеблются в одной фазе. Поверхности равной фазы называются волновыми поверхностями. А линию, перпендикулярную такой поверхности, называют лучом. Под направлением распространения волн понимают направление лучей.

Волновые поверхности плоской волны представляют собой плоскости, параллельные колеблющейся пластине.

При распространении плоской волны размеры волновых поверхностей по мере удаления от пластины не меняются (или почти не меняются). Поэтому энергия волны не рассеивается в пространстве, и амплитуда колебаний уменьшается только за счет действия сил трения.

Сферические волны

Другой пример волны в среде — сферическая волна. Сферическая волна возникает, если в среду поместить пульсирующую сферу. В этом случае волновые поверхности представляют собой сферы. Лучи же направляются вдоль продолжений радиусов пульсирующей сферы (см. рисунок).

Амплитуда колебаний частиц в случае сферической волны обязательно убывает по мере удаления от источника. Энергия, излучаемая источником, в этом случае равномерно распределяется по поверхности сферы, радиус которой непрерывно увеличивается по мере распространения волны.

Площадь поверхности сферы пропорциональна квадрату радиуса:

S=4πr2

Следовательно, энергия, переносимая волной, убывает обратно пропорционально квадрату расстояния от источника:

W~1r2

Амплитуда же колебаний, квадрат которой пропорционален энергии, убывает обратно пропорционально первой степени расстояния от источника:

smax~1r

Пример №1. Найти расстояние между точками пространства 1 и 2, если известно, что в точке 1 энергия волны равна 10 Дж, а в точке 2— 6 Дж. Считать, что в среде нет трения.

Поскольку энергия волны убывает обратно пропорционально квадрату расстояния от источника, примем, что разность энергий волны в точках 1 и 2 обратно пропорциональна квадрату расстояния между ними:

(W1W2)~1r2

(106)~1r2

4~1r2

Тогда:

r~14~12 (м)

Поперечные и продольные волны в средах

Как вы знаете, волны могут быть поперечными и продольными. В поперечной волне смещения отдельных участков среды происходят в направлении, перпендикулярном распространению волны. При этом происходит упругая деформация, называемая деформацией сдвига. Отдельные слои вещества сдвигаются друг относительно друга. Объем тела не изменяется. При деформации сдвига в твердом теле возникают силы упругости, стремящиеся вернуть тело в исходное состояние. Именно эти силы и вызывают колебания среды.

Сдвиг слоев друг относительно друга в газах и жидкостях не приводит к появлению сил упругости. Поэтому в газах и жидкостях не могут существовать поперечные волны. Поперечные волны возникают только в твердых телах.

Внимание!

Исключение составляют поверхности жидкостей, в которых могут возникать поперечные волны за счет сил поверхностного натяжения. Но внутри жидкостей могут распространяться только продольные волны.

В продольной волне происходит деформация сжатия и растяжения. Силы упругости, связанные с этой деформацией, возникают как в твердых телах, так и в жидкостях и газах. Эти силы вызывают колебания отдельных участков среды, поэтому продольные волны могут распространяться во всех средах.

Это интересно!

В твердых средах скорость продольных волн больше скорости поперечных волн. Зная скорости продольных и поперечных волн в земной коре, а также время запаздывания поперечной волны, можно определить расстояние до очага землетрясения.

Звуковые волны

Волны на поверхности воды или волны вдоль резинового шнура можно непосредственно видеть. В прозрачной среде — воздухе или жидкости — волны невидимы. Но при определенных условиях их можно слышать.

Зажмем в тиски металлическую линейку и отклоним ее верхнюю часть в сторону, затем отпустим. Линейка начнет совершать колебательные движения. Мы их увидим, но не услышим.

Теперь проделаем тот же самый опыт, но укоротим линейку. Теперь мы сможем не только видеть, но и слышать колебания.

Почему одни колебания можно услышать, а другие нет? Все дело в частоте колебаний. В опытах линейка совершала колебания разных частот. Известно, что период колебаний зависит от длины колеблющегося тела. Он пропорционален корню из этой длины:

T~l

Следовательно, когда длина линейки меньше, период колебаний тоже меньше. Также известно, что период представляет собой величину, обратную частоте:

T=1ν

Следовательно, если период колебаний меньше, то частоты выше. Ухо человека воспринимает колебания сплошных сред как звук, если их частота находится в диапазоне от 16 до 20 000 Гц.

Это интересно!

Колебания частотой до 16 Гц называют инфразвуком, а колебания частотой более 20 000 Гц — ультразвуком. Ультразвук могут слышать многие животные. К примеру, кошки воспринимают звуки частотой от 45 до 64 000 Гц.

Пример №2. Сильный ветер раскачивает ствол дерева так, что он совершает одно колебание за 2 секунды. Определить, услышит ли человек звук раскачивающегося ствола дерева.

Чтобы дать ответ на вопрос, нужно найти частоту колебаний дерева:

ν=1T=12 (Гц)

Теперь сравним полученное значение с частотами, которые может слышать человек. Минимальная частота, воспринимаемая человеческим ухом, составляет 16 Гц. 1/2 меньше 16. Следовательно, звук колебаний ствола дерева человек не услышит.

Как возбуждаются звуковые волны

Как же получается, что мы можем слышать звук колеблющегося конца линейки? Дело в том, что когда линейка отклоняется, она толкает воздух впереди себя, создавая уплотнение. С обратной же стороны образуется разрешение. То есть, колеблющаяся линейка порождает продольную волну.

Так как воздух — сплошная среда, то волна распространяется во все стороны. Она состоит из чередующихся зон повышенной и пониженной плотности (см. рисунок ниже). Плотные участки воздуха давят на барабанную перепонку уха. Так волна становится слышимой.

Звук может распространяться в любой среде: жидкой, газообразной и твердой. Причем чем плотнее среда, тем быстрее распространяется звук. Так, быстрее всего звуковая волна распространяется в твердых телах, чуть медленнее — в жидкостях. Медленнее всего она распространяется в воздухе. В вакууме звук услышать нельзя. Звук представляет собой продольную волну в сплошной вещественной среде. В вакууме вещества нет (или почти нет).

Это интересно!

Распространяясь, амплитуда звуковых волн уменьшается. Часть энергии волн также теряется при переходе из газообразной среды в твердую среду. Поэтому для защиты помещений от посторонних звуков люди применяют войлок, пробку, ворсистые ковры и другие пористые материалы.

Скорость звука

Звуковые волны, подобно всем другим волнам, распространяются с конечной скоростью. Обнаружить это можно так. Свет распространяется с огромной скоростью — 300 000 км/с. Поэтому вспышка от выстрела почти мгновенно достигает глаз. Звук же выстрела приходит с заметным запаздыванием. То же самое можно заметить, наблюдая с большого расстояния игру в футбол. Вы видите удар по мячу, а звук от удара приходит спустя некоторое время. Все, вероятно, замечали, что вспышка молнии предшествует раскату грома. Если гроза далеко, то запаздывание грома достигает нескольких десятков секунд. Наконец, из-за конечной скорости звука появляется эхо. Эхо — это звуковая волна, отраженная от опушки леса, крутого берега, здания и т. д.

Чтобы вычислить скорость звука, нужно знать расстояние от источника звука до слушателя, а также разницу времени между тем, как звук был издан, и тем, как он был услышан. В таком случае скорость можно будет вычислить по формуле:

v=st

Так как звук — это волна, то скорость звука является скорость распространения волны, которая равна отношению длины волны к периоду колебаний:

v=λT

Приведем в таблице приблизительные скорости звука в различных средах.

Пример №3. Определите скорость звука в воде, если колебания с периодом T = 0,005 с, порождают звуковую волну длиной λ = 7,175 м.

v=λT=7,175 0,005=1435 (мс)

Эхо

Определение

Эхо — отраженная от препятствия звуковая волна.

Звуковые волны, распространяющихся в неплотных средах (например, в воздухе), имеют способность отражаться от более плотных сред (твердых тел) в направлении к источнику звука. Эхо можно услышать в горах, в лесу, в большом пустом помещении, но его нельзя услышать в маленькой комнате. С чес же это связано?

Человеческое ухо воспринимает одинаковые звуки как два отдельных звука только в случае, если временной между ними составляет не менее 0,06 с. Если отраженная звуковая волна достигла уха раньше, чем за это время, мозг объединит эти звуки в один. Чем меньше расстояние от источника звука до препятствия, тем быстрее приходит эхо.

Пример №4. Это, вызванное ружейным выстрелом, дошло до стрелка через 4 с после выстрела. На каком расстоянии от наблюдателя находится преграда, от которой произошло отражение звука? Считать, что скорость звука в воздухе равна 330 м/с.

Звуковая волна прошла двойное расстояние от стрелка до препятствия: сначала от наблюдателя к этому препятствию, затем от препятствия к этому наблюдателю. Следовательно, найти его можно по следующей формуле:

2s=vt

s=vt2=330·42=660 (м)

Задание EF19116

Какова глубина вертикальной шахты, если звук выстрела, произведённого у входа в шахту на поверхности земли, вернулся к стрелку, отразившись от дна шахты, через 0,5с после выстрела? Скорость звука в воздухе считать равной 340 м/с.


Алгоритм решения

1.Записать исходные данные.

2.Выполнить решение задачи в общем виде.

3.Подставить известные данные и выполнить вычисления.

Решение

Запишем исходные данные:

 Скорость распространения звука в воздухе: v = 340 м/с.

 Промежуток времени между выстрелом и эхом: t = 0,5 с.

Звук от выстрела проделает путь, равный двойному расстоянию от стрелка до дна шахты. Сначала он достигнет дна шахты, затем вернется к стрелку. Поскольку скорость звука постоянна, для преодоления половины пути потребуется вдвое меньше времени. Следовательно, для нахождения времени между выстрелом и эхо нужно умножить скорость звука в воздухе на половину промежутка времени между выстрелом и эхом:

s=vt2=340·0,52=85 (м)

Ответ: 85

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22741

Колеблющаяся струна издаёт звук с длиной волны 0,68 м. Какова частота её колебаний, если скорость звука в воздухе 340 м/с?


Алгоритм решения

1.Записать исходные данные.

2.Записать формулу, которая связывает длину волны с ее частотой.

3.Выполнить решение задачи в общем виде.

4.Подставить известные данные и выполнить вычисления.

Решение

Запишем исходные данные:

 Скорость распространения звука в воздухе: v = 340 м/с.

 Длина волны: λ = 0,68 м.

Скорость звука — это отношение длины волны к ее периоду. Но период — это обратная величина частоте. Следовательно, скорость звука — есть произведение длины волны на частоту:

v=λν

Отсюда:

ν=vλ=3400,68=500 (Гц)

Ответ: 500

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18740

Через какое время после выстрела придёт к охотнику эхо от звука выстрела, если расстояние до преграды, от которой отразится звук, равно 850 м? Скорость звука в воздухе считать равной 340 м/с.


Алгоритм решения

1.Записать исходные данные.

2.Выполнить решение задачи в общем виде.

3.Подставить известные данные и выполнить вычисления.

Решение

Запишем исходные данные:

  •  Скорость распространения звука в воздухе: v = 340 м/с.
  • Расстояние до преграды: s = 850 м.

Звук от выстрела проделает путь, равный двойному расстоянию от охотника до преграды. Сначала он достигнет преграды, затем вернется к охотнику. Следовательно, для нахождения времени между выстрелом и эхо нужно разделить этот путь на скорость звука в воздухе:

t=2sv=2·850340=5 (с)

Ответ: 5

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 2.8k

Содержание

  • 1 Источники звуковых волн
  • 2 Распространение звуковых волн
  • 3 Скорость звука
    • 3.1 1. Скорость звука в воздухе
    • 3.2 2. Скорость звуковых волн в твёрдых телах
    • 3.3 3. Скорость звука в разных средах
  • 4 Сила звука
  • 5 Отражение звука
  • 6 Природа грома
  • 7 Волны Рэлея

Звуковые волны или звук – это колебания частиц, распространяемые волнообразно в какой-либо среде – газообразной, жидкой или твёрдой, – которые воспринимаются органами слуха животных.

Когда мы изучаем свет, то убеждаемся не только в том, что он существует вне нас, но сверх того еще и в том, что нам необходимо иметь глаза для восприятия света, иначе мы и не подозревали бы о нем. Всё вокруг нас погружается в темноту, когда мы закрываем глаза. Точно так же для нас не существовало бы мира звуков, если бы у нас не было органа слуха, который воспринимает их.

Итак, мы называем звуком то, что мы чувствуем нашим слуховым аппаратом. Но явления внешнего мира для нас имеют характер звуковых только с того момента, когда они дошли до наших ушей. Закрыв уши пальцами, мы не услышим разговора, хотя он и продолжается около нас.

  • Звуковые волны, как и свет, представляет собою действие на нас специальных волнообразных движений. Явления, общие для всех родов волнообразного движения, будут иметь место и в свете, и в звуке, хотя существуют огромные различия между тем и другим родом волнообразных движений.
  • Звуковые волны отличаются от света тем, что волнообразные движения происходят не в межзвездном пространстве, а в материальной среде. Такою средою, большею частью, служит воздух. Но ею может быть также всякий газ или смесь газов, ею могут быть и жидкости, как вода, и твердые тела. Там же, где нет обычной материи, не может быть и звука.

Из этого следует, что как бы ни были грандиозны звуковые явления, происходящие на Солнце и Луне, они не могут произвести такого шума, который мог бы быть услышан у нас на Земле, потому что за пределами нашей атмосферы, между Землей и небесными телами, нет обычной материи.

Источники звуковых волн

Мы говорим, что звук есть волнообразные движения или колебания. Каждый, кто видел или чувствовал то, что происходит, когда рождается звук, тотчас согласится с этим. Так, например, если крепко натянуть нить и потом быстро ударить по ней, то можно видеть, как она заколеблется. И услышать при этом небольшой музыкальный звук. То же самое будет наблюдаться в звучащей фортепианной струне или в колоколе. И мы можем ощущать эти колебания, если дотронемся до них.

Источники звуковых волн. Схема натянутая струна

Источники звуковых волн. Схема натянутая струна

Мы также знаем, что при ударе по стеклу оно издает звук, который прекращается, если прикосновением пальца прекратить его колебания. Все эти явления служат доказательством того, что известные колебания производят звук. Каждый раз, когда колеблется колокольчик, стакан или струна, воздух получает от них легкие удары. В нем образуется ряд волн, доходящих до нашего уха, вот почему мы и слышим звук.

Нетрудно доказать, что воздух проводит звуковые волны. Для этой цели производят следующий опыт: под стеклянный колпак воздушного насоса помещают электрический звонок, заставляют его непрерывно звенеть. Затем начинают насосом выкачивать воздух.

Звуковые волны. Опыт со звонком

Звуковые волны. Опыт со звонком

Когда уменьшается количество воздуха под колпаком, мы видим звонок так же хорошо, как и раньше, потому что свет распространяется, когда воздуха нет. Но звук делается все тише и наконец совершению прекращается. Колебания звонка продолжают совершаться, но так как вокруг него больше нет воздуха, то он не может производить те волны. которые мы называем звуковыми. Если же воздух начинает снова входить под колпак, то звук восстанавливается. Этот простой опыт показывает нам не только то, что воздух служит проводником звука, но и то, что сила звука в значительной степени зависит от состояния воздуха.

Когда у нас появляется возможность сравнить скорость света со скоростью звука, то мы находим между ними огромное различие. Но видим огонь и дым при стрельбе из отдаленной пушки на несколько секунд раньше звука от ее выстрела. Свет распространяется так быстро, что даже значительное расстояние, на котором находится от нас действующее орудие, он проходит в какую-нибудь тысячную долю секунды; тогда как звук распространяется гораздо медленнее, и скорость его распространения при таком опыте очень легко вычислить.

Распространение звуковых волн

Возьмем несколько бильярдных шаров и положим их прямой линией на бильярдном столе так, чтобы они касались друг друга. Затем возьмем еще шар и покатим его так, чтобы он ударил в шар, лежащий на конце ряда. Тогда каждый из шаров в ряду будет попеременно сжиматься и производить давление на следующий за ним, в результате чего шар, находящийся на другом конце ряда, отскочит от него.

Распространение звуковых волн. Опыт с бильярдными шарами

Распространение звуковых волн. Опыт с бильярдными шарами

Каждый шар ряда здесь попеременно сжимается и расширяется. То же самое случается и в воздухе, когда звук проходит через него. Мы можем представить себе, что волну принуждают двигаться частицы воздуха, ударяющие одна о другую при своих движениях взад и вперед, точно так, как эти бильярдные шары.

Скорость звука

Скорость света одинакова при всех условиях, насколько это можно было изучить. А скорость звука изменяется в значительной степени с изменением условий, при которых он распространяется в воздухе. Большое счастье для музыкального искусства заключается в том, что скорость звука изменяется только в незначительной степени с изменением высоты его или силы.

Было бы очень затруднительно слушать издали музыку, если бы звуки различных инструментов оркестра доходили до нашего слуха в разное время, в то время как композитор имел в виду, что они будут слышаться одновременно. Или, если бы мотив, разыгрываемый одной частью оркестра, доходил до нашего слуха раньше того, что играет другая часть оркестра, или позже.

1. Скорость звука в воздухе

Обычная скорость звука в воздухе считается около 331 метра (То есть около трети километра) в секунду. Когда температура воздуха поднимается, он становится более упругим и тогда прохождение звука через него совершается быстрее.

Самолет преодолевает скорость звука

Самолет преодолевает скорость звука

Скорость звука увеличивается с повышением температуры воздуха, если плотность его остается той же самой.

Если мы примем во внимание зависимость скорости звука от упругости проводящей его среды, то нам будет понятно, почему звук проходит значительно быстрее в жидкостях, чем в газах, и еще быстрее в твердых телах.

2. Скорость звуковых волн в твёрдых телах

Звуковые волны распространяются в твёрдых телах быстрее, чем в воздухе. Железо, когда оно в твердом состоянии, обладает большею упругостью, чем воздух, и звук проходит в нем почти в семнадцать раз быстрее, чем в воздухе

Нельзя смешивать скорость распространения звука в воздухе или в какой-либо другой среде с высотой тона. Она у музыкального звука зависит от числа колебаний в секунду, и чем их больше, тем выше тон.

Звук, как мы сказали, проходя через железо, достигает нашего уха в семнадцать раз быстрее, чем когда он проходит через воздух; высота же его тона остается той же самой в обоих случаях, потому что число колебаний в секунду остается одно и то же, хотя звук через железо проходит значительно быстрее.

3. Скорость звука в разных средах

Газ:

  • Хлор – 206 м/сек
  • Углекислый газ – 259 м/сек
  • Кислород – 316 м/сек
  • Водород – 1 284 м/сек
  • Неон – 435 м/сек
  • Метан – 430 м/сек
  • Воздух – 331 м/сек

Жидкость:

  • Вода – 1 483 м/сек
  • Ртуть – 1 383 м/сек

Твёрдые тела:

  • Стекло – 4 800 м/сек
  • Литий – 6 000 м/сек
  • Алмаз – 12 000 м/сек
  • Железо – 5 950 м/сек
  • Золото – 3 240 м/сек

Сила звука

Когда мы начнем исследовать силу звука на разных расстояниях, то найдем, что первый закон, относительно его, тот же, что и для света. И насколько нам известно, этот закон верен не только относительно волнообразных движений, но и такого явления, как тяготение.

На точном научном языке закон о силе звука излагается так:

Сила звука изменяется обратно пропорционально квадрату расстояния от его источника

Таким образом можно коротко и ясно выразить, например, ту мысль, что если мы удаляемся от источника звука на расстояние, которое в три раза больше прежнего, то сила звука уменьшится при этом не в три, а в девять раз: девять есть квадрат трех. Квадратом числа называется число, полученное от перемножения его на самого себя.

Когда этот закон применяется к силе света или тяготения, то нам не приходится считаться с какими-либо условиями, которые могут повлиять на них. Но если речь идёт о звуке, то дело обстоит несколько иначе. На звук влияет плотность той среды, в которой он проходит; в морозную ночь воздух очень плотен, почему нам и дышится тогда легче, звук же будет в это время слышен сильнее. С другой стороны, звук ружейного выстрела высоко в горах ослабляется, потому что воздух там редок. Это явление напоминает нам опыт со звонком под колпаком воздушного насоса.

Отражение звука

Когда мы наблюдаем, как волны моря или озера ударяют в крутой берег, мы видим, что они отражаются от него и отскакивают назад. Если поверхность берега ровная и вертикальная, то мы видим, что волны отражаются от нее точно так же, как мяч от стены. Если звук есть действительно волнообразное движение, то мы всегда можем ожидать, что и он будет так же отражаться, как водяные волны, и нам часто приходится убеждаться в этом.

Всякие движущиеся волны могут отражаться от преград на их пути; это совершается как при свете, так и при морских волнах. Есть законы отражения, которые одинаково приложимы к этим различным явлениям.

  1. Первый из них говорит, что угол падения волны равен углу ее отражения: это значит, что угол, под которым волна достигает поверхности, точно такой, под которым волна удаляется от нее в другую сторону. Точно такое же явление происходит при бросании мяча в стену. Если мы бросим мяч в стену в перпендикулярном направлении, то в таком же направлении он отскочит от нее; если мы бросим мяч вкось, он так же вкось отскочит. А в том случае, когда стена плоская и на мяче нет никаких неровностей и если при этом мы можем измерить угол, под которым мяч падает на стену, и тот, под которым он отскакивает от нее, то всегда найдем, что оба эти угла равны.

Угол отражения равен углу падения

Угол отражения равен углу падения
  1. Второй: плоскость, в которой волна приближается, всегда та же самая, по которой она удаляется от отражаемой ее поверхности. Предположим, например, что звук движется по поверхности листа бумаги и на краю листа ударяется в перпендикулярную к нему стену. Он отразится не только под тем же углом, под которым приближался, а пойдет назад опять в плоскости листа бумаги, не уклоняясь ни вверх, ни вниз.

Падающий и отражённый лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения

Падающий и отражённый лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения

Природа грома

Мы все хорошо знаем, что на открытом воздухе звук кажется нам не таким, как в закрытом помещении. И наш голос в разных местах звучит различно. Все эти явления зависят от особенностей отражения звука в разных местах.

Самым лучшим способом для доказательства отражения звука может служить эхо. Мы можем довольно простым способом определить скорость звука, стоит только нам произвести звук на некотором расстоянии от отражающей его поверхности и заметить, как быстро мы услышим эхо.

Лучшим примером отражения звука, производящего эхо, являются раскаты грома, случающиеся во время грозы:

  • Гром — это сотрясение воздуха, образующее звук
  • Он происходят благодаря тому, что молния проходит от облака к облаку или от облака к земле.
  • Если нет эха, то мы слышим просто единичный удар грома, соответствующий одной мгновенной причине, производящей его
  • Когда же мы слышим раскаты грома, мы просто слышим эхо одного и того же удара, отражающегося много раз от облаков к земле

Молния

Молния

Волны Рэлея

Если мы наполним резиновый шар или выпуклый диск углекислым газом, то заметим, что он действует на звук точно так, как зажигательное стекло на световые лучи. Звуковые волны отклоняются газом, находящимся в шаре, так что они все собираются в одном пункте, находящемся по другую сторону шара точно так, как лучи солнца могут быть собраны на кусок бумаги в одну точку зажигательным стеклом.

Звуковые волны. Опыт Рэлея с часами и шаром

Звуковые волны. Опыт Рэлея с часами и шаром

Это видно из хорошо известного опыта, произведенного замечательным английским ученым, лордом Рэлеем. Опыт этот заключается в том, что нас ставят против часов на таком расстоянии, чтобы не слышать их тиканья. Если после этого гуттаперчевый шар, наполненный углекислым газом, будет помещен между нами и часами, то, находясь на том же самом расстоянии, мы услышим часы. Это происходит вследствие того, что углекислый газ преломляет звуковые волны и фокусирует их в одной точке.

Услышит ли эхо человек, стоящий в комнате на расстоянии (3) м от стены?

  1. Звук распространяется со скоростью (340~frac{м}{с}).
  2. Его путь составит (3+3=6~м) до стены и обратно относительно говорящего.
  3. Рассчитаем, через какое время звук вернётся по формуле равномерного движения волнового фронта:
    t=Sυ; вычислим: t=6340≈0,02 с.
  4. (0,02~с<0,06~с), поэтому условия для восприятия эха не будут выполняться.

А еще образованию эхо будут мешать любые находящиеся в комнате предметы, ведь они могут поглощать звук, а также отражать звуковые волны. В помещении с рыхлыми поверхностями – тканью, коврами, шторами, обоями – звук в основном поглощается. Из-за этого речь людей в помещении звучит разборчиво и чётко, так как не возникает эха.

Другое дело – большие пустые помещения, в них стены, пол и потолок находятся далеко друг от друга. В таких помещениях звуковых волны накладываются друг на друга в результате отражения от поверхностей помещения, и образуется гул. Избавиться от нежелательного явления можно, используя специальные материалы, поглощающие звук. Этими материалами облицовывают стены таких помещений.



Скачать материал



Скачать материал

  • Сейчас обучается 68 человек из 40 регионов

  • Сейчас обучается 33 человека из 20 регионов

Описание презентации по отдельным слайдам:

  • Что такое волна?
Приведите примеры механических волн.
Какие волны называются...

    2 слайд

    Что такое волна?
    Приведите примеры механических волн.
    Какие волны называются поперечными, продольными?
    Что понимают под скоростью волны?
    Что такое длина волны?

  • В озеро упала ветка. Пробегавший мимо олень успел заметить, что волна, создан...

    3 слайд

    В озеро упала ветка. Пробегавший мимо олень успел заметить, что волна, созданная падением ветки, дошла до берега за 10 с, причем расстояние между соседними гребнями волн было ровно 10 см и за 2 с было 4 всплеска о берег. Помогите оленю определить, как далеко от берега упала ветка.

  • Почему звук не распространяется на Луне?

    6 слайд

    Почему звук не распространяется на Луне?

  • Где может распространяться звук?       Звук распространяется во всех упругих...

    7 слайд

    Где может распространяться звук?
    Звук распространяется во всех упругих телах –
    Но! Звук не распространяется в безвоздушном пространстве.
    газообразных
    твердых
    жидких

  • Самое медленное распространение звука – в газах.Гром – звук. Он всегда запаз...

    8 слайд

    Самое медленное распространение звука – в газах.
    Гром – звук. Он всегда запаздывает после вспышки молнии.
    Мы сначала видим, а уж потом , через несколько секунд, слышим.
    Скорость распространения звука в воздухе
    при 20ºС – 343 м/сек; при 0ºС – 331 м/сек
    примерно1235 км/час
    В разных газах звук распространяется с разной скоростью.
    Например при 0°С :
    водород – 1284 м/сек
    гелий – 965 м/сек
    кислород – 316 м/сек

  •  Начальная скорость пули примерно 825 м/с, что значительно превышает скорость...

    9 слайд

     Начальная скорость пули примерно 825 м/с, что значительно превышает скорость звука в воздухе. Поэтому человек, услышавший звук выстрела или свист пули, может не беспокоиться: эта пуля его уже миновала. Пуля обгоняет звук выстрела и достигает своей жертвы до того, как приходит этот звук.

  • Скорость звука в жидкостях, как правило, больше скорости звука в газах. Скоро...

    10 слайд

    Скорость звука в жидкостях, как правило, больше скорости звука в газах. Скорость звука в воде впервые была измерена в 1826 г. Ж- Колладоном и Я. Штурмом. Свои опыты они проводили на Женевском озере в Швейцарии На одной лодке поджигали порох и одновременно ударяли в колокол, опущенный в воду. Звук этого колокола с помощью специального рупора, также опущенного в воду, улавливался на другой лодке, которая находилась на расстоянии 14 км от первой. По интервалу времени между вспышкой света и приходом звукового сигнала определили скорость звука в воде. При температуре 8 °С она оказалась равной примерно 1440 м/с

  • Скорость звука в первые измерена в 1826 г. Ж. Колладоном и Я. Штурмом.

    11 слайд

    Скорость звука в первые измерена в 1826 г. Ж. Колладоном и Я. Штурмом.

  • В различных жидкостях звук распространяется с различной скоростью.Почему рыба...

    12 слайд

    В различных жидкостях звук распространяется с различной скоростью.
    Почему рыбаки просят не шуметь во время рыбалки? Откуда это «Всю рыбу распугаешь»? На границе между двумя разными средами часть звуковой волны отражается, а часть проходит дальше. При переходе звука из воздуха в воду 99,9 % звуковой энергии отражается назад, однако давление в прошедшей в воду звуковой волне оказывается почти в 2 раза больше. Слуховой аппарат рыб реагирует именно на это.

  • Скорость звука в твердых телах больше, чем в жидкостях и газах. Если вы прило...

    13 слайд

    Скорость звука в твердых телах больше, чем в жидкостях и газах. Если вы приложите ухо к рельсу, то после удара по другому концу рельса вы услышите два звука. Один из них достигнет вашего уха по рельсу, другой – по воздуху
    Хорошей проводимостью звука обладает земля. Поэтому в старые времена при осаде в крепостных стенах помещали “слухачей”, которые по звуку, передаваемому землей, могли определить, ведет ли враг подкоп к стенам или нет. Прикладывая ухо к земле, также следили за приближением вражеской конницы.

  • От 0,25 м до 1м.

    16 слайд

    От 0,25 м до 1м.

  • 2. Комары делают 500-1000 взмахов крыльями в секунду, шмели – 130-240, бабочк...

    17 слайд

    2. Комары делают 500-1000 взмахов крыльями в секунду, шмели – 130-240, бабочки -5-9. Пчела, летящая налегке, взмахивает крылышками 400-500 раз в секунду, с ношей – 200-250. Крылья комара Forcips совершают более 2000 тысяч взмахов в секунду. Какой частоты звуки издают эти насекомые?

  • «Отражение звука. Эхо. Звуковой резонанс»

    20 слайд

    «Отражение звука. Эхо. Звуковой резонанс»

  • Отражение звука.если препятствие по своим размерам намного превышает длину зв...

    21 слайд

    Отражение звука.
    если препятствие по своим размерам намного превышает длину звуковой волны
    (17 мм – 21 м)
    (20 000 Гц – 16 Гц)

  • Отражение звука
Эхо – это звуковые волны, отраженные от какого- либо препятст...

    22 слайд

    Отражение звука

    Эхо – это звуковые волны, отраженные от какого- либо препятствия и возвратившиеся к источнику звука.

    Увеличение длительности звука, вызванное его отражением от препятствий, называется реверберацией

  • Эхо – отражение 
кратковременного звука (импульса)
 от различных препятствий...

    23 слайд

    Эхо – отражение
    кратковременного звука (импульса)
    от различных препятствий
    (стены, леса и т. п.),
    воспринимаемое наблюдателем.

     Существует несколько типов эхо:
    Многократное эхо – получающееся: при наличии
    нескольких отражающих поверхностей, например
    в горных местностях.
    Музыкальное эхо – возникающее на пустых стадионах
    или открытых с бетонными ступенями вследствие
    многих отражений, доходящих до наблюдателя через
    одинаковые временные сдвиги.
    При заполнении трибун зрителями эхо исчезает, т. к.
    поверхности, ранее отражавшие звук, становятся
    поглощающимися.

  • ЭХО	Промежуток времени между отраженным звуком и произнесённым в воздухе долж...

    24 слайд

    ЭХО
    Промежуток времени между отраженным звуком и произнесённым в воздухе должен составлять 1/15 с.
    Портик Эхо в Олимпии

  • Отражение звукахорошееплохоегладкие поверхности
упругие теламягкие ткани, 
по...

    25 слайд

    Отражение звука
    хорошее
    плохое
    гладкие поверхности
    упругие тела
    мягкие ткани,
    пористые тела

  • Тридцатикратное эхо дворца Симонетта в Милане. В Галерее шёпота в Соборе С...

    26 слайд

    Тридцатикратное эхо дворца Симонетта в Милане.

    В Галерее шёпота в Соборе Св. Павла в Лондоне эхо такое, что, стоя у одной стены собора, вы можете услышать, о чём шепчутся люди у другой стены собора, находящейся от вас в 36м.
    В замке Вудсток в Англии эхо отчетливо повторяет 17 слогов.

  • эхолот
рупор

  • Тест.Проверь себя:
    
 1. Какой диапазон частот имеют звуковые волны?
   э)...

    28 слайд

    Тест.Проверь себя:

    1. Какой диапазон частот имеют звуковые волны?
    э)16 – 20Гц з) 20 – 30кГц ц) 16Гц – 20кГц

    2.Как распространяется звук в однородной среде?
    х) звук распространяется прямолинейно с постоянной скоростью в одном направлении;
    б) звук распространяется по всем направлениям, скорость уменьшается с расстоянием;
    е) звук распространяется прямолинейно с постоянной скоростью по всем направлениям.

    3. Пустая телега сильно гремит. О чем идет речь в пословице?
    о) о высоте звука р) о громкости
    д) о резонансе т) о скорости

  • 4. Чему равна длина звуковой волны в воде, если ее скорость равна   1480 м/с...

    29 слайд

    4. Чему равна длина звуковой волны в воде, если ее скорость равна 1480 м/с, а частота 740 Гц?
    л) 0,5 м; о) 2 м; н) 4 м.
    5. Когда возникает акустический резонанс?
    л) частота колебаний тела равна частоте колебаний звуковой волны
    с) частота колебаний тела меньше частоты колебаний звуковой волны
    и) частота колебаний тела больше частоты колебаний звуковой волны.
    6. Когда возникает эхо?
    в) звуковые волны поглощаются телами
    к) звуковые волны проходят сквозь тела
    о) звуковые волны отражаются от тел, находящихся на их пути.
    7. На какую характеристику звука реагирует наше ухо?
    ф) длина волны м) частота л) скорость з) на все три

  • Проверка тестаМОЛОДЕЦШкала: 0 – 2б. – «2» 
             3 – 4б. – «3»...

    30 слайд

    Проверка теста
    МОЛОДЕЦ
    Шкала: 0 – 2б. – «2»
    3 – 4б. – «3»
    5 – 6б. – «4»
    7б. – «5».

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 256 858 материалов в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Материал подходит для УМК

  • «Физика», Перышкин А.В., Гутник Е.М.

Другие материалы

«Физика», Перышкин А.В., Гутник Е.М.

  • 20.01.2022
  • 101
  • 0

«Физика (базовый уровень)», Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. / Под ред. Парфентьевой Н.А.

«Физика», Перышкин А.В.

  • 20.01.2022
  • 96
  • 0
  • 20.01.2022
  • 99
  • 0

«Физика», Перышкин А.В., Гутник Е.М.

  • 20.01.2022
  • 124
  • 0

«Физика», Перышкин А.В.

  • 20.01.2022
  • 175
  • 1

«Физика», Перышкин А.В.

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Информационные технологии в деятельности учителя физики»

  • Курс повышения квалификации «Правовое обеспечение деятельности коммерческой организации и индивидуальных предпринимателей»

  • Курс повышения квалификации «Методика написания учебной и научно-исследовательской работы в школе (доклад, реферат, эссе, статья) в процессе реализации метапредметных задач ФГОС ОО»

  • Курс повышения квалификации «Организация практики студентов в соответствии с требованиями ФГОС педагогических направлений подготовки»

  • Курс повышения квалификации «Основы построения коммуникаций в организации»

  • Курс повышения квалификации «Управление финансами: как уйти от банкротства»

  • Курс профессиональной переподготовки «Организация маркетинга в туризме»

  • Курс повышения квалификации «ЕГЭ по физике: методика решения задач»

  • Курс профессиональной переподготовки «Деятельность по хранению музейных предметов и музейных коллекций в музеях всех видов»

  • Курс повышения квалификации «Финансовые инструменты»

  • Курс профессиональной переподготовки «Организация деятельности по водоотведению и очистке сточных вод»

  • Курс профессиональной переподготовки «Организация процесса страхования (перестрахования)»

Добавить комментарий