Как найти скорость материальной точки по уравнению

Решение задачи (РГР) К1 «Определение скорости и ускорения точки по заданным уравнениям ее движения» по разделу «кинематика» теоретической механики.

Пример определения для заданного момента времени положения точки на траектории, скорости, полного, касательного и нормального ускорения, радиуса кривизны траектории и вида траектории движения точки, если движение точки задано уравнениями.

Задача
Движение точки M задано уравнениями:
Уравнения движения точки в координатной форме
Требуется:
Установить вид траектории движения точки M, и для момента времени t = t1 = 0,5 с найти:

  1. положение точки на траектории,
  2. скорость, полное, касательное и нормальное ускорения,
  3. радиус кривизны траектории.

Другие примеры решений >
Помощь с решением задач >

Решение

Расчет траектории движения точки

Уравнения движения можно рассматривать как параметрические уравнения траектории точки.

Другие видео

Чтобы узнать вид траектории в координатной форме, надо получить прямую зависимость между переменными x и y, для этого избавимся от параметра времени t, выразив его, например, из первого уравнения и подставив во второе.
Получение зависимости y от x
Получилось квадратное уравнение. То есть точка движется по параболе.
Построим траекторию движения, рассчитав несколько её точек.
Построение траектории движения точки

Положение точки на траектории

Определим положения точки в начале движения и в заданный момент времени.
Для этого в исходные уравнения подставляем соответственно сначала 0
Расчет начального положения точки
а затем, половину секунды.
Координаты точки на траектории в заданный момент времени
Положение точки на ее траектории в заданный момент обозначим буквой M, и все остальные параметры будем рассчитывать для неё.
Перемещение точки по траектории

Расчет скорости точки

Направление и величину скорости точки определим как векторную сумму её проекций на оси координат.
Вектор скорости точки
Здесь i, j — орты осей x и y.
vx, vy — проекции вектора скорости на оси координат.

Проекции вектора скорости получим, взяв первые производные по времени t от соответствующих заданных уравнений движения точки.
Проекции вектора скорости точки
Далее выбрав масштаб, из точки M последовательно и с учетом знака, откладываем оба вектора.
Проекции вектора скорости на оси координат
Сам вектор скорости получим, соединив точку M с концом второго вектора и направив его по ходу движения точки.
Направление вектора скорости точки
Здесь надо отметить, что вектор скорости всегда должен располагаться по касательной к траектории. Любое другое положение будет указывать на ошибки в расчетах.

Рассчитаем модуль вектора скорости
Расчет модуля вектора скорости

Расчет ускорений точки

Проекции полного ускорения точки на оси координат определяются как вторая производная от исходных уравнений движения точки.
Расчет проекций вектора полного ускорения
Здесь, ax, ay – проекции ускорения точки на оси координат.

В этом примере, горизонтальная проекция ускорения оказалась равной нулю, поэтому его модуль и направление будут совпадать с вертикальной.
Модуль полного ускорения
Проекции ускорения точки
Касательная составляющая полного ускорения это производная скорости точки по времени.

Ее можно рассчитать по этой формуле.
Модуль касательного ускорения точки
Вектор касательного ускорения всегда направлен по линии вектора скорости.
Нормальное, касательное и полное ускорения точки
Положительная величина говорит об ускоренном движении точки и тогда направления скорости и касательного ускорения совпадают.
В противном случае они разнонаправлены, и движение точки замедляется.

Модуль нормального ускорения определим по формуле Пифагора, так как векторы касательного и центростремительного ускорений всегда взаимно перпендикулярны.
Модуль нормального ускорения

Расчет радиуса кривизны траектории

Осталось найти только радиус кривизны траектории в точке M, который равен отношению квадрата скорости к модулю нормального ускорения.
Расчет радиуса кривизны траектории
Радиус кривизны траектории точки

Результаты расчетов

Результаты вычислений для заданного момента времени t1=0,5c приведены в таблице:
Результаты расчетов
На рисунке показано положение точки M в заданный момент времени и векторы скорости и ускорений в выбранном масштабе.
Кинематика точки в заданный момент времени

Вектор v строим по составляющим vx и vy, причем этот вектор должен по направлению совпадать с касательной к траектории.

Вектор a строим по составляющим ax и ay и затем раскладываем на составляющие векторы aτ и an. Совпадение величин aτ и an, найденных из чертежа, с их значениями, полученными аналитически, служит критерием правильности решения.

Другие примеры решения задач >

Вектор скорости и ускорения материальной точки и их модули. Пример решения задач.

В очередной раз меня попросили решить пару задачек по физике, и я вдруг обнаружил, что не могу решить их с ходу. Немного погуглив, я обнаружил, что сайты в топе выдачи содержат сканы одного и того же учебника и не описывают конкретных примеров решений задачи о том, как найти вектор скорости и ускорения материальной точки. По-этому я решил поделиться с миром примером своего решения.

Траектория движения материальной точки через радиус-вектор

Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора – вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами – единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):

Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? “Наверное какой-то жуткий”, подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:

Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y, чтобы вместо синуса подставить в нее формулу изменения x:

В итоге жуткий закон движения точки оказался обычной параболой, ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.

Вектор скорости материальной точки

Всем известно, что скорость материальной точки – это величина пройденного пути точкой за единицу времени, то есть производная от формулы закона движения. Чтобы найти вектор скорости нужно взять производную по времени. Давайте рассмотрим конкретный пример нахождения вектора скорости.

Пример нахождения вектора скорости

Имеем закон перемещения материальной точки:

Теперь нужно взять производную от этого многочлена, если вы забыли как это делается, то вот вам таблица производных различных функций. В итоге вектор скорости будет иметь следующий вид:

Все оказалось проще, чем вы думали, теперь найдем вектор ускорения материальной точки по тому же самому закону, представленному выше.

Как найти вектор ускорения материальной точки

Вектор ускорения точки это векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки. Чтобы найти вектор ускорения материальной точки в нашем примере, нужно взять производную, но уже от формулы вектора скорости, представленной чуть выше:

Модуль вектора скорости точки

Теперь найдем модуль вектора скорости материальной точки. Как вы знаете из 9-го класса, модуль вектора – это его длина, в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат. И откуда же из полученного нами выше вектора скорости взять его координаты спросите вы? Все очень просто:

Теперь достаточно только подставить время, указанное в задаче и получить конкретное числовое значение.

Модуль вектора ускорения

Как вы поняли из написанного выше (и из 9-го класса), нахождение модуля вектора ускорения происходит тем же образом, что и модуля вектора скорости: извлекаем корень квадратный из суммы квадратов координат вектора, все просто! Ну и вот вам, конечно же, пример:

Как вы видите, ускорение материальной точки по заданному выше закону не зависит от времени и имеет постоянную величину и направление.

Еще примеры решений задачи нахождения вектора скорости и ускорения

А вот тут вы можете найти примеры решения и других задач по физике на тему “механика твердых тел”. А для тех, кто не совсем понял как найти вектор скорости и ускорения, вот вам еще парочка примеров из сети без всяких лишних объяснений, надеюсь, они вам помогут.

Если у вас возникли какие-нибудь вопросы, вы можете задать их в комментариях.

Кинематика материальной точки

Основные формулы кинематики материальной точки

Приведем основные формулы кинематики материальной точки. После чего дадим их вывод и изложение теории.

Радиус-вектор материальной точки M в прямоугольной системе координат Oxyz :
,
где – единичные векторы (орты) в направлении осей x, y, z .

Скорость точки:
;
;
;
Единичный вектор в направлении касательной к траектории точки:
.
Вектор можно выбрать двумя способами во взаимно противоположных направлениях. Обычно его выбирают в направлении увеличения дуговой координаты. Тогда, наряду с модулем скорости , вводят алгебраическую величину скорости . При , вектор скорости сонаправлен с . При – имеет противоположное с направление.

Скорость и ускорение точки M

Тангенциальное (касательное) ускорение:
;
;
.
Здесь, как и для скорости, – это алгебраическое касательное ускорение, . Если , то вектор касательного ускорения сонаправлен с . При – имеет противоположное с направление.

Единичный вектор, направленный к центру кривизны траектории точки (вдоль главной нормали):
.

Радиус кривизны траектории:
.

Далее приводится вывод этих формул и изложение теории кинематики материальной точки.

Радиус-вектор и траектория точки

Рассмотрим движение материальной точки M . Выберем неподвижную прямоугольную систему координат Oxyz с центром в некоторой неподвижной точке O . Тогда положение точки M однозначно определяются ее координатами ( x, y, z ) . Эти координаты являются компонентами радиус-вектора материальной точки.

Радиус-вектор точки M – это вектор , проведенный из начала неподвижной системы координат O в точку M .
,
где – единичные векторы в направлении осей x, y, z .

При движении точки, координаты изменяются со временем . То есть они являются функциями от времени . Тогда систему уравнений
(1)
можно рассматривать как уравнение кривой, заданной параметрическими уравнениями. Такая кривая является траекторией точки.

Траектория материальной точки – это линия, вдоль которой происходит движение точки.

Если движение точки происходит в плоскости, то можно выбрать оси и системы координат так, чтобы они лежали в этой плоскости. Тогда траектория определяется двумя уравнениями

В некоторых случаях, из этих уравнений можно исключить время . Тогда уравнение траектории будет иметь зависимость вида:
,
где – некоторая функция. Эта зависимость содержит только переменные и . Она не содержит параметр .

Скорость материальной точки

Согласно определению скорости и определению производной:

Производные по времени, в механике, обозначают точкой над символом. Подставим сюда выражение для радиус-вектора:
,
где мы явно обозначили зависимость координат от времени. Получаем:

,
где
,
,

– проекции скорости на оси координат. Они получаются дифференцированием по времени компонент радиус-вектора
.

Таким образом
.
Модуль скорости:
.

Касательная к траектории

С математической точки зрения, систему уравнений (1) можно рассматривать как уравнение линии (кривой), заданной параметрическими уравнениями. Время , при таком рассмотрении, играет роль параметра. Из курса математического анализа известно, что направляющий вектор для касательной к этой кривой имеет компоненты:
.
Но это есть компоненты вектора скорости точки. То есть скорость материальной точки направлена по касательной к траектории.

Все это можно продемонстрировать непосредственно. Пусть в момент времени точка находится в положении с радиус-вектором (см. рисунок). А в момент времени – в положении с радиус-вектором . Через точки и проведем прямую . По определению, касательная – это такая прямая , к которой стремится прямая при .
Введем обозначения:
;
;
.
Тогда вектор направлен вдоль прямой .

При стремлении , прямая стремится к касательной , а вектор – к скорости точки в момент времени :
.
Поскольку вектор направлен вдоль прямой , а прямая при , то вектор скорости направлен вдоль касательной .
То есть вектор скорости материальной точки направлен вдоль касательной к траектории.

Введем направляющий вектор касательной единичной длины:
.
Покажем, что длина этого вектора равна единице. Действительно, поскольку
, то:
.

Здесь мы направили вектор по направлению к вектору скорости, поскольку это более удобно. Но могут возникнуть случаи, когда точка останавливается и движется по той же траектории в обратном направлении. Чтобы не вводить для одной и той же точки траектории два единичных касательных вектора, нужно охватить случай, когда направлен противоположно скорости. Для этого вводят алгебраическую величину скорости:
.
Если направления векторов и совпадают, то . Если они противоположны, то .
– это проекция скорости на направление единичного вектора . Она равна скалярному произведению этих векторов:
.

Абсолютную величину (модуль) вектора скорости мы обозначаем символом с прямыми скобками, или символом без стрелки:
;
Алгебраическая величина скорости:
.

Тогда вектор скорости точки можно представить в следующем виде:
.

Ускорение материальной точки

Аналогично предыдущему, получаем компоненты ускорения (проекции ускорения на оси координат):
;
;
;
.
Модуль ускорения:
.

Тангенциальное (касательное) и нормальное ускорения

Теперь рассмотрим вопрос о направлении вектора ускорения по отношению к траектории. Для этого применим формулу:
.
Дифференцируем ее по времени, применяя правило дифференцирования произведения:
.

Вектор направлен по касательной к траектории. В какую сторону направлена его производная по времени ?

Чтобы ответить на этот вопрос, воспользуемся тем, что длина вектора постоянна и равна единице. Тогда квадрат его длины тоже равен единице:
.
Здесь и далее, два вектора в круглых скобках обозначают их скалярное произведение. Продифференцируем последнее уравнение по времени:
;
;
.
Поскольку скалярное произведение векторов и равно нулю, то эти векторы перпендикулярны друг другу. Так как вектор направлен по касательной к траектории, то вектор перпендикулярен к касательной.

Скорость, касательное и нормальное ускорение точки M

Первую компоненту называют тангенциальным или касательным ускорением:
.
Вторую компоненту называют нормальным ускорением:
.
Тогда полное ускорение:
(2) .
Эта формула представляет собой разложение ускорения на две взаимно перпендикулярные компоненты – касательную к траектории и перпендикулярную к ней.

Тангенциальное (касательное) ускорение

Также как и для скорости, введем алгебраическую величину вектора касательного ускорения :
.
Если , то вектор касательного ускорения сонаправлен с . Если , то эти векторы противоположны. Абсолютную величину касательного ускорения будем обозначать прямыми скобками: . Тогда
.

Умножим обе части уравнения (2) скалярно на :
.
Поскольку , то . Тогда
;
.
Здесь мы положили: .
Отсюда видно, что алгебраическая величина тангенциального ускорения равна проекции полного ускорения на направление касательной к траектории. Она также равна производной по времени алгебраической величины скорости точки: .

Подставив , имеем:
.
Здесь мы учли, что .

Найдем производную по времени модуля скорости . Применяем правила дифференцирования:

;
.

Итак,
.
Отсюда следует, что если между векторами ускорения и скорости острый угол: , то движение ускоренное. Абсолютное значение скорости возрастает. Если между ними тупой угол: , то движение замедленное. Абсолютное значение скорости убывает.

Выразим ускорение через тангенциальное и нормальное: , и учтем, что . Получим:
.
Тогда предыдущую формулировку можно выразить посредством тангенциального ускорения. Если векторы касательного ускорения и скорости направлены в одну сторону, то движение ускоренное. Если их направления противоположны, то движение замедленное.

Радиус кривизны траектории

Теперь исследуем вектор .

Рассмотрим вектор в два момента времени – в момент времени t и в момент t 1 . Введем обозначения: . По определению производной:
.
Пусть в момент времени t , точка находится в положении M , а в момент t 1 – в положении M 1 (см. рисунок).

Рассмотрим случай, когда алгебраическая скорость положительна: . То есть направления векторов и совпадают. Тогда точка M 1 находится справа от M . Через точки и проведем плоскости, перпендикулярные векторам и . Пересечение этих плоскостей образует прямую. Она проходит через точку C перпендикулярно плоскости рисунка. MC – это перпендикуляр, опущенный из точки M на эту прямую.

При , точка стремится к точке , а длина отрезка CM стремится к радиусу кривизны траектории ρ . Поскольку и , то угол между отрезками и равен углу между векторами и . Отложим их для наглядности из одного центра.

Абсолютное значение производной:
.
Здесь мы учли, что .

Вектор , как указывалось выше, перпендикулярен . В данном случае он направлен вдоль единичного вектора главной нормали , направленной к центру кривизны C траектории. Поэтому при имеем:
.

Теперь рассмотрим случай, когда алгебраическое значение скорости отрицательно: . В этом случае, вектор скорости противоположен . Получается тот же рисунок, только точка располагается слева от M . В результате абсолютное значение производной остается прежней:
.
Но ее направление меняется на противоположное:
.
Поскольку , то формула сохраняет прежний вид и в этом случае:
.

Нормальное ускорение

Теперь находим нормальное ускорение:
.
Перепишем результат в следующем виде:
,
где ; – единичный вектор в направлении главной нормали траектории – то есть вектор, направленный к мгновенному центру кривизны перпендикулярно касательной к траектории. Поскольку , то также является модулем нормального ускорения. Для него не нужно вводить алгебраическое значение, как мы это делали для скорости и касательного ускорения.
Нормальное ускорение всегда направлено к центру кривизны траектории.

Из формулы (2) имеем:
(4) .
Из формулы (3) находим модуль нормального ускорения:
.

Умножим обе части уравнения (2) скалярно на :
(2) .
.
Поскольку , то . Тогда
;
.
Отсюда видно, что модуль нормального ускорения равен проекции полного ускорения на направление главной нормали.

Выпишем еще раз следующую формулу:
.
Отсюда видно, что нормальное ускорение вызывает изменение направления скорости точки, и оно связано с радиусом кривизны траектории.

Радиус кривизны траектории:
.

И в заключении заметим, что формулу (4) можно переписать в следующем виде:
.
Здесь мы применили формулу для векторного произведения трех векторов:
,
в которую подставили
.

Итак, мы получили:
;
.
Приравняем модули левой и правой частей:
.
Но векторы и взаимно перпендикулярны. Поэтому
.
Тогда
.
Это известная формула из дифференциальной геометрии для кривизны кривой.

Автор: Олег Одинцов . Опубликовано: 09-02-2016 Изменено: 27-01-2020

Скорость материальной точки

Средняя оценка: 4.3

Всего получено оценок: 185.

Средняя оценка: 4.3

Всего получено оценок: 185.

Кинематика – это раздел механики, описывающий движение тел без рассмотрения причин этого движения. Одной из характеристик движения является скорость. Рассмотрим ее более подробно.

Материальная точка в Системе Отсчета

При изучении движения необходимо уметь определять положение тела в пространстве. Для этого используются понятие Системы Отсчета и понятие Материальной точки.

Сперва необходимо задаться некоторым базисом – телом, относительно которого будут определяться положение других тел. Такое тело называется Телом Отсчета.

С Телом Отсчета связывается система координат – от одной до трех осей, которые однозначно определяют положение изучаемого тела относительно тела отсчета.

Наконец, поскольку движение всегда происходит во времени, необходима система измерения времени. Некоторый момент принимается за нулевой, кроме того, определяется единица измерения времени.

Тело Отсчета, система координат, связанная с ним и система измерения времени вместе называются Системой Отсчета.

Система координат может задавать положение геометрических точек. А поскольку геометрические размеры и форма тела во многих случаях (но не всегда) не имеют значения, появляется возможность заменить рассматриваемое тело одной точкой. Движение описывается для этой одной точки, а движенbями остальных точек тела пренебрегают. Вся масса тела приписывается этой одной точке. Такая точка называется «материальной».

Рис. 2. Материальная точка.

Скорость движения материальной точки

Движение материальных точек состоит в изменении их положения в Системе Отсчета с течением времени. Изучение этого явления показывает, что оно совершается с разной быстротой. За один и тот же промежуток времени разные материальные точки могут проходить разные расстояния. Поэтому вводится специальная величина для количественной характеристики этой быстроты – скорость.

Скорость материальной точки обозначается латинской буквой $v$ и равна отношению пройденного пути $S$ ко времени его прохождения:

Чем больше путь, пройденный точкой за некоторое время, тем больше скорость этой точки.

Из формулы скорости материальной точки можно получить единицу скорости. Поскольку единицей расстояния в системе СИ являются метры, а единицей времени – секунды, то единицей скорости являются метры в секунду.

Средняя и мгновенные скорости

Скорость может быть различной не только у разных тел, но и у одного и того же тела в разные моменты времени. Для описания движения, при котором скорость меняется, используются два метода.

Во-первых, мы можем пренебречь изменением скорости на рассматриваемом участке. Разделив общую длину пути $S_<общ>$ на время его прохождения $t_<общ>$, мы получим среднюю скорость:

Во-вторых, мы можем разбить весь путь на много участков. Даже если скорость тела при прохождении участка менялась, то чем меньше такой участок, тем меньше будет изменение скорости. В пределе каждый участок длиной $ΔS$, пройденный за время $Δt$ «стягивается» в точку, скорость прохождения которой постоянна. Скорость, найденная таким методом, называется мгновенной:

$$v_<мгнов>= <ΔSover <Δt>>, при ΔS rightarrow 0,Δtrightarrow 0$$

Мгновенная скорость используется там, где необходимо знать точное значение скорости в конкретном месте пути. Средняя скорость используется там, где важно знать общий результат прохождения рассматриваемого пути.

Что мы узнали?

Скорость материальной точки равна отношению пройденного пути за время его прохождения. Скорость бывает средней и мгновенной. В системе СИ скорость измеряется в метрах в секунду.

[spoiler title=”источники:”]

http://1cov-edu.ru/mehanika/kinematika/tochki/

http://obrazovaka.ru/fizika/skorost-materialnoy-tochki.html

[/spoiler]

Скорость материальной точки


Скорость материальной точки

4.3

Средняя оценка: 4.3

Всего получено оценок: 277.

4.3

Средняя оценка: 4.3

Всего получено оценок: 277.

Кинематика – это раздел механики, описывающий движение тел без рассмотрения причин этого движения. Одной из характеристик движения является скорость. Рассмотрим ее более подробно.

Материальная точка в Системе Отсчета

При изучении движения необходимо уметь определять положение тела в пространстве. Для этого используются понятие Системы Отсчета и понятие Материальной точки.

Сперва необходимо задаться некоторым базисом – телом, относительно которого будут определяться положение других тел. Такое тело называется Телом Отсчета.

С Телом Отсчета связывается система координат – от одной до трех осей, которые однозначно определяют положение изучаемого тела относительно тела отсчета.

Наконец, поскольку движение всегда происходит во времени, необходима система измерения времени. Некоторый момент принимается за нулевой, кроме того, определяется единица измерения времени.

Тело Отсчета, система координат, связанная с ним и система измерения времени вместе называются Системой Отсчета.

Система отсчета в физике

Рис. 1. Система отсчета в физике.

Система координат может задавать положение геометрических точек. А поскольку геометрические размеры и форма тела во многих случаях (но не всегда) не имеют значения, появляется возможность заменить рассматриваемое тело одной точкой. Движение описывается для этой одной точки, а движенbями остальных точек тела пренебрегают. Вся масса тела приписывается этой одной точке. Такая точка называется «материальной».

Материальная точка

Рис. 2. Материальная точка.

Скорость движения материальной точки

Движение материальных точек состоит в изменении их положения в Системе Отсчета с течением времени. Изучение этого явления показывает, что оно совершается с разной быстротой. За один и тот же промежуток времени разные материальные точки могут проходить разные расстояния. Поэтому вводится специальная величина для количественной характеристики этой быстроты – скорость.

Скорость материальной точки обозначается латинской буквой $v$ и равна отношению пройденного пути $S$ ко времени его прохождения:

$v = { S over t}$

Чем больше путь, пройденный точкой за некоторое время, тем больше скорость этой точки.

Из формулы скорости материальной точки можно получить единицу скорости. Поскольку единицей расстояния в системе СИ являются метры, а единицей времени – секунды, то единицей скорости являются метры в секунду.

Средняя и мгновенные скорости

Скорость может быть различной не только у разных тел, но и у одного и того же тела в разные моменты времени. Для описания движения, при котором скорость меняется, используются два метода.

Во-первых, мы можем пренебречь изменением скорости на рассматриваемом участке. Разделив общую длину пути $S_{общ}$ на время его прохождения $t_{общ}$, мы получим среднюю скорость:

$$v_{ср}= {S_{общ}over t_{общ}}$$

Во-вторых, мы можем разбить весь путь на много участков. Даже если скорость тела при прохождении участка менялась, то чем меньше такой участок, тем меньше будет изменение скорости. В пределе каждый участок длиной $ΔS$, пройденный за время $Δt$ «стягивается» в точку, скорость прохождения которой постоянна. Скорость, найденная таким методом, называется мгновенной:

$$v_{мгнов}= {ΔSover {Δt}}, при ΔS rightarrow 0,Δtrightarrow 0$$

Мгновенная скорость используется там, где необходимо знать точное значение скорости в конкретном месте пути. Средняя скорость используется там, где важно знать общий результат прохождения рассматриваемого пути.

Средняя и мгновенная скорости

Рис. 3. Средняя и мгновенная скорости.

Заключение

Что мы узнали?

Скорость материальной точки равна отношению пройденного пути за время его прохождения. Скорость бывает средней и мгновенной. В системе СИ скорость измеряется в метрах в секунду.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

    Пока никого нет. Будьте первым!

Оценка доклада

4.3

Средняя оценка: 4.3

Всего получено оценок: 277.


А какая ваша оценка?

Определение 1

Движение материальной точки в пространстве – это изменение ее положения относительно других тел с течением времени.

Имеет смысл говорить только о движении в некоторой системе отсчета.

Система отсчета. Системы координат

Точки, располагаемые в пустом пространстве, не различаются. Поэтому о точке рассуждают при условии нахождения в ней материальной точки. Определить ее положение можно при помощи измерений в системе координат, где и проводится нахождение пространственных координат. Если рассматривать в виде примера поверхность Земли, то следует учитывать широту и долготу располагаемой точки.

В теории используется декартова прямоугольная система координат, где определение точки возможно при наличии радиус-вектора r и трех проекций x, y, z – ее координат. Могут быть применены другие:

  • сферическая система с положением точек и ее радиус-вектором, определенных координатами r, υ, φ;
  • цилиндрическая система с координатами p, z, α;
  • на полярной плоскости с параметрами r, φ.

В теории зачастую не принимают во внимание реальную систему отсчета, а сохраняют только ту, которая представляет собой ее математическую модель, применяемую во время практических измерений.

Кинематическое уравнение движения материальной точки

Любая система отсчета или координат предполагает определение координат материальной точки в любой момент времени.

Определение 2

При условии положения и определения материальной точки в данной системе отсчета считается, что ее движение задано или описано.

Это возможно при использовании кинематического уравнения движения:

r¯=r¯(t) (1).

Определение 3

Аналитически положение точки определяется совокупностью трех независимых между собой чисел. Иначе говоря, свободная точка имеет три степени свободы движения.

Ее перемещение по уравнению (1) определено, если имеется указанное положение в любой момент времени t. Для этого следует задавать декартовы координаты точки в качестве однозначных и непрерывных функций времени:

x(t)=x, y(t)=y, z(t)=z (2).

Прямоугольные декартовы координаты x, y, z – это проекции радиус-вектора r¯, проведенного из начала координат. Очевидно, что длину и направление r¯ можно найти из соотношений, где a, β, γ являются образованными радиус-вектором углами с координатными осями.

Определение 4

Равенства (2) считают кинематическими уравнениями движения материальной точки в декартовых координатах.

Они могут быть записаны в другой системе координат, которая связана с декартовой взаимно однозначным преобразованием. Если движение точки происходит в плоскости Оху, тогда применимы полярные координаты r, φ, относящиеся к декартовым преобразованиям. Данный случай подразумевает использование уравнения движения точки следующего вида:

r=r(t), φ=φ(t) (3).

Кинематическое уравнение движения точки в криволинейных координатах q1, q2, q3, связанных с декартовыми преобразованиями вида x=x(q1, q2, q3), y=y(q1, q2, q3), z=z(q1, q2, q3) (4), записывается как

q1=q1(t), q2=q2(t), q3=q3(t) (5).

Кривая радиус-вектора, описываемая концом вектора r при движении точки, совпадает с ее траекторией. Параметрическое уравнение траектории с t представлено кинематическими уравнениями (2), (5). Чтобы получить координатное уравнение траектории следует исключить время из кинематических уравнений.

Определение 5

Определение движения точки возможно с помощью задания траектории и мгновенного положения точки на ней. Ее положение на кривой определяется с помощью указания только одной величины: расстояния вдоль кривой от некоторой начальной точки с положительным направлением:

s=s(t).

Это и есть уравнение движения точки по траектории. Способ его задания относят к естественному или траекторному.

Понятия координатного и естественного способа задания движения точки физически эквивалентны. С математической стороны это рассматривают как возможность применения разных методов, исходя из случая математической задачи.

Задание такого закона возможно аналитическим, графическим путем или с использованием таблицы, последние два из которых зачастую рассматривают в виде графиков и расписаний движений поездов.

Пример 1

Дано уравнение движения материальной точки x=0,4t2. Произвести запись формулы зависимости υx(t), построить график зависимости скорости от времени. На графике отметить площадь, численно равную пути, пройденному точкой за 4 секунды, произвести вычисление.

Дано: x=0,4t2, t=4c

Найти: υx(t), S – ?

Решение

При решении необходимо учитывать зависимость скорости от времени:

υx=υ0x+axt.

Зависимость координаты от времени и сравнение уравнения с заданным принимает вид:

x=x0+υ0xt+axt22, x=0,4t2.

Очевидно, что x0=0, υ0x=0, ax=0,8 м/с2.

После подстановки данных в уравнение:

υx=0,8t.

Определим точки, изобразим график:

υx=0, t=0, υx=4, t=5

Кинематическое уравнение движения материальной точки

Рисунок 1

Путь, по которому двигалось тело, равняется площади фигуры, ограниченной графиком, и находится с помощью формулы:

S=0,4t2=6,4 м.

Ответ: S=6,4 м.

В очередной раз меня попросили решить пару задачек по физике, и я вдруг обнаружил, что не могу решить их с ходу. Немного погуглив, я обнаружил, что сайты в топе выдачи содержат сканы одного и того же учебника и не описывают конкретных примеров решений задачи о том, как найти вектор скорости и ускорения материальной точки. По-этому я решил поделиться с миром примером своего решения.

Траектория движения материальной точки через радиус-вектор

Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора – вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Рисунок траектории движения материальной точки

Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами – единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):

Радиус-вектор пример траектории

Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? “Наверное какой-то жуткий”, подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:

решение примера построения траектории

Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y, чтобы вместо синуса подставить в нее формулу изменения x:

Решение задачи

В итоге жуткий закон движения точки оказался обычной параболой, ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.

Вектор скорости материальной точки

формула вектора скорости

Всем известно, что скорость материальной точки – это величина пройденного пути точкой за единицу времени, то есть производная от формулы закона движения. Чтобы найти вектор скорости нужно взять производную по времени. Давайте рассмотрим конкретный пример нахождения вектора скорости.

Пример нахождения вектора скорости

Имеем закон перемещения материальной точки:

закон движения материальной точки

Теперь нужно взять производную от этого многочлена, если вы забыли как это делается, то вот вам таблица производных различных функций. В итоге вектор скорости будет иметь следующий вид:

Нахождение вектора скорости точки

Все оказалось проще, чем вы думали, теперь найдем вектор ускорения материальной точки по тому же самому закону, представленному выше.

Как найти вектор ускорения материальной точки

Формула вектора ускорения точки

Вектор ускорения точки это векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки. Чтобы найти вектор ускорения материальной точки в нашем примере, нужно взять производную, но уже от формулы вектора скорости, представленной чуть выше:

Пример решения задачи как найти вектор ускорения точки

Модуль вектора скорости точки

Теперь найдем модуль вектора скорости материальной точки. Как вы знаете из 9-го класса, модуль вектора – это его длина, в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат. И откуда же из полученного нами выше вектора скорости взять его координаты спросите вы? Все очень просто:

Как найти модуль вектора скорости

Теперь достаточно только подставить время, указанное в задаче и получить конкретное числовое значение.

Модуль вектора ускорения

Как вы поняли из написанного выше (и из 9-го класса), нахождение модуля вектора ускорения происходит тем же образом, что и модуля вектора скорости: извлекаем корень квадратный из суммы квадратов координат вектора, все просто! Ну и вот вам, конечно же, пример:

Пример нахождения вектора ускорения

Как вы видите, ускорение материальной точки по заданному выше закону не зависит от времени и имеет постоянную величину и направление.

Еще примеры решений задачи нахождения вектора скорости и ускорения

А вот тут вы можете найти примеры решения и других задач по физике на тему “механика твердых тел”. А для тех, кто не совсем понял как найти вектор скорости и ускорения, вот вам еще парочка примеров из сети без всяких лишних объяснений, надеюсь, они вам помогут.

Решение задач

Если у вас возникли какие-нибудь вопросы, вы можете задать их в комментариях.

Добавить комментарий