Как найти скорость теч реки

Через уравнение.

S – пройденный путь, растояние, которое прошла, например, лодка. (км)

t – время, за которое она прошла расстояние S. (часов, минут)

V – собственная её скорость (км/ч, м/ч)

Такие задачи решаются далее: если известны: (под формулы подставляем числа)

t и V, то перемножаем – t * V, получаем S.

t и S, то расстояние делим время – S : t, получаем V

S и V, также – S : V, получаем t

Также если в задаче указана V (её ищем)

по течению, то V собственная + V по течению

против течения, то V собств. – V прот. теч.

Тогда формулы звучат так: если известны:

t и V, то t * (V с. +/- V) = S

t и S, то S : t = V с. +/- V

V и S, то S : (V c. +/- V) = t

Теперь ещё раз:

V c. – собственная скорость

V c. + V – скорость + скорость по теч.

V c. – V – скорость + скорость прот. теч.

Ну так чтоли… Плохой из меня учитель(((

Задачи на движение по реке

Рассмотрим задачи, в которых речь идёт о движении объекта по реке. Скорость любого объекта в стоячей воде называют собственной скоростью этого объекта.

Чтобы узнать скорость объекта, который движется против течения реки, надо из собственной скорости объекта вычесть скорость течения реки.

Задача 1. Катер движется против течения реки. За сколько часов он преодолеет расстояние  112  км, если его собственная скорость  30  км/ч, а скорость течения реки  2  км/ч?

Решение: Сначала узнаем скорость движения катера против течения реки, для этого от его собственной скорости отнимем скорость течения:

30 – 2 = 28 (км/ч)  — скорость движения катера против течения.

Теперь можно узнать за сколько часов катер преодолеет  112  км, разделив расстояние на скорость:

112 : 28 = 4 (ч).

Решение задачи по действиям можно записать так:

1) 30 – 2 = 28 (км/ч)  — скорость движения катера против течения,

2) 112 : 28 = 4 (ч).

Ответ: За  4  часа катер преодолеет расстояние  112  км.

Чтобы узнать скорость объекта, который движется по течению реки, надо к собственной скорости объекта прибавить скорость течения реки.

Задача 2. Расстояние от пункта  A  до пункта  B  по реке равно  120  км. Сколько времени потратит моторная лодка на путь от пункта  A  до  B,  если её собственная скорость  27  км/ч, а скорость течения реки  3 км/ч?

Рассмотрите два варианта:

1) лодка движется по течению реки;

2) лодка движется против течения реки.

Решение: Если моторная лодка будет двигаться по течению реки, то её скорость будет равна сумме собственной скорости со скоростью течения реки:

27 + 3 = 30 (км/ч).

Значит расстояние между пунктами лодка преодолеет за:

120 : 30 = 4 (ч).

Если лодка будет двигаться против течения реки, то её скорость будет равна разности собственной скорости и скорости течения реки:

27 – 3 = 24 (км/ч).

Значит, чтобы узнать сколько времени потратит лодка на путь от пункта  A  до пункта  B,  надо расстояние разделить на скорость:

120 : 24 = 5 (ч).

Решение задачи по действиям для движения по течению реки можно записать так:

1) 27 + 3 = 30 (км/ч)  — скорость лодки,

2) 120 : 30 = 4 (ч).

Для движения против течения реки решение задачи по действиям можно записать так:

1) 27 – 3 = 24 (км/ч)  — скорость лодки,

2) 120 : 24 = 5 (ч).

Ответ:

1) При движении по течению реки моторная лодка потратит  4  часа на путь от пункта  A  до пункта  B.

2) При движении против течения реки моторная лодка потратит  5  часов на путь от пункта  A  до пункта  B.

Содержание материала

  1. Скорость тела. Средняя скорость тела
  2. Видео
  3. Задача с рыбаком и лодкой
  4. Ширина русла и водоносность
  5. Задача с моторной лодкой
  6. Формулы, которые необходимо запомнить
  7. Движение по реке. Скорость течения реки

Скорость тела. Средняя скорость тела

      Решение задач на движение опирается на хорошо известную из курса физики формулу

 позволяющую найти путь   S ,     пройде

позволяющую найти путь   S ,   пройденный за время   t   телом, движущимся с постоянной скоростью   v .

      Сразу же сделаем важное

      Замечание 1. Единицы измерения величин   S ,   t   и   v   должны быть согласованными. Например, если путь измеряется в километрах, а времяв часах, то скорость должна измеряться в км/час.

      В случае, когда тело движется с разными скоростями на разных участках пути, вводят понятие средней скорости, которая вычисляется по формуле

(1)

      Например, если тело в течение времени   t1   двигалось со скоростью   v1 ,  в течение времени   t2   двигалось со скоростью   v2 ,  в течение времени   t3   двигалось со скоростью   v3 ,  то средняя скорость

(2) (2)

      Задача 1. По расписанию междугородный автобус должен проходить путь в   100   километров с одной и той же скоростью и без остановок. Однако, пройдя половину пути, автобус был вынужден остановиться на   25   минут. Для того, чтобы вовремя прибыть в конечный пункт, водитель автобуса во второй половине маршрута увеличил скорость на   20   км/час. Какова скорость автобуса по расписанию?

      Решение. Обозначим буквой   v   скорость автобуса по расписанию и будем считать, что скорость   v   измеряется в км/час. Изобразим данные, приведенные в условии задачи 1, на рисунке 1.

Рис. 1

Рис. 1

      Тогда

            – время, за которое автобус – время движения автобуса по расписанию (в часах);

            v + 20    – скорость авт – время, за которое автобус проехал первую половину пути (в часах);

      v + 20   – скорость автобуса во второй половине пути (в км/час);

            В условии задачи дано время о – время, за которое автобус проехал вторую половину пути (в часах).

      В условии задачи дано время остановки автобуса –   25   минут. Его необходимо выразить в часах, чтобы все единицы измерения были согласованными:

      Теперь можно составить уравне

      Теперь можно составить уравнение, исходя из того, что автобус прибыл в конечный пункт вовремя, а, значит, время, которое он был в пути, плюс время остановки должно равняться времени движения автобуса по расписанию:

      Решим это уравнение:

      Решим это уравнение:

      По  смыслу задачи первый коре

      По смыслу задачи первый корень должен быть отброшен.

      Ответ.   40   км/час.

      Задача 2. (МИОО) Первый час автомобиль ехал со скоростью   120   км/час, следующие три часа – со скоростью   105   км/час, а затем три часа – со скоростью   65   км/час. Найдите среднюю скорость автомобиля на протяжении всего пути.

      Решение. Воспользовавшись формулой (2), получаем

      Ответ .   90    км/

      Ответ.   90   км/час.

      Задача 3. Первую половину пути поезд шел со скоростью   40   км/час, а вторую половину пути – со скоростью   60   км/час. Найдите среднюю скорость поезда на протяжении всего пути.

      Решение. Обозначим буквой   S   длину всего пути, выраженную в километрах. Изобразим данные, приведенные в условии задачи 3, на рисунке 2.

Рис. 2

Рис. 2

      Тогда

             – время, за которое поезд пр – время, за которое поезд прошел первую половину пути, выраженное в часах;

            Следовательно, время, за кото – время, за которое поезд прошел вторую половину пути, выраженное в часах.

      Следовательно, время, за которое поезд прошел весь путь, равно

      В соответствии с формулой (1)

      В соответствии с формулой (1) средняя скорость поезда на протяжении всего пути

      Ответ .   48    км/

      Ответ.   48   км/час.

      Замечание 2. Средняя скорость поезда в задаче 3 равна   48   км/час, а не   50   км/час, как иногда ошибочно полагают, вычисляя среднее арифметическое чисел (скоростей)   40   км/час и   60   км/час. Средняя скорость не равна среднему арифметическому скоростей, а является величиной, вычисляемой по формуле (1).

Видео

Задача с рыбаком и лодкой

Разобравшись, как найти скорость течения реки, реш

Разобравшись, как найти скорость течения реки, решим следующую задачу. Известно, что рыбак на лодке должен проплыть по реке 10 км. Проведя необходимые измерения, он установил, что течение в реке составляет 1 м/с. Какое время рыбаку понадобиться для того, чтобы по течению проплыть указанное расстояние, не используя при этом дополнительные средства тяги (мотор, весла).

Переводим скорость из м/с в км/ч, получаем 3,6 км/ч. Тогда искомое время будет равно:

t = S/v = 10/3,6 ≈ 2,8 ч.

Ширина русла и водоносность

Для более глубокого понимания вопроса, как найти скорость течения реки, важно знать еще один момент. Дело в том, что одна и та же река в разных местах может течь с различной скоростью. Причиной является изменение площади сечения ее русла, которое внешне связано с изменение ширины. Справедливости ради отметим, что не только изменение ширины, но и колебания в глубине влияют на быстроту течения воды (чем глубже, тем медленнее).

В виду сказанного выше, о скорости перемещения воды в реке имеет смысл говорить, если на достаточно длительном участке (километры и более) параметры ее русла колеблется незначительно, и река не имеет на этом участке притоков.

Более надежной характеристикой для любой реки является ее водоносность. Под водоносностью понимают объем воды, проходящий через вертикальное сечение русла за единицу времени. Водоносность не зависит от параметров русла, однако, она так же, как и скорость, изменится, если на рассматриваемом участке реки имеется приток.

В данной статье мы ограничимся предоставленной информацией о водоносности и перейдем к вопросу, как найти скорость течения реки.

Задача с моторной лодкой

Моторная лодка совершает каждый день переходы по р

Моторная лодка совершает каждый день переходы по реке из пункта A в пункт B. Дистанция между A и B составляет 7 км. Известно, что скорость лодки по течению равна 8 км/ч. Чему равна скорость течения, если на путь вниз по реке лодка затрачивает на 10 минут больше времени, чем при движении вверх по ней.

В данном случае мы не знаем ни скорость моторной лодки, ни скорость воды в реке. Обозначим первую как y, а вторую как x. Тогда можно записать следующие четыре уравнения:

x + y = 8;

S/t1 = x + y;

S/t2 = y — x;

t2 — t1 = 1/6

Первое уравнение отражает скорость лодки по течению, второе и третье уравнения связывают время и скорость при движении вниз и вверх по реке соответственно. Четвертое уравнение следует из условия задачи о разности времен прямого и обратного пути между пунктами A и B.

Сначала найдем из этих уравнений время t1 и t2:

t1 = 7/8 = 0,875 ч;

t2 = 1/6 + 7/8 = 1,0417 ч

Для определения скорости x воды в реке вычтем из второго третье уравнение, получим:

S/t1 — S/t2 = 2*x =>

x = S/2*(1/t1 — 1/t2)

Подставляем в это равенство рассчитанные величины t1 и t2, а также расстояние между пунктами S, получаем, что вода в реке течет со скоростью 0,64 км/ч.

Формулы, которые необходимо запомнить

Помимо приведенной выше информации, для решения задач на скорость течения реки следует запомнить несколько формул. Перечислим их.

Скорость течения является величиной постоянной, а вот скорость тела (лодки, катера, пловца) в общем случае может меняться, как по величине, так и по направлению. Для равномерного прямолинейного движения справедливой будет формула:

S = v*t

Где S — пройденный путь, v — скорость перемещения тела. Если движение происходит с ускорением a, тогда следует применять формулу:

S = a*t2/2

Помимо этих формул, для успешного решения задач следует уметь пользоваться тригонометрическими функциями при разложении векторов скорости на составляющие.

Теперь перейдем к решению конкретных задач.

Движение по реке. Скорость течения реки

      В отличие от задач на движение по суше, в задачах на движение по реке появляется новая величина – скорость течения реки.

      По отношению к берегу, который неподвижен, скорость тела, движущегося по течению реки, равна сумме собственной скорости тела (скорости тела по озеру, скорости тела в неподвижной воде, скорости тела в стоячей воде) и скорости течения реки. По отношению к берегу скорость тела, движущегося против течения реки, равна разности собственной скорости тела  и скорости течения реки.

      Задача 4. Моторная лодка прошла по течению реки   14   км, а затем   9   км против течения, затратив на весь путь   5   часов. Скорость лодки в стоячей воде   5   км/час. Найдите скорость течения реки.

      Решение. Обозначим буквой   v   скорость течения реки и будем считать, что скорость   v   измеряется в км/час.Изобразим данные, приведенные в условии задачи 4, на рисунке 3.

Рис. 3

Рис. 3

      Тогда

      5 + v   – скорость, с которой лодка шла по течению реки (в км/час);

            5 – v    – скорост – время движения лодки по течению реки (в часах);

      5 – v   – скорость, с которой лодка шла против течения реки (в км/час);

            Теперь можно составить уравне – время движения лодки против течения реки (в часах);

      Теперь можно составить уравнение, принимая во внимание тот факт, что лодка находилась в пути   5   часов:

      Решим это уравнение:

      Решим это уравнение:

      По смыслу задачи первый корень должен быть отброшен.

      Ответ.   2   км/час.

      Задача 5. (Бюро «Квантум») Моторная лодка прошла по течению реки   34   км и   39   км против течения, затратив на это столько же времени, сколько ей нужно, чтобы пройти   75   километров в стоячей воде. Найдите отношение скорости лодки в стоячей воде к скорости течения реки.

      Решение. Обозначим   vс   (км/ч) скорость лодки в стоячей воде и обозначим   vр   (км/ч) скорость течения реки. Изобразим данные задачи 5 на рисунках 4 и 5.

Рис. 4

Рис. 4

Рис. 5

Рис. 5

      Учитывая тот факт, что в обеих ситуациях лодка провела в пути одно и то же время, можно составить уравнение:

(3) (3)

      Если ввести обозначение

 то, воспользовавшись формулой

то, воспользовавшись формулой

vс = xvр ,

перепишем уравнение (3) в виде

(4) (4)

      Умножая уравнение (4) на   vр ,   получим

      По смыслу задачи первый корень должен быть отброшен.

      Ответ.   7,5 .

Теги

Как найти скорость против течения

Задачи на движение кажутся сложными только на первый взгляд. Чтобы найти, например, скорость движения судна против течения, достаточно представить изложенную в задаче ситуацию. Возьмите ребёнка в небольшое путешествие по реке, и школьник научится “щелкать такие задачки, как орешки”.

Как найти скорость против течения

Вам понадобится

  • Калькулятор, ручка.

Инструкция

Согласно современной энциклопедии (dic.academic.ru), скорость – это характеристика поступательного движения точки (тела), численно равная при равномерном движении отношению пройденного пути S к промежуточному времени t, т.е. V = S / t.

Для того чтобы найти скорость движения какого-либо судна против течения, нужно знать собственную скорость судна и скорость течения.Собственная скорость – это скорость движения судна в стоячей воде, например, в озере. Обозначим ее – V собств.Скорость течения определяется по тому, на какое расстояние река относит предмет за единицу времени. Обозначим ее – V теч.

Чтобы найти скорость движения судна против течения (V пр. теч.), нужно из собственной скорости судна вычесть скорость течения.Итак, получили формулу: V пр. теч.= V собств. – V теч.

Найдем скорость движения судна против течения реки, если известно, что собственная скорость судна равна 15,4 км/ч, а скорость течения реки – 3,2 км/ч.15,4 – 3,2 = 12,2 (км/ч) – скорость движения судна против течения реки.

В задачах на движение часто требуется перевести км/ч в м/с. Чтобы это сделать, нужно вспомнить, что 1 км = 1000 м, 1 ч = 3600 с. Следовательно, х км/ч = х * 1000 м / 3600 с = х / 3,6 м/с. Итак, чтобы перевести км/ч в м/с нужно разделить на 3,6.Например, 72 км/ч = 72:3,6 = 20 м/с.Чтобы перевести м/с в км/ч нужно умножить на 3,6.
Например, 30 м/с = 30 * 3,6 = 108 км/ч.

Переведем х км/ч в м/мин. Для этого вспомним, что 1 км = 1000 м , 1 ч = 60 мин. Значит, х км/ч = 1000 м / 60 мин. = х / 0,06 м/мин. Следовательно, чтобы перевести км/ч в м/мин. нужно разделить на 0,06.Например, 12 км/ч = 200 м/мин.Чтобы перевести м/мин. в км/ч надо умножить на 0,06.
Например, 250 м/мин. = 15 км/ч

Полезный совет

Не забывайте о том, в каких единицах вы измеряете скорость.

Источники:

  • Современная энциклопедия
  • формулы скорости по течению против течения

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Добавить комментарий