Как найти скорость распространения волны от механической

Когда в каком-нибудь месте твердой, жидкой или газообразной среды происходит возбуждение колебаний частиц, результатом взаимодействия атомов и молекул среды становится передача колебаний от одной точки к другой с конечной скоростью.

Определение 1

Волна – это процесс распространения колебаний в среде.

Виды механических волн

Различают следующие виды механических волн:

Определение 2

Поперечная волна: частицы среды смещаются в направлении, перпендикулярном направлению распространения механической волны.

Пример: волны, распространяющиеся по струне или резиновому жгуту в натяжении (рисунок 2.6.1);

Определение 3

Продольная волна: частицы среды смещаются в направлении распространения механической волны.

Пример: волны, распространяющиеся в газе или упругом стержне (рисунок 2.6.2).

Интересно, что волны на поверхности жидкости включают в себя и поперечную, и продольную компоненты.

Замечание 1

Укажем важное уточнение: когда механические волны распространяются, они переносят энергию, форму, но не переносят массу, т.е. в обоих видах волн переноса вещества в направлении распространения волны не происходит. Распространяясь, частицы среды совершают колебания около положений равновесия. При этом, как мы уже сказали, волны переносят энергию, а именно энергию колебаний от одной точки среды к другой.

Виды механических волн

Рисунок 2.6.1. Распространение поперечной волны по резиновому жгуту в натяжении.

Виды механических волн

Рисунок 2.6.2. Распространение продольной волны по упругому стержню.

Модель твердого тела

Характерная черта механических волн – их распространение в материальных средах в отличие, например, от световых волн, способных распространяться и в пустоте. Для возникновения механического волнового импульса необходима среда, имеющая возможность запасать кинетическую и потенциальную энергии: т.е. среда должна иметь инертные и упругие свойства. В реальных средах эти свойства получают распределение по всему объему. К примеру, каждому небольшому элементу твердого тела присуща масса и упругость. Самая простая одномерная модель такого тела представляет из себя совокупность шариков и пружинок (рисунок 2.6.3).

Модель твердого тела

Рисунок 2.6.3. Простейшая одномерная модель твердого тела.

В этой модели инертные и упругие свойства разделены. Шарики имеют массу m, а пружинки – жесткость k. Такая простая модель дает возможность описать распространение продольных и поперечных механических волн в твердом теле. При распространении продольной волны шарики смещаются вдоль цепочки, а пружинки растягиваются или сжимаются, что есть деформация растяжения или сжатия. Если подобная деформация происходит в жидкой или газообразной среде, ее сопровождает уплотнение или разрежение.

Замечание 2

Отличительная особенность продольных волн заключается в том, что они способны распространяться в любых средах: твердых, жидких и газообразных.

Если в указанной модели твердого тела один или несколько шариков получают смещение перпендикулярно всей цепочке, можно говорить о возникновении деформации сдвига. Пружины, получившие деформацию в результате смещения, будут стремиться вернуть смещенные частицы в положение равновесия, а на ближайшие несмещенные частицы начнет оказываться влияние упругих сил, стремящихся отклонить эти частицы от положения равновесия. Итогом станет возникновение поперечной волны в направлении вдоль цепочки.

В жидкой или газообразной среде упругая деформация сдвига не возникает. Смещение одного слоя жидкости или газа на некоторое расстояние относительно соседнего слоя не приведет к появлению касательных сил на границе между слоями. Силы, которые оказывают воздействие на границе жидкости и твердого тела, а также силы между соседними слоями жидкости всегда направлены по нормали к границе – это силы давления. Аналогично можно сказать и о газообразной среде.

Замечание 3

Таким образом, появление поперечных волн невозможно в жидкой или газообразной средах.

В плане практического применения особый интерес представляют простые гармонические или синусоидальные волны. Они характеризуются амплитудой A колебания частиц, частотой f и длиной волны λ. Синусоидальные волны получают распространение в однородных средах с некоторой постоянной скоростью υ.

Запишем выражение, показывающее зависимость смещения y(x, t) частиц среды из положения равновесия в синусоидальной волне от координаты x на оси OX, вдоль которой распространяется волна, и от времени t: 

y(x, t)=Acos ωt-xυ=Acos ωt-kx.

В приведенном выражении k=ωυ – так называемое волновое число, а ω=2πf является круговой частотой.

Бегущая волна

Рисунок 2.6.4 демонстрирует «моментальные фотографии» поперечной волны в момент времени t и t+Δt. За промежуток времени Δt волна перемещается вдоль оси OX на расстояние υΔt. Подобные волны носят название бегущих волн.

Бегущая волна

Рисунок 2.6.4. «Моментальные фотографии» бегущей синусоидальной волны в момент времени t и t+Δt.

Определение 4

Длина волны λ – это расстояние между двумя соседними точками на оси OX, испытывающими колебание в одинаковых фазах.

Расстояние, величина которого есть длина волны λ, волна проходит за период Т. Таким образом, формула длины волны имеет вид: λ=υT, где υ является скоростью распространения волны.

С течением времени t происходит изменение координаты x любой точки на графике, отображающем волновой процесс (к примеру, точка А на рисунке 2.6.4), при этом значение выражения ωt–kx остается неизменным. Спустя время Δt точка А переместится по оси OX на некоторое расстояние Δx=υΔt. Таким образом: 

ωt-kx=ω(t+∆t)-k(x+∆x)=const или ω∆t=k∆x.

Из указанного выражения следует:

υ=∆x∆t=ωk или k=2πλ=ωυ.

Становится очевидно, что бегущая синусоидальная волна имеет двойную периодичность – во времени и пространстве. Временной период является равным периоду колебаний T частиц среды, а пространственный период равен длине волны λ.

Определение 5

Волновое число k=2πλ – это пространственный аналог круговой частоты ω=-2πT.

Сделаем акцент на том, что уравнение y(x,t)=Acos ωt+kx является описанием синусоидальной волны, получающей распространение в направлении, противоположном направлению оси OX, со скоростью υ=-ωk.

Когда бегущая волна получает распространение, все частицы среды гармонически колеблются с некоторой частотой ω. Это означает, что как и при простом колебательном процессе, средняя потенциальная энергия, являющаяся запасом некоторого объема среды, есть средняя кинетическая энергия в том же объеме, пропорциональная квадрату амплитуды колебаний.

Замечание 4

Из вышесказанного можно сделать вывод, что, когда бегущая волна получает распространение, появляется поток энергии, пропорциональный скорости волны и квадрату ее амплитуды.

Скорость распространения волны

Бегущие волны движутся в среде с определенными скоростями, находящимися в зависимости от типа волны, инертных и упругих свойств среды.

Скорость, с которой поперечные волны распространяются в натянутой струне или резиновом жгуте, имеет зависимость от погонной массы μ (или массы единицы длины) и силы натяжения T

υ=Tμ.

Скорость, с которой продольные волны распространяются в безграничной среде, рассчитывается при участии таких величин как плотность среды ρ (или масса единицы объема) и модуль всестороннего сжатия B (равен коэффициенту пропорциональности между изменением давления Δp и относительным изменением объема ΔVV, взятому с обратным знаком): 

∆p=-B∆VV.

Таким образом, скорость распространения продольных волн в безграничной среде, определяется по формуле:

υ=Bρ.

Пример 1

При температуре 20 °С скорость распространения продольных волн в воде υ≈1480 м/с, в различных сортах стали υ≈5–6 км/с.

Если речь идет о продольных волнах, получающих распространение в упругих стержнях, запись формулы для скорости волны содержит не модуль всестороннего сжатия, а модуль Юнга:

υ=Eρ.

Для стали отличие E от B незначительно, а вот для прочих материалов оно может составлять 20–30 % и больше.

Скорость распространения волны

Рисунок 2.6.5. Модель продольных и поперечных волн.

Стоячая волна

Предположим, что механическая волна, получившая распространение в некоторой среде, встретила на пути некое препятствие: в этом случае характер ее поведения резко изменится. К примеру, на границе раздела двух сред с различающимися механическими свойствами волна частично отразится, а частично проникнет во вторую среду. Волна, пробегающая по резиновому жгуту или струне, отразится от зафиксированного конца, и возникнет встречная волна. Если у струны зафиксированы оба конца, появятся сложные колебания, являющиеся итогом наложения (суперпозиции) двух волн, получающих распространение в противоположных направлениях и испытывающих отражения и переотражения на концах. Так «работают» струны всех струнных музыкальных инструментов, зафиксированные с обоих концов. Схожий процесс возникает при звучании духовых инструментов, в частности, органных труб.

Если волны, распространяющиеся по струне во встречных направлениях, обладают синусоидальной формой, то при определенных условиях они образуют стоячую волну.

Допустим, струна длины l зафиксирована таким образом, что один из ее концов расположен в точке x=0, а другой – в точке x1=L (рисунок 2.6.6). В струне имеется натяжение T.

Стоячая волна

Рисунок 2.6.6. Возникновение стоячей волны в струне, зафиксированной на обоих концах.

По струне одновременно пробегают в противоположных направлениях две волны с одинаковой частотой:

  • y1(x, t)=A cos (ωt+kx) – волна, распространяющаяся справа налево;
  • y2(x, t)=A cos (ωt-kx) – волна, распространяющаяся слева направо.

Точка x=0 – один из зафиксированных концов струны: в этой точке падающая волна y1 в результате отражения создает волну y2. Отражаясь от зафиксированного конца, отраженная волна входит в противофазу с падающей. В соответствии с принципом суперпозиции (что есть экспериментальный факт) колебания, созданные встречными волнами во всех точках струны, суммируются. Из сказанного следует, что итоговое колебание в каждой точке определяется как сумма колебаний, вызванных волнами y1 и y2 в отдельности. Таким образом:

y=y1(x, t)+y2(x, t)=(-2A sin ωt) sin kx.

Приведенное выражение является описанием стоячей волны. Введем некоторые понятия, применимые к такому явлению как стоячая волна.

Определение 6

Узлы – точки неподвижности в стоячей волне.

Пучности – точки, расположенные между узлами и колеблющиеся с максимальной амплитудой.

Если следовать данным определениям, для возникновения стоячей волны оба зафиксированных конца струны должны являться узлами. Указанная ранее формула отвечает этому условию на левом конце (x=0). Чтобы условие было выполнено и на правом конце (x=L), необходимо чтобы kL=nπ, где n является любым целым числом. Из сказанного можно сделать вывод, что стоячая волна в струне появляется не всегда, а только тогда, когда длина L струны равна целому числу длин полуволн:

l=nλn2 или λn=2ln(n=1, 2, 3,…).

Набору значений λn длин волн соответствует набор возможных частот f

fn=υλn=nυ2l=nf1.

В этой записи υ=Tμ есть скорость, с которой распространяются поперечные волны по струне.

Определение 7

Каждая из частот fn и связанный с ней тип колебания струны называется нормальной модой. Наименьшая частота f1 носит название основной частоты, все прочие (f2, f3, …) называются гармониками.

Рисунок 2.6.6 иллюстрирует нормальную моду для n=2.

Стоячая волна не обладает потоком энергии. Энергия колебаний, «запертая» в отрезке струны между двумя соседними узлами, не переносится в остальные части струны. В каждом таком отрезке происходит периодическое (дважды за период T) преобразование кинетической энергии в потенциальную и обратно, подобно обычной колебательной системе. Однако, здесь имеется различие: если груз на пружине или маятник имеют единственную собственную частоту f0=ω02π, то струна характеризуется наличием бесконечного числа собственных (резонансных) частот fn. На рисунке 2.6.7 показано несколько вариантов стоячих волн в струне, зафиксированной на обоих концах.

Стоячая волна

Рисунок 2.6.7. Первые пять нормальных мод колебаний струны, зафиксированной на обоих концах.

Согласно принципу суперпозиции стоячие волны различных видов (с разными значениями n) способны одновременно присутствовать в колебаниях струны.

Стоячая волна

Рисунок 2.6.8. Модель нормальных мод струны.

Механические волны. Звук и его распространение

  1. Продольные и поперечные волны
  2. Скорость и длина волны
  3. Скорость звука, громкость и высота тона
  4. Задачи

п.1. Продольные и поперечные волны

В непрерывной среде колебания одной частицы вызывают колебания соседних частиц, а они, в свою очередь, вызывают колебания других частиц. Так возмущение начинает распространяться, в среде возникают волны.

Возмущения, распространяющиеся в твердых, жидких или газообразных средах, называют механическими волнами.

Подвесим длинную пружину на нитях и ударим по ней слева. Пружина от удара сожмется на определенном участке, а потом этот сжатый участок волной начнет перемещаться слева направо.
Продольные и поперечные волны

Волны, в которых колебания происходят вдоль направления распространения волны, называют продольными.

Продольные и поперечные волны Продольные волны всегда приводят к появлению слоев сжатия и разрежения частиц среды.

Теперь закрепим длинный резиновый шнур одним концом, а другой конец приведем в колебательное движение в вертикальной плоскости. Вертикальные колебания начнут распространяться вдоль шнура, причем в горизонтальном направлении, т.е. перпендикулярно.
Продольные и поперечные волны

Волны, в которых колебания происходят перпендикулярно направлению распространения волны, называют поперечными.

Внимание!
Упругие силы при сдвиге слоев возникают только в твердых телах.
Поэтому поперечные волны могут распространяться только в твердых телах.
А вот продольные волны могут распространяться в любых средах: твердых, жидких или газообразных.

п.2. Скорость и длина волны

Скорость распространения колебаний в пространстве называют скоростью волны.

Расстояние между двумя ближайшими точками, движущимися в любой момент времени с одинаковыми по модулю и направлению скоростями, называют длиной волны.

Длина волны при продольных колебаниях:
Длина волны при продольных колебаниях
Длина волны при поперечных колебаниях:
Длина волны при поперечных колебаниях

При скорости (v) за период колебаний (T) волна распространяется на расстояние, равное длине волны (lambda): $$ lambda=vT $$

Скорость распространение волны равна произведению длины волны на частоту колебаний: $$ v=lambda f $$

Внимание!
Частота колебаний определяется источником колебаний, а скорость распространения зависит от свойств среды. Поэтому колебания с одной и той же частотой в разных средах будут распространяться с разной длиной волны.

п.3. Скорость звука, громкость и высота тона

Звук – это продольная волна, которая воспринимается нашими органами слуха.
Диапазон частот звуковых волн: от 16-20 Гц до 15-20 кГц.

Скорость звука, громкость  и высота тона
Звуковая волна связана с перемещением области с небольшим избыточным давлением. Для обычной речи этот избыток составляет всего лишь одну миллионную долю от атмосферного давления.

Скорость звука в воздухе сильнее всего зависит от температуры, меньше – от давления и влажности. При повышении температуры воздуха на 1°С скорость звука в нем увеличивается в среднем на 0,59 м/с.
Скорость звука в воздухе при различной температуре

t, °C -150 -100 -50 -20 -10 0 10 20
c, м/с 216,7 263,7 299,3 318,8 325,1 331,5 337,3 343,1
t, °C 30 50 100 200 300 400 500 1000
c, м/с 348,9 360,3 387,1 436,0 479,8 520,0 557,3 715,2

Скорость звука в воде составляет около 1500 м/с и растет с увеличением температуры и солёности (для океанов). Также скорость увеличивается с глубиной.
Скорость звука в твёрдых телах еще выше. Например, в стекле – 3980 м/с, в стали – 5950 м/с, а в алюминии – 6420 м/с.

Как и любая волна, звук характеризуется амплитудой и частотой.
Звуковые волны с большой амплитудой изменения звукового давления мы воспринимаем как громкие (гудок автомобиля), а с малой амплитудой – как тихие звуки (шелест листьев).
Звуковые колебания с высокой частотой мы воспринимаем как звуки высокого тона (писк комара), а колебания с низкой частотой – как звуки низкого тона (жужжание шмеля).
Скорость звука, громкость  и высота тона
Это интересно

Скорость звука, громкость  и высота тона Космос – очень разреженная среда, поэтому обычный звук в том диапазоне волн, которые мы воспринимаем ухом, там распространяться не может. В космосе для нас будет очень  тихо .

Тем не менее, космос наполнен инфразвуком с очень большой длиной волны (малой частотой колебаний). Ведь продольные волны могут распространяться и в разреженном газе, например, возле звезды, в звездном скоплении или в межзвездных облаках. А источниками служат вспышки сверхновых, столкновения облаков и другие неординарные события.

п.4. Задачи

Задача 1. Находясь недалеко от скалы, охотник услышал эхо через 4,5 секунды после своего выстрела. На каком расстоянии от охотника находится скала? Считать скорость звука равной 340 м/с.

Дано:
(t=4,5 c )
(v=340 м/с)
__________________
(s-?)

За время (t) звуковая волна должна достигнуть скалы, отразиться и вернуться обратно.
Пройденный путь: (2s=vt)
Расстояние до скалы: (s=frac{vt}{2})
Получаем: $$ s=frac{340cdot 4,5}{2}=765 (м) $$ Ответ: 765 м

Задача 2. Два последовательных звука слышатся нами раздельно, если пауза между ними длится не менее 0,1 секунды. Каким должно быть минимальное расстояние до преграды, на котором еще можно услышать эхо? Скорость звука считать равной 340 м/с.

Дано:
(t=0,1 c )
(v=340 м/с)
__________________
(s-?)

За время (t) звуковая волна должна достигнуть преграды, отразиться и вернуться обратно.
Пройденный путь: (2s=vt)
Расстояние до преграды: (s=frac{vt}{2})
Получаем: $$ s=frac{340cdot 0,1}{2}=17 (м) $$ Ответ: 17 м

Задача 3. Контроль качества алюминиевых отливок проводится с помощью генератора ультразвука с частотой 10 МГц. Какая длина волны должна возбуждаться в образце, если скорость звука в качественной отливке равна 6420 м/с.

Дано:
(f=10 Мгц=10^7 Гц)
(c=6420 м/с)
__________________
(lambda-?)

Длина волны равна произведению скорости волны на период колебаний: $$ lambda=cT=frac cf $$ Подставляем: $$ lambda=frac{6420}{10^7}=6,42cdot 10^{-4} (м)=642 (мкм) $$ Ответ: 642 мкм

Задача 4. По озеру проплыл катер. Волна от него до берега дошла за 1,5 мин, расстояние между двумя соседними гребнями волн равно 2 м, а время между двумя последовательными ударами волн о берег – 3 с. Найдите расстояние от берега до катера.

Дано:
(t=1,5 мин=90 с )
(lambda=2 м )
(T=3 с )
__________________
(L-?)

Скорость распространения волны: $$ v=frac{lambda}{T} $$ Расстояние, пройденное волной за время (t): $$ L=vt=frac{lambda t}{T} $$ Подставляем: $$ L=frac{2cdot 90}{3}=60 (м) $$ Ответ: 60 м

Задача 5*. Скорость звука в чугуне впервые измерил французский ученый Жан-Батист. Он провел следующий опыт: у одного конца пустой чугунной трубы ударяли в колокол; наблюдатель на другом конце трубы слышал два звука, первая звуковая волна пробегала по чугуну, а вторая – по воздуху.
Найдите скорость звука в чугуне, если в опыте Жан-Батиста при длине трубы 931 м промежуток времени между двумя звуками составил 2,5 с. Скорость звука в воздухе примите равной 340 м/с. Ответ округлите до целых.

Дано:
(L=931 м)
(triangle t=2,5 c )
(c=340 м/с )
__________________
(v-?)

Пусть первый звук достиг второго конца трубы через время (t). Обе волны, по чугуну и по воздуху, прошли расстояние (L): $$ L=vt=c(t+triangle t) $$ Получаем: begin{gather*} L=c(t+triangle t)Rightarrow t+triangle t=frac LcRightarrow t=frac Lc-triangle t\ v=frac Lt=frac{L}{frac Lc-triangle t} end{gather*} Подставляем: $$ v=frac{931}{frac{931}{340}-2,5}approx 3908 (м/c) $$ Ответ: ≈3908 м/с

Отдельные частицы любого тела — твердого, жидкого или газообразного — взаимодействуют друг с другом. Поэтому если какая-то частица начинает колебаться, то благодаря взаимодействию между частицами это движение с некоторой скоростью начинает распространяться во все стороны.

Определение

Волна — колебания, распространяющиеся в пространстве с течение времени.

В воздухе, твердых телах и внутри жидкостей механические волны возникают благодаря силам упругости. Эти силы осуществляют связь между отдельными частями тела. В образовании волн на поверхности воды играют роль сила тяжести и сила поверхностного натяжения. Такие волны позволяют наиболее наглядно рассмотреть главные особенности волнового движения.

Волна на поверхности воды представляет собой бегущие вперед валы округлой формы. Расстояние между валами, которые также называют гребнями, примерно одинаковы. Волны распространяются в среде с определенной скоростью. Так, если чайка летит вперед, а по ней в любой момент времени оказывается один и тот же гребень, то скорость распространения волны можно принять равной скорости полета чайки. Волны на воде наблюдать удобно потому, что скорость их распространения невелика.

Если бросить в воду легкий предмет, он не будет увлекаться волной, а начнет совершать колебания вверх и вниз, оставаясь примерно на одном месте, как поплавок. Это говорит о том, что частицы воды остаются на месте в то время, как волна распространяется на большие расстояния.

Если же резко толкнуть горизонтальную пружину, можно будет наблюдать, как в одних местах она разрежается, в других — уплотняется. Это тоже волна. Видно, что энергия, полученная от толчка руки, переносится через пружину, хотя ее частицы остаются на месте.

Примеры с поплавком на воде и горизонтальной пружиной позволяют сделать вывод, что волна переносит энергию, но не переносит вещество среды.

Виды механических волн

По характеру колебаний частиц среды относительно положения равновесия различают два вида волн:

Определения

  1. Поперечная волна — волна, при которой частицы среды колеблются перпендикулярно направлению распространения этой волны.
  2. Продольная волна — волна, при которой частицы среды колеблются параллельно направлению распространения этой волны.

Волны, распространяющиеся вдоль резинового шнура, являются поперечными (см. рисунок ниже). Чтобы появилась волна, нужно взять конец шнура, прикрепленного к вертикальной опоре, и дернуть его. При этом волна побежит к вертикальной опоре, а сам шнур будет менять свою форму. Каждая частица шнура станет совершать колебания относительно своего неизмененного положения равновесия сверху вниз (перпендикулярно направлению распространения волны).

Рассмотрим поперечные волны подробнее. Каждый участок шнура обладает массой и упругостью. При деформации шнура в любом его сечении появляются силы упругости. Эти силы стремятся возвратить шнур в исходное положение. Благодаря инертности участок колеблющегося шнура не останавливается в положении равновесия, а проходит его, продолжая двигаться до тех пор, пока силы упругости не остановят этот участок в момент максимального отклонения от положения равновесия.

На рисунках а, б, в, г, д и е изображен процесс распространения поперечной волны. На них показаны положения частиц среды в последовательные моменты времени.

Теперь рассмотрим распространение в среде продольной волны. Такую волну можно наблюдать, собрав установку из цепочки массивных шариков, связанных пружинками. Шары подвешены так, чтобы они могли колебаться только вдоль цепочки (см. рисунок ниже).

Если первый шар привести в колебательное движение, то вдоль цепочки побежит продольная волна, состоящая из чередующихся уплотнений и разрежений шаров. Уплотнения и разрежения (см. рисунок ниже) появляются вследствие горизонтальных колебаний шаров у положения равновесия. Волна также распространяется горизонтально.

Физические характеристики волны

Обратимся к рисункам д, е еще раз. Видно, что когда частица 1 находится в положении равновесия и движется вверх, частица 13 тоже находится в положении равновесия и движется вверх. Спустя четверть период частица 1 будет максимально отклонена от положения равновесия, ровно, как и частица 13. Так как частицы 1 и 13 движутся одинаково, говорят, что колебания этих частиц происходят в одинаковых фазах. Расстояние между этими частицами называют длиной волны.

Внимание! В действительности частица 13 отстает по фазе от частицы 1 на 2π. Но поскольку такая разница фаз не приводит к различию в состояниях колеблющихся частиц, можно считать, что частицы колеблются в одинаковых фазах.

Определение

Длина волнырасстояние между двумя ближайшими точками волны, колеблющимися в одинаковых фазах.

Длина волны обозначается как λ (лямбда). Единица измерения длины волны — метр (м).

Согласно рисунку е, в одинаковых фазах колеблются частицы 1 и 13, 2 и 14, 3 и 15, 4 и 16. Поэтому расстояния между этими частицами равно длине волны. Но частицы 1 и 7, находящиеся на расстоянии λ2, колеблются в противоположных фазах. Посмотрите на рисунок д: когда 1 частица находится в положении равновесия и движется вверх, частица 7 находится в положении равновесия и движется низ. На рисунке е обе частицы максимально отклонены от положения равновесия, но в противоположных направлениях.

Волна распространяется на расстояние λ за время, равное периоду колебаний частиц вещества. Зная расстояние, на которое распространилась волна, и время, в течение которого это распространение происходило, можно найти скорость волны:

v=λT

Но мы знаем, что период равен величине, обратной частоте колебаний:

T=1ν

Тогда скорость распространения волны равна:

v=λν

Скорость волны равна произведению длины волны на частоту колебаний.

При распространении волны мы имеем дело с периодичностью двоякого рода:

  1. Во-первых, каждая частица среды совершает периодические колебания во времени. В случае гармонических колебаний (эти колебания происходят по синусоидальному или косинусоидальному закону) частота постоянна и амплитуда одинакова во всех точках. Колебания отличаются только фазами.
  2. Во-вторых, в данный момент времени форма волны повторяется в пространстве через отрезки длиной λ вдоль линии распространения волны. На рисунке ниже показан профиль волны в определенный момент времени (сплошная линия). С течением времени вся эта картина перемещается со скоростью v направо. Спустя промежуток времени ∆t волна будет иметь вид, изображенный на том же рисунке прерывистой линией.

Пример №1. Определите скорость распространение волны на поверхности воды, если расстояние между ее гребнями равно 1 метру. Учитывайте, что мимо наблюдателя за 5 секунд прошло 10 волн.

Обычно под волной на воде люди понимают гребни — частицы воды, максимально отклоненные от положения равновесия. Расстояние между гребнями равно длине волны. Чтобы найти скорость распространения волны, нужно знать частоту колебания молекул воды. Ее можно вычислить по следующей формуле:

ν=nt

где n — количество «волн», прошедших мимо наблюдателя.

Тогда скорость волны равна:

v=λν=λnt=1·105=2 (мс)

Уравнение бегущей волны

Определение

Бегущая волна — волна, распространяющаяся в пространстве.

Колебания гармонической волны в любой точке происходят по гармоническому закону с одной и той же амплитудой. Найдем уравнение, описывающее колебательный процесс в любой точке пространства при распространении гармонической волны.

Будем рассматривать волну, бегущую по длинному тонкому резиновому шнуру. Ось Ox направим вдоль шнура, а начало отсчета свяжем с левым концом шнура. Смещение любой колеблющейся точки шнура от положения равновесия обозначим буквой s. Для описания волнового процесса необходимо знать значение s в любой точке шнура в любой момент времени. Следовательно, нужно знать вид функции:

s = s(x, t)

Заставим конец шнура (точка х = 0) совершать гармонические колебания с частотой ω. Если начальную фазу колебаний считать равной 0, то колебания этой точки будут происходить по закону:

s = smaxsin ωt

smax — амплитуда колебаний (рис. а).

Колебания распространяются вдоль шнура (оси Ox) со скоростью v и в произвольную точку шнура с координатой х придут спустя время, которое можно определить следующим выражением:

τ=xv

Эта точка также начнет совершать гармонические колебания с частотой ω, но с запаздыванием на время τ (рис. б). Если пренебречь затуханием волны по мере ее распространения, то колебания в точке х будут происходить с той же амплитудой smax, но с другой фазой:

Уравнение бегущей волны

s=smaxsin [ω(tτ)]=smaxsin [ω(txv)]

Это уравнение называется уравнением бегущей волны, распространяющейся в положительном направлении оси Ox.

Пример №2. Уравнение бегущей волны имеет вид s(x, t)=0,1sin(2πtxπ2). Найдите частоту волны, скорость её распространения и длину.

Запишем уравнение бегущей волны:

s=smaxsin [ω(tτ)]=smaxsin [ω(txv)]

Сопоставляя эти два уравнения можно определить, что циклическая частота и скорость распространения соответственно равны:

ω=2π (радс)

v=4 (мс)

Циклическую частоту также можно рассчитать по формуле:

ω=2πν

Тогда частота волны равна:

ν=ω2π=2π2π=1 (Гц)

Тогда длина волны равна:

λ=vν=41=4 (м)

Задание EF18242

На рисунке показан профиль бегущей волны в некоторый момент времени. Разность фаз колебаний точек 1 и 5 равна

Ответ:

а) π/3

б) π/2

в) π

г) 2π


Алгоритм решения

  1. Определить характер движения указанных точек.
  2. По характеру движения точек определить их разность фаз.

Решение

Точки 1 и 5 соответствуют максимальной амплитуде колебаний. В этот момент они меняют направление движения (до этого двигались вверх, теперь меняют направление в противоположную сторону). Поскольку точки 1 и 5 движутся одинаково, можно считать, что они колеблются в одинаковых фазах. Это возможно, если разность фаз кратна 2π.

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22628

Какова скорость звуковых волн в среде, если при частоте 400 Гц длина волны λ = 4 м?


Алгоритм решения

1.Записать исходные данные.

2.Записать формулу, которая связывает скорость волны с ее частотой и длиной.

3.Выполнить решение задачи в общем виде.

4.Подставить известные данные и выполнить вычисления.

Решение

Запишем исходные данные:

 Частота звуковой волны: ν = 400 Гц.

Скорость звука — это отношение длины волны к ее периоду. Но период — это обратная величина частоте. Следовательно, скорость звука — есть произведение длины волны на частоту:

v=λν=4·400=1600 (мс)

Ответ: 1600

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18803

На расстоянии 510 м от наблюдателя рабочие вбивают сваи с помощью копра. Какое время пройдёт от момента, когда наблюдатель увидит удар копра, до момента, когда он услышит звук удара? Скорость звука в воздухе равна 340 м/с.


Алгоритм решения

1.Записать исходные данные.

2.Выполнить решение задачи в общем виде.

3.Подставить известные данные и выполнить вычисления.

Решение

Запишем исходные данные:

 Скорость распространения звука в воздухе: v = 340 м/с.

 Расстояние наблюдателя до источника звука: s = 510 м.

Звук от удара проделает путь, равный одинарному расстоянию от наблюдателя до источника звука. Следовательно, для нахождения времени, через которое наблюдатель услышит звук, нужно разделить этот путь на скорость звука в воздухе:

t=sv=510340=1,5 (с)

Ответ: 1,5

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 3k

Механические колебания и волны

Механические колебания – периодически повторяющееся перемещение материальной точки, при котором она движется по какой-либо траектории поочередно в двух противоположных направлениях относительно положения устойчивого равновесия.

Отличительными признаками колебательного движения являются:

  • повторяемость движения;
  • возвратность движения.

Для существования механических колебаний необходимо:

  • наличие возвращающей силы – силы, стремящейся вернуть тело в положение равновесия (при малых смещениях от положения равновесия);
  • наличие малого трения в системе.

Механические волны – это процесс распространения колебаний в упругой среде.

Содержание

    • Виды волн
  • Гармонические колебания
  • Амплитуда и фаза колебаний
  • Период колебаний
  • Частота колебаний
  • Свободные колебания (математический и пружинный маятники)
  • Вынужденные колебания
  • Резонанс
  • Длина волны
  • Звук
  • Основные формулы по теме «Механические колебания и волны»

Виды волн

  • Поперечная – это волна, в которой колебание частиц среды происходит перпендикулярно направлению распространения волны.

Поперечная волна представляет собой чередование горбов и впадин.
Поперечные волны возникают вследствие сдвига слоев среды относительно друг друга, поэтому они распространяются в твердых телах.

  • Продольная – это волна, в которой колебание частиц среды происходит в направлении распространения волны.

Продольная волна представляет собой чередование областей уплотнения и разряжения.
Продольные волны возникают из-за сжатия и разряжения среды, поэтому они могут возникать в жидких, твердых и газообразных средах.

Важно!
Механические волны не переносят вещество среды. Они переносят энергию, которая складывается из кинетической энергии движения частиц среды и потенциальной энергии ее упругой деформации.

Гармонические колебания

Гармонические колебания – простейшие периодические колебания, при которых координата тела меняется по закону синуса или косинуса:

где ​( x )​ – координата тела – смещение тела от положения равновесия в данный момент времени; ​( A )​ – амплитуда колебаний; ​( omega t+varphi_0 )​ – фаза колебаний; ​( omega )​ – циклическая частота; ​( varphi_0 )​ – начальная фаза.

Если в начальный момент времени тело проходит положение равновесия, то колебания являются синусоидальными.

Если в начальный момент времени смещение тела совпадает с максимальным отклонением от положения равновесия, то колебания являются косинусоидальными.

Скорость гармонических колебаний
Скорость гармонических колебаний есть первая производная координаты по времени:

где ​( v )​ – мгновенное значение скорости, т. е. скорость в данный момент времени.

Амплитуда скорости – максимальное значение скорости колебаний, это величина, стоящая перед знаком синуса или косинуса:

Ускорение гармонических колебаний
Ускорение гармонических колебаний есть первая производная скорости по времени:

где ​( a )​ – мгновенное значение ускорения, т. е. ускорение в данный момент времени.

Амплитуда ускорения – максимальное значение ускорения, это величина, стоящая перед знаком синуса или косинуса:

Если тело совершает гармонические колебания, то сила, действующая на тело, тоже изменяется по гармоническому закону:

где ​( F )​ – мгновенное значение силы, действующей на тело, т. е. сила в данный момент времени.

Амплитуда силы – максимальное значение силы, величина, стоящая перед знаком синуса или косинуса:

Тело, совершающее гармонические колебания, обладает кинетической или потенциальной энергией:

где ​( W_k )​ – мгновенное значение кинетической энергии, т. е. кинетическая энергия в данный момент времени.

Амплитуда кинетической энергии – максимальное значение кинетической энергии, величина, стоящая перед знаком синуса или косинуса:

При гармонических колебаниях каждую четверть периода происходит переход потенциальной энергии в кинетическую и обратно.
В положении равновесия:

  • потенциальная энергия равна нулю;
  • кинетическая энергия максимальна.

При максимальном отклонении от положения равновесия:

  • кинетическая энергия равна нулю;
  • потенциальная энергия максимальна.

Полная механическая энергия гармонических колебаний
При гармонических колебаниях полная механическая энергия равна сумме кинетической и потенциальной энергий в данный момент времени:

Важно!
Следует помнить, что период колебаний кинетической и потенциальной энергий в 2 раза меньше, чем период колебаний координаты, скорости, ускорения и силы. А частота колебаний кинетической и потенциальной энергий в 2 раза больше, чем частота колебаний координаты, скорости, ускорения и силы.

Графики зависимости кинетической, потенциальной и полной энергий всегда лежат выше оси времени.

Если сила сопротивления отсутствует, то полная энергия сохраняется. График зависимости полной энергии от времени есть прямая, параллельная оси времени (в отсутствие сил трения).

Амплитуда и фаза колебаний

Амплитуда колебаний – модуль наибольшего смещения тела от положения равновесия.
Обозначение – ​( A, (X_{max}) )​, единицы измерения – м.

Фаза колебаний – это величина, которая определяет состояние колебательной системы в любой момент времени.
Обозначение – ​( varphi )​, единицы измерения – рад (радиан).

Фаза колебаний – это величина, стоящая под знаком синуса или косинуса. Она показывает, какая часть периода прошла от начала колебаний.
Фаза гармонических колебаний в процессе колебаний изменяется.
( varphi_0 )​ – начальная фаза колебаний.
Начальная фаза колебаний – величина, которая определяет положение тела в начальный момент времени.

Важно!
Путь, пройденный телом за одно полное колебание, равен четырем амплитудам.

Период колебаний

Период колебаний – это время одного полного колебания.
Обозначение – ​( T )​, единицы измерения – с.

Период гармонических колебаний – постоянная величина.

Частота колебаний

Частота колебаний – это число полных колебаний в единицу времени.
Обозначение – ​( nu )​, единицы времени – с-1 или Гц (Герц).

1 Гц – это частота такого колебательного движения, при котором за каждую секунду совершается одно полное колебание:

Период и частота колебаний – взаимно обратные величины:

Циклическая частота – это число колебаний за 2π секунд.
Обозначение – ​( omega )​, единицы измерения – рад/с.

Свободные колебания (математический и пружинный маятники)

Свободные колебания – колебания, которые совершает тело под действием внутренних сил системы за счет начального запаса энергии после того как его вывели из положения устойчивого равновесия.

Условия возникновения свободных колебаний:

  • при выведении тела из положения равновесия должна возникнуть сила, стремящаяся вернуть его в положение равновесия;
  • силы трения в системе должны быть достаточно малы. При наличии сил трения свободные колебания будут затухающими.

При наличии сил трения свободные колебания будут затухающими.
Затухающие колебания – это колебания, амплитуда которых с течением времени уменьшается.

Математический маятник – это материальная точка, подвешенная на невесомой нерастяжимой нити.

Период колебаний математического маятника:

Частота колебаний математического маятника:

Циклическая частота колебаний математического маятника:

Максимальное значение скорости колебаний математического маятника:

Максимальное значение ускорения колебаний математического маятника:

Период свободных колебаний математического маятника, движущегося вверх с ускорением или вниз с замедлением:

Период свободных колебаний математического маятника, движущегося вниз с ускорением или вверх с замедлением:

Период свободных колебаний математического маятника, горизонтально с ускорением или замедлением:

Мгновенное значение потенциальной энергии математического маятника, поднявшегося в процессе колебаний на высоту ​( h )​, определяется по формуле:

где ​( l )​ – длина нити, ​( alpha )​ – угол отклонения от вертикали.

Пружинный маятник – это тело, подвешенное на пружине и совершающее колебания вдоль вертикальной или горизонтальной оси под действием силы упругости пружины.

Период колебаний пружинного маятника:

Частота колебаний пружинного маятника:

Циклическая частота колебаний пружинного маятника:

Максимальное значение скорости колебаний пружинного маятника:

Максимальное значение ускорения колебаний пружинного маятника:

Мгновенную потенциальную энергию пружинного маятника можно найти по формуле:

Амплитуда потенциальной энергии – максимальное значение потенциальной энергии, величина, стоящая перед знаком синуса или косинуса:

Важно!
Если маятник не является ни пружинным, ни математическим (физический маятник), то его циклическую частоту, период и частоту колебаний по формулам, применимым к математическому и пружинному маятнику, рассчитать нельзя. В данном случае эти величины рассчитываются из формулы силы, действующей на маятник, или из формул энергий.

Вынужденные колебания

Вынужденные колебания – это колебания, происходящие под действием внешней периодически изменяющейся силы.

Вынужденные колебания, происходящие под действием гармонически изменяющейся внешней силы, тоже являются гармоническими и незатухающими. Их частота равна частоте внешней силы и называется частотой вынужденных колебаний.

Резонанс

Резонанс – явление резкого возрастания амплитуды колебаний, которое происходит при совпадении частоты вынуждающей силы и собственной частоты колебаний тела.

Условие резонанса:

( v_0 )​ – собственная частота колебаний маятника.

На рисунке изображены резонансные кривые для сред с разным трением. Чем меньше трение, тем выше и острее резонансная кривая.

Явление резонанса учитывается при периодически изменяющихся нагрузках в машинах и различных сооружениях.
Также резонанс используется в акустике, радиотехнике и т. д.

Длина волны

Длина волны – это расстояние, на которое волна распространяется за один период, т. е. это кратчайшее расстояние между двумя точками среды, колеблющимися в одинаковых фазах.
Обозначение – ​( lambda )​, единицы измерения – м.

Расстояние между соседними гребнями или впадинами в поперечной волне и между соседними сгущениями или разряжениями в продольной волне равно длине волны.

Скорость распространения волны – это скорость перемещения горбов и впадин в поперечной волне и сгущений или разряжений в продольной волне.

Звук

Звук – это колебания упругой среды, воспринимаемые органом слуха.

Условия, необходимые для возникновения и ощущения звука:

  • наличие источника звука;
  • наличие упругой среды между источником и приемником звука;
  • наличие приемника звука; • частота колебаний должна лежать в звуковом диапазоне;
  • мощность звука должна быть достаточной для восприятия.

Звуковые волны – это упругие волны, вызывающие у человека ощущение звука, представляющие собой зоны сжатия и разряжения, передающиеся на расстояние с течением времени.

Классификация звуковых волн:

  • инфразвук (​( nu )​ < 16 Гц);
  • звуковой диапазон (16 Гц < ( nu ) < 20 000 Гц);
  • ультразвук (( nu ) > 20 000 Гц).

Скорость звука – это скорость распространения фазы колебания, т. е. области сжатия и разряжения среды.

Скорость звука зависит

  • от упругих свойств среды:

в воздухе – 331 м/с, в воде – 1400 м/с, в металле – 5000 м/с;

  • от температуры среды:

в воздухе при температуре 0°С – 331 м/с,
в воздухе при температуре +15°С – 340 м/с.

Характеристики звуковой волны

  • Громкость – это величина, характеризующая слуховые ощущения человека, зависящая от амплитуды колебаний в звуковой волне. Единицы измерения – дБ (децибел).
  • Высота тона – это величина, характеризующая слуховые ощущения человека, зависящая от частоты колебаний в звуковой волне. Чем больше частота, тем выше звук. Чем меньше частота, тем ниже звук.
  • Тембр – это окраска звука.

Музыкальный звук – это звук, издаваемый гармонически колеблющимся телом. Каждому музыкальному тону соответствует определенная длина и частота звуковой волны.
Шум – хаотическая смесь тонов.

Основные формулы по теме «Механические колебания и волны»

Механические колебания и волны

3 (59.12%) 137 votes

Задачи на Механические волны с решениями

Формулы, используемые на уроках «Задачи на Механические волны».

Название величины

Обозначение

Единица измерения

Формула

Длина волны

λ

м

λ = vT ;

λ = v / v

Скорость волны

v

м/с

v = λ / T ;

v = λv

Период колебаний

T

с

T = λ / v ;

T = t / N

Частота колебаний

v

Гц

v = v / λ ;

v = N / t

Число колебаний

N

N = t / T ;

N = vt


ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ


Задача № 1.
 Лодка качается на волнах, распространяющихся со скоростью 4 м/с, и за 10 с совершает 20 колебаний. Каково расстояние между соседними гребнями волн?


Задача № 2.
 Голосовые связки певца, поющего тенором (высоким мужским голосом), колеблются с частотой от 130 до 520 Гц. Определите максимальную и минимальную длину излучаемой звуковой волны в воздухе. Скорость звука в воздухе 330 м/с.


Задача № 3.
 Скорость звука в эбоните 2400 м/с, а в кирпиче — 3600 м/с. В каком веществе звуковому сигналу требуется большее время для распространения? Во сколько раз?


Задача № 4.
 Расстояние между ближайшими гребнями волн в море 6 м. Лодка качается на волнах, распространяющихся со скоростью 2 м/с. Какова частота ударов волн о корпус лодки?


Задача № 5.
 Наблюдатель, находящийся на расстоянии 2 км 150 м от источника звука, слышит звук, пришедший по воздуху, на 4,8 с позднее, чем звук от того же источника, пришедший по воде. Определите скорость звука в воде, если скорость звука в воздухе равна 345 м/с.


Задача № 6.
 Охотник выстрелил, находясь на расстоянии 170 м от лесного массива. Через сколько времени после выстрела охотник услышит эхо?


Задача № 7.
 Мимо неподвижного наблюдателя, стоящего на берегу озера, за 6 с прошло 4 гребня волны. Расстояние между первым и третьим гребнями равно 12 м. Определить период колебания частиц волны, скорость распространения и длину волны.


Задача № 8.
 Скорость звука в воде 1450 м/с. На каком расстоянии находятся ближайшие точки, совершающие колебания в противоположных фазах, если частота колебаний равна 725 Гц?


Задача № 9.
 Длина волны в воздухе 17 см (при скорости 340 м/с). Найти скорость распространения звука в теле, в котором при той же частоте колебаний длина волны равна 1,02 м.


Задача № 10.
  ОГЭ
 Расстояние между гребнями волн в море λ = 5 м. При встречном движении катера волна за t = 1 с ударяет о корпус катера N1 = 4 раза, а при попутном — N2 = 2 раза. Найти скорость катера и волны.


Задача № 11.
   ОГЭ
 Звуковые колебания, имеющие частоту v = 500 Гц и амплитуду А = 0,25 мм, распространяются в воздухе. Длина волны λ = 70 см. Найти скорость распространения колебаний v и максимальную скорость частиц среды.


Краткая теория для решения Задачи на Механические волны.


Это конспект по теме «ЗАДАЧИ на Механические волны». Выберите дальнейшие действия:

  • Перейти к теме: ЗАДАЧИ на 
  • Посмотреть конспект по теме ДИНАМИКА: вся теория для ОГЭ (шпаргалка)
  • Вернуться к списку конспектов по Физике.
  • Проверить свои знания по Физике.

Добавить комментарий