Как найти скорость относительно движущегося тела

Кинематика. Относительность движения тел

Для школьников.

Повторяем кинематику (относительность движения тел).

Имеет смысл говорить о скорости тела (материальной точки) относительно некоторого другого тела (системы отсчёта, связанной с этим другим телом).

Понятия материальной точки и системы отсчёта даны в Занятии 1.

Наиболее простым понятным примером является случай, когда лодка переплывает реку под прямым углом к берегу.

Кинематика. Относительность движения тел

Скорость лодки в системе отсчёта, связанной с Землёй (неподвижной системе отсчёта), называют абсолютной скоростью.

Скорость лодки в системе отсчёта движущейся относительно Земли (движущейся системе отсчёта) называют относительной скоростью.

Вводится ещё понятие переносной скорости. Переносная скорость – это скорость движущейся системы отсчёта относительно неподвижной системы отсчёта (при поступательном движении). В рассматриваемом случае переносная скорость – это скорость течения реки относительно берега.

Тогда скорость лодки относительно берега (абсолютная скорость) выразится как векторная сумма относительной и переносной скоростей:

Кинематика. Относительность движения тел

Второе и третье уравнения позволяют найти относительную скорость материальной точки (они вытекают из первого уравнения).

Примеры и решённые задачи на эти уравнения даны в Занятии 12 и в задачах 4 – 7, 8 – 9, 10 – 11, в задаче для студентов.

Сейчас же рассмотрим решение следующей задачи.

ЗАДАЧА.

Кинематика. Относительность движения тел

Тело (материальная точка М) перемещается вдоль радиуса диска (относительно диска) со скоростью 30 см/с. Диск вращается с угловой скоростью 4 рад/с. Найти абсолютную скорость точки М в момент времени, когда она находится на расстоянии 10 см от центра диска (когда расстояние ОМ равно 10 см).

Решение.

Так как диск вращается (его движение не поступательное), то переносная скорость есть скорость того “места” в движущейся системе, где в данный момент времени находится материальная точка М.

Известная нам скорость 30 см/с является относительной скоростью.

Переносная скорость точки М в рассматриваемый момент времени найдётся через произведение угловой скорости вращения диска на радиус ОМ. Она равна 40 см/с.

Абсолютную скорость точки М найдём по теореме Пифагора:

Кинематика. Относительность движения тел

Ответ: абсолютная скорость точки М в момент её нахождения на расстоянии ОМ, равном 10 см, равна 50 см/с.

Теперь посмотрим, как находится скорость одного движущегося тела относительно другого движущегося тела на примере следующей задачи.

Кинематика. Относительность движения тел

К.В. Рулёва, к. ф.-м. н., доцент. Подписывайтесь на канал. Ставьте лайки. Пишите комментарии. Спасибо.

Ссылки на занятия по механике даны в конце Занятия 1.

Ссылки на занятия (статьи), начиная с электростатики, даны в конце Занятия 45 .

Ссылки на занятия (статьи), начиная с теплового действия тока, даны в конце Занятия 58.

Ссылки на занятия, начиная с переменного тока, даны в конце Занятия 70

Чтобы получить точное представление о движении двух объектов относительно друг друга относительная скорость является важным. Поэтому в этой статье мы подробно поговорим об относительной скорости между двумя объектами.

Относительная скорость — это, по сути, скорость одного объекта по отношению к другому. Рассмотрим следующие два объекта, А и В, которые движутся с разными скоростями. Скорость объекта А по отношению к объекту В или наоборот называется относительной скоростью. Он также известен как скорость изменения относительного положения одного объекта по отношению к другому с течением времени.

Как найти относительную скорость двух тел?

🠊 Техника определения скорости объекта требует определения скорости изменения положения объекта по отношению к неподвижному окружающему объекту.

Когда объекты A и B находятся в относительном движении, их соответствующие скорости также будут в относительном движении. Чтобы получить относительную скорость объекта A по отношению к B, нужно математически придать равную и противоположную скорость B как объекту A, так и объекту B, чтобы привести объект B в состояние покоя.

В результате равнодействующая обеих скоростей (скорости объекта А и Б) дает нам относительную скорость объекта А относительно объекта Б.

Уравнения относительной скорости следующие:

Скорость объекта А относительно объекта В можно рассчитать следующим образом:

Vab V =a – Vb

Скорость объекта B относительно объекта A можно рассчитать следующим образом:

Vba V =b – Va

Из двух выражений мы можем вывести следующее:

Vab  = – Vba

Однако обе величины равны математически и могут быть представлены как:

|Vab |= |Вba|

Какова относительная скорость между двумя телами, когда они движутся с одинаковой скоростью в одном направлении?

🠊 Когда два тела А и В движутся в одном направлении с одинаковой скоростью, угол между ними равен 0°.

относительная скорость между двумя объектами

Предположим, что два транспортных средства A и B движутся в одном направлении, т. е. параллельно друг другу, с одинаковой скоростью или скоростью (поскольку они движутся в одном направлении), т. е. Va V =b.

В результате скорость автомобиля А относительно автомобиля В равна:

Vab V =a – Vb = 0

Аналогичным образом, скорость транспортного средства B относительная к транспортному средству А:

Vba V =b – Va = 0

Это означает, что если два объекта двигаться в одном направлении с одинаковой скоростью или скорость, их относительная скорость становится равной нулю. Это демонстрирует, что другой может казаться покоящимся для одного объекта.

Построение графика положение-время для двух объектов, движущихся в одном направлении с одинаковой скоростью, приводит к прямым параллельным линиям, как показано на графике ниже.

Какова относительная скорость между двумя телами, когда они движутся с разными скоростями в одном направлении?

🠊 Если два транспортных средства, A и B, движутся в одном направлении с разными скоростями, в первую очередь следует рассмотреть два сценария:

(1) Начальные точки одинаковы (Va > Vb):

Если два транспортных средства движутся с разными скоростями в одном направлении с одной и той же начальной точкой и Va > Vb, человек в транспортном средстве B воспринимает транспортное средство A как удаляющееся от него со скоростью:

Vab V =a – Vb

Транспортное средство B движется назад к пассажиру в транспортном средстве A со скоростью:

Vba V =b – Va = -( Вa – Vb) = -Vab 

В результате обе скорости имеют одинаковую величину, но противоположные знаки.

(2) Различные отправные точки:

Мы можем думать о двух сценариях здесь:

(i) Предположим, что транспортное средство A имеет более высокую скорость, чем транспортное средство B, т. е. Va > Vb, и следует за автомобилем B. 

В этой ситуации транспортное средство A в конечном итоге догонит транспортное средство B, как показано на их графике положение-время.

Vab V =a – Vb ≠ 0

(ii) Рассмотрим ситуацию, когда Va > Vb и автомобиль А движется впереди автомобиля В.

В этом случае транспортное средство B никогда не сможет обогнать транспортное средство A.. Графики положения и времени обоих транспортных средств не будут пересекаться по мере их удаления друг от друга.

Vab V =a – Vb ≠ 0

Какова будет относительная скорость двух тел, когда они движутся в противоположных направлениях?

🠊 Угол, образованный двумя телами, движущимися в противоположных направлениях по прямой, называется 180°.

Рассмотрим два автомобиля А и В, движущихся в противоположных направлениях по прямой. 

В результате скорость автомобиля А относительно автомобиля В равна:

Vab V =a -(- Вb) = Вa +V

Скорость транспортного средства B по отношению к A аналогична:

Vba V =b-(- Вa) = Вa +V

В результате можем написать:

Vab V =ba

Это указывает на то, что если два объекта движутся в противоположных направлениях по прямой линии, кажется, что каждый объект движется очень быстро по сравнению с другим.

Какова относительная скорость, когда два тела движутся под углом?

🠊 Рассмотрим пример относительной скорости, который возникает, когда два объекта, A и B, движутся под углом со скоростями Va и Vb.

&

Диагональ даст нам относительную скорость, если мы построим параллелограмм, как показано на рисунке. В результате величина диагонального вектора параллелограмма или относительная скорость с использованием закона косинусов составляет:

Но Cos(180°-𝛳) = -Cos𝛳

Когда два объекта движутся под углом, приведенное выше уравнение дает нам их относительную скорость. Мы также можем вывести случай того же направления и случай противоположного направления из этого уравнения, изменив значение угла на 0° и 180° соответственно.

Однако, как показано на изображении, если вектор относительной скорости Vab образует угол ꞵ со скоростью объекта A, то

Но Sin(180°-𝛳) = Sin𝛳

Или,

Важность относительной скорости:

Важность относительной скорости резюмируется ниже:

  • Рассчитать скорость звезд и астероидов относительно Земли.
  • Для измерения расстояния между любыми двумя объектами в пространстве.
  • Чтобы запустить ракету.
  • Для определения скорости любого объекта.
  • Это помогает нам, когда объект движется через жидкость.

Проблемы, связанные с относительной скоростью:

1. Автомобиль, едущий по шоссе со скоростью 110 км/ч, проезжает мимо автобуса, идущего со скоростью 85 км/ч. Какова скорость автомобиля с точки зрения пассажира автобуса?

Данный:

Скорость автомобиля Vc = 110 км/ч

Скорость автобуса Vb = 85 км/ч

Найти:

Относительная скорость автомобиля относительно автобуса Vcb знак равно

Решение:

Поскольку автомобиль и автобус едут в одном направлении, относительная скорость автомобиля с точки зрения пассажира автобуса равна:

Vcb V =c – Vb = (110 -85)км/ч = 25 км/ч

Таким образом, скорость автомобиля с точки зрения пассажира автобуса составляет 25 км/ч.

2. Две машины, находящиеся на некотором расстоянии друг от друга, начинают двигаться навстречу друг другу со скоростями 150 м/с и 200 м/с по прямой дороге. С какой скоростью они приближаются друг к другу?

Данный:

Скорость автомобиля 1 В1 = 150 м / с

Скорость автомобиля 2 В2 = 200 м / с

Найти:

Относительная скорость вагона 1 относительно вагона 2 V12 знак равно

Относительная скорость вагона 2 относительно вагона 1 V21 знак равно

Решение:

Так как оба автомобиля едут в противоположном направлении, относительная скорость:

V12 V =1 + V2 = (150 + 200) м/с = 350 м/с

Кроме того,

V21 V =1 + V2 = (150 + 200) м/с = 350 м/с

В результате два автомобиля движутся навстречу друг другу с относительной скоростью 350 м/с.

Резюме:

  • Скорость одного объекта по отношению к другому объекту просто называется относительной скоростью этих двух объектов.
  • Рассмотрим два объекта, которые движутся в одном направлении. В этой ситуации величина относительной скорости одного объекта по отношению к другому будет равна разнице в величине их скоростей.
  • Если два объекта движутся в одном направлении и с одинаковыми скоростями, их относительная скорость будет ноль.
  • Предположим, что любые два объекта движутся в противоположном направлении. В этом случае величина относительной скорости одного объекта по отношению к другому окажется суммой величины их скоростей.

From Wikipedia, the free encyclopedia

The relative velocity {displaystyle {vec {v}}_{Bmid A}} (also {displaystyle {vec {v}}_{BA}} or {displaystyle {vec {v}}_{Boperatorname {rel} A}}) is the velocity of an object or observer B in the rest frame of another object or observer A.

Classical mechanics[edit]

In one dimension (non-relativistic)[edit]

Relative motion man on train

We begin with relative motion in the classical, (or non-relativistic, or the Newtonian approximation) that all speeds are much less than the speed of light. This limit is associated with the Galilean transformation. The figure shows a man on top of a train, at the back edge. At 1:00 pm he begins to walk forward at a walking speed of 10 km/h (kilometers per hour). The train is moving at 40 km/h. The figure depicts the man and train at two different times: first, when the journey began, and also one hour later at 2:00 pm. The figure suggests that the man is 50 km from the starting point after having traveled (by walking and by train) for one hour. This, by definition, is 50 km/h, which suggests that the prescription for calculating relative velocity in this fashion is to add the two velocities.

The diagram displays clocks and rulers to remind the reader that while the logic behind this calculation seem flawless, it makes false assumptions about how clocks and rulers behave. (See The train-and-platform thought experiment.) To recognize that this classical model of relative motion violates special relativity, we generalize the example into an equation:

{displaystyle underbrace {{vec {v}}_{Mmid E}} _{text{50 km/h}}=underbrace {{vec {v}}_{Mmid T}} _{text{10 km/h}}+underbrace {{vec {v}}_{Tmid E}} _{text{40 km/h}},}

where:

{displaystyle {vec {v}}_{Mmid E}} is the velocity of the Man relative to Earth,
{displaystyle {vec {v}}_{Mmid T}} is the velocity of the Man relative to the Train,
{displaystyle {vec {v}}_{Tmid E}} is the velocity of the Train relative to Earth.

Fully legitimate expressions for “the velocity of A relative to B” include “the velocity of A with respect to B” and “the velocity of A in the coordinate system where B is always at rest”. The violation of special relativity occurs because this equation for relative velocity falsely predicts that different observers will measure different speeds when observing the motion of light. [note 1]

In two dimensions (non-relativistic)[edit]

Relative velocities between two particles in classical mechanics

The figure shows two objects A and B moving at constant velocity. The equations of motion are:

{displaystyle {vec {r}}_{A}={vec {r}}_{Ai}+{vec {v}}_{A}t,}
{displaystyle {vec {r}}_{B}={vec {r}}_{Bi}+{vec {v}}_{B}t,}

where the subscript i refers to the initial displacement (at time t equal to zero). The difference between the two displacement vectors, {vec  r}_{B}-{vec  r}_{A}, represents the location of B as seen from A.

{displaystyle {vec {r}}_{B}-{vec {r}}_{A}=underbrace {{vec {r}}_{Bi}-{vec {r}}_{Ai}} _{text{initial separation}}+underbrace {({vec {v}}_{B}-{vec {v}}_{A})t} _{text{relative velocity}}.}

Hence:

{displaystyle {vec {v}}_{Bmid A}={vec {v}}_{B}-{vec {v}}_{A}.}

After making the substitutions {vec  v}_{{A|C}}={vec  v}_{A} and {vec  v}_{{B|C}}={vec  v}_{B}, we have:

{displaystyle {vec {v}}_{Bmid A}={vec {v}}_{Bmid C}-{vec {v}}_{Amid C}Rightarrow }   {displaystyle {vec {v}}_{Bmid C}={vec {v}}_{Bmid A}+{vec {v}}_{Amid C}.}

Galilean transformation (non-relativistic)[edit]

To construct a theory of relative motion consistent with the theory of special relativity, we must adopt a different convention. Continuing to work in the (non-relativistic) Newtonian limit we begin with a Galilean transformation in one dimension:[note 2]

x'=x-vt
t'=t

where x’ is the position as seen by a reference frame that is moving at speed, v, in the “unprimed” (x) reference frame.[note 3] Taking the differential of the first of the two equations above, we have, {displaystyle dx'=dx-v,dt}, and what may seem like the obvious[note 4] statement that dt'=dt, we have:

{frac  {dx'}{dt'}}={frac  {dx}{dt}}-v

To recover the previous expressions for relative velocity, we assume that particle A is following the path defined by dx/dt in the unprimed reference (and hence dx′/dt′ in the primed frame). Thus {displaystyle dx/dt=v_{Amid O}} and {displaystyle dx'/dt=v_{Amid O'}}, where O and O' refer to motion of A as seen by an observer in the unprimed and primed frame, respectively. Recall that v is the motion of a stationary object in the primed frame, as seen from the unprimed frame. Thus we have {displaystyle v=v_{O'mid O}}, and:

{displaystyle v_{Amid O'}=v_{Amid O}-v_{O'mid O}Rightarrow v_{Amid O}=v_{Amid O'}+v_{O'mid O},}

where the latter form has the desired (easily learned) symmetry.

Special relativity[edit]

As in classical mechanics, in Special Relativity the relative velocity {vec  {v}}_{{mathrm  {B|A}}} is the velocity of an object or observer B in the rest frame of another object or observer A. However, unlike the case of classical mechanics, in Special Relativity, it is generally not the case that

{vec  {v}}_{{mathrm  {B|A}}}=-{vec  {v}}_{{mathrm  {A|B}}}

This peculiar lack of symmetry is related to Thomas precession and the fact that two successive Lorentz transformations rotate the coordinate system. This rotation has no effect on the magnitude of a vector, and hence relative speed is symmetrical.

|{vec  {v}}_{{mathrm  {B|A}}}|=|{vec  {v}}_{{mathrm  {A|B}}}|=v_{{mathrm  {B|A}}}=v_{{mathrm  {A|B}}}

Parallel velocities[edit]

In the case where two objects are traveling in parallel directions, the relativistic formula for relative velocity is similar in form to the formula for addition of relativistic velocities.

{vec  {v}}_{{mathrm  {B|A}}}={frac  {{vec  {v}}_{{mathrm  {B}}}-{vec  {v}}_{{mathrm  {A}}}}{1-{frac  {{vec  {v}}_{{mathrm  {A}}}{vec  {v}}_{{mathrm  {B}}}}{c^{2}}}}}

The relative speed is given by the formula:

{displaystyle v_{mathrm {B|A} }={frac {left|{vec {v}}_{mathrm {B} }-{vec {v}}_{mathrm {A} }right|}{1-{frac {{vec {v}}_{mathrm {A} }{vec {v}}_{mathrm {B} }}{c^{2}}}}}}

Perpendicular velocities[edit]

In the case where two objects are traveling in perpendicular directions, the relativistic relative velocity {vec  {v}}_{{mathrm  {B|A}}} is given by the formula:

{vec  {v}}_{{mathrm  {B|A}}}={{frac  {{vec  {v}}_{{mathrm  {B}}}}{gamma _{{mathrm  {A}}}}}}-{vec  {v}}_{{mathrm  {A}}}

where

{displaystyle gamma _{mathrm {A} }={frac {1}{sqrt {1-left({frac {v_{mathrm {A} }}{c}}right)^{2}}}}}

The relative speed is given by the formula

{displaystyle v_{mathrm {B|A} }={frac {sqrt {c^{4}-left(c^{2}-v_{mathrm {A} }^{2}right)left(c^{2}-v_{mathrm {B} }^{2}right)}}{c}}}

General case[edit]

The general formula for the relative velocity {vec  {v}}_{{mathrm  {B|A}}} of an object or observer B in the rest frame of another object or observer A is given by the formula:[1]

{displaystyle {vec {v}}_{mathrm {B|A} }={frac {1}{gamma _{mathrm {A} }left(1-{frac {{vec {v}}_{mathrm {A} }{vec {v}}_{mathrm {B} }}{c^{2}}}right)}}left[{vec {v}}_{mathrm {B} }-{vec {v}}_{mathrm {A} }+{vec {v}}_{mathrm {A} }(gamma _{mathrm {A} }-1)left({frac {{vec {v}}_{mathrm {A} }cdot {vec {v}}_{mathrm {B} }}{v_{mathrm {A} }^{2}}}-1right)right]}

where

{displaystyle gamma _{mathrm {A} }={frac {1}{sqrt {1-left({frac {v_{mathrm {A} }}{c}}right)^{2}}}}}

The relative speed is given by the formula

{displaystyle v_{mathrm {B|A} }={sqrt {1-{frac {left(c^{2}-v_{mathrm {A} }^{2}right)left(c^{2}-v_{mathrm {B} }^{2}right)}{left(c^{2}-{vec {v}}_{mathrm {A} }cdot {vec {v}}_{mathrm {B} }right)^{2}}}}}cdot c}

See also[edit]

  • Doppler effect
  • Non-Euclidean geometry § Kinematic geometries
  • Peculiar velocity
  • Proper motion
  • Range rate
  • Radial velocity
  • Rapidity
  • Relativistic speed
  • Space velocity (astronomy)

Notes[edit]

  1. ^ For example, replace the “Man” by a photon traveling at the speed of light.
  2. ^ This result is valid if all motion is restricted to the x-axis, but can be easily generalized by replacing the first equation by {vec  {r}},'={vec  {r}}-{vec  {v}}t
  3. ^ It is easy to be confused about the minus sign before v, or whether v is defined in the prime or unprimed reference frame. It might help to visualize the fact that if x = vt, then x′ = 0, meaning that a particle that is following the path x = vt is at rest in the primed reference frame.
  4. ^ Keep in mind that, due to time dilation, dt = dt′ is valid only in the approximation that the speed is much less than that of light.

References[edit]

  1. ^ Fock 1964 The theory of Space Time and Gravitation, retrieved from https://archive.org/details/TheTheoryOfSpaceTimeGravitation

Further reading[edit]

  • Alonso & Finn, Fundamental University Physics ISBN 0-201-56518-8
  • Greenwood, Donald T, Principles of Dynamics.
  • Goodman and Warner, Dynamics.
  • Beer and Johnston, Statics and Dynamics.
  • McGraw Hill Dictionary of Physics and Mathematics.
  • Rindler, W., Essential Relativity.
  • KHURMI R.S., Mechanics, Engineering Mechanics, Statics, Dynamics

External links[edit]

  • Relative Motion at HyperPhysics
  • A Java applet illustrating Relative Velocity, by Andrew Duffy
  • Relatív mozgás (1)…(3) Relative motion of two train (1)…(3). Videos on the portal FizKapu. (in Hungarian)
  • Sebességek összegzése Relative tranquility of trout in creek. Video on the portal FizKapu. (in Hungarian)

2.2.1 Как перевести из км/ч в м/с и т. д?

В задачах часто необходимо переводить из одних единиц измерения в другие:

1 км/ч = (1000 м)/(3600 с) = 5/18 м/с,

1 м/с = 18/5 км/ч,

1 км/с = 1000 м/с,

1 см/с = 0,01 м/с,

1 м/мин = 1/60 м/с.

Например, если nu =36км/ч, то для того, чтобы перевести в м/с, нужно умножить на 5/18:

36 км/ч=36 умножить на дробь: числитель: 5, знаменатель: 18 конец дроби =10 м/с.

2.2.2 Как найти скорость тела, если известен закон движения?

Закон равномерного движения имеет вид:

x=x_0 плюс nu_x t.

Видим, что в этой формуле скорость стоит коэффициентом перед временем. Поэтому, если в условии задачи дан закон движения, необходимо посмотреть на коэффициент перед t — это и есть скорость.

Например, пусть закон движения имеет вид: x=3 плюс 5t. В данном случае коэффициент перед t равен 5, следовательно, nu_x=5 м/с.

2.2.3 Как определить скорость по графику координаты от времени?

Закон равномерного движения имеет вид:

x=x_0 плюс nu_x t.

Графиком этого закона является прямая линия. Так как nu_x — коэффициент перед t, то nu_x является угловым коэффициентом прямой.

Для графика 1:

nu_x_1= левая круглая скобка Delta x_1 правая круглая скобка / левая круглая скобка Delta t_1 правая круглая скобка .

То, что график 1 «поднимается вверх», означает — тело едет в положительном направлении оси Ox.

Для графика 2:

nu_x_2= левая круглая скобка Delta x_2 правая круглая скобка / левая круглая скобка Delta t_2 правая круглая скобка .

То, что график 2 «опускается вниз», означает — тело едет в отрицательном направлении оси Ox.

Для определения Delta x и Delta t выбираем такие точки на графике, в которых можно точно определить значения, как правило, это точки, находящиеся в вершинах клеток.

2.2.4 Как найти закон движения, если известны координаты тела в моменты времени t_1 и t_2?

Пусть в момент времени t_1 тело находилось в точке с координатой x_1, а в момент времени t_2 тело находилось в точке с координатой x_2.

Для времени t_1 имеем:

x_1=x_0 плюс nu_x t_1.

Для времени t_2 имеем:

x_2=x_0 плюс nu_x t_2.

Решая систему уравнений (2.19) и (2.20), получим

nu_x= дробь: числитель: x_1 минус x_2, знаменатель: t_1 минус t_2 конец дроби , x_0= дробь: числитель: x_2 t_1 минус x_1 t_2, знаменатель: t_1 минус t_2 конец дроби .

2.2.5 Как найти графически момент и координату встречи двух тел?

Пусть даны законы движения двух тел: x_1=x_01 плюс nu_x_1 t и x_2=x_02 плюс nu _x_2 t. Согласно пункту 2.5 графиками обоих законов являются прямые линии. Необходимо на одном графике построить оба закона.

Графики пересекаются в одной точке. Координаты этой точки и являются временем и местом встречи.

2.2.6 Как аналитически найти координату и время встречи двух тел?

Пусть даны законы движения двух тел: x_1=x_01 плюс nu_x_1 t и x_2=x_02 плюс nu_x_2 t. В момент встречи тела оказываются в одной координате, то есть x_1=x_2, и необходимо решить уравнение:

x_01 плюс nu_x_1 t=x_02 плюс nu_x_2 t.

Решение уравнения имеет вид:

t_встр= дробь: числитель: |x_01 минус x_02|, знаменатель: |nu_x_1 минус nu_x_2| конец дроби .

Для нахождения координаты достаточно подставить вместо t найденное значение  t_встр в любой из законов движения:

x_встр=x_01 плюс nu_x_1 t_встр,

или

x_встр=x_02 плюс nu_x_2 t_встр.

2.2.7 Как найти среднюю скорость, если тело половину пути проехало со скоростью nu_1, а вторую половину пути nu_2?

По определению (2.8):

nu_ср= дробь: числитель: L, знаменатель: t конец дроби .

В нашем случае, так как на каждой половине пути тело едет с постоянной скоростью, то

t=t_1 плюс t_2= дробь: числитель: дробь: числитель: L, знаменатель: 2 конец дроби , знаменатель: nu_1 конец дроби 	 плюс дробь: числитель: дробь: числитель: L, знаменатель: 2 конец дроби , знаменатель: nu_2 конец дроби = дробь: числитель: L, знаменатель: 2 конец дроби левая круглая скобка дробь: числитель: 1, знаменатель: nu_1 конец дроби плюс дробь: числитель: 1, знаменатель: nu_2 правая круглая скобка конец дроби

Получаем

nu_ср= дробь: числитель: L, знаменатель: дробь: числитель: L, знаменатель: 2 конец дроби левая круглая скобка дробь: числитель: 1, знаменатель: nu_1 конец дроби плюс дробь: числитель: 1, знаменатель: nu_2 правая круглая скобка конец дроби конец дроби = дробь: числитель: 2nu_1nu_2, знаменатель: nu_1 плюс nu_2 конец дроби .

В общем случае, если весь путь разбить на n равных участков, на каждом из которых тело едет с постоянной скоростью, то

nu_ср= дробь: числитель: n, знаменатель: дробь: числитель: 1, знаменатель: nu_1 конец дроби плюс дробь: числитель: 1, знаменатель: nu_2 конец дроби плюс дробь: числитель: 1, знаменатель: nu_3 конец дроби плюс ... плюс дробь: числитель: 1, знаменатель: nu_n конец дроби конец дроби .

Формула справедлива только если весь путь разбит на равные участки. Если же разбиение будет иное, то, естественно, формула для нахождения средней скорости, будет иной.

2.2.8 Как найти среднюю скорость, если тело половину времени проехало со скоростью nu_1, а вторую половину времени nu_2?

По определению (2.8):

nu_ср= дробь: числитель: L, знаменатель: t конец дроби .

В нашем случае, так как каждую половину времени тело едет с постоянной скоростью, то

L=L_1 плюс L_2= дробь: числитель: t, знаменатель: 2 конец дроби nu_1 плюс дробь: числитель: t, знаменатель: 2 конец дроби nu_2.

Получаем

nu_ср= дробь: числитель: дробь: числитель: t, знаменатель: 2 конец дроби nu_1 плюс дробь: числитель: t, знаменатель: 2 конец дроби nu_2, знаменатель: t конец дроби = дробь: числитель: дробь: числитель: t, знаменатель: 2 конец дроби левая круглая скобка nu_1 плюс nu_2 правая круглая скобка , знаменатель: t конец дроби = дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка nu_1 плюс nu_2 правая круглая скобка .

В общем случае, если все время разбито на n равных промежутков, на каждом из которых тело едет с постоянной скоростью, то

nu_ср= дробь: числитель: 1, знаменатель: n конец дроби левая круглая скобка nu_1 плюс nu_2 плюс nu _3 плюс ⋯ плюс nu _4 правая круглая скобка .

Формула справедлива только если все время разбито на равные промежутки. Если же разбиение будет иное, то, естественно, формула для нахождения средней скорости, будет иной.

2.2.9 Как найти скорость, с которой движется моторная лодка по течению реки?

Согласно формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно неподвижной системы отсчета nu (в нашем случае земли), равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета nu_0 (в нашем случае — собственная скорость лодки).

vecnu=overrightarrownu_0 плюс vecu.

При движении по течению вектора overrightarrownu_0 и vecu направлены в одну сторону, следовательно, получаем сложение двух векторов, направленных в одну сторону — используем формулу (1.15):

nu =nu_0 плюс u.

Таким образом, при движении любого тела по течению его скорость определяется формулой nu =nu_0 плюс u.

2.2.10 Как найти скорость, с которой движется моторная лодка против течения реки?

Согласно формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно неподвижной системы отсчета nu (в нашем случае земли) равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета nu_0 (в нашем случае — собственная скорость лодки).

vecnu=overrightarrownu_0 плюс vecnu

Перепишем формулу в виде:

vecnu=overrightarrownu_0 минус левая круглая скобка минус vecnu правая круглая скобка .

Вектора overrightarrownu_0 и  левая круглая скобка минус vecnu правая круглая скобка направлены в одну сторону, следовательно, получаем вычитание двух векторов, направленных в одну сторону — используем формулу c=|a минус b|:

nu =nu_0 минус u.

2.2.11 Как найти скорость, с которой движется моторная лодка, если ее скорость направлена перпендикулярно течению реки?

Согласно формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно неподвижной системы отсчета nu (в нашем случае земли), равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета nu_0 (в нашем случае — собственная скорость лодки).

vecnu=overrightarrownu_0 плюс vecnu

В данном случае вектора overrightarrownu_0 и vecnu направлены перпендикулярно, следовательно, получаем задачу о сложении взаимно перпендикулярных векторов — используем формулу c= корень из: начало аргумента: a в степени левая круглая скобка 2 конец аргумента плюс b в квадрате правая круглая скобка :

nu = корень из: начало аргумента: nu_0 конец аргумента в квадрате плюс u в квадрате .

2.2.12 Как найти расстояние, на которое снесет лодку, если ее скорость направлена перпендикулярно скорости реки?

В результате сложения скоростей по формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно земли равна vecnu и направлена по прямой OD. В результате, когда тело окажется на противоположном берегу, оно попадет в точке D, и его снесет на длину CD=S.

Треугольник OAB подобен треугольнику OCD:

 дробь: числитель: CD, знаменатель: AB конец дроби = дробь: числитель: OC, знаменатель: OA конец дроби Rightarrow дробь: числитель: S, знаменатель: u конец дроби = дробь: числитель: h, знаменатель: nu_0 конец дроби Rightarrow S=h дробь: числитель: u, знаменатель: nu_0 конец дроби .

2.2.13 Как найти скорость, с которой движется моторная лодка, если ее скорость направлена под углом φ к скорости течения реки?

Согласно формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно неподвижной системы отсчета nu (в нашем случае земли), равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета nu_0 (в нашем случае — собственная скорость лодки).

vecnu=overrightarrownu_0 плюс vecu.

В результате сложения скоростей по формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно земли равна vecnu и направлена по прямой OB. Как видим, получили треугольник, в котором известен один из углов — левая круглая скобка 180 градусов минус фи правая круглая скобка . Тогда по теореме косинусов:

nu = корень из: начало аргумента: nu_0 конец аргумента в квадрате плюс u в квадрате минус 2nu _0 u косинус ⁡ левая круглая скобка 180 градусов минус фи правая круглая скобка = корень из: начало аргумента: nu _0 конец аргумента в квадрате плюс u в квадрате плюс 2nu_0 u косинус ⁡ фи .

2.2.14 Как найти расстояние, на которое снесет лодку, если ее скорость направлена под углом  фи к скорости течения реки?

В результате сложения скоростей по формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно земли равна vecnu и направлена по прямой OB. В результате, когда тело окажется на противоположном берегу, оно попадет в точке В, и его снесет на длину АВ=S.

В задачах, когда движение происходит в плоскости, то есть и вдоль оси Ox, и вдоль оси Oy, необходимо введение системы координат для того, чтобы упростить рассмотрение задачи.

Проекция nu_x:

nu_x=nu _0 косинус ⁡ фи плюс u.

Проекция nu_y:

nu _y=nu_0 синус ⁡ фи .

Формулы nu_x=nu _0 косинус ⁡ фи плюс u и nu _y=nu_0 синус ⁡ фи не просто результат математической операции нахождения проекции, nu_x и nu_y имеют физический смысл: со скоростью nu_x тело плывет вдоль оси Ox, то есть по течению; со скоростью nu_y тело переплывает реку. Например, время, за которое тело переплывет реку, можно найти просто поделив ширину реки на nu_y:

t_0= дробь: числитель: h, знаменатель: nu_y конец дроби = дробь: числитель: h, знаменатель: nu_0 синус фи конец дроби .

Тогда

S=nu_xt_0= дробь: числитель: h, знаменатель: nu_0 синус фи конец дроби левая круглая скобка nu_0 косинус фи плюс u правая круглая скобка .

2.2.15 Под каким углом α нужно направить собственную скорость лодки, чтобы за минимальное время переплыть реку?

Согласно формуле nu _y=nu_0 синус ⁡ фи скорость, с которой лодка переплывает реку, равна:

nu_y=nu_0 синус ⁡ фи .

Очевидно, что время будет минимальным, если nu_y будет максимальным, то есть  фи =90 градусов= дробь: числитель: Пи , знаменатель: 2 конец дроби .

2.2.16 С какой скоростью машина обгоняет вторую машину, если они движутся в одну сторону?

Пусть 1-ая машина движется вправо со скоростью overrightarrownu_1, а 2-ая машина также движется вправо со скоростью overrightarrownu_2. Скорость обгона — это скорость, с которой 1-ая машина движется относительно 2-ой, то есть — это относительная скорость, и она определяется формулой c=|a минус b|:

overrightarrownu_отн=overrightarrownu_1 минус overrightarrownu_2.

Так как overrightarrownu_1 и overrightarrownu_2 направлены в одну сторону, то получили задачу о вычитании векторов, направленных в одну сторону — формула c=|a минус b|:

nu_обгона=nu_1 минус nu_2.

Заметим, что при обгоне, естественно nu_1 больше nu_2, поэтому nu_обгона больше 0.

2.2.17 За какое время проедут мимо друг друга два поезда, двигающиеся в одном направлении?

Пусть длина 1-го поезда L_1, а скорость 2-го поезда L_2. Скорость обгона определяется формулой nu_обгона=nu_1 минус nu_2. Тогда

t= дробь: числитель: L_1 плюс L_2, знаменатель: nu_обгона конец дроби = дробь: числитель: L_1 плюс L_2, знаменатель: nu_1 минус nu_2 конец дроби .

2.2.18 С какой скоростью машина едет навстречу вторую машину, если они движутся в противоположных направлениях?

Пусть 1-ая машина движется вправо со скоростью overrightarrownu_1, а 2-ая машина движется влево со скоростью overrightarrownu_2. Скорость движения навстречу — это скорость, с которой 1-ая машина движется относительно 2-ой, то есть — это относительная скорость, и она определяется формулой c=|a минус b|:

overrightarrownu_отн=overrightarrownu_1 минус overrightarrownu_2.

Перепишем эту формулу в виде:

overrightarrownu_отн=overrightarrownu_1 минус левая круглая скобка минус overrightarrownu_2 правая круглая скобка .

Так как overrightarrownu_1 и  левая круглая скобка минус overrightarrownu_2 правая круглая скобка направлены в одну сторону, то получили задачу о вычитании векторов, направленных в одну сторону — формула c=|a минус b|:

nu_встр=nu_1 минус левая круглая скобка минус nu_2 правая круглая скобка =nu_1 плюс nu_2.

2.2.19 За какое время проедут мимо друг друга два поезда, двигающиеся в противоположных направлениях?

Пусть длина 1-го поезда L_1, а скорость 2-го поезда L_2. Скорость обгона определяется формулой nu_обгона=nu_1 минус nu_2. Тогда

t= дробь: числитель: L_1 плюс L_2, знаменатель: nu_встр конец дроби = дробь: числитель: L_1 плюс L_2, знаменатель: nu_1 плюс nu_2 конец дроби .

2.2.20 Как найти относительную скорость, если тела движутся по взаимно перпендикулярным направлениям?

Пусть 1-ая машина движется вправо со скоростью overrightarrownu_1, а 2-ая машина движется перпендикулярно первой со скоростью overrightarrownu_2. Относительная скорость определяется формулой c=|a минус b|:

overrightarrownu_отн=overrightarrownu_1 минус overrightarrownu_2.

Так как вектора overrightarrownu_1 и overrightarrownu_2 перпендикулярны, то воспользуемся формулой c= корень из: начало аргумента: a в степени левая круглая скобка 2 конец аргумента плюс b в квадрате правая круглая скобка :

nu_отн= корень из: начало аргумента: nu_1 конец аргумента в квадрате плюс nu_2 в квадрате .

Любое движение тела происходит по отношению к другим телам. Физики говорят: «Относительно других тел».

К примеру, человек, едущий в автобусе, относительно автобуса находится в состоянии покоя, а относительно дороги – движется.

 Примечание: Когда мы рассматриваем движение тела, мы выбираем систему отсчета, в которой это дело будет двигаться. При этом, тело отсчета мы принимаем за неподвижное тело, относительно которого происходит движение изучаемого тела.

Такие характеристики движения, как:

  • перемещение тела;
  • траектория, вдоль которой тело двигалось;
  • скорость тела;
  • ускорение тела;

в разных системах отсчета (СО) будут различаться.

Траектория тела различна в разных системах отсчета

Траектория – это относительная характеристика движения. Потому, что она различается для разных систем отсчета (СО).

В то время, пока самолет летит, точка, лежащая на кончике его винта, относительно самолета движется по окружности (рис. 1), а относительно неподвижного наблюдателя на земле – эта же точка имеет винтовую траекторию.

Траектория точки на кончике винта летящего самолета относительно пилота является окружностью, а относительно поверхности земли точка описывает винтовую линию

Рис.1. Траектория кончика винта летящего самолета относительно пилота является окружностью, а относительно поверхности земли – винтовой линией

Например, движение ниппеля велосипедного колеса во время поездки на велосипеде.

В системе отсчета, связанной с:

  • велосипедом, траектория ниппеля – это окружность.
  • поверхностью земли, траектория ниппеля – это циклоида.

Что такое циклоида

Циклоида – это плоская кривая линия. По такой линии движется точка, лежащая на окружности, когда эта окружность катится по прямой без проскальзывания (рис. 2).

Траектория точки, лежащей на окружности, покуда окружность катится по прямой, является циклоидой

Рис. 2. Когда окружность катится по прямой, точка, лежащая на окружности, описывает циклоиду

Циклоиду называют трансцендентной кривой линией.

Линия трансцендентная, если ее в прямоугольных координатах не получается описать с помощью алгебраического уравнения.

Но с помощью параметра t можно записать отдельно координату x и координату y с помощью таких уравнений:

[ large begin{cases} x = r cdot t — r cdot sin(t) \ y = r — r cdot cos(t) end{cases} ]

Примечания:

  1. Окружность, которая катится – называется производящей.
  2. Прямая, по которой катится окружность – направляющая прямая.
  3. Точки пересечения циклоиды и направляющей прямой – это точки возврата.
  4. Самые высокие точки на циклоиде, располагающиеся между соседними точками возврата – это вершины циклоиды.

Циклоиду впервые изучил Галилео Галилей. Этот выдающийся итальянский ученый занимался физикой, математикой, астрономией, механикой и философией.

А английский математик и архитектор Кристофер Рен в 1658 году посчитал длину арки циклоиды.

Длина циклоиды равна четырем диаметрам производящей окружности.

Кристофер Рен спроектировал и руководил возведением в Лондоне купола собора Святого Павла.

С помощью циклоиды братья Бернулли решили задачу о скорейшем спуске — брахистохроне. Брахистохрон – с греч. «Краткое время». Они доказали, что по желобу, имеющему форму перевернутой вниз циклоиды шарик скатывается вниз за кратчайшее из возможных время.

Скорость тела различна в разных системах отсчета

Рассмотрим движение человека в едущем по прямому участку пути трамвае (рис. 3).

Относительно трамвая скорость человека равна 3 километра в час, а относительно земли – 63 километра в час

Рис. 3. Скорость человека относительно трамвая равна 3 километра в час, а относительно земли – 63 километра в час

Скорость трамвая (large vec{v_{text{Трам}}}) 60 километров в час. Предположим, в движущемся вагоне трамвая человек перемещается от задней части трамвая к его передней части, со скоростью (large vec{v_{text{Чел}}}) 3 километра в час.

Тогда скорость человека относительно трамвая будет равна 3 километрам в час, а относительно земли – 63 километрам в час.

[ large begin{cases} overrightarrow{v_{text{относит земли}}} = overrightarrow {v_{text{Трам}}} + overrightarrow {v_{text{Чел}}} \ overrightarrow {v_{text{ относит трам}}} = overrightarrow {v_{text{Чел}}} end{cases} ]

Как переходить из одной системы отсчета в другую

Любое движение, которое мы рассматриваем, а, так же, его характеристики, будут различаться в разных системах отсчета.

Относительно одних тел рассматриваемое тело может покоиться, а вместе с тем, относительно других тел оно может находиться в движении.

Чтобы осуществить переход между системами отсчета, нужно применять закон сложения скоростей и перемещений. Скорость и перемещение – это векторы. Значит, будем складывать их геометрически. То есть, при сложении векторов будем учитывать их направления.

Примечание: Ньютон изучал движение тел. В его теории время протекает одинаково во всех системах отсчета. То есть, в механике Ньютона время – это абсолютная величина.

Представим себе такую картину: На берегу реки сидит и отдыхает девушка (рис. 4). По реке мимо нее проплывает плот (по течению). С плота в это время в воду прыгает молодой человек и вплавь добирается к противоположному берегу реки. После чего, садится на берег и отдыхает.

Сложив вектор скорости реки с вектором собственной скорости пловца, найдем скорость пловца относительно неподвижного наблюдателя на берегу

Рис. 4. Чтобы найти скорость пловца относительно неподвижного наблюдателя, нужно сложить вектор скорости реки и вектор собственной скорости пловца

Перемещение в различных системах отсчета

Сначала запишем перемещение парня в системе отсчета, связанной с девушкой, когда нам известны его перемещение в системе отсчета, связанной с плотом.

 Примечание:

  1. Относительно девушки – значит, в системе отсчета, связанной с девушкой.
  2. Относительно плота – значит, в системе отсчета, связанной с плотом.

На рисунке перемещение плота и перемещение парня относительно плота обозначены длинными черными стрелками. А перемещение парня относительно сидящей на берегу девушки обозначено длинной синей стрелкой.

Из рисунка видно, что векторы перемещений образуют прямоугольный треугольник.

Сложив вектор переносного и относительного перемещений, получим вектор абсолютного перемещения:

[ large boxed{ overrightarrow{S_{text{абсол}}} = overrightarrow{S_{text{перенос}}} + overrightarrow{S_{text{отн}}} }]

( large overrightarrow{S_{text{перенос}}} ) – вектор перемещения плота;

( large overrightarrow{S_{text{отн}}} ) – вектор перемещения парня относительно плота (собственное перемещение парня);

( large overrightarrow{S_{text{абсол}}} ) – вектор перемещения парня относительно девушки на берегу;

Длину вектора абсолютного перемещения можно найти по теореме Пифагора:

[ large boxed{ left| overrightarrow{S_{text{абсол}}} right| = sqrt{ left(S_{text{перенос}} right)^{2} + left(S_{text{отн}}right) ^{2}} } ]

Скорость в различных системах отсчета

Запишем еще раз формулу для связи перемещений:

[ large overrightarrow{S_{text{абсол}}} = overrightarrow{S_{text{перенос}}} + overrightarrow{S_{text{отн}}} ]

Зная перемещение, и время равномерного движения, можно найти модуль вектора скорости, т. е. длину вектора скорости.

Скорость плывущего плота и скорость парня не изменяются. Поэтому, для связи скорости и перемещения можно применить формулу

[ large S = v cdot t ]

Разделив обе части этого уравнения на время t, получим выражение для скорости равномерного движения:

[ large frac{S}{t} = v ]

Обе части уравнения для перемещений разделим на время t движения.

[ large frac{overrightarrow{S_{text{абсол}}}}{t} = frac{overrightarrow{S_{text{перенос}}}}{t} + frac{overrightarrow{S_{text{отн}}}}{t}]

Полученное выражение можно записать с помощью векторов скоростей:

[ large boxed{ overrightarrow{v_{text{абсол}}} = overrightarrow{v_{text{перенос}}} + overrightarrow{v_{text{отн}}} }]

В частности, на рисунке 4 красными векторами обозначены скорость реки (плота) и скорость парня.

Опишем обозначения, использованные нами в уравнении, связывающем скорости в различных системах отсчета:

( large overrightarrow{v_{text{отн}}} = overrightarrow{v_{text{чел}}} ) – вектор скорости парня;

( large overrightarrow{v_{text{перенос}}} = overrightarrow{v_{text{плота}}} ) – вектор скорости плота (течения реки);

( large overrightarrow{v_{text{абсол}}} ) – вектор скорости парня относительно девушки;

Длину вектора скорости найдем по теореме Пифагора:

[ large boxed{ left| overrightarrow{v_{text{абсол}}} right| = sqrt{ left( v_{text{перенос}}right)^{2} + left(v_{text{отн}}right) ^{2} } }]

Таким образом, до прыжка в воду скорость парня в системе отсчета, связанной с плотом, равнялась нулю (рис. 5).

А в системе отсчета, связанной с отдыхающей на берегу девушкой, скорость парня равнялась скорости течения реки (скорости плота).

Скорость пловца зависит от выбора системы отсчета, в которой мы рассматриваем движение

Рис. 5. Скорость пловца зависит от выбора системы отсчета, так как в различных системах отсчета скорости будут разными

После прыжка с плота в системе отсчета, связанной с плотом, скорость парня равняется скорости, с которой он плывет к берегу перпендикулярно течению реки.

Ну а в системе отсчета, связанной с девушкой, скорость парня – это векторная сумма скорости течения реки и скорости плавания парня.

Выводы

  1. Перемещение тела и траектория, вдоль которой тело двигалось, скорость и ускорение тела в разных системах отсчета (СО) будут различаться. В этом заключается относительность движения.
  2. Перемещение и скорость – это векторы. Поэтому, при переходе из одной системы отсчета в другую, нужно складывать, или вычитать векторы скоростей и перемещений.
  3. Векторы складываем и вычитаем с помощью геометрии.
  4. Переносная скорость – это скорость движущейся системы отсчета;
  5. Относительная скорость – это скорость тела по отношению к движущейся системе отсчета (движущемуся телу отсчета);
  6. Абсолютная скорость – скорость тела в неподвижной системе отсчета;
  7. Каждая система отсчета связана со своим телом отсчета.

Добавить комментарий