Как найти скорость с помощью ускорения

Скорость, время и ускорение

Расчеты

Три этих физических величины взаимосвязаны между собой процессом движения. Если известны две из этих величин, можно найти третью.
Скорость тела при условии равноускоренного прямолинейного движения определяем по формуле:

V = V0 + а*t

V0 — начальная скорость (при t = 0);
а — ускорение;
t — время.

Итак, чтобы найти скорость, к начальной скорости прибавляем произведение ускорения на время.
Если V0 = 0, то V = а*t.

Чтобы найти время, нужно вначале найти разность между скоростью в данный момент и начальной скоростью, затем полученный результат разделить на ускорение.

t = (V — V0) / а

Ускорение показывает изменение скорости движущегося тела, рассчитывается по двум скоростям и времени. Чтобы вычислить ускорение, следует найти разницу между скоростью в данный момент и начальной скоростью, затем все это разделить на время.
При ускорении:

а = (V — V0) / t

При торможении:

а = (V0 — V) / t

Ускорение — величина векторная, которая задается не только числом, но и направлением, измеряется в метрах в секунду (м/с2).

Чтобы рассчитать среднее ускорение, находим разницу между начальной и конечной скоростями Δv, полученный результат делим на разницу между временем Δt.(начальным и конечным) :

а = Δv / Δt

Быстро и правильно рассчитать величину скорости, ускорения или найти время вам поможет онлайн калькулятор.

Расчет скорости, времени и ускорения

Скорость, ускорение и время являются основными величинами для вывода уравнения движения. В общем, производная скорости по времени дает ускорение.

В кинематике скорость можно найти, используя ускорение и время. С скорость и ускорение связаны с величиной и направлением, для определения скорости мы используем как алгебраический метод, так и интегральное исчисление. В этом посте обсуждается, как найти скорость с учетом ускорения и времени, используя оба метода.

Представим, что тело движется с ускорением «а», преодолевая определенное расстояние в момент «t».

Алгебраическим методом:

Из кинематического определения ускорение – скорость изменения скорости движущегося тела.

а=в/т

Здесь мы считаем; первоначально тело обладает минимальной скоростью; следовательно, начальная скорость можно считать примерно равной нулю.

Переставляя члены, мы получаем скорость тела как;

v = а * т

Методом интегрального исчисления:

Производная по времени от скорость дает ускорение тела. Это определяется следующим уравнением.

d/dt[v(t)]= а(t)

Преобразуя приведенное выше уравнение

dv (t) = a (t) dt

Интегрируя приведенное выше уравнение по времени t

∫d/dt[v(t)]=∫a(t) dt+C

Где; C – интегральная постоянная.

Следовательно; v = при + C

Вышеприведенное уравнение дает скорость; таким образом, умножение ускорения на время дает скорость.

Кредиты изображения: Изображение предоставлено Долоресбарриослуа от Pixabay 

Как найти скорость по графику ускорения и времени?

Построен график ускорения в зависимости от времени, что позволяет определить различные физические величины, такие как рывки и удары. скорость. Область, покрытая графиком «ускорение – время», показывает скорость.

Например, машина движется с начальной скоростью 16 м / с. Как со временем, машина начинает разгоняться. В ускорение автомобиля постоянна во времени. Через некоторое время машина внезапно останавливается, что показано на приведенном ниже графике.

как найти скорость с ускорением и временем

График, чтобы показать, как найти скорость с ускорением и графиком времени

Пунктирная линия используется как контрольная линия, когда тело останавливается.

Площадь, занимаемая в график ускорение – время представляет собой прямоугольник. Площадь прямоугольника определяется как

А = l × b

Из приведенного выше графика длина прямоугольника – это ускорение, а ширина – время; следовательно, уравнение

А = а * т

Но площадь графика at – это скорость, тогда

v = а * т

v = 7 × 8

v = 56 м / с.

Следовательно, по определению На графике времени разгона площадь – это не что иное, как скорость.

Как найти начальную скорость с ускорением и временем?

Когда тело начинает двигаться из одной точки в другую, вначале оно обладает некоторой скоростью. Тело не нуждается постоянная скорость пока не достигнет конечного пункта назначения. Скорость тела изменяется со временем по мере его прохождения, и, следовательно, тело приобретает ускорение.

Из приведенного выше объяснения ясно, что движущееся тело может иметь разные скорости. Тела скорость на начальном этапе может отличаться от финального. Давайте обсудим нахождение скорости с ускорением и временем в начальной точке.

Рассмотрим сначала автомобиль, движущийся со скоростью vi, а его скорость изменится через некоторое время t. Теперь тело ускоряется с ускорением «а», и, наконец, когда оно достигает конечной точки, оно имеет скорость vf.

Начальную скорость можно рассчитать тремя способами.

Используя алгебраический метод:

Ускорение из-за изменения скорости определяется выражением

а = (vf-vi)/т

а * т = vf – vi

О перестановке

vi = Vf – в

Вышеприведенное уравнение дает начальную скорость движущегося тела.

По расчетам:

Исходя из определения ускорения, уравнение имеет вид

а=дв/дт

Изменение условий;

адт = дв

Интегрируя приведенное выше уравнение, выбирая пределы в качестве начальной скорости vi в момент времени t = 0 и конечной скорости vf в момент t.

а (t – 0) = (vf – vi)

при = vf – vi

Преобразуя приведенное выше уравнение, мы получаем начальную скорость.

vi = Vf – в

Графическим методом:

Построен график зависимости скорости от времени, наклон которого дает ускорение – затем, найдя наклон, можно вычислить начальную скорость.

vt график показать, как найти скорость с ускорением и время

Исходя из приведенного выше графика, мы можем сказать это.

  • В единый интервал времени скорость тела изменяется.
  • OD – время, затрачиваемое телом на путешествие, а BD – конечная скорость тела.
  • Перпендикулярные линии от BD к A проводятся параллельно OD. Таким же образом проводится линия BE параллельно OD.

На приведенном выше графике показано, что

Начальная скорость тела vi = ОА

Конечная скорость тела vf = БД

На графике BD = BC + DC

Следовательно, vf = ВС + ПОС

Но DC = OA = vi

vf = до нашей эры + ви

На графике наклон = ускорение a

а=ВС/АС

Но AC = t (из графика)

а=БК/т

при = BC

Подставляя значение BC

vf = при + vi

vi = Vf – в

Как найти изменение скорости в зависимости от ускорения и времени

В общем, изменение скорости со временем дает ускорение.

Пусть тело движется с ускорением ‘a’ со временем ‘t’, изначально скорость объекта равна vi, а в конечной точке имеет скорость vf. Тогда изменение скорости определяется по уравнению:

∆a=(Δv/Δt)

Где ∆v – изменение скорости, а ∆t – изменение во времени.

∆v = ∆a∆t

Но изменение скорости определяется разница между начальной и конечной скоростью. Это дается уравнением ниже.

∆v = vf -vi

Изменение в скорость можно рассчитать с помощью графика “ускорение – время”. Площадь под графиком at показывает изменение скорости.

Давайте ясно поймем это, рассмотрев пример, представленный графиком, приведенным ниже.

Площадь на графике времени ускорения представляет собой треугольник. Следовательно, вычисляя изменение скорости дается путем вычисления площади треугольника. Формула для определения площади треугольника:

А=(1/2)чб

Здесь h – высота треугольника, ускорение считается высотой, а b – основание треугольника, которое определяется осью времени. Таким образом, изменение скорости равно

∆v=(1/2)*6*9

∆v = 29 м / с.

По изменению скорости мы можем узнать начальную и конечную скорость тела.

Решены задачи о том, как найти скорость с ускорением и временем.

Задача 1) Лодка движется с начальной скоростью 11 м / с. Лодка развивает ускорение 3 м / с.2 каждые 10 секунд. Затем рассчитайте изменение скорости и конечную скорость лодки.

Решение:

Данные приведены для расчета:

Начальная скорость лодки vi = 11 м / с.

Изменение ускорения, достигаемого лодкой a = 3 м / с2.

Изменение по времени t = 10 сек.

∆v = ∆a∆t

∆v = 3 × 10

∆v = 30 м / с

Чтобы найти окончательную скорость, уравнение

∆v = vf -vi

vf = ∆v + vi

vf = 30 + 11

vf = 41 м / с.

Задача 2) График ускорение – время приведен ниже. Найдите изменение скорости и вычислите начальную скорость, если конечная скорость равна 54 м / с.

График ускорения-времени

Решение:

Приведенные данные:

Конечная скорость vf = 54 м / с. На графике ускорение-время покрытая область представляет собой трапецию. Таким образом, площадь трапеции определяется выражением

А=[(а+б)/2)]*ч

Где a и b – прилегающее основание трапеции, h – высота. Из графика; a = 9 единиц, b = 5 единиц, h = 4 единицы.

А=[(9+5)/2]*4

А = 28 шт.

Изменение скорости равно площади трапеции.

∆v = 28 м / с.

Чтобы найти начальную скорость

∆v = vf -vi

vi = Vf – ∆v

vi = 54 – 28

vi = 26 м / с.

Задача 3) дается график ускорение – время для определения изменения скорости.

Решение:

Приведенный выше график можно разделить на три части, представленные пунктирной линией, как показано на рисунке ниже.

На приведенном выше графике можно понять следующие термины.

OAD и BCE – треугольник; площадь треугольника задается формулой

а=(1/2)чб

ABCD – прямоугольник; площадь прямоугольника определяется выражением

А = l × b

Чтобы найти изменение скорости, необходимо вычислить сумму площадей всех геометрических структур.

∆v = A=(1/2)hb+lb+(1/2)hb

Изменение скорости ∆v = 180 м / с.

Задача 4) Найдите начальную скорость мяча, который ускоряется со скоростью 6 м / с.2 со временем 8 сек. Конечная скорость мяча составляет 100 м / с.

Решение:

Приведены данные: ускорение мяча a = 6 м / с2.

Время t = 8 сек.

Конечная скорость vf = 100 м / с.

Для нахождения начальной скорости тела задается уравнение

vi = Vf – в

vi = 100 – (6 × 8)

vi = 100 – 48

vi = 52 м / с.

Задача 5) Рассчитайте изменение скорости движущегося объекта, имеющего начальную скорость 34 м / с. Ускорение объекта 12 м / с.2, а изменение по времени – 7 сек.

Решение:

Данный:

Начальная скорость объекта vi = 34 м / с.

Ускорение объекта a = 12 м / с2.

Изменение по времени t = 7 сек.

Конечная скорость объекта определяется выражением;

vf = Vi + в

vf = 34 + (12 * 7)

vf = 34 + 84

vf = 118 м / с.

Изменение скорости определяется выражением;

∆v = vf – vi

∆v = 118 – 34

∆v = 84 м / с.

Задача 6) Диск движется с начальной скоростью 25 м / с. Диск меняет свою скорость каждые 10 секунд. Изменение ускорения 5 м / с.2. Рассчитайте конечную скорость диска.

Решение:

Приведенные данные:

Начальная скорость диска vi = 25 м / с.

Изменение ускорения ∆a = 5 м / с2.

Изменение времени ∆t = 10 сек.

Изменение скорости равно

∆v = ∆a∆t

∆v = 5 × 10

∆v = 50 м / с.

Конечная скорость диска может быть рассчитана по формуле, приведенной ниже.

∆v = vf – vi

50 = вf -25

vf = 50 + 25

vf = 75 м / с.

Содержание материала

  1. Закон сложения скоростей
  2. Видео
  3. Угловая скорость
  4. Перемещение и путь
  5. Скорость
  6. Как найти начальную скорость с ускорением и временем?
  7. Скорость выраженная через ускорение и время
  8. Равноускоренное движение
  9. Равномерное движение точки по окружности
  10. Центростремительное ускорение

Закон сложения скоростей

Как уже упоминалось в предыдущем уроке, скорость тела зависит от выбранной наблюдателем системы отсчета. Разберем следующий пример: в безветренную погоду пчела летит со скоростью  
Рисунок 1 – Первоначальная скорость пчелы и ветр  относительно земли. Это будет собственная скорость пчелы. Затем погода меняется и начинает дуть ветер, перпендикулярный скорости пчелы. Скорость ветра обозначена 
Рисунок 1 – Первоначальная скорость пчелы и ветр(см. рисунок 1).


Рисунок 1 – Первоначальная скорость пчелы и ветра

Естественно, что ветер начнет сдувать пчелу с первоначального курса. Собственная скорость не изменяется, так как это характеристика самой пчелы, но ее скорость относительно земли (по модулю и направлению) изменится и станет (см. рисунок 2):


Рисунок 2 – Изменившаяся скорость пчелы

Систему отсчета, связанную с землей, можно считать неподвижной. Если же рассматривать движение пчелы относительно воздуха, можно говорить о движущейся со скоростью v2 системе отсчета.


Рисунок 3 – Векторы скорости и перемещений при д


Рисунок 3 – Векторы скорости и перемещений при движении пчелы при ветре

Видео

Угловая скорость

Проявляется этот вид при вращении тела вокруг оси. Траектория представляет собой круговое движение. Основным параметром, учитывающимся при его нахождении, является угол поворота (f). Все элементарные угловые движения являются векторами. Обычный поворот равен углу вращения тела df за небольшой отрезок времени dt в противоположную сторону от хода часовой стрелки.

В математике формулу для нахождения углового параметра записывают как w = df/dt. Угловая скорость — аксиальная величина, располагающаяся вдоль мгновенной оси и совпадающая с поступательным вращением правого винта. Равномерное вращение, то есть движение, при котором происходит поворот на один и тот же угол, называют равномерным. Модуль угловой скорости определяют по формуле: w = f/t, где f — угол поворота, t — время, в течение которого происходило вращение. Учитывая, что Δf = 2p, формулу можно переписать до вида: w = 2p/T, то есть с использованием периода.

Существует связь между угловой скоростью и числом оборотов: w = 2*p*v. Это понятие используется для решения заданий при описании неравномерного вращения. Есть также выражение, связывающее линейную скорость с угловой: v = [w*R], где R — компонента, проведённая перпендикулярно к радиус-вектору. В качестве единицы измерения параметра используется радиан, делённый на секунду (рад/с).

Например, необходимо определить угловую скорость вариатора в тот момент, когда подвешенная масса пройдёт расстояние, равное 10 метрам. Радиус плеча составляет 40 сантиметров. В начальный момент подвес находится в состоянии покоя, а затем начинает опускаться с ускорением A = 0,04 м/с2.

Учитывая, что линейная скорость вариатора совпадает с движением груза по прямой, можно записать: V = (2*a*S)½. Должен получится ответ: V = (4*0,04*10)½ = 1,26 м/с. Угловую же скорость находят по формуле: w = v/R, так как R = 40 см = 0,4 м, то W = 1,26/0,4 = 3,15 рад/с.

Перемещение и путь

Тело переместилось из точки А в точку Б. При этом перемещение тела – отрезок, соединяющий данные точки напрямую – векторная величина. Путь, пройденный телом – длина его траектории. Очевидно, перемещение и путь не стоит путать. Модуль вектора перемещения и длина пути совпадают лишь в случае прямолинейного движения.

 

 

В системе СИ перемещение и длина пути измеряются в метрах.

Перемещение равно разнице радиус-векторов в начальный и конечный моменты времени. Другими словами, это приращение радиус вектора.

Скорость

Двигаться со скоростью черепахи — значит медленно, а со скоростью света — значит очень быстро. Сейчас узнаем, как пишется скорость в математике и как ее найти по формуле.

Скорость определяет путь, который преодолеет объект за единицу времени. Скорость обозначается латинской буквой v.

Проще говоря, скоростью называют расстояние, пройденное телом за единицу времени.

Впервые формулу скорости проходят на математике в 5 классе. Сейчас мы ее сформулируем и покажем, как ее использовать.

Формула скорости

Чтобы найти скорость, нужно разделить путь на время:

v = s : t

Показатели скорости чаще всего выражаются в м/сек или км/час.

Скорость сближения — это расстояние, на которое сблизились два объекта за единицу времени. Чтобы найти скорость сближения двух объектов, которые движутся навстречу друг другу, надо сложить скорости этих объектов.

Скорость удаления — расстояние, на которое отдалились друг от друга два объекта за единицу времени.

Чтобы найти скорость удаления объектов, которые движутся в противоположных направлениях, нужно сложить скорости этих объектов.

Чтобы найти скорость удаления при движении с отставанием или скорость сближения при движении вдогонку, нужно из большей скорости вычесть меньшую.

Онлайн-курсы по математике для детей — отличный способ разобраться в сложных темах под руководством внимательного преподавателя.

Как найти начальную скорость с ускорением и временем?

Когда тело начинает перемещаться из одной точки в другую, сначала оно обладает некоторой скоростью. Тело не нуждается в постоянной скорости, пока оно не достигнет своего конечного пункта назначения. Скорость тела изменяется со временем, когда оно движется, и, следовательно, тело приобретает ускорение.

Из приведенного выше объяснения ясно, что движущееся тело может иметь разные скорости. Тела скорость на начальном этапе может отличаться от финального. Давайте обсудим нахождение скорости с ускорением и временем в начальной точке.

Рассмотрим сначала автомобиль, движущийся со скоростью vi, а его скорость изменится через некоторое время t. Теперь тело ускоряется с ускорением «а», и, наконец, когда оно достигает конечной точки, оно имеет скорость vf.

Начальную скорость можно рассчитать тремя способами.

Используя алгебраический метод:

Ускорение из-за изменения скорости определяется выражением

а * т = vf - vi

а * т = vf — vi

О перестановке

vi = Vf — в

Вышеприведенное уравнение дает начальную скорость движущегося тела.

По расчетам:

Исходя из определения ускорения, уравнение имеет вид

Изменение условий;

Изменение условий;

адт = дв

Интегрируя приведенное выше уравнение, выбирая пределы в качестве начальной скорости vi в момент времени t = 0 и конечной скорости vf в момент t.

а (t - 0) = (vf - vi)

а (t — 0) = (vf — vi)

при = vf — vi

Преобразуя приведенное выше уравнение, мы получаем начальную скорость.

vi = Vf — в

Графическим методом:

Построен график зависимости скорости от времени, наклон которого дает ускорение — затем, найдя наклон, можно вычислить начальную скорость.

график vt, чтобы показать, как найти скорость с ус

график vt, чтобы показать, как найти скорость с ускорением и временем

Исходя из приведенного выше графика, мы можем сказать это.

  • В единый интервал времени скорость тела изменяется.
  • OD — время, затрачиваемое телом на путешествие, а BD — конечная скорость тела.
  • Перпендикулярные линии от BD к A проводятся параллельно OD. Таким же образом проводится линия BE параллельно OD.

На приведенном выше графике показано, что

Начальная скорость тела vi = ОА

Конечная скорость тела vf = БД

На графике BD = BC + DC

Следовательно, vf = ВС + ПОС

Но DC = OA = vi

vf = до нашей эры + ви

На графике наклон = ускорение a

Но AC = t (из графика)

Но AC = t (из графика)

при = BC

при = BC

Подставляя значение BC

vf = при + vi

vi = Vf — в

Скорость выраженная через ускорение и время

Поскольку движение начинается из состояния покоя, то изменение скорости равно величине скорости, достигнутой к моменту времени t, и скорость вычисляется по следующей формуле:

[u = at]

График ускорения - Равномерно ускоренное движение График ускорения — Равномерно ускоренное движение без начальной скорости

Равноускоренное движение

Если в течение времени положение тела изменяется относительно предметов, находящихся в покое, то считается, что оно движется. При этом в качестве основного параметра, описывающего перемещение, используется скорость. Движение тела или точки можно представить в виде линии, повторяющей путь прохождения. Называется она траекторией. Если линия прямая, то движение считается прямолинейным.

Неравномерное движение характеризуется перемещением по различной траектории с непостоянной величиной скорости. При этом изменение положения может быть равноускоренным, то есть параметр на одинаковых промежутках увеличивается или уменьшается на одно и то же значение. В качестве примера можно привести падение камня.

В произвольно взятой точке скорость перемещения равна ускорению свободного падения.

Таким образом, если векторы V и ускорения A лежат вдоль прямой, то в проекциях такое направление можно рассматривать как алгебраические величины. При равноускоренном движении по прямой траектории скорость точки вычисляется по формуле: V = V0 + A*t. Где:

  • V0 — начальная скорость;
  • A — ускорение (имеет постоянное значение);
  • t — время движения.

Это основная формула в физике. На графике она изображается как прямая линия v (t). По оси ординат откладывается время, а абсцисс — скорость. Построив график, по наклону прямой можно определить ускорение точки A. Для этого используется формула нахождения сторон треугольника: A = (v-v0) / t.

Если на оси времени выделить промежуток Δt, то можно предположить, что движение будет равномерным и описываться некоторым параметром, равным мгновенному значению в середине отрезка. Эта моментальная величина является векторной. Она численно равна пределу, который пытается достигнуть скорость за промежуток времени, стремящийся к нулю. В физике это состояние описывается формулой мгновенной скорости: V = lim (Δ s/ Δ t) = r-1(t). То есть, с математической точки зрения, это первая производная.

Исходя из этого можно утверждать, что движение Δs = v*Δt. Так как произведение ускорения на время определяется разницей V -V0, то верной будет запись: S = V0*t + A*t2/2 = (V2 — V20) /2*A.

Из этой формулы можно вывести выражение для нахождения конечной скорости материальной точки: V = (V20 — 2* A * s)½. Если же в начальный момент V0 = 0, то формулу можно упростить до вида: V = (2* A * s)½.

Равномерное движение точки по окружности

Центростремительное ускорение

Представим себе равномерное движение по окружности: во время этого типа движения скорость не меняется по модулю, однако меняется по направлению (см. рисунок 12).


Рисунок 12 – Изменение направления скорости при равномерном движении по окружности

За изменение направления скорости отвечает центростремительное ускорение (  Оно, так же как и скорость, постоянно по модулю, но меняется по направлению – в любой точке окружности оно направлено к ее центру. Центростремительное ускорение можно найти по формуле:

где R – радиус окружности, по которой циклически д

где R – радиус окружности, по которой циклически движется тело.

Теги

Ускорение. Равноускоренное движение. Зависимость скорости от времени при равноускоренном движении

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На данном уроке мы с вами рассмотрим важную характеристику неравномерного движения – ускорение. Кроме того, мы рассмотрим неравномерное движение с постоянным ускорением. Такое движение еще называется равноускоренным или равнозамедленным. Наконец, мы поговорим о том, как графически изображать зависимости скорости тела от времени при равноускоренном движении.

Как определить скорость с помощью ускорения и расстояния: разные подходы, проблемы, примеры

В кинематической теории расстояние, скорость, ускорение, смещение и время являются фундаментальными понятиями для вывода уравнения движения в 2-мерном пространстве.

Как правило, расстояние, пройденное телом за единицу времени, дает скорость. Если скорость изменяется со временем во время движения, тело обладает термином ускорение. В этом посте, как скорость, ускорениеи расстояние связаны подробно, и мы узнаем, как найти скорость с ускорением и расстоянием.

Как найти скорость с учетом ускорения и расстояния?

Предположим, тело начинает двигаться с начальной скоростью, равной нулю. Тело движется с ускорением «а» и преодолевает расстояние «d» метров; тогда нам нужно найти скорость при котором тело движется. Теперь возникает вопрос, как найти скорость с ускорением и расстоянием?

Скорость показывает, насколько быстро объект может перемещаться на расстояние за определенный период времени.

Но из рассмотрения уравнения

Подставляя значение t и переставляя, получаем

Полученное выше уравнение применимо, если тело начинает двигаться из нулевая скорость а потом разгоняется. Тело движется с постоянным ускорением, преодолев расстояние d.

Используя общее выражение, мы можем найти скорость тела с помощью ускорение и расстояние с учетом или без учета времени.

Как найти скорость из ускорения и расстояния без учета времени?

Скорость тела всегда измеряется с помощью время принято телом пройти определенное расстояние. Если к тому времени не указано время, как найти скорость с ускорением и расстоянием?

Мы следуем двум методам, чтобы найти скорость с заданными ускорением и расстоянием. Обычно мы рассматриваем время в самом первом уравнении; исключив фактор времени, мы получим уравнение скорости без время.

Алгебраическим методом:

Чтобы вычислить скорость без учета времени, рассмотрим уравнение скорости с ускорением и временем,

Отношение пройденного расстояния и времени дает скорость тела. Он задается уравнением,

Где x – пройденное расстояние, а t – время, необходимое для преодоления расстояния d,

Подставляя значение v в первое уравнение; мы получили,

Из кинематической теории, если скорость тела изменяется со временем, то мы берем среднее значение скорости;

Но мы можем сказать, что , подставив в приведенное выше уравнение,

Решая и переставляя термины, мы получаем,

Приведенное выше уравнение отвечает как найти скорость с ускорением и расстояние.

Методом интегрального исчисления:

Ускорение можно записать как,

Скорость – это не что иное, как производная по времени от расстояния, пройденного телом; это дается,

Подставляя значение dt в уравнение ускорения, получаем

a dx = v dv Так как мы считали, что исходное тело обладает нулевая скорость, мы интегрируем приведенное выше уравнение с предельным нулем до максимального значения скорости и расстояния.

Как найти скорость по графику ускорения и расстояния?

График зависимости ускорения от расстояния дает уравнение движение в течение определенного периода времени.

Площадь под ускорение – расстояние график дает квадрат скорости движущегося тела. Согласно определению ускорения, это производная второго порядка от расстояния, так что скорость будет в два раза больше площади.

Например, график ускорения-смещения для тела, движущегося с постоянным ускорением, по истечении определенного времени тело замедляется и преодолевает определенное расстояние, приведенный ниже, скорость тела может быть рассчитана с помощью графика.

Область, покрываемая рекламным графом, представляет собой треугольник; следовательно, площадь треугольника определяется выражением

Скорость можно записать как

Потому что 2А = 35 единиц.

Как найти начальную скорость по ускорению и расстоянию?

Начальная скорость – скорость, с которой тело начинает движение.

Чтобы вычислить начальную скорость, мы должны рассмотреть основное уравнение скорости; это дается;

Таким образом, расстояние задается как; х = v * т

Здесь скорость не постоянна; следовательно, мы можем взять среднее значение скорости как

Итак, уравнение будет

Но уравнение движения vf = Vi + at, подставив значение vf, мы получаем

После преобразования приведенного выше уравнения,

Приведенное выше уравнение дает начальную скорость с ускорением и расстоянием.

Как найти конечную скорость по ускорению и расстоянию?

Конечная скорость – это скорость, достигаемая телом до того, как движение остановится из-за какого-либо препятствия.

Когда движущееся тело начинает ускоряться, это означает, что скорость изменилась. Это изменение скорости определяется начальной и конечной скоростью тела. Предположим, мы предоставили только начальную скорость, тогда как найти скорость с ускорением и расстоянием в конечной точке движения, будет дан ответ ниже.

Чтобы вывести уравнение для конечная скорость, рассмотрим движение автомобиля. Автомобиль движется с начальной скоростью vi, и через некоторое время t автомобиль начинает разгоняться. Автомобиль достигает ускорения «а» и преодолевает расстояние x.

Вывод можно сделать тремя способами

Остановимся на детальном изучении трех указанных выше методов.

Алгебраическим методом:

Путь, пройденный телом, определяется выражением

Скорость не постоянна; она изменяется с периодом времени, поэтому выберите усреднение скоростей.

Из кинематического уравнения движения имеем

Давайте изменим приведенное выше уравнение, чтобы получить время как

Подставляя значение в первое уравнение,

Вышеприведенное уравнение аналогично (a + b) (ab) = a 2 -b 2 , то искомое решение будет

Полученное выше уравнение является требуемым уравнением конечной скорости. Мы можем еще больше упростить его, взяв квадратный корень с обеих сторон; мы получили

Расчетным методом:

Мы знаем, что ускорение определяется первой производной скорости по времени t.

Перемножая оба уравнения крест-накрест, а затем интегрируя, выбирая предел от x = 0 до x = x и v = vi к v = vf мы получили;

Графическим методом:

График зависимости скорости от время может помогает найти конечную скорость тела.

Обычно расстояние, пройденное телом, можно определить, найдя область, покрытую телом. Используя эти доступные данные, мы можем рассчитать пройденное расстояние, чтобы можно было вычислить уравнение конечной скорости.

Из приведенного выше графика площадь трапеции OABD дает расстояние, пройденное телом,

OA – начальная скорость vi, BD – конечная скорость vf, OD – время, поэтому уравнение можно изменить как

Но мы знаем, что

Графическим методом получено требуемое уравнение конечной скорости.

Окончательное уравнение скорости на основе ускорения и расстояния может быть преобразовано для вычисления начальной скорости тела; это показано ниже:

Как найти среднюю скорость с учетом ускорения и расстояния?

Если скорость продолжает меняться, то нам нужно найти среднюю скорость для описания движения.

Чтобы установить уравнение для средней скорости, мы должны знать начальную и конечную скорости. Но мы можем найти среднюю скорость, даже если начальная и конечная скорости неизвестны, зная ускорение и расстояние. Сообщите нам, как найти среднюю скорость.

Предположим, что автомобиль движется с начальной скоростью vi и поскольку он начинает ускоряться после прохождения некоторого расстояния xi и проходит расстояние xf при которой он имеет конечную скорость vf.

Расстояние, которое преодолевает тело – от xi до xf, т.е. на расстоянии xi, скорость тела vi, а в точке xf, скорость тела vf, тогда.

Общее выражение средней скорости дается как,

Уравнение движения для конечной скорости vf = Vi+ в

Подставляя в общее уравнение, имеем

Рассматривая исходное выражение для скорости, получаем

Но

Подставляя указанное выше выражение, получаем

Квадрат с обеих сторон, получаем

Вышеприведенное уравнение дает среднюю скорость движущегося тела.

Решенные задачи о том, как найти скорость через ускорение и расстояние

Приведено как найти скорость с ускорением и расстояние, если автомобиль движется с постоянным ускорением 12 м / с. 2 и преодолевает расстояние 87 м и, следовательно, определяет время, за которое автомобиль преодолевает такое же расстояние.

Решение:

Приведенные данные – Расстояние, пройденное транспортным средством x = 87 м.

Ускорение автомобиля а = 12 м / с 2 .

Чтобы найти скорость автомобиля,

Из связи между скоростью, ускорением, расстоянием и временем мы получаем уравнение скорости.

В гонке гонщик едет на байке с начальной скоростью 9 м / с. По истечении времени t скорость меняется, а ускорение составляет 3 м / с. 2 . Гонщик преодолевает дистанцию ​​10 м. рассчитать конечную скорость велосипеда для достижения заданного расстояния и, следовательно, найти среднюю скорость велосипеда.

Решение:

Уравнение для определения конечной скорости велосипеда имеет вид:

vf 2 = (9) 2 – 2 (3 * 10)

Средняя скорость определяется выражением

Спортсмен бежит с начальной скоростью 10 м / с. Он преодолевает 10 м с постоянным ускорением 4 м / с. 2 . Найдите начальную скорость.

Решение:

Данные приведены для расчета – начальная скорость vi = 10 м / с.

Ускорение a = 4 м / с 2 .

Расстояние x = 10 м

vf 2 = (10) 2 – 2 (4 * 10)

Рассчитайте среднюю скорость движения частицы с ускорением 12 м / с. 2 а расстояние, которое проходит частица, составляет 26 метров.

Решение:

Формула дает среднюю скорость для заданного ускорения и расстояния.

Приведены данные – Ускорение частицы а = 12 м / с. 2 .

Расстояние, пройденное частицей x = 26 м.

Подставляя заданные значения в уравнение

Автомобиль преодолевает расстояние 56 метров за 4 секунды. Ускорение автомобиля за указанное время составляет 2 м / с. 2 . Вычислите начальную скорость автомобиля.

Решение:

Дано – расстояние, пройденное автомобилем x = 56 м.

Автомобиль преодолевает расстояние xt = 4 с за время.

Разгон автомобиля a = 2 м / с 2 .

Начальная скорость автомобиля находится по формуле

Подставляя данные значения в приведенное выше уравнение,

Построен график ускорения и расстояния, затем на графике показано, как найти скорость с учетом ускорения и расстояния.

Расстояние, пройденное с ускорением, указанное на графике, образует трапецию, площадь трапеции определяется как

Где a и b – смежная сторона трапеции, а h – высота.

Из приведенного выше графика

Подставляя в данное уравнение,

Скорость задается как

Последние сообщения о передовой науке и исследованиях

Я Кирти К. Мурти, я закончила аспирантуру по физике со специализацией в области физики твердого тела. Я всегда считал физику фундаментальным предметом, связанным с нашей повседневной жизнью. Будучи студентом естественных наук, я люблю изучать новые вещи в физике. Как писатель, моя цель – через свои статьи дойти до читателей в упрощенной форме.
Свяжитесь со мной – keerthikmurthy24@gmail.com

сообщить об этом объявлении Похожие сообщения

Ускорение против. Замедление: подробный анализ

Примеры положительного ускорения: подробный анализ

Поверхностное ускорение без трения: исчерпывающая информация…

Как найти ускорение свободного падения:…

Как найти ускорение свободного падения…

Пример гравитационного ускорения: подробные сведения

Как рассчитать ускорение с помощью…

Как найти среднюю скорость…

Скорость графика постоянного ускорения против…

Как найти ускорение с…

Как рассчитать силу без…

Как найти нормальную силу…

15 Пример чистой силы:…

Как найти нормальную силу…

Как найти чистую силу:…

Мгновенная скорость и ускорение: сравнительное…

Отрицательно ли замедление: подробные факты

Как определить конечную скорость…

Как найти скорость с помощью…

Как найти скорость с помощью…

Свяжитесь с нами

Электронная почта: hr@lambdageeks.com
support@lambdageeks.com

Контактное лицо: + 91-8106864654

Наша миссия

Наша миссия – служить и делиться своим опытом с большим и разносторонним сообществом студентов или работающих профессионалов для удовлетворения их потребностей в обучении.

Физика

Помощь студентам в решении контрольных и курсовых работ

Подготовка к дипломной, повышение уникальности

План урока:

Закон сложения скоростей

Как уже упоминалось в предыдущем уроке, скорость тела зависит от выбранной наблюдателем системы отсчета. Разберем следующий пример: в безветренную погоду пчела летит со скоростью относительно земли. Это будет собственная скорость пчелы. Затем погода меняется и начинает дуть ветер, перпендикулярный скорости пчелы. Скорость ветра обозначена (см. рисунок 1).

Рисунок 1 – Первоначальная скорость пчелы и ветра

Естественно, что ветер начнет сдувать пчелу с первоначального курса. Собственная скорость не изменяется, так как это характеристика самой пчелы, но ее скорость относительно земли (по модулю и направлению) изменится и станет (см. рисунок 2):

Рисунок 2 – Изменившаяся скорость пчелы

Систему отсчета, связанную с землей, можно считать неподвижной. Если же рассматривать движение пчелы относительно воздуха, можно говорить о движущейся со скоростью v2 системе отсчета.

Рисунок 3 – Векторы скорости и перемещений при движении пчелы при ветре

Мгновенная скорость, направление мгновенной скорости

Средняя скорость. Средняя путевая скорость

Так как в реальной жизни тела редко движутся с постоянной скорость, но необходимо как-то описывать их движение и скорость, ввели понятие мгновенной скорости.

Мгновенная скорость – это скорость тела в выбранный конкретный момент времени.

Если по определению скорости разделить перемещение на суммарное время пути, можно получить средняя скорость:

Фактически, это та же формула, которая используется при расчетах для прямолинейного равномерного движения.

То есть средняя скорость движения – это такая скорость, с которой тело должно было бы двигаться, если бы оно перемещалось из начальной точки в конечную равномерно и прямолинейно. Из выражения для вычисления средней скорости можно увидеть, что средняя скорость сонаправлена вектору перемещения.

Касательно же мгновенной скорости, чтобы ее найти, необходимо разделить общее время Δt на одинаковые отрезки Δt1, Δt2,…Δtn, и найти средние скорости за эти отрезки времени:

А куда направлена мгновенная скорость? Из рисунка 5 видно, что при уменьшении отрезков времени Δtb направление вектора перемещения ему соответствующее постепенно приближается к направлению касательной к траектории. Значит, мгновенная скорость направлена по касательной к линии траектории.

Еще одна важная характеристика, использующаяся в кинематике – средняя путевая скорость. Из названия вытекает, что средняя путевая скорость – это отношение пути (S), пройденного телом, к отрезку времени (t), за которое оно этот путь прошло:

Именно о путевой скорости идет речь, когда говорят, что автомобиль ехал из одного города в другой со скоростью 70 км/ч, например.

Ускорение. Касательное ускорение. Центростремительное ускорение

Продолжая речь о телах, движущихся неравномерно, необходимо сказать о такой физической величине, как ускорение.

Единицы измерения ускорения:

Рисунок 6 – Тело перемещается из точки 1 в точку 2 (в верхнем правом углу дана иллюстрация к разности векторов)

Если скорость тела меняется не равномерно на выбранном участке пути, нужно поступить так же, как и в случае с поиском мгновенной скорости: разделить на маленькие отрезки времени и рассматривать ускорение на каждом из них.

Поскольку ускорение получается из разности векторов скорости (конечной и начальной), в общем случае оно будет направлено под некоторым углом к мгновенной скорости (а, следовательно, и к вектору перемещения, и к касательной к траектории).

Рисунок 7 – Полное, касательно и центростремительное ускорение тела, движущегося из точки 1 в точку 2

Равноускоренное движение

Прямолинейное равноускоренное движение. Определение скорости при равноускоренном движении. Уравнения движения при равноускоренном движении

Когда движение тела происходит с постоянным по модулю и направлению ускорением, такой тип движения называют равноускоренным. Для него справедливо выражение:

Частный случай равноускоренного движения – прямолинейное равноускоренное движение. Как следует из названия, это движение вдоль прямой линии с постоянным ускорением.

При условии, что ускорение сонаправлено начальной скорости, формула для вычисления скорости при прямолинейном равноускоренном движении записывается в скалярном виде:

Если же ускорение противонаправлено начальной скорости, это выражение станет таким:

Рассмотрим график зависимости скорости от времени при равноускоренном движении (см. рисунок 8). Считаем, что тело совершает движение вдоль оси ОХ, а все величины – начальная скорость (vox) , ускорение (ax) – взяты в проекции на эту ось.

Рисунок 8 – График зависимости скорости от времени при прямолинейном равноускоренном движении

Как известно из предыдущего курса физики, путь, который прошло тело, можно найти как площадь фигуры под графиком зависимости скорости движения от времени. Общую площадь под графиком можно найти как сумму площадей прямоугольника ABCD и треугольника ADE.

Свободное падение

Движение тела, брошенного вертикально вверх. Движение тела, брошенного под углом к горизонту. Криволинейное равноускоренное движение

Примерами движения с постоянным ускорением может служить свободное падение, движение брошенного вертикально вверх тела, движение тела, брошенного под углом к горизонту. Поговорим об этих видах движения подробнее.

Представим, что какое-то небольшое, но тяжелое тело подняли на высоту h, а затем отпустили (см. рисунок 9).

Рисунок 9 – Свободное падение тела

Тело начнет падать. Принимаем допущение, что на это тело воздействует одна только сила тяжести (силой сопротивления воздуха и силой ветра пренебрегаем). Тогда тело будет двигаться вертикально вниз, а его ускорение будет равняться ускорению свободного падения:

  • Движение тела, брошенного вертикально вверх

Представим, что тело подкинули вертикально наверх с начальной скоростью v0 (см. рисунок 10).

Рисунок 10 – Тело бросили вертикально вверх

Очевидно, что тело сначала будет лететь вверх, постепенно замедляясь, пока его скорость не уменьшится до нуля. Затем тело полетит вниз, постепенно ускоряясь. Получается, что максимальной своей скорости тело будет достигать два раза – у земли, и эта скорость будет равно начальной скорости v0 (вообще нужно было бы писать voy, но так как рассматривается движение вдоль только одной оси OY, опустим индекс y).

Отсюда можно найти полное время полета:

  • Движение тела, брошенного под углом к горизонту

Данный тип движения чуть сложнее, чем предыдущие два, так как придется рассматривать движение сразу вдоль двух осей OX и OY (см. рисунок 11). Этот тип движения относится к криволинейному равноускоренному движению. Будем считать, что тело подбросили с начальной скоростью под углом α к горизонту.

Рисунок 11 – Тело брошено под углом к горизонту

Уравнения движения в общем виде по двум осям выглядят так:

Еще время полета можно посчитать, учитывая что в двух моментах – в начале полета и в конце. Значит можно посчитать:

Равномерное движение точки по окружности

Центростремительное ускорение

Представим себе равномерное движение по окружности: во время этого типа движения скорость не меняется по модулю, однако меняется по направлению (см. рисунок 12).

Рисунок 12 – Изменение направления скорости при равномерном движении по окружности

За изменение направления скорости отвечает центростремительное ускорение ( Оно, так же как и скорость, постоянно по модулю, но меняется по направлению – в любой точке окружности оно направлено к ее центру. Центростремительное ускорение можно найти по формуле:

где R – радиус окружности, по которой циклически движется тело.

Вектор скорости и ускорения материальной точки и их модули. Пример решения задач.

В очередной раз меня попросили решить пару задачек по физике, и я вдруг обнаружил, что не могу решить их с ходу. Немного погуглив, я обнаружил, что сайты в топе выдачи содержат сканы одного и того же учебника и не описывают конкретных примеров решений задачи о том, как найти вектор скорости и ускорения материальной точки. По-этому я решил поделиться с миром примером своего решения.

Траектория движения материальной точки через радиус-вектор

Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора – вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами – единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):

Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? “Наверное какой-то жуткий”, подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:

Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y, чтобы вместо синуса подставить в нее формулу изменения x:

В итоге жуткий закон движения точки оказался обычной параболой, ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.

Вектор скорости материальной точки

Всем известно, что скорость материальной точки – это величина пройденного пути точкой за единицу времени, то есть производная от формулы закона движения. Чтобы найти вектор скорости нужно взять производную по времени. Давайте рассмотрим конкретный пример нахождения вектора скорости.

Пример нахождения вектора скорости

Имеем закон перемещения материальной точки:

Теперь нужно взять производную от этого многочлена, если вы забыли как это делается, то вот вам таблица производных различных функций. В итоге вектор скорости будет иметь следующий вид:

Все оказалось проще, чем вы думали, теперь найдем вектор ускорения материальной точки по тому же самому закону, представленному выше.

Как найти вектор ускорения материальной точки

Вектор ускорения точки это векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки. Чтобы найти вектор ускорения материальной точки в нашем примере, нужно взять производную, но уже от формулы вектора скорости, представленной чуть выше:

Модуль вектора скорости точки

Теперь найдем модуль вектора скорости материальной точки. Как вы знаете из 9-го класса, модуль вектора – это его длина, в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат. И откуда же из полученного нами выше вектора скорости взять его координаты спросите вы? Все очень просто:

Теперь достаточно только подставить время, указанное в задаче и получить конкретное числовое значение.

Модуль вектора ускорения

Как вы поняли из написанного выше (и из 9-го класса), нахождение модуля вектора ускорения происходит тем же образом, что и модуля вектора скорости: извлекаем корень квадратный из суммы квадратов координат вектора, все просто! Ну и вот вам, конечно же, пример:

Как вы видите, ускорение материальной точки по заданному выше закону не зависит от времени и имеет постоянную величину и направление.

Еще примеры решений задачи нахождения вектора скорости и ускорения

А вот тут вы можете найти примеры решения и других задач по физике на тему “механика твердых тел”. А для тех, кто не совсем понял как найти вектор скорости и ускорения, вот вам еще парочка примеров из сети без всяких лишних объяснений, надеюсь, они вам помогут.

Если у вас возникли какие-нибудь вопросы, вы можете задать их в комментариях.

[spoiler title=”источники:”]

http://ru.lambdageeks.com/how-to-find-velocity-with-acceleration-and-distance/

http://100urokov.ru/predmety/kinematika-tochki-chast-2

[/spoiler]

Прямолинейное равноускоренное движение — это прямолинейное движение, при котором скорость тела изменяется (увеличивается или уменьшается) на одну и ту же величину за равные промежутки времени.

Ускорение — физическая величина, характеризующая быстроту изменения скорости тела. То есть, показывает, на какую величину изменяется скорость за единицу времени.

Примеры равноускоренного движения:

  • разгон самолета перед взлетом;
  • падающая с крыши сосулька;
  • торможение лыжника на горном склоне;
  • разгоняющийся на склоне сноубордист;
  • свободное падение в результате прыжка с парашютом;
  • камень брошенный под углом к горизонту;

Равномерное прямолинейное движение является частным случаем равноускоренного движения, при котором ускорение равно нулю.

Равноускоренное движение: формулы

Формула для скорости при равноускоренном движении:

Vк=Vн+at

где: Vк — конечная скорость тела,
Vн — начальная скорость тела,
a=const — ускорение (a>0 при ускорении, a<0 при замедлении)
t — время.

Формула для ускорения при равноускоренном движении:

a=(Vк-Vн)/t

Во время движения тела ускорение остается постоянным.

Задача 1

Кирилл ехал на велосипеде со скоростью 6 м/с, затем начал разгоняться на горке. Чему будет равна его скорость через 10 секунд, если ускорение равно 0,5 м/с?
Решение. Vн=6м/с, ускорение a=0,5м/с, время разгона t=10 секунд.
Получаем: Vн= 6 + 0,5 · 10 = 11 м/с.
Ответ: за 10с Кирилл разгонится до скорости 11 м/с.

Формула расстояния при равноускоренном движении

  • Если известны  время, скорость начальная и скорость конечная

S = t*(Vн+ Vк)/2 

  • Если известны время, скорость начальная и ускорение

S = Vнt + at2/2 = t*(Vн + at/2)

где: S — путь, пройденный за время t,
Vн — начальная скорость,
Vк — конечная скорость,
a — ускорение тела,
t — время.

В случае равноускоренного движения с неизвестным временем движения, но с заданными начальной и конечной скоростями пройденный путь можно найти с помощью следующей формулы:

2аS = Vк2−Vн2 

где S — путь, пройденный за время t ,
V0 — начальная скорость,
V — скорость в момент времени t,
a — ускорение тела.

Задача 2

Таксист получил заказ и начал движение с ускорением 0,1 м/с2. На каком расстоянии от начала движения его скорость станет равной 15м/с?
Решение. Так как таксист начал движение, начальная скорость равна нулю (Vн=0), Vк=15м/с, ускорение a=0,1м/с2.
Получаем: ​
S = 15^2 — 0^2 =1125 м.
Ответ: на расстоянии 1 125 м от начала движения скорость такси станет равной 15 м/с.

Перемещение при равноускоренном движении

Важно напомнить разницу между путем и перемещением тела.

  • Путьдлина траектории. Если тело движется в любом направлении, то его путь увеличивается. Путь — всегда положительное значение.
  • Перемещениевектор, соединяющий начальное и конечное положение тела. Проекция перемещения может принимать отрицательное значение.

Например, если путник прошел в одну сторону расстояние S1, а обратно — S2, то: путь тела равен S1 + S2, а перемещение равно S1 − S2. В некоторых задачах путь и перемещение могут совпадать, но не всегда.

Равноускоренное движение: графически

График зависимости ускорения от времени:
Во время движения тела ускорение остается постоянным.

Взаимосвязь скорости, времени и расстояния:
На рисунке показан график,  в котором скорость равномерно увеличивается.
С помощью графика скорости можно определить ускорение тела как тангенс угла наклона графика к оси времени.

Из графика скорости получим формулу пути при равноускоренном движении тела.

Пройденный телом путь при равноускоренном движении численно равен площади фигуры под графиком зависимости скорости от времени. Вычислим площадь трапеции как сумму площадей прямоугольника Vнt и треугольника at2/2. Получим: S = Vнt + at2/2.

Математически зависимость координаты от времени при равноускоренном движении представляет собой квадратичную функцию, ее график — парабола.

Задача 3

Лыжник подъехал со скоростью 3 м/с к спуску длиной 36 м и съехал с него за несколько секунд, при этом его конечная скорость составила 15 м/с. Определите местонахождение лыжника спустя 2с после начала движения из начала координат.

Дано:
Vн = 3 м/с, начальная координата (t) равна нулю,
Vк = 15м/с, 
a —  скорость лыжника увеличивается, поэтому ускорение — положительное число,
S = 36м — путь с горы,
t — 2с.

Решение:
Найдем ускорение из формулы пути при равноускоренном движении: 2аS = Vк2−Vн2 
Получим:  а = (Vк2−Vн2 )/2S = (225-9)/(2*36) = 3 м/с2.
Составим уравнение движения лыжника исходя из формулы: S = Vнt + at2/2.
Получаем: x(t) =  3t + 1,5t2 
По уравнению определим координату лыжника в момент времени t = 2с:
Получаем: x(2) =  3*2 + 1,5*22 =6+6=12 м.

Ответ: через 2 с после начала движения координата лыжника будет равна 12 м.

Для того, чтобы проверить правильность решения задач на равноускоренное движение, воспользуйтесь калькулятором равноускоренного движения.

Для того, чтобы перевести единицы измерения, воспользуйтесь конвертерами единиц измерения:

  • Конвертер единиц измерения расстояния (длины)
  • Конвертер единиц измерения скорости
  • Конвертер единиц измерения времени

Добавить комментарий