В статье обсуждаются несколько подходов к вычислению скорости по силе и массе, а также решенные проблемы.
Чтобы вычислить скорость, мы должны понять, насколько далеко уходит масса объекта при приложении силы. Скорость объекта – это не что иное, как величина его вектора скорости. Вот почему мы можем рассчитать скорость по силе и массе, используя законы Ньютона, кинематическое уравнение движения и формулы работы-энергии.
Подробнее о том, как рассчитать массу по силе и расстоянию.
Как рассчитать скорость по силе и массе, используя второй закон Ньютона?
Давайте вычислим скорость по силе и массе, используя второй закон движения Ньютона.
Второй закон Ньютона связывает скорость изменения скорости или ускорение с приложенной силой и массой. Вычислять скорость из второго закона Ньютона, нам сначала нужно понять разницу между скоростью и скоростью, а затем вычислить значение скорости из скорости изменения скорости.
Согласно Второй закон Ньютона,
F = ma
]
F=m*[(vv0)/(тт0)
В то время как v0 – начальная скорость, v – конечная скорость.
Прежде чем рассчитывать скорость по закону Ньютона, давайте разберемся в разнице между скоростью и скоростью.
от силы и массы
Разница между скоростью и скоростью
Скорость | Скорость |
Это скалярная величина, связанная с расстоянием. | Это векторная величина, связанная со смещением. |
Это ненулевая величина, которая всегда положительна. | Может быть нулевым, положительным и отрицательным. |
Это может не быть равным скорости. | Разные скорости одного и того же объекта обладают одинаковой скоростью. |
Единица СИ – метр в секунду (м / сек). | Единица СИ – километр / час (км / час). |
(Кредит: Shutterstock)
Когда автомобиль проехал определенное расстояние d за время t, мы называем его скорость v.
v=d/t
Как вы знаете, иногда нам нужно изменить направление во время движения из-за пробок или по другим причинам; в этом случае мы измеряем смещение вместо расстояния d в интервале времени t.
Уравнение (*) превращается в скорость v как,
Смещение – это кратчайшее расстояние между конечным и начальным расстоянием, но его величина меньше или равна общему расстоянию d.
(Кредит: Shutterstock)
Поскольку скорость не равна нулю или никогда не уменьшается со временем, величина скорости становится значением скорости, когда время приближается к нулю.
Это означает скорость v говорит нам, насколько быстро машина. В то время как скорость v говорит нам как о скорости автомобиля, так и о его направлении. Поэтому мы назвали скорость величиной вектора скорости.
Узнать больше об относительном движении.
Автомобиль массой 1000 кг в состоянии покоя проехал около 1 часа при силе 6 х 104 Применяется N. Рассчитайте скорость автомобиля.
Данный:
F = 6 х 104 N
m = 1000 кг
t = 1 час
Найти: v=?
Формула:
F = ma
Решение:
Скорость автомобиля рассчитывается с использованием Второй закон движения Ньютона.
F = ма
F=m*[(vv0)/(тт0)
Поскольку автомобиль изначально находится в состоянии покоя, v0 = 0 и t0 = 0
Следовательно,
Подставляя все значения,
Преобразуем скорость в скорость в метрах в секунду.
1 км = 1000 м
1 час = 3600 секунд
v=60*(1000/3600)
v = 60000/3600
v = 16.6
Автомобиль движется со скоростью 16.6 м / сек.
Подробнее о том, как рассчитать ускорение свободного падения.
Как рассчитать скорость по силе и массе, используя кинематическое уравнение движения?
Давайте вычислим скорость по силе и массе, используя второе кинематическое уравнение движения.
Второе кинематическое уравнение движения связывает общее пройденное расстояние объекта с начальной скоростью и ускорением. Когда мы внедрили формулу ускорения из второго закона Ньютона в кинематическое уравнение, мы получили формулу, которая рассчитывала скорость на основе приложенной силы и ее массы.
Второе кинематическое уравнение движения:
Узнать больше о кинематических уравнениях движения.
Парашютист массой 60 кг выпрыгивает из самолета и за 1 минуту достигает земли. Если сила, воздействующая на парашютиста по воздуху, составляет 800 Н, какова скорость парашютиста?
Данный:
m = 60 кг
t = 1 минута = 60 секунд
F = 800 Н
Найти: v =?
Формула:
Решения:
Скорость парашютиста рассчитывается с помощью второе кинематическое уравнение движения.
а=Ф/м
Но
Поскольку парашютист изначально находится в состоянии покоя относительно плоскости, следовательно, d0 = 0 и v0 = 0.
d=(1/2)*(Ф/м)*t2
С скорость v= d / t
vt=(1/2)*(Ф/м)*t2
v=фут/2м
Подставляем все значения
v=(800*60)/(2*60)
v = 48000/120
V = 400
Скорость парашютиста 400 м / сек.
Подробнее о преобразовании потенциала в кинетическую энергию.
Как рассчитать скорость по силе и массе, используя формулу работы-энергии?
Давайте вычислим скорость по силе и массе, используя формулу работы-энергии.
Когда покоящийся объект перемещается на определенное расстояние при приложении силы, он выполняет работу. Приложенная сила преобразует накопленную потенциальную энергию неподвижного объекта в кинетическую энергию для выполнения работы. Вот почему используется формула работы-энергии; мы можем вычислить скорость по силе и массе.
Компания формула работы является,
W = Fd
Поскольку работа, совершаемая телом, есть приобретение им кинетической энергии KE=(1/2)mv2
(1/2)мв2 =Fд
Узнать больше о выполненной работе.
Мужчина имеет горки массой 80 кг со скоростью 30 км / ч за 2 секунды, когда к нему прилагается сила 200 Н, когда он толкает горку на игровой площадке. Рассчитайте скорость скольжения человека.
Данный:
F = 200 Н
m = 80 кг
v=30км/ч=30*(1000/3600)
t = 2 часа
Найти: v=?
Формула:
(1/2)мв2=Fд
Решения:
Скорость скольжения человека рассчитывается с помощью формула работы-энергии в виде,
(1/2)мв2=Fд
Но скорость v = d / t
(1/2)мв2=Fdt
v=мв2/2 фута
Используя формулу работы и энергии, мы можем вычислить скорость в терминах силы, массы и скорости.
Подставляя все значения,
v=(72*106)/(28.8*105)
v = 25
Скорость скольжения человека 25 м / сек.
Узнайте больше о проделанной работе на уклоне.
Как рассчитать скорость по силе и массе с помощью формулы мощности?
Давайте рассчитаем скорость по силе и массе, используя формулу мощности.
Мощность любого объекта измеряется количеством его работы, выполненной за единицу времени. Поскольку проделанная работа объекта является произведением приложенной силы и пройденного расстояния. Следовательно, используя формулу мощности, мы можем рассчитать скорость объекта непосредственно из приложенной силы и ее мощности.
Компания формула мощности является,
P=Вт/т
W = Fd
Но работа сделана
P=Fd/т
v=d/t
Поскольку скорость
Р=Fv
(Кредит: Shutterstock)
Узнать больше о Power.
Если номинальная мощность двигателя составляет 500 Вт, он может выполнять работу при приложении силы 80 Н. Какая скорость у мотора?
Данный:
P = 500 Вт
1Вт=1кг.м2/s3
F = 80 Н
1Н=1кг.м2/s2
Найти: v=?
Формула:
P=Вт/т
Решения:
Скорость рассчитывается с использованием формула мощности,
P = Fv
v=П/Ф
Подставляя все значения,
В=500Вт/80Н
v = 40 м / сек
Скорость двигателя 40 м / сек.
Главная Учёба Калькулятор расчётов массы, скорости, кинетической энергии
Калькулятор расчётов массы, скорости, кинетической энергии
Условные обозначения формулы: m – масса тела, V – скорость, E – кинетическая энергия.
Формула расчёта кинетической энергии: E=m*V2/2. Масса тела, умноженная на скорость в квадрате и разделённая на два.
Формула расчёта массы : m=E/V2*2. Кинетическая энергия, разделённая на скорость в квадрате и умноженное на два.
Формула расчёта скорости: V=[квадратный корень][E/(1/2*m)]. Кинетическую энергию, делим на половину массы и извлекаем квадратный корень.
Заполните поля, оставив, пустым, только поле которое вы хотите узнать. Например: чтобы узнать кинетическую энергию, заполните массу и скорость.
Калькулятор расчёта массы, скорости, кинетической энергии, онлайн
Потенциальная энергия тела
Понравилась страница? Поделитесь ссылкой в социальных сетях. Поддержите проект!
Нет комментариев.
Введение
Формула массы, скорости и времени является одной из важнейших формул в физике. Она позволяет определить скорость, с которой движется тело, если известны его масса и время движения. Эта формула является одним из основных элементов, необходимых для понимания законов движения, сформулированных Исааком Ньютоном в 17 веке.
Основные законы Ньютона
Перед тем, как мы рассмотрим формулу массы, скорости и времени, необходимо остановиться на основных законах Ньютона, которые описывают движение тела. Они формулируются следующим образом:
Закон инерции: тело сохраняет свое состояние покоя или равномерного прямолинейного движения, пока на него не действует внешняя сила.
Закон изменения движения: изменение движения тела пропорционально приложенной силе и происходит в направлении этой силы.
Закон взаимодействия: взаимодействующие тела оказывают друг на друга равные и противоположные по направлению силы.
Формула массы, скорости и времени
Теперь перейдем к самой формуле массы, скорости и времени. Она выглядит следующим образом:
v = s / t
где v — скорость тела, s — пройденное расстояние и t — время, за которое это расстояние было пройдено.
Однако, для полного понимания движения тела, нам нужно учитывать еще один фактор — массу тела. Формула массы, скорости и времени с учетом массы выглядит следующим образом:
v = (F / m) * t
где F — сила, действ
ksezhwuc@firstmail.site
далее
ующая на тело, m — масса тела и t — время, за которое эта сила действует на тело.
Эта формула выражает зависимость скорости тела от приложенной силы и массы тела. Она показывает, что при увеличении массы тела для достижения той же скорости потребуется большее количество силы. Также, при изменении времени действия силы на тело, скорость будет меняться соответственно.
Примеры использования формулы
Для наглядности рассмотрим несколько примеров, как можно применять формулу массы, скорости и времени.
Пример 1. Расчет скорости падающего тела
Допустим, у нас есть тело массой 2 кг, которое падает с высоты 10 метров за 5 секунд. Какова скорость тела в момент удара о землю?
Решение:
Для расчета скорости воспользуемся формулой:
v = (F / m) * t
Тело падает свободно под действием силы тяжести, которая равна:
F = m * g
где m — масса тела, g — ускорение свободного падения (около 9,81 м/с²).
F = 2 кг * 9,81 м/с² = 19,62 Н
Теперь можем подставить полученные значения в формулу:
v = (F / m) * t = (19,62 Н / 2 кг) * 5 с = 98,1 м/с
Ответ: скорость тела в момент удара о землю составит около 98,1 м/с.
Пример 2. Расчет времени движения
Допустим, у нас есть тело массой 5 кг, которое движется со скоростью 10 м/с. Какое расстояние тело пройдет за 2 секунды?
Решение:
Для расчета расстояния воспользуемся формулой:
s = v * t
Подставим значения:
s = 10 м/с * 2 с = 20 м
Ответ: тело пройдет расстояние в 20 м за 2 секунды.
Заключение
Формула массы, скорости и времени является основой для понимания движения тела в физике. Она позволяет определить скорость, с которой движется тело, если известны его масса и время движения. Кроме того, она учитывает влияние приложенной силы на движение и позволяет расчитать пройденное расстояние. Знание этой формулы является необходимым для понимания основных законов движения, сформулированных Исааком Ньютоном, и применения их на практике.
Важно понимать, что формула массы, скорости и времени не является универсальной и может применяться только в определенных условиях. Например, она не учитывает влияние сопротивления среды на движение тела, что может приводить к неточным результатам.
Однако, несмотря на ограничения, эта формула является важным инструментом в физике и находит применение во многих областях, от механики до космической техники. Поэтому, знание этой формулы является необходимым для понимания и применения физических законов в нашей повседневной жизни.
Скорость | |
---|---|
Размерность | LT−1 |
Единицы измерения | |
СИ | м/с |
СГС | см/с |
Примечания | |
вектор |
Классическая механика |
---|
История… |
Фундаментальные понятия
|
Формулировки
|
Разделы
|
Учёные
|
См. также: Портал:Физика |
Ско́рость (стандартное обозначение: , от англ. velocity, исходно от лат. vēlōcitās) — векторная физическая величина, характеризующая быстроту перемещения и направление движения материальной точки относительно выбранной системы отсчёта. По определению, равна производной радиус-вектора точки по времени[1]. В СИ измеряется в метрах в секунду.
В русском языке этим же словом называют и скалярную величину — либо модуль вектора скорости, либо алгебраическую скорость точки, то есть проекцию вектора на касательную к траектории точки[2]. В некоторых других языках для скалярной скорости имеются отдельные наименования, например англ. speed, лат. celeritas[значимость факта?].
Термин «скорость» используют в науке и в широком смысле, понимая под ним быстроту изменения какой-либо величины (не обязательно радиус-вектора) в зависимости от другой (чаще подразумеваются изменения во времени, но также в пространстве или любой другой). Так, например, говорят об угловой скорости, скорости изменения температуры, скорости химической реакции, групповой скорости, скорости соединения и т. д. Математически «быстрота изменения» характеризуется производной рассматриваемой величины.
Понятие «скорость» в классической механике[править | править код]
Случай материальной точки[править | править код]
Вектор скорости (мгновенной скорости) материальной точки в каждый момент времени определяется как производная по времени радиус-вектора текущего положения этой точки, так что[3]:
где — единичный вектор касательной, проходящей через текущую точку траектории (он направлен в сторону возрастания дуговой координаты движущейся точки), а — проекция вектора скорости на направление упомянутого единичного вектора, равная производной дуговой координаты по времени и именуемая алгебраической скоростью точки. В соответствии с приведёнными формулами, вектор скорости точки всегда направлен вдоль касательной, а алгебраическая скорость точки может отличаться от модуля этого вектора лишь знаком[4]. При этом:
Пройденный точкой путь за промежуток времени от до , находится как
- .
Когда алгебраическая скорость точки всё время неотрицательна, путь совпадает с приращением дуговой координаты за время от до (если же при этом начало отсчёта дуговой координаты совпадает с начальным положением движущейся точки, то будет просто совпадать с ).
Иллюстрация средней и мгновенной скорости
Если алгебраическая скорость точки не меняется с течением времени (или, что то же самое, модуль скорости постоянен), то движение точки называется[5] равномерным (алгебраическое касательное ускорение при этом тождественно равно нулю).
Предположим, что . Тогда при равномерном движении скорость точки (алгебраическая) будет равна отношению пройденного пути к промежутку времени , за который этот путь был пройден:
В общем же случае аналогичные отношения
- и
определяют соответственно среднюю скорость точки[6] и её среднюю алгебраическую скорость; если термином «средняя скорость» пользуются, то о величинах и говорят (чтобы избежать путаницы) как о мгновенных скоростях.
Различие между двумя введёнными выше понятиями средней скорости состоит в следующем. Во-первых, — вектор, а — скаляр. Во-вторых, эти величины могут не совпадать по модулю. Так, пусть точка движется по винтовой линии и за время своего движения проходит один виток; тогда модуль средней скорости этой точки будет равен отношению шага винтовой линии (то есть расстояния между её витками) ко времени движения, а модуль средней алгебраической скорости — отношению длины витка ко времени движения.
Случай тела конечных размеров[править | править код]
Для тела протяжённых размеров понятие «скорости» (тела как такового, а не одной из его точек) не может быть определено; исключение составляет случай мгновенно-поступательного движения. Говорят, что абсолютно твёрдое тело совершает мгновенно-поступательное движение, если в данный момент времени скорости всех составляющих его точек равны[7]; тогда можно, разумеется, положить скорость тела равной скорости любой из его точек. Так, например, равны скорости всех точек кабинки колеса обозрения (если, конечно, пренебречь колебаниями кабинки).
В общем же случае скорости точек, образующих твёрдое тело, не равны между собой. Так, например, для катящегося без проскальзывания колеса модули скоростей точек на ободе относительно дороги принимают значения от нуля (в точке касания с дорогой) до удвоенного значения скорости центра колеса (в точке, диаметрально противоположной точке касания). Распределение скоростей точек абсолютно твёрдого тела описывается кинематической формулой Эйлера.
Начальная скорость[править | править код]
Начальная скорость () — это скорость материальной точки в момент, принимаемый за нуль по шкале времени (то есть при )[8].
Истолкование как скорости, с которой тело начинает движение, не вполне корректно, поскольку покоившееся тело в принципе не может начать двигаться с отличной от нуля скоростью. При такой формулировке неявно подразумевается, что в короткий промежуток времени действовала большая по величине сила, на пренебрежимо малом участке разогнавшая тело до скорости к моменту .
Запись скорости в разных системах координат[править | править код]
В декартовых координатах[править | править код]
В прямоугольной декартовой системе координат[9]:
При этом , следовательно,
Таким образом, компоненты вектора скорости — это скорости изменения соответствующих координат материальной точки[9]:
В цилиндрических координатах[править | править код]
Скорость в полярных координатах
В цилиндрических координатах [9]:
носит название поперечной скорости, — радиальной.
В сферических координатах[править | править код]
В сферических координатах [9]:
Для описания плоского движения иногда используются полярные координаты, которые можно рассматривать как частный случай цилиндрических (c const) или сферических (с ).
Физическая и координатная скорости[править | править код]
В аналитической механике вышеприведённые и другие криволинейные координаты играют роль обобщённых координат; изменение положение тела описывается их зависимостью от времени. Производные от координат тела по времени при этом называются координатными скоростями (они могут иметь размерность отличную от м/c). Физической же скоростью является производная радиус-вектора по времени, а её составляющие в каждом случае задаются всем стоящим перед соответствующим ортом выражением.
Некоторые связанные со скоростью понятия[править | править код]
Ряд величин в классической механике выражается через скорость.
Импульс, или количество движения, — это мера механического движения точки, которая определяется как произведение массы точки на её скорость
- .
Импульс является векторной величиной, его направление совпадает с направлением скорости. Для замкнутой системы выполняется закон сохранения импульса.
От скорости также зависит кинетическая энергия механической системы. Для абсолютно твёрдого тела полную кинетическую энергию можно записать в виде суммы кинетической энергии поступательного и вращательного движения[10][11]:
где — масса тела, — скорость центра масс тела, — момент инерции тела, — угловая скорость тела.
Изменение скорости во времени характеризуется ускорением. Ускорение отражает изменение скорости как по величине (тангенциальное ускорение), так и по направлению (центростремительное ускорение)[12]:
где — радиус кривизны траектории точки.
Преобразования Галилея и Лоренца для скорости[править | править код]
В классической механике Ньютона скорости преобразуются при переходе из одной инерциальной системы отсчёта в другую согласно преобразованиям Галилея. Если скорость тела в системе отсчёта была равна , а скорость системы отсчёта относительно системы отсчёта равна , то скорость тела при переходе в систему отсчёта будет равна[9]
Для скоростей, близких к скорости света, преобразования Галилея становятся несправедливы. При переходе из системы в систему необходимо использовать преобразования Лоренца для скоростей[9]:
в предположении, что скорость направлена вдоль оси системы . В пределе нерелятивистских скоростей преобразования Лоренца сводятся к преобразованиям Галилея.
Скорость в релятивистской механике[править | править код]
Четырёхмерная скорость[править | править код]
Одним из обобщений понятия скорости является четырёхмерная скорость (скорость в релятивистской механике[9]). В специальной теории относительности каждому событию ставится в соответствие точка пространства Минковского, три координаты которого представляют собой декартовы координаты трёхмерного евклидова пространства, а четвёртая ― временну́ю координату , где ― скорость света, ― время события. Компоненты четырёхмерного вектора скорости связаны с проекциями трёхмерного вектора скорости следующим образом[9]:
Четырёхмерный вектор скорости является времениподобным вектором, то есть лежит внутри светового конуса[9].
Существует также понятие четырёхимпульс, временна́я компонента которого равна (где — энергия). Для четырёхмерного импульса выполняется равенство[13]:
- ,
где — четырёхмерная скорость.
Понятие «быстрота»[править | править код]
В релятивистской механике угол между касательной к мировой линии частицы и осью времени в базовой системе отсчёта носит название быстроты (обозначается ). Быстрота выражается формулой
где — ареатангенс, или гиперболический арктангенс. Быстрота стремится к бесконечности когда скорость стремится к скорости света. В отличие от скорости, для которой необходимо пользоваться преобразованиями Лоренца, быстрота аддитивна, то есть
где — быстрота системы отсчёта относительно системы отсчёта .
Некоторые скорости[править | править код]
Космические скорости[править | править код]
Анализ первой и второй космической скорости по Исааку Ньютону. Снаряды A и B падают на Землю. Снаряд C выходит на круговую орбиту, D — на эллиптическую. Снаряд E улетает в открытый космос
Небесная механика изучает поведение тел Солнечной системы и других небесных тел. Движение искусственных космических тел изучается в астродинамике. При этом рассматривается несколько вариантов движения тел, для каждого из которых необходимо придание определённой скорости. Для вывода спутника на круговую орбиту ему необходимо придать первую космическую скорость (например, искусственный спутник Земли); преодолеть гравитационное притяжение позволит вторая космическая скорость (например, объект запущенный с Земли, вышедший за её орбиту, но находящийся в Солнечной системе); третья космическая скорость нужна чтобы покинуть звёздную систему, преодолев притяжение звезды (например, объект запущенный с Земли, вышедший за её орбиту и за пределы Солнечной системы); четвёртая космическая скорость позволит покинуть галактику.
В небесной механике под орбитальной скоростью понимают скорость вращения тела вокруг барицентра системы.
Скорости распространения волн[править | править код]
Скорость звука[править | править код]
Скорость звука — скорость распространения упругих волн в среде, определяется упругостью и плотностью среды. Скорость звука не является постоянной величиной и зависит от температуры (в газах), от направления распространения волны (в монокристаллах). При заданных внешних условиях обычно не зависит от частоты волны и её амплитуды. В тех случаях, когда это не выполняется и скорость звука зависит от частоты, говорят о дисперсии звука. Впервые измерена Уильямом Дерхамом. Как правило, в газах скорость звука меньше, чем в жидкостях, а в жидкостях скорость звука меньше, чем в твёрдых телах, поэтому при сжижении газа скорость звука возрастает.
Отношение скорости течения в данной точке газового потока к местной скорости распространения звука в движущейся среде называется числом Маха по имени австрийского учёного Эрнста Маха. Упрощённо, скорость, соответствующая 1 Маху при давлении в 1 атм (у земли на уровне моря), будет равна скорости звука в воздухе. Движение аппаратов со скоростью, сравнимой со скоростью звука, сопровождается рядом явлений, которые называются звуковой барьер. Скорости от 1,2 до 5 Махов называются сверхзвуковыми, скорости выше 5 Махов — гиперзвуковыми.
Скорость света[править | править код]
Время распространения светового луча в масштабной модели Земля-Луна. Для преодоления расстояния от поверхности Земли до поверхности Луны свету требуется 1,255 секунды.
Скорость света в вакууме — абсолютная величина скорости распространения электромагнитных волн в вакууме. Традиционно обозначается латинской буквой «c» (произносится как [це]). Скорость света в вакууме — фундаментальная постоянная, не зависящая от выбора инерциальной системы отсчёта (ИСО). Она относится к фундаментальным физическим постоянным, которые характеризуют не просто отдельные тела или поля, а свойства пространства-времени в целом. По современным представлениям, скорость света в вакууме — предельная скорость движения частиц и распространения взаимодействий.
Наиболее точное измерение скорости света 299 792 458 ± 1,2 м/с на основе эталонного метра было проведено в 1975 году. Теперь ввиду современного определения метра скорость света считается равной точно 299792458 м/с[14].
Скорость гравитации[править | править код]
Скорость гравитации — скорость распространения гравитационных воздействий, возмущений и волн. До сих пор остаётся не определённой экспериментально, но согласно общей теории относительности должна совпадать со скоростью света.
Единицы измерения скорости[править | править код]
Линейная скорость:
- Метр в секунду, (м/с), производная единица системы СИ
- Километр в час, (км/ч)
- узел (морская миля в час)
- Число Маха, 1 Мах равен скорости звука; Max n в n раз быстрее. Как единица, зависящая от конкретных условий, должна дополнительно определяться.
- Скорость света в вакууме (обозначается c)
Угловая скорость:
- Радианы в секунду, принята в системах СИ и СГС. Физическая размерность 1/с.
- Обороты в секунду (в технике)
- градусы в секунду, грады в секунду
Соотношения между единицами скорости[править | править код]
- 1 м/с = 3,6 км/ч
- 1 узел = 1,852 км/ч = 0,514 м/c
- Мах 1 ~ 330 м/c ~ 1200 км/ч (зависит от условий, в которых находится воздух)
- c = 299 792 458 м/c
Исторический очерк[править | править код]
Две стадии движения брошенного тела по теории Авиценны: отрезок АВ — период «насильственного стремления», отрезок ВС — период «естественного стремления» (падение вертикально вниз)
Автолик из Питаны в IV веке до н. э. определил равномерное движение так: «О точке говорится, что она равномерно перемещается, если в равные времена она проходит равные и одинаковые величины». Несмотря на то, что в определении участвовали путь и время, их отношение считалось бессмысленным[15], так как сравнивать можно было только однородные величины и скорость движения являлась чисто качественным, но не количественным понятием[16]. Живший в то же время Аристотель делил движение на «естественное», когда тело стремится занять своё естественное положение, и «насильственное», происходящее под действием силы. В случае «насильственного» движения произведение величины «двигателя» и времени движения равно произведению величины «движимого» и пройденного пути, что соответствует формуле , или [15]. Этих же взглядов придерживался Авиценна в XI веке, хотя и предлагал другие причины движения[17], а также Герард Брюссельский в конце XII —
начале XIII века. Герард написал трактат «О движении» — первый европейский трактат по кинематике — в котором сформулировал идею определения средней скорости движения тела (при вращении прямая, параллельная оси вращения, движется «одинаково с любой своей точкой», а радиус — «одинаково со своей серединой»)[18].
В 1328 году увидел свет «Трактат о пропорциях или о пропорциях скоростей при движении» Томаса Брадвардина, в котором он нашёл несоответствие в физике Аристотеля и связи скорости с действующими силами. Брадвардин заметил, что по словесной формуле Аристотеля если движущая сила равна сопротивлению, то скорость равна 1, в то время как она должна быть равна 0. Он также представил свою формулу изменения скорости, которая хоть и была не обоснована с физической точки зрения, но представляла собой первую функциональную зависимость скорости от причин движения. Брадвардин называл скорость «количеством движения»[19]. Уильям Хейтсбери, в трактате «О местном движении» ввёл понятие мгновенной скорости. В 1330—1340 годах он и другие ученики Брадвардина доказали так называемое «мертонское правило», которое означает равенство пути при равноускоренном движении и равномерном движении со средней скоростью[20].
Всякая широта движения, униформно приобретаемая или теряемая, соответствует своему среднему градусу, так что столько же в точности будет пройдено благодаря этой приобретаемой широте, сколько и благодаря среднему градусу, если бы тело двигалось всё время с этим средним градусом.
— «Мертонское правило» в формулировке Суайнсхеда[20]
В XIV веке Жан Буридан ввёл понятие импетуса[21], благодаря чему была определена величина изменения скорости — ускорение. Николай Орем, ученик Буридана, предложил считать, что благодаря импетусу ускорение остаётся постоянным (а не скорость, как полагал сам Буридан), предвосхитив, таким образом, второй закон Ньютона[22]. Орем также использовал графическое представление движения. В «Трактате о конфигурации качеств и движения» (1350) он предложил изображать отрезками перпендикулярных прямых количество и качество движения (время и скорость), иными словами, он нарисовал график изменения скорости в зависимости от времени[23].
По мнению Тартальи, только вертикальное падение тела является «естественным» движением, а все остальные — «насильственные», при этом у первого типа скорость постоянно возрастает, а у второго — убывает. Два этих типа движения не могут проистекать одновременно. Тарталья считал, что «насильственные» движения вызваны ударом, результатом которого является «эффект», определяемый скоростью[24]. С критикой работ Аристотеля и Тартальи выступал Бенедетти, который вслед за Оремом пользовался понятиями импетуса и ускорения[25].
В 1609 году в работе «Новая астрономия» Кеплер сформулировал закон площадей, согласно которому секторная скорость планеты (площадь, описываемая отрезком планета — Солнце, за единицу времени) постоянна[26]. В «Началах философии» Декарт сформулировал закон сохранения количества движения, которое в его понимании есть произведение количества материи на скорость[27], при этом Декарт не принимал во внимание тот факт, что количество движения имеет не только величину, но и направление[28]. В дальнейшем понятие «количество движения» развивал Гук, который понимал его как «степень скорости, присущей в определённом количестве вещества»[29]. Гюйгенс, Валлис и Рен добавили к этому определению направление. В таком виде во второй половине XVII века количество движения стало важным понятием в динамике, в частности в работах Ньютона и Лейбница[30]. При этом Ньютон не определял в своих работах понятие скорости[31]. По-видимому, первая попытка явного определения скорости была сделана Валлисом в его трактате «Механика или геометрический трактат о движении» (1669—1671): «Скорость есть свойство движения, отражающееся в сравнении длины и времени; а именно, она определяет, какая длина в какое время проходится»[32].
В XVII веке были заложены основы математического анализа, а именно интегрального и дифференциального исчисления. В отличие от геометрических построений Лейбница, теория «флюксий» Ньютона строится на потребностях механики и имеет в своём основании понятие скорости. В своей теории Ньютон рассматривает переменную величину «флюенту» и её скорость изменения — «флюксию»[33].
Скорости в природе и технике[править | править код]
Основной источник: [34]
Метры в секунду | |
---|---|
Скорость улитки | |
Скорость черепахи | |
Средняя скорость здорового человека (произвольный темп) | |
Рекорд скорости человека в ходьбе на 50 км | () |
Рекорд скорости человека в беге на дистанции 100 м | () |
Скорость гепарда | |
Максимальная скорость полёта сокола | |
Максимальная скорость локомотива на железной дороге | |
Максимальная скорость автомобиля | [35] |
Средняя скорость молекулы азота при температуре 0 °C | |
Максимальная скорость пассажирского реактивного самолёта | |
Скорость движения Луны по орбите вокруг Земли | |
Скорость искусственного спутника Земли | |
Скорость движения Земли по орбите вокруг Солнца | |
Скорость движения Солнца по орбите вокруг центра Галактики | |
Скорость электронов в кинескопе телевизора | |
Скорость движения самых далёких галактик | |
Максимальная скорость протонов в Большом адронном коллайдере | 299 792 455 |
Скорость частицы Oh-My-God | 299792457,9999999999999985310169558 |
Скорость безмассовых частиц (фотонов, глюонов, гравитонов) | 299 792 458 |
Скорость тахионов и сверхбрадионов | > 299792458 |
Скорости движения живых существ[править | править код]
- Сапсан (самое быстрое животное): самая высокая зарегистрированная скорость — 389 км/ч[36];
- Гепард (самое быстрое наземное животное): самая высокая зарегистрированная скорость — 98 км/ч[37];
- Меч-рыба: от 100 до 130 км в час[37];
- Чёрный марлин: самая высокая зарегистрированная скорость — 105 км/ч[36];
- Вилорогая антилопа: самая высокая зарегистрированная скорость — 88,5 км/ч[36];
- Лошадь (американский квортерхорс): 88 км/ч[36];
- Человек: самая высокая зарегистрированная скорость — 44,72 км/ч (Усэйн Болт)[37].
Рекорды скорости транспортных средств[править | править код]
Самый быстрый рукотворный объект — Parker Solar Probe, 150 км/с (относительно Солнца) в 2021 году[38].
Абсолютный рекорд скорости в воздухе был поставлен в 1976 году американским самолетом-разведчиком Lockheed SR-71 Blackbird — 3529,56 км/ч.
Рекорд скорости на земле был установлен в 2003 году на ракетных санях и составил 10 325 км/ч или 2868 м/с (по другим данным, 10 430 км/ч)[39]
Самая высокая скорость на наземном управляемом транспортном средстве была достигнута на реактивном автомобиле Thrust SSC в 1997 году — 1228 км/ч.
Рекорд скорости на воде был поставлен в 1978 году австралийским судном с реактивным газотурбинным двигателем Spirit of Australia[en] — 511,11 км/ч[40]
См. также[править | править код]
- Кинематика
Примечания[править | править код]
- ↑ Маркеев, 1990, с. 15.
- ↑ Старжинский, 1980, с. 154.
- ↑ Маркеев, 1990, с. 15—17.
- ↑ Старжинский, 1980, с. 154—155.
- ↑ Старжинский, 1980, с. 163.
- ↑ Старжинский, 1980, с. 152.
- ↑ Маркеев, 1990, с. 46—47.
- ↑ См. Всегда ли начальная скорость равна нулю? в справочнике «Студворк».
- ↑ 1 2 3 4 5 6 7 8 9 Скорость // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- ↑ Главный редактор А. М. Прохоров. Кинетическая энергия // Физический энциклопедический словарь. — Советская энциклопедия. — М., 1983. Физическая энциклопедия
- ↑ Главный редактор А. М. Прохоров. Вращательное движение // Физический энциклопедический словарь. — Советская энциклопедия. — М., 1983. Физическая энциклопедия
- ↑ Главный редактор А. М. Прохоров. Ускорение // Физический энциклопедический словарь.. — 1983. Физическая энциклопедия
- ↑ Главный редактор А. М. Прохоров. Импульс // Физический энциклопедический словарь. — Советская энциклопедия. — М., 1983. Физическая энциклопедия
- ↑ Определение метра Архивная копия от 26 июня 2013 на Wayback Machine (англ.) Резолюция 1 XVII Генеральной конференции по мерам и весам (1983)
- ↑ 1 2 Яковлев, 2001, с. 21.
- ↑ Яковлев, 2001, с. 34.
- ↑ Яковлев, 2001, с. 29.
- ↑ Яковлев, 2001, с. 31—32.
- ↑ Яковлев, 2001, с. 32—34.
- ↑ 1 2 Яковлев, 2001, с. 35.
- ↑ Яковлев, 2001, с. 35—36.
- ↑ Яковлев, 2001, с. 37.
- ↑ Яковлев, 2001, с. 37—38.
- ↑ Яковлев, 2001, с. 43.
- ↑ Яковлев, 2001, с. 45.
- ↑ Яковлев, 2001, с. 51—52.
- ↑ Яковлев, 2001, с. 59.
- ↑ Яковлев, 2001, с. 68.
- ↑ Яковлев, 2001, с. 77.
- ↑ Яковлев, 2001, с. 91.
- ↑ Яковлев, 2001, с. 96.
- ↑ Яковлев, 2001, с. 72—73.
- ↑ Яковлев, 2001, с. 64—66.
- ↑ Кабардин О.Ф., Орлов В.А., Пономарёва А.В. Факультативный курс физики. 8 класс. — М.: Просвещение, 1985. — Тираж 143 500 экз. — С. 44
- ↑ FIA World Land Speed Records (англ.). Federation Internationale de l’Automobile (10 июня 2012). Дата обращения: 3 декабря 2020. Архивировано 31 марта 2019 года.
- ↑ 1 2 3 4 12 самых быстрых животных в мире. Дата обращения: 17 июня 2022. Архивировано 29 июля 2021 года.
- ↑ 1 2 3 12 самых быстрых животных в мире. Дата обращения: 17 июня 2022. Архивировано 22 сентября 2020 года.
- ↑ Самый быстрый объект, созданный человеком. Зонд Parker Solar Probe развил скорость около 150 км/с. Дата обращения: 17 июня 2022. Архивировано 17 мая 2021 года.
- ↑ Test sets world land speed record. www.af.mil. Дата обращения: 19 апреля 2016.
- ↑ Назло рекордам: почему люди не хотят передвигаться очень быстро
Литература[править | править код]
- Маркеев А. П. Теоретическая механика. — М.: Наука, 1990. — 416 с. — ISBN 5-02-014016-3.
- Старжинский В. М. Теоретическая механика. — М.: Наука, 1980. — 464 с.
- Яковлев В. И. Предыстория аналитической механики. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. — 328 с. — ISBN 5-93972-063-3.
Как найти скорость, зная массу и скорость?
Поясню : в задаче дано m1 и m2, а так же u1.
Нужно найти вторую скорость.
Дайте формулу, пожалуйста.
На этой странице сайта вы найдете ответы на вопрос Как найти скорость, зная массу и скорость?,
относящийся к категории Физика. Сложность вопроса соответствует базовым
знаниям учеников 5 – 9 классов. Для получения дополнительной информации
найдите другие вопросы, относящимися к данной тематике, с помощью поисковой
системы. Или сформулируйте новый вопрос: нажмите кнопку вверху страницы, и
задайте нужный запрос с помощью ключевых слов, отвечающих вашим критериям.
Общайтесь с посетителями страницы, обсуждайте тему. Возможно, их ответы
помогут найти нужную информацию.