Содержание:
Столкновения:
Наиболее общим явлением, наблюдаемым в природе, является взаимодействие материальных тел. Бильярдные шары, сближаясь, в момент соприкосновения взаимодействуют друг с другом. В результате этого меняются скорости шаров, их кинетические энергии. О таком взаимодействии шаров говорят как об их столкновениях.
Но понятие «столкновение» относится не только к взаимодействиям, происходящим в результате соприкосновения материальных тел. Комета, прилетевшая из отдаленных областей пространства и прошедшая в окрестности Солнца, меняет свою скорость и удаляется. Этот процесс также является столкновением. хотя непосредственного соприкосновения между кометой и Солнцем не произошло, а осуществлено оно было посредством сил тяготения.
Характерная особенность этого взаимодействия, дающая нам возможность рассматривать его как столкновение, заключается в том, что область пространства, в котором оно произошло, относительно мала. Заметное изменение скорости кометы происходит вблизи Солнца (рис. 129).
Приведенные примеры позволяют нам дать следующее определение столкновения.
Что такое столкновение
Столкновением называется взаимодействие двух и большего числа тел, которое происходит в относительно малой области пространства в течение относительно малого промежутка времени. Вне этого промежутка времени можно говорить о начальных и конечных импульсах тел, когда тела можно считать невзаимодействующими.
Столкновение материальных тел часто называется ударом. Удар определяется как процесс, при котором изменяются импульсы соударяющихся тел без существенного изменения их положений. Это частный случай столкновения, например столкновение шаров, шайб, автомобилей и т. п.
Процессы столкновения являются чрезвычайно сложными. Например, при столкновении двух шаров в момент их соприкосновения начинается деформация шаров. В результате часть кинетической энергии переходит в потенциальную энергию деформации. Затем энергия деформации снова превращается в кинетическую, однако не полностью — часть энергии превращается во внутреннюю. Кроме того, после столкновения шары будут вращаться по иному, чем до столкновения.
Главный интерес при рассмотрении столкновений заключается в знании не самого процесса, а результата. Ситуация до столкновения называется начальным состоянием, а после — конечным. Между величинами, характеризующими начальное и конечное состояния, соблюдаются определенные соотношения. независящие от детального характера взаимодействия. Такими величинами. в частности, являются импульс и энергия системы тел.
В зависимости от характера изменения кинетической энергии тел все столкновения делятся на упругие и неупругие.
Если при столкновении кинетическая энергия тел сохраняется, то столкновение называется упругим, если же не сохраняется — неупругим.
Рассмотрим вначале абсолютно неупругое столкновение (абсолютно неупругий удар). Это частный случай неупругого столкновения, при котором после столкновения тела «слипаются» и движутся вместе.
Пусть в некоторой инерциальной системе отсчета первое тело массой m1 движется до столкновения со скоростью υ1, а второе тело массой m2 — со скоростью υ2. Следовательно, импульсы тел до столкновения равны соответственно:
Процесс столкновения обычно наглядно представляют с помощью векторной диаграммы импульсов (рис. 130). Нетрудно убедиться, что кинетическая энергия системы не сохраняется. До столкновения она составляет:
после столкновения —
Изменение кинетической энергии:
(2)
Для расчета выберем оси координат так, как показано на рисунке 130, и спроектируем на них равенство (1). B результате получим:
Рис. 130
Отсюда легко находится квадрат скорости тел после столкновения:
Подставив полученное выражение в (2), получим после несложных преобразований:
Как видно, кинетическая энергия системы уменьшилась. Часть кинетической энергии превратилась в теплоту.
Если тела при столкновении не «слипаются», то скорости тел после столкновения можно найти из закона сохранения импульса:
где штрихом отмечены импульсы тел после столкновения.
При этом кинетическая энергия может как уменьшаться, так и увеличиваться. Последнее происходит, например, при различных взрывах. В этом случае часть внутренней энергии превращается в кинетическую энергию осколков.
Как уже отмечалось, при упругом столкновении выполняется закон сохранения импульса и механической энергии.
Рассмотрим вначале лобовое столкновение, т. е. такое столкновение, при котором импульсы тел до и после столкновения параллельны некоторой прямой. Эту прямую мы примем за ось Ox (рис. 131). Закон сохранения импульса в этом случае примет вид:
а закон сохранения кинетической энергии –
Из этих уравнений найдем скорости тел после удара. Для этого перепишем (3) и (4) следующим образом:
Воспользовавшись тем, что a2 – b2 = (a-b)(a + b), из выражений (5) и (6) легко получить:
Выразив отсюда, например, и подставив его в (5), после несложных преобразований находим:
Аналогично:
Проекции импульсов тел после столкновения равны соответственно:
и
Проанализируем полученные выражения для некоторых частных случаев.
Предположим, что тело 2 до столкновения покоилось, т. е. .
Тогда
При равных массах тел m1 = m2 получим:
Значит, первое тело остановится, а второе придет в движение с таким же импульсом.
Теперь предположим, что масса второго тела намного больше массы первого. Тогда, пренебрегая m1 по сравнению с m2 , получим:
Значит, первое тело отскочит назад с таким же по модулю импульсом, а тело 2 получит импульс, равный удвоенному значению импульса первого тела.
Найдем кинетическую энергию тел после столкновения для случая, когда = 0:
(10)
(10)
где K1 — кинетическая энергия первого тела до столкновения.
Из полученных выражений следует, что при m1 = m2 первое тело останавливается, а второе приобретает ту же энергию. Если масса второго тела m2 намного больше массы первого m1 то из (10) и (11) следует, что , . Значит, кинетическая энергия первого тела не изменяется, а второе тело получает импульс, но его энергия не изменяется.
- Заказать решение задач по физике
Главные выводы:
- Столкновением называется взаимодействие двух и большего числа тел, которое происходит в относительно малой области пространства в течение относительно малого промежутка времени.
- Удар определяется как процесс, при котором изменяются импульсы соударяющихся тел без существенного изменения их положений.
- Столкновение тел называется упругим, если кинетическая энергия тел сохраняется. При неупругом столкновении кинетическая энергия тел не сохраняется.
- При столкновениях тел выполняется закон сохранения импульса.
Определение столкновения
Законы сохранения энергии и импульса позволяют провести теоретическое исследование процессов столкновения тел без описания сил, действующих между ними.
Под столкновениями понимают механические процессы взаимодействия между телами, происходящие за очень короткий промежуток времени. При этом силы взаимодействия между сталкивающимися телами настолько велики, что внешними силами, действующими на систему, можно пренебречь.
Вследствие того, что длительность столкновения мала по сравнению со временем наблюдения, различают механические состояния до и после столкновения, причем тела, находящиеся на большом расстоянии друг от друга, считают свободными.
Длительность столкновения бильярдных шаров что намного меньше характерного времени движения шаров по столу
Различают упругие (абсолютно упругие) и неупругие столкновения. В первом случае не происходит выделения теплоты, и механическая энергия сохраняется. Во втором случае выделяется некоторое количество теплоты, поэтому механическая энергия после столкновения уменьшается.
Примером упругих столкновений служат столкновения металлических шаров, а примером неупругих — столкновения пластилиновых шаров, которые при этом слипаются и продолжают движение как одно целое.
Для макроскопических тел в большей степени характерными являются неупругие столкновения, в то время как для физики элементарных частиц, ядер атомов, молекул определяющую роль играет упругое взаимодействие.
Если в процессе столкновения тел на них не действуют внешние силы, то к телам применим закон сохранения импульса, а во многих случаях — и закон сохранения механической энергии. Именно эти законы позволяют, зная скорости тел до столкновения, определить их скорости после столкновения, совершенно не интересуясь тем, что происходило во время него.
При абсолютно неупругом столкновении скорости обоих взаимодействующих тел оказываются одинаковыми. Примером таких тел являются тела из различных пластичных веществ. Такое столкновение можно наблюдать, если подвесить тары из пластилина, развести их в разные стороны и отпустить. После столкновения они оба будут двигаться вместе с одинаковой скоростью.
При абсолютно упругом столкновении в обоих телах не остается никаких деформаций. Кроме того, вся кинетическая энергия, которой тела обладали до столкновения, снова превращается в кинетическую энергию. Примерами таких тел являются шары из стали или слоновой кости.
Рассмотрим простейшее столкновение — центральное, когда скорости тел находятся на линии, соединяющей их центры. Очень часто такое столкновение называют лобовым.
Скорость движения после абсолютно неупругого столкновения тел массами движущихся до столкновения со скоростями можно определить из закона сохранения импульса:
Откуда находим
Определим «потери» механической энергии, найдя кинетическую энергию
тел до столкновения:
и после столкновения:
Тогда часть механической энергии, перешедшая во внутреннюю, определяется выражением:
Следовательно, она зависит от масс сталкивающихся тел и относительной скорости их движения до столкновения.
Задача о центральном абсолютно неупругом столкновении впервые была решена Дж. Валлисом в 1669 г.
При абсолютно упругом столкновении двух тел массами на основании закона сохранения импульса и закона сохранения энергии можно записать
Здесь — скорости тел до столкновения, — после столкновения.
Преобразуем систему уравнений (3), перенеся в правую часть все величины, относящиеся к первому телу, а в левую — ко второму:
Разделив второе уравнение на первое, получим
Перепишем это уравнение в виде .
Из него следует, что при центральном абсолютно упругом столкновении тел любой массы их относительная скорость до и после столкновения не изменяется.
Теперь можно дать еще одно определение неупругого столкновения: если относительная скорость тел при центральном столкновении изменяется, то такое столкновение называется неупругим.
Меру неупругости k можно определить как отношение относительных скоростей сталкивающихся тел после и до столкновения:
Она называется коэффициентом восстановления и впервые была измерена Ньютоном в 1687 г. В частности, Ньютон получил значения коэффициента для стали k = 0,55 и стекла k = 0,94, которые приводят и современные справочники.
Абсолютно неупругим является столкновение, при котором скорости тел после столкновения равны т. е. k = 0.
Решая уравнение (4) совместно с первым уравнением системы (3), находим скорости тел после столкновения:
На самом деле при столкновении всегда происходят «потери» механической энергии, т. е. переход части ее в теплоту. Но при малых «потерях» действительный процесс достаточно хорошо описывается абсолютно упругим столкновением.
Задача о центральном абсолютно упругом столкновении впервые была решена X. Гюйгенсом и К. Реном в 1669 г.
Отметим, что осуществить центральное, или лобовое, столкновение на практике очень трудно. Подавляющее число столкновений являются нецентральными.
Основные формулы
Импульс тела
Закон изменения импульса системы тел:
Закон сохранения импульса системы тел:
Работа:
Средняя мощность:
Мгновенная мощность:
Кинетическая энергия:
Теорема о кинетической энергии:
Потенциальная энергия:
Потенциальная энергия упруго деформированного тела:
Закон сохранения механической энергии:
- Рычаг в физике
- Блоки в физике
- Движение тела под действием нескольких сил
- Наклонная плоскость в физике
- Свободное падение тела
- Равнодействующая сила и движение тела под действием нескольких сил
- Сила давления в физике и единицы давления
- Механическое давление в физике
Определите скорость тел после неупругого столкновения.
Наталья Сладкина
Знаток
(285),
закрыт
1 год назад
Два тела массами 5 кг и 2 кг движутся навстречу друг другу со скоростями 2м/с и 3м/с соответственно. Определите скорость тел после неупругого столкновения.
Если можете напишите решение. Немного проблемы.
Валентина Вавилова(Серкова)
Гений
(62183)
9 лет назад
По закону сохранения импульса
m1*v1 – m2*v2 = ( m1+m2)*v. ( m1, m2 – массы тел, v1, v2 -начальные скорости, v -скорость после неупругого столкновения) . выразим v .
v=( m1*v1 – m2*v2) / ( m1+ m2)
v=( 5*2 – 2*3) / ( 5+2)=0,57м/c.
Тема: Найти скорости тел после столкновения (Прочитано 7470 раз)
0 Пользователей и 1 Гость просматривают эту тему.
65. Тело массой 2 кг движется со скоростью 3 м/с и нагоняет второе тело массой 3 кг, движущееся со скоростью 1 м/с. Найти скорости тел после столкновения, если удар был неупругим. Сделать рисунок.
Записан
Решение.
Определим совместную скорость тел после столкновения, если удар был неупругим.
Для системы двух тел можно применить закон сохранения импульса.
[ begin{align}
& {{m}_{1}}cdot {{{vec{upsilon }}}_{1}}+{{m}_{2}}cdot {{{vec{upsilon }}}_{2}}=({{m}_{1}}+{{m}_{2}})cdot vec{upsilon }. \
& Ox: {{m}_{1}}cdot {{upsilon }_{1}}+{{m}_{2}}cdot {{upsilon }_{2}}=({{m}_{1}}+{{m}_{2}})cdot upsilon , upsilon =frac{{{m}_{1}}cdot {{upsilon }_{1}}+{{m}_{2}}cdot {{upsilon }_{2}}}{{{m}_{1}}+{{m}_{2}}}. \
& upsilon =frac{2cdot 3+3cdot 1}{2+3}=1,8. \
end{align} ]
Ответ:После неупругого взаимодействия тела движутся как одно целое и скорость каждого тела равна 1,8 м/с.
« Последнее редактирование: 28 Мая 2017, 06:03 от alsak »
Записан
Закон сохранения энергии позволяет рещать механические задачи в тех случаях, когда почему-либо неизвестны действующие на тело .силы. Интересным примером именно такого случая является столкновение двух тел. Этот пример особенно интересен тем, что при его анализе нельзя обойтись одним только законом сохранения энергии. Нужно привлечь еще и закон сохранения импульса (количества движения).
В обыденной жизни и в технике не так уж часто приходится иметь дело со столкновениями тел, но в физике атома и атомных частиц столкновения – очень частое явление.
рис. 1
Для простоты мы сначала рассмотрим столкновение двух шаров массами $m_{1}$ и $m_{2}$, из которых второй покоится, а первый движется по направлению ко второму со скоростью $vec{v}_{1}$. Будем считать, что движение происходит вдоль линии, соединяющей центры обоих шаров (рис. 1), так что при столкновении шаров имеет место так называемый центральный, или лобовой, удар. Каковы скорости обоих шаров после столкновения?
До столкновения кинетическая энергия второго шара равна нулю, а первого $frac{m_{1}v_{1}^{2}}{2}$. Сумма энергий обоих шаров составляет:
$0 + frac{m_{1}v_{1}^{2} }{2} = frac{m_{1}v_{1}^{2} }{2}$.
После столкновения первый шар станет двигаться с некоторой скоростью $vec{u}_{1}$. Второй шар, скорость которого была равна нулю, также получит какую-то скорость $vec{u}_{2}$. Поэтому после столкновения сумма кинетических энергий двух шаров станет равной
$frac{m_{1}u_{1}^{2} }{2} + frac{m_{2}u_{2}^{2} }{2}$.
По закону сохранения энергии эта сумма должна быть равна энергии шаров до столкновения:
$frac{}{2} = frac{m_{1}u_{1}^{2} }{2} + frac{m_{2}u_{2}^{2} }{2}$,
или
$m_{1}v_{1}^{2} = m_{1}u_{1}^{2} + m_{2}u_{2}^{2}$.
Из этого одного уравнения мы, конечно, не можем найти две неизвестные скорости: $vec{u}_{1}$ и $vec{u}_{2}$. Вот тут-то на помощь и приходит второй закон сохранения – закон сохранения импульса. До столкновения шаров импульс первого шара был равен $m_{1} vec{v}_{1}$, а импульс второго – нулю. Полный импульс двух шаров был равен:
$0 + m_{1} vec{v}_{1} = m_{1} vec{v}_{1}$.
После столкновения импульсы обоих шаров изменились и стали равными $m_{1} vec{u}_{1}$ и $m_{2} vec{u}_{2}$, а полный импульс стал
$m_{1} vec{u}_{1} + m_{2} vec{u}_{2}$.
По закону сохранения импульса полный импульс при столкновении измениться не может. Поэтому мы должны написать:
$m_{1} vec{v}_{1} = m_{1} vec{u}_{1} + m_{2} vec{u}_{2}$.
Так как движение происходит вдоль прямой, то вместо векторного уравнения можно написать алгебраическое (для проекций скоростей на координатную ось, направленную по скорости движения первого шара до удара):
$m_{1}v_{1} = m_{1}u_{1} + m_{2}u_{2}$.
Теперь мы имеем два уравнения:
$m_{1}v_{1}^{2} = m_{1}u_{1}^{2} + m_{2}u_{2}^{2}$,
$m_{1}v_{1} = m_{1}u_{1} + m_{2}u_{2}$.
Такую систему уравнений можно решить и найти неизвестные скорости $u_{1}$ и $u_{2}$ шаров после столкновения. Для этого перепишем ее следующим образом:
$m_{1}v_{1}^{2} – m_{1}u_{1}^{2} = m_{2}u_{2}^{2}$<
$m_{1}v_{1} – m_{1}u_{1} = m_{2}u_{2}$,
или
$m_{1} (v_{1}^{2} – u_{1}^{2} ) = m_{2}u_{2}^{2}$,
$m_{1} (v_{1} – u_{1}) = m_{2}u_{2}$.
Разделив первое уравнение на второе, получим:
$v_{1} + u_{1} = u_{2}$.
Решая теперь это уравнение совместно со вторым уравнением
$m_{1}v_{1} – m_{1}u_{1} = m_{2}u_{2}$
(проделайте это самостоятельно), найдем, что первый шар после удара будет двигаться со скоростью
$u_{1} = frac{(m_{1} – m_{2})v_{2}}{m_{1} + m_{2} }$<
а второй – со скоростью
$u_{2} = frac{2m_{1}v_{1} }{m_{1} + m_{2} }$.
рис. 2
Если оба шара имеют одинаковые массы ($m_{1} = m_{2}$), то $u_{1} = 0$, а $u_{2} = v_{1}$. Это значит, что первый шар, столкнувшись со вторым, передал ему свою скорость, а сам остановился (рис. 2).
Таким образом, пользуясь законами сохранения энергии и импульса, можно, зная скорости тел до столкновения, определить их скорости после столкновения.
А как обстояло дело во время самого столкновения в тот момент, когда центры шаров максимально сблизились?
Очевидно, что в это время они двигались вместе с некоторой скоростью $vec{u}$. При одинаковых массах тел их общая масса равна $2m$. По закону сохранения импульса во время совместного движения обоих шаров их импульс должен быть равен общему импульсу до столкновения:
$2m vec{u} = m vec{v}$.
Отсюда следует, что
$vec{u} = frac{ vec{v} }{2}$.
Таким образом, скорость обоих шаров при их совместном движении равна половине скорости одного из них до столкновения. Найдем кинетическую энергию обоих шаров для этого момента:
$K = frac{2mu^{2} }{2} = mu^{2} = frac{mv^{2} }{4}$.
А до столкновения общая энергия обоих шаров была равна
$frac{mv^{2}}{2}$.
Следовательно, в самый момент столкновения шаров кинетическая энергия уменьшилась вдвое. Куда же пропала половина кинетической энергии? Не происходит ли здесь нарушения закона сохранения энергии?
Энергия, конечно, и во время совместного движения шаров осталась прежней. Дело в том, что во время столкновения оба шара были деформированы и поэтому обладали потенциальной энергией упругого взаимодействия. Именно на величину этой потенциальной энергии и уменьшилась кинетическая энергия шаров.
Задача 1. Шар, имеющий массу $m_{1}$, равную 50 г, движется со скоростью $v_{1} = 10 м/сек$ и сталкивается с неподвижным шаром, масса которого $m_{2} = 110 г$. Каковы скорости обоих шаров после столкновения? Столкновение шаров считать центральным.
Решение. Скорость второго шара вычисляется по формуле
$u_{2} = frac{2m_{1}v_{1} }{m_{1} + m_{2} }$.
Подставив значения $m_{1}, m_{2}$ и $v_{1}$, получим:
$u_{2} = frac{2 cdot 0,05 кг cdot 10 frac{м}{с}}{0,05 кг + 0,11 кг} = 6,25 frac{м}{с}$.
Значение же скорости $u_{1}$ первого шара находим по формуле
$u_{1} = frac{m_{1} – m_{2} }{m_{1} + m_{2} } v_{1}$,
$u_{1} = frac{(0,05 кг – 0,11 кг) cdot 10 frac{м}{с}}{0,05 кг + 0,11 кг} = – 3,75 frac{м}{с}$.
Знак «минус» показывает, что после столкновения скорость этого шара изменится не только по абсолютному значению, но и по направлению (шар станет двигаться в противоположную сторону).
Задача 2. Шар массой $m_{1} = 100 г$, двигаясь со скоростью $v_{1} = 12 м/сек$, сталкивается с неподвижным шаром, масса которого $m_{2} = 50 г$. Каковы скорости $u_{1}$ и $u_{2}$ шаров после столкновения, если столкновение центральное?
Решение. Скорость $u_{2}$ второго шара после столкновения:
$u_{2} = frac{2m_{1}v_{1} }{m_{1} + m_{2} }$,
$u_{2} = frac{2 cdot 0,1 кг cdot 12 frac{м}{с} }{0,1 кг + 0,05 кг} = 16 frac{м}{с}$.
Скорость первого шара после столкновения:
$u_{1} = frac{m_{1} – m_{2} }{m_{1} + m_{2} } v_{1}$,
$u_{1} = frac{(0,1 кг – 0,05 кг) cdot 12 frac{м}{с}}{0,1 кг + 0,05 кг} = 4 frac{м}{с}$.
Теперь знак скорости $u_{1}$ такой же, как знак скорости $u_{2}$. Оба шара, следовательно, после столкновения движутся по одному направлению – так, как двигался первый шар до столкновения.
Закон сохранения механической энергии и закон сохранения импульса позволяют находить решения механических задач в тех случаях, когда действующие силы неизвестны. Примером такого рода задач является ударное взаимодействие тел.
С ударным взаимодействием тел нередко приходится иметь дело в обыденной жизни, в технике и в физике (особенно в физике атома и элементарных частиц).
Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения. Во время столкновения тел между ними действуют кратковременные ударные силы, величина которых, как правило, неизвестна. Поэтому нельзя рассматривать ударное взаимодействие непосредственно с помощью законов Ньютона. Применение законов сохранения энергии и импульса во многих случаях позволяет исключить из рассмотрения сам процесс столкновения и получить связь между скоростями тел до и после столкновения, минуя все промежуточные значения этих величин.
В механике часто используются две модели ударного взаимодействия – абсолютно упругий и абсолютно неупругий удары.
Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.
При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание).
Примером абсолютно неупругого удара может служить попадание пули (или снаряда) в баллистический маятник. Маятник представляет собой ящик с песком массой M, подвешенный на веревках (рис. 1.21.1). Пуля массой m, летящая горизонтально со скоростью попадает в ящик и застревает в нем. По отклонению маятника можно определить скорость пули.
Обозначим скорость ящика с застрявшей в нем пулей через Тогда по закону сохранения импульса
При застревании пули в песке произошла потеря механической энергии:
Отношение M / (M + m) – доля кинетической энергии пули, перешедшая во внутреннюю энергию системы:
Эта формула применима не только к баллистическому маятнику, но и к любому неупругому соударению двух тел с разными массами.
При m << M
почти вся кинетическая энергия пули переходит во внутреннюю энергию. При m = M
во внутреннюю энергию переходит половина первоначальной кинетической энергии. Наконец, при неупругом соударении движущегося тела большой массы с неподвижным телом малой массы (m >> М) отношение
Дальнейшее движение маятника можно рассчитать с помощью закона сохранения механической энергии:
где h – максимальная высота подъема маятника. Из этих соотношений следует:
Измеряя на опыте высоту h подъема маятника, можно определить скорость пули υ.
Рисунок 1.21.1. Баллистический маятник |
Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.
Во многих случаях столкновения атомов, молекул и элементарных частиц подчиняются законам абсолютно упругого удара.
При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии.
Простым примером абсолютно упругого столкновения может быть центральный удар двух бильярдных шаров, один из которых до столкновения находился в состоянии покоя (рис. 1.21.2).
Центральным ударом шаров называют соударение, при котором скорости шаров до и после удара направлены по линии центров.
Рисунок 1.21.2. Абсолютно упругий центральный удар шаров |
В общем случае массы m1 и m2 соударяющихся шаров могут быть неодинаковыми. По закону сохранения механической энергии
Здесь υ1 – скорость первого шара до столкновения, скорость второго шара υ2 = 0, u1 и u2 – скорости шаров после столкновения. Закон сохранения импульса для проекций скоростей на координатную ось, направленную по скорости движения первого шара до удара, записывается в виде:
Мы получили систему из двух уравнений. Эту систему можно решить и найти неизвестные скорости u1 и u2 шаров после столкновения:
В частном случае, когда оба шара имеют одинаковые массы (m1 = m2), первый шар после соударения останавливается (u1 = 0), а второй движется со скоростью u2 = υ1, т. е. шары обмениваются скоростями (и, следовательно, импульсами).
Если бы до соударения второй шар также имел ненулевую скорость (υ2 ≠ 0), то эту задачу можно было бы легко свести к предыдущей с помощью перехода в новую систему отсчета, которая движется равномерно и прямолинейно со скоростью υ2 относительно «неподвижной» системы. В этой системе второй шар до соударения покоится, а первый по закону сложения скоростей имеет скорость υ1‘ = υ1 – υ2. Определив по приведенным выше формулам скорости u1 и u2 шаров после соударения в новой системе, нужно сделать обратный переход к «неподвижной» системе.
Таким образом, пользуясь законами сохранения механической энергии и импульса, можно определить скорости шаров после столкновения, если известны их скорости до столкновения.
Модель. Упругие и неупругие соударения. |
Центральный (лобовой) удар очень редко реализуется на практике, особенно если речь идет о столкновениях атомов или молекул. При нецентральном упругом соударении скорости частиц (шаров) до и после столкновения не направлены по одной прямой.
Частным случаем нецентрального упругого удара может служить соударение двух бильярдных шаров одинаковой массы, один из которых до соударения был неподвижен, а скорость второго была направлена не по линии центров шаров (рис. 1.21.3).
Рисунок 1.21.3. Нецентральное упругое соударение шаров одинаковой массы. d – прицельное расстояние |
После нецентрального соударения шары разлетаются под некоторым углом друг к другу. Для определения скоростей и после удара нужно знать положение линии центров в момент удара или прицельное расстояние d (рис. 1.21.3), т. е. расстояние между двумя линиями, проведенными через центры шаров параллельно вектору скорости налетающего шара. Если массы шаров одинаковы, то векторы скоростей и шаров после упругого соударения всегда направлены перпендикулярно друг к другу. Это легко показать, применяя законы сохранения импульса и энергии. При m1 = m2 = m эти законы принимают вид:
Первое из этих равенств означает, что векторы скоростей , и образуют треугольник (диаграмма импульсов), а второе – что для этого треугольника справедлива теорема Пифагора, т. е. он прямоугольный. Угол между катетами и равен 90°.
Модель. Соударения упругих шаров. |