Как найти скорость тела через ускорение

Скорость, время и ускорение

Расчеты

Три этих физических величины взаимосвязаны между собой процессом движения. Если известны две из этих величин, можно найти третью.
Скорость тела при условии равноускоренного прямолинейного движения определяем по формуле:

V = V0 + а*t

V0 — начальная скорость (при t = 0);
а — ускорение;
t — время.

Итак, чтобы найти скорость, к начальной скорости прибавляем произведение ускорения на время.
Если V0 = 0, то V = а*t.

Чтобы найти время, нужно вначале найти разность между скоростью в данный момент и начальной скоростью, затем полученный результат разделить на ускорение.

t = (V — V0) / а

Ускорение показывает изменение скорости движущегося тела, рассчитывается по двум скоростям и времени. Чтобы вычислить ускорение, следует найти разницу между скоростью в данный момент и начальной скоростью, затем все это разделить на время.
При ускорении:

а = (V — V0) / t

При торможении:

а = (V0 — V) / t

Ускорение — величина векторная, которая задается не только числом, но и направлением, измеряется в метрах в секунду (м/с2).

Чтобы рассчитать среднее ускорение, находим разницу между начальной и конечной скоростями Δv, полученный результат делим на разницу между временем Δt.(начальным и конечным) :

а = Δv / Δt

Быстро и правильно рассчитать величину скорости, ускорения или найти время вам поможет онлайн калькулятор.

Расчет скорости, времени и ускорения

Содержание материала

  1. Закон сложения скоростей
  2. Видео
  3. Угловая скорость
  4. Перемещение и путь
  5. Скорость
  6. Как найти начальную скорость с ускорением и временем?
  7. Скорость выраженная через ускорение и время
  8. Равноускоренное движение
  9. Равномерное движение точки по окружности
  10. Центростремительное ускорение

Закон сложения скоростей

Как уже упоминалось в предыдущем уроке, скорость тела зависит от выбранной наблюдателем системы отсчета. Разберем следующий пример: в безветренную погоду пчела летит со скоростью  
Рисунок 1 – Первоначальная скорость пчелы и ветр  относительно земли. Это будет собственная скорость пчелы. Затем погода меняется и начинает дуть ветер, перпендикулярный скорости пчелы. Скорость ветра обозначена 
Рисунок 1 – Первоначальная скорость пчелы и ветр(см. рисунок 1).


Рисунок 1 – Первоначальная скорость пчелы и ветра

Естественно, что ветер начнет сдувать пчелу с первоначального курса. Собственная скорость не изменяется, так как это характеристика самой пчелы, но ее скорость относительно земли (по модулю и направлению) изменится и станет (см. рисунок 2):


Рисунок 2 – Изменившаяся скорость пчелы

Систему отсчета, связанную с землей, можно считать неподвижной. Если же рассматривать движение пчелы относительно воздуха, можно говорить о движущейся со скоростью v2 системе отсчета.


Рисунок 3 – Векторы скорости и перемещений при д


Рисунок 3 – Векторы скорости и перемещений при движении пчелы при ветре

Видео

Угловая скорость

Проявляется этот вид при вращении тела вокруг оси. Траектория представляет собой круговое движение. Основным параметром, учитывающимся при его нахождении, является угол поворота (f). Все элементарные угловые движения являются векторами. Обычный поворот равен углу вращения тела df за небольшой отрезок времени dt в противоположную сторону от хода часовой стрелки.

В математике формулу для нахождения углового параметра записывают как w = df/dt. Угловая скорость — аксиальная величина, располагающаяся вдоль мгновенной оси и совпадающая с поступательным вращением правого винта. Равномерное вращение, то есть движение, при котором происходит поворот на один и тот же угол, называют равномерным. Модуль угловой скорости определяют по формуле: w = f/t, где f — угол поворота, t — время, в течение которого происходило вращение. Учитывая, что Δf = 2p, формулу можно переписать до вида: w = 2p/T, то есть с использованием периода.

Существует связь между угловой скоростью и числом оборотов: w = 2*p*v. Это понятие используется для решения заданий при описании неравномерного вращения. Есть также выражение, связывающее линейную скорость с угловой: v = [w*R], где R — компонента, проведённая перпендикулярно к радиус-вектору. В качестве единицы измерения параметра используется радиан, делённый на секунду (рад/с).

Например, необходимо определить угловую скорость вариатора в тот момент, когда подвешенная масса пройдёт расстояние, равное 10 метрам. Радиус плеча составляет 40 сантиметров. В начальный момент подвес находится в состоянии покоя, а затем начинает опускаться с ускорением A = 0,04 м/с2.

Учитывая, что линейная скорость вариатора совпадает с движением груза по прямой, можно записать: V = (2*a*S)½. Должен получится ответ: V = (4*0,04*10)½ = 1,26 м/с. Угловую же скорость находят по формуле: w = v/R, так как R = 40 см = 0,4 м, то W = 1,26/0,4 = 3,15 рад/с.

Перемещение и путь

Тело переместилось из точки А в точку Б. При этом перемещение тела – отрезок, соединяющий данные точки напрямую – векторная величина. Путь, пройденный телом – длина его траектории. Очевидно, перемещение и путь не стоит путать. Модуль вектора перемещения и длина пути совпадают лишь в случае прямолинейного движения.

 

 

В системе СИ перемещение и длина пути измеряются в метрах.

Перемещение равно разнице радиус-векторов в начальный и конечный моменты времени. Другими словами, это приращение радиус вектора.

Скорость

Двигаться со скоростью черепахи — значит медленно, а со скоростью света — значит очень быстро. Сейчас узнаем, как пишется скорость в математике и как ее найти по формуле.

Скорость определяет путь, который преодолеет объект за единицу времени. Скорость обозначается латинской буквой v.

Проще говоря, скоростью называют расстояние, пройденное телом за единицу времени.

Впервые формулу скорости проходят на математике в 5 классе. Сейчас мы ее сформулируем и покажем, как ее использовать.

Формула скорости

Чтобы найти скорость, нужно разделить путь на время:

v = s : t

Показатели скорости чаще всего выражаются в м/сек или км/час.

Скорость сближения — это расстояние, на которое сблизились два объекта за единицу времени. Чтобы найти скорость сближения двух объектов, которые движутся навстречу друг другу, надо сложить скорости этих объектов.

Скорость удаления — расстояние, на которое отдалились друг от друга два объекта за единицу времени.

Чтобы найти скорость удаления объектов, которые движутся в противоположных направлениях, нужно сложить скорости этих объектов.

Чтобы найти скорость удаления при движении с отставанием или скорость сближения при движении вдогонку, нужно из большей скорости вычесть меньшую.

Онлайн-курсы по математике для детей — отличный способ разобраться в сложных темах под руководством внимательного преподавателя.

Как найти начальную скорость с ускорением и временем?

Когда тело начинает перемещаться из одной точки в другую, сначала оно обладает некоторой скоростью. Тело не нуждается в постоянной скорости, пока оно не достигнет своего конечного пункта назначения. Скорость тела изменяется со временем, когда оно движется, и, следовательно, тело приобретает ускорение.

Из приведенного выше объяснения ясно, что движущееся тело может иметь разные скорости. Тела скорость на начальном этапе может отличаться от финального. Давайте обсудим нахождение скорости с ускорением и временем в начальной точке.

Рассмотрим сначала автомобиль, движущийся со скоростью vi, а его скорость изменится через некоторое время t. Теперь тело ускоряется с ускорением «а», и, наконец, когда оно достигает конечной точки, оно имеет скорость vf.

Начальную скорость можно рассчитать тремя способами.

Используя алгебраический метод:

Ускорение из-за изменения скорости определяется выражением

а * т = vf - vi

а * т = vf — vi

О перестановке

vi = Vf — в

Вышеприведенное уравнение дает начальную скорость движущегося тела.

По расчетам:

Исходя из определения ускорения, уравнение имеет вид

Изменение условий;

Изменение условий;

адт = дв

Интегрируя приведенное выше уравнение, выбирая пределы в качестве начальной скорости vi в момент времени t = 0 и конечной скорости vf в момент t.

а (t - 0) = (vf - vi)

а (t — 0) = (vf — vi)

при = vf — vi

Преобразуя приведенное выше уравнение, мы получаем начальную скорость.

vi = Vf — в

Графическим методом:

Построен график зависимости скорости от времени, наклон которого дает ускорение — затем, найдя наклон, можно вычислить начальную скорость.

график vt, чтобы показать, как найти скорость с ус

график vt, чтобы показать, как найти скорость с ускорением и временем

Исходя из приведенного выше графика, мы можем сказать это.

  • В единый интервал времени скорость тела изменяется.
  • OD — время, затрачиваемое телом на путешествие, а BD — конечная скорость тела.
  • Перпендикулярные линии от BD к A проводятся параллельно OD. Таким же образом проводится линия BE параллельно OD.

На приведенном выше графике показано, что

Начальная скорость тела vi = ОА

Конечная скорость тела vf = БД

На графике BD = BC + DC

Следовательно, vf = ВС + ПОС

Но DC = OA = vi

vf = до нашей эры + ви

На графике наклон = ускорение a

Но AC = t (из графика)

Но AC = t (из графика)

при = BC

при = BC

Подставляя значение BC

vf = при + vi

vi = Vf — в

Скорость выраженная через ускорение и время

Поскольку движение начинается из состояния покоя, то изменение скорости равно величине скорости, достигнутой к моменту времени t, и скорость вычисляется по следующей формуле:

[u = at]

График ускорения - Равномерно ускоренное движение График ускорения — Равномерно ускоренное движение без начальной скорости

Равноускоренное движение

Если в течение времени положение тела изменяется относительно предметов, находящихся в покое, то считается, что оно движется. При этом в качестве основного параметра, описывающего перемещение, используется скорость. Движение тела или точки можно представить в виде линии, повторяющей путь прохождения. Называется она траекторией. Если линия прямая, то движение считается прямолинейным.

Неравномерное движение характеризуется перемещением по различной траектории с непостоянной величиной скорости. При этом изменение положения может быть равноускоренным, то есть параметр на одинаковых промежутках увеличивается или уменьшается на одно и то же значение. В качестве примера можно привести падение камня.

В произвольно взятой точке скорость перемещения равна ускорению свободного падения.

Таким образом, если векторы V и ускорения A лежат вдоль прямой, то в проекциях такое направление можно рассматривать как алгебраические величины. При равноускоренном движении по прямой траектории скорость точки вычисляется по формуле: V = V0 + A*t. Где:

  • V0 — начальная скорость;
  • A — ускорение (имеет постоянное значение);
  • t — время движения.

Это основная формула в физике. На графике она изображается как прямая линия v (t). По оси ординат откладывается время, а абсцисс — скорость. Построив график, по наклону прямой можно определить ускорение точки A. Для этого используется формула нахождения сторон треугольника: A = (v-v0) / t.

Если на оси времени выделить промежуток Δt, то можно предположить, что движение будет равномерным и описываться некоторым параметром, равным мгновенному значению в середине отрезка. Эта моментальная величина является векторной. Она численно равна пределу, который пытается достигнуть скорость за промежуток времени, стремящийся к нулю. В физике это состояние описывается формулой мгновенной скорости: V = lim (Δ s/ Δ t) = r-1(t). То есть, с математической точки зрения, это первая производная.

Исходя из этого можно утверждать, что движение Δs = v*Δt. Так как произведение ускорения на время определяется разницей V -V0, то верной будет запись: S = V0*t + A*t2/2 = (V2 — V20) /2*A.

Из этой формулы можно вывести выражение для нахождения конечной скорости материальной точки: V = (V20 — 2* A * s)½. Если же в начальный момент V0 = 0, то формулу можно упростить до вида: V = (2* A * s)½.

Равномерное движение точки по окружности

Центростремительное ускорение

Представим себе равномерное движение по окружности: во время этого типа движения скорость не меняется по модулю, однако меняется по направлению (см. рисунок 12).


Рисунок 12 – Изменение направления скорости при равномерном движении по окружности

За изменение направления скорости отвечает центростремительное ускорение (  Оно, так же как и скорость, постоянно по модулю, но меняется по направлению – в любой точке окружности оно направлено к ее центру. Центростремительное ускорение можно найти по формуле:

где R – радиус окружности, по которой циклически д

где R – радиус окружности, по которой циклически движется тело.

Теги

Равноускоренное движение в поле тяжести Земли. На рисунке видно, что перемещение складывается из прямолинейного равномерного движения и свободного падения

Равноуско́ренное движе́ние — движение тела, при котором его ускорение {vec  {a}} постоянно по модулю и направлению[1].

Скорость при этом определяется формулой

{displaystyle {vec {v}}(t)={vec {v}}_{0}+{vec {a}}t},

где {displaystyle {vec {v}}_{0}} — начальная скорость тела, t — время. Траектория имеет вид участка параболы или прямой.

Примером такого движения является полёт камня, брошенного под углом alpha к горизонту в однородном поле силы тяжести: камень летит с постоянным ускорением {vec  a}={vec  g}, направленным вертикально вниз.

Частным случаем равноускоренного движения является равнозамедленное, когда векторы vec{v} и {vec  {a}} противонаправлены, а модуль скорости равномерно уменьшается со временем (в примере с камнем реализуется для {displaystyle alpha =90^{0}} при подъёме).

Характер равноускоренного движения[править | править код]

Равноускоренное движение происходит в плоскости, содержащей векторы ускорения {vec  {a}} и начальной скорости {displaystyle {vec {v}}_{0}}. С учётом того, что {displaystyle {vec {v}}={rm {d}}{vec {r}}/{rm {d}}t} (здесь {vec {r}} — радиус-вектор), траектория описывается выражением

{displaystyle {vec {r}}(t)={vec {r}}_{0}+{vec {v}}_{0}t+{frac {{vec {a}}t^{2}}{2}}}.

На заданном интервале времени она представляет собой участок параболы, который при параллельности (то есть со или противо- направленности) векторов {vec  {a}} и {displaystyle {vec {v}}_{0}} превращается в отрезок прямой.

Для каждой из координат, скажем y, могут быть записаны аналогичные по структуре выражения:

{displaystyle y(t)=y_{0}+v_{0y}t+{frac {a_{y}t^{2}}{2}}},

где {displaystyle a_{y}} — составляющая ускорения вдоль оси y, а {displaystyle {vec {r}}_{0}=x_{0}{vec {i}}+y_{0}{vec {j}}+z_{0}{vec {k}}} — радиус-вектор материальной точки в момент {displaystyle t=0} (vec{i}, vec{j}, vec{k} — орты).

В примере с камнем {displaystyle x_{0}=y_{0}=z_{0}=0}, компоненты ускорения {displaystyle a_{x}=a_{z}=0}, {displaystyle a_{y}=-g}, начальной скорости {displaystyle v_{x0}=v_{0}cos alpha }, {displaystyle v_{y0}=v_{0}sin alpha }, {displaystyle v_{z0}=0}, при этом {displaystyle x(t)=v_{0x}t}, а значит, {displaystyle y=operatorname {tg} alpha cdot x-g/2v_{0}^{2}cos ^{2}alpha cdot x^{2}}.

Перемещение и скорость[править | править код]

В случае равноускоренного движения любая из компонент скорости, например {displaystyle v_{x}}, зависит от времени линейно:

{displaystyle v_{x}=v_{0x}+a_{x}t}.

При этом имеет место следующая связь между перемещением ({displaystyle Delta x=x-x_{0}}) вдоль координаты x и скоростью вдоль той же координаты:

Delta x={frac  {v_{x}^{2}-v_{{0x}}^{2}}{2a_{x}}}.

Отсюда можно получить выражение для x-составляющей конечной скорости тела при известных x-составляющих начальной скорости и ускорения:

v_{x}=pm {sqrt  {v_{{0x}}^{2}+2a_{x}Delta x}}.

Если {displaystyle a_{x}=0}, то {displaystyle v_{x}=v_{ox}}, а {displaystyle Delta x=v_{0x}t}.

Выражения для смещений Delta y, Delta z и компонент скорости вдоль координат y и z принимают точно такой же вид, как для Delta x и v_{x}, но символ x всюду заменяется на y или z.

Суммарно, по теореме Пифагора, перемещение составит

{displaystyle |Delta {vec {r}}|={sqrt {(Delta x)^{2}+(Delta y)^{2}+(Delta z)^{2}}}},

а модуль конечной скорости находится как

|{vec  v}|={sqrt  {v_{{x}}^{2}+v_{{y}}^{2}+v_{{z}}^{2}}}.

Равноускоренное движение не может происходить неограниченно долго: это означало бы, что, начиная с какого-то момента времени t, модуль скорости тела {displaystyle |{vec {v}}|} превысит величину скорости света в вакууме c, что исключается теорией относительности.

Условие осуществления[править | править код]

Равноускоренное движение реализуется при действии на тело (материальную точку) постоянной силы vec{F}, обычно в однородном гравитационном или электростатическом поле, если величина скорости тела значительно меньше, чем скорость света c. Тогда, по второму закону Ньютона, ускорение составит

{vec  {a}}={frac  {{vec  {F}}}{m}},

где через m обозначена масса тела. В примере с камнем роль vec{F} играет сила тяжести.

Если же скорость тела сопоставима со скоростью света, то закон Ньютона в выписанном виде неприменим. При этом, в случае действия постоянной силы, происходит так называемое релятивистски равноускоренное движение, при котором постоянно только собственное ускорение, а ускорение в фиксированной ИСО приближается к нулю со временем по мере приближения величины скорости к её пределу c.

Теорема о кинетической энергии точки[править | править код]

Формула перемещения при равноускоренном движении используется при доказательстве теоремы о кинетической энергии. Для этого необходимо перенести ускорение в левую часть и домножить обе части на массу тела:

ma_{x}Delta x={frac  {mv_{x}^{2}}{2}}-{frac  {mv_{{0x}}^{2}}{2}}.

Записав аналогичные соотношения для координат y и z и просуммировав все три равенства, получим соотношение:

{displaystyle {vec {F}}cdot Delta {vec {r}}={frac {mv^{2}}{2}}-{frac {mv_{0}^{2}}{2}}}.

Слева стоит работа постоянной равнодействующей силы vec F , а справа — разность кинетических энергий в конечный и начальный моменты движения. Полученная формула представляет собой математическое выражение теоремы о кинетической энергии точки для случая равноускоренного движения[2].

Равнопеременное движение[править | править код]

Равнопеременным называется движение, при котором тангенциальная (параллельная скорости) составляющая ускорения постоянна[3]. Такое движение не является равноускоренным, кроме ситуации, когда оно происходит по прямой, но в математическом плане может быть рассмотрено аналогично.

В этом случае вводится обобщённая координата S, часто называемая путём, соответствущая длине пройденной траектории (длине дуги кривой). Таким образом, формула приобретает вид:

Delta S={frac  {v^{2}-v_{{0}}^{2}}{2a_{tau }}},

где a_{tau } — тангенциальное ускорение, «отвечающее» за изменение модуля скорости тела. Для скорости получаем:

v=pm {sqrt  {v_{{0}}^{2}+2a_{tau }Delta S}}.

При {displaystyle a_{tau }=0} имеем движение с постоянной по модулю скоростью.

Иногда прилагательное равнопеременное заменяют на криволинейное равноускоренное, что вносит путаницу, так как, скажем, равноускоренное движение камня по кривой (параболе) в поле тяжести не равнопеременное.

См. также[править | править код]

  • Релятивистски равноускоренное движение

Примечания[править | править код]

  1. Сивухин Д. В. Общий курс физики. — М.: Физматлит, 2005. — Т. I. Механика. — С. 37. — 560 с. — ISBN 5-9221-0225-7.
  2. Тарг С. М. Краткий курс теоретической механики. — 11-е изд. — М.: «Высшая школа», 1995. — С. 214. — 416 с. — ISBN 5-06-003117-9.
  3. См. Физический энциклопедический словарь — М.: Советская энциклопедия, под. ред. А. М. Прохорова (1983), статья «Равнопеременное движение», стр. 602.

Скорость, ускорение и время являются основными величинами для вывода уравнения движения. В общем, производная скорости по времени дает ускорение.

В кинематике скорость можно найти, используя ускорение и время. С скорость и ускорение связаны с величиной и направлением, для определения скорости мы используем как алгебраический метод, так и интегральное исчисление. В этом посте обсуждается, как найти скорость с учетом ускорения и времени, используя оба метода.

Представим, что тело движется с ускорением «а», преодолевая определенное расстояние в момент «t».

Алгебраическим методом:

Из кинематического определения ускорение – скорость изменения скорости движущегося тела.

а=в/т

Здесь мы считаем; первоначально тело обладает минимальной скоростью; следовательно, начальная скорость можно считать примерно равной нулю.

Переставляя члены, мы получаем скорость тела как;

v = а * т

Методом интегрального исчисления:

Производная по времени от скорость дает ускорение тела. Это определяется следующим уравнением.

d/dt[v(t)]= а(t)

Преобразуя приведенное выше уравнение

dv (t) = a (t) dt

Интегрируя приведенное выше уравнение по времени t

∫d/dt[v(t)]=∫a(t) dt+C

Где; C – интегральная постоянная.

Следовательно; v = при + C

Вышеприведенное уравнение дает скорость; таким образом, умножение ускорения на время дает скорость.

Кредиты изображения: Изображение предоставлено Долоресбарриослуа от Pixabay 

Как найти скорость по графику ускорения и времени?

Построен график ускорения в зависимости от времени, что позволяет определить различные физические величины, такие как рывки и удары. скорость. Область, покрытая графиком «ускорение – время», показывает скорость.

Например, машина движется с начальной скоростью 16 м / с. Как со временем, машина начинает разгоняться. В ускорение автомобиля постоянна во времени. Через некоторое время машина внезапно останавливается, что показано на приведенном ниже графике.

как найти скорость с ускорением и временем

График, чтобы показать, как найти скорость с ускорением и графиком времени

Пунктирная линия используется как контрольная линия, когда тело останавливается.

Площадь, занимаемая в график ускорение – время представляет собой прямоугольник. Площадь прямоугольника определяется как

А = l × b

Из приведенного выше графика длина прямоугольника – это ускорение, а ширина – время; следовательно, уравнение

А = а * т

Но площадь графика at – это скорость, тогда

v = а * т

v = 7 × 8

v = 56 м / с.

Следовательно, по определению На графике времени разгона площадь – это не что иное, как скорость.

Как найти начальную скорость с ускорением и временем?

Когда тело начинает двигаться из одной точки в другую, вначале оно обладает некоторой скоростью. Тело не нуждается постоянная скорость пока не достигнет конечного пункта назначения. Скорость тела изменяется со временем по мере его прохождения, и, следовательно, тело приобретает ускорение.

Из приведенного выше объяснения ясно, что движущееся тело может иметь разные скорости. Тела скорость на начальном этапе может отличаться от финального. Давайте обсудим нахождение скорости с ускорением и временем в начальной точке.

Рассмотрим сначала автомобиль, движущийся со скоростью vi, а его скорость изменится через некоторое время t. Теперь тело ускоряется с ускорением «а», и, наконец, когда оно достигает конечной точки, оно имеет скорость vf.

Начальную скорость можно рассчитать тремя способами.

Используя алгебраический метод:

Ускорение из-за изменения скорости определяется выражением

а = (vf-vi)/т

а * т = vf – vi

О перестановке

vi = Vf – в

Вышеприведенное уравнение дает начальную скорость движущегося тела.

По расчетам:

Исходя из определения ускорения, уравнение имеет вид

а=дв/дт

Изменение условий;

адт = дв

Интегрируя приведенное выше уравнение, выбирая пределы в качестве начальной скорости vi в момент времени t = 0 и конечной скорости vf в момент t.

а (t – 0) = (vf – vi)

при = vf – vi

Преобразуя приведенное выше уравнение, мы получаем начальную скорость.

vi = Vf – в

Графическим методом:

Построен график зависимости скорости от времени, наклон которого дает ускорение – затем, найдя наклон, можно вычислить начальную скорость.

vt график показать, как найти скорость с ускорением и время

Исходя из приведенного выше графика, мы можем сказать это.

  • В единый интервал времени скорость тела изменяется.
  • OD – время, затрачиваемое телом на путешествие, а BD – конечная скорость тела.
  • Перпендикулярные линии от BD к A проводятся параллельно OD. Таким же образом проводится линия BE параллельно OD.

На приведенном выше графике показано, что

Начальная скорость тела vi = ОА

Конечная скорость тела vf = БД

На графике BD = BC + DC

Следовательно, vf = ВС + ПОС

Но DC = OA = vi

vf = до нашей эры + ви

На графике наклон = ускорение a

а=ВС/АС

Но AC = t (из графика)

а=БК/т

при = BC

Подставляя значение BC

vf = при + vi

vi = Vf – в

Как найти изменение скорости в зависимости от ускорения и времени

В общем, изменение скорости со временем дает ускорение.

Пусть тело движется с ускорением ‘a’ со временем ‘t’, изначально скорость объекта равна vi, а в конечной точке имеет скорость vf. Тогда изменение скорости определяется по уравнению:

∆a=(Δv/Δt)

Где ∆v – изменение скорости, а ∆t – изменение во времени.

∆v = ∆a∆t

Но изменение скорости определяется разница между начальной и конечной скоростью. Это дается уравнением ниже.

∆v = vf -vi

Изменение в скорость можно рассчитать с помощью графика “ускорение – время”. Площадь под графиком at показывает изменение скорости.

Давайте ясно поймем это, рассмотрев пример, представленный графиком, приведенным ниже.

Площадь на графике времени ускорения представляет собой треугольник. Следовательно, вычисляя изменение скорости дается путем вычисления площади треугольника. Формула для определения площади треугольника:

А=(1/2)чб

Здесь h – высота треугольника, ускорение считается высотой, а b – основание треугольника, которое определяется осью времени. Таким образом, изменение скорости равно

∆v=(1/2)*6*9

∆v = 29 м / с.

По изменению скорости мы можем узнать начальную и конечную скорость тела.

Решены задачи о том, как найти скорость с ускорением и временем.

Задача 1) Лодка движется с начальной скоростью 11 м / с. Лодка развивает ускорение 3 м / с.2 каждые 10 секунд. Затем рассчитайте изменение скорости и конечную скорость лодки.

Решение:

Данные приведены для расчета:

Начальная скорость лодки vi = 11 м / с.

Изменение ускорения, достигаемого лодкой a = 3 м / с2.

Изменение по времени t = 10 сек.

∆v = ∆a∆t

∆v = 3 × 10

∆v = 30 м / с

Чтобы найти окончательную скорость, уравнение

∆v = vf -vi

vf = ∆v + vi

vf = 30 + 11

vf = 41 м / с.

Задача 2) График ускорение – время приведен ниже. Найдите изменение скорости и вычислите начальную скорость, если конечная скорость равна 54 м / с.

График ускорения-времени

Решение:

Приведенные данные:

Конечная скорость vf = 54 м / с. На графике ускорение-время покрытая область представляет собой трапецию. Таким образом, площадь трапеции определяется выражением

А=[(а+б)/2)]*ч

Где a и b – прилегающее основание трапеции, h – высота. Из графика; a = 9 единиц, b = 5 единиц, h = 4 единицы.

А=[(9+5)/2]*4

А = 28 шт.

Изменение скорости равно площади трапеции.

∆v = 28 м / с.

Чтобы найти начальную скорость

∆v = vf -vi

vi = Vf – ∆v

vi = 54 – 28

vi = 26 м / с.

Задача 3) дается график ускорение – время для определения изменения скорости.

Решение:

Приведенный выше график можно разделить на три части, представленные пунктирной линией, как показано на рисунке ниже.

На приведенном выше графике можно понять следующие термины.

OAD и BCE – треугольник; площадь треугольника задается формулой

а=(1/2)чб

ABCD – прямоугольник; площадь прямоугольника определяется выражением

А = l × b

Чтобы найти изменение скорости, необходимо вычислить сумму площадей всех геометрических структур.

∆v = A=(1/2)hb+lb+(1/2)hb

Изменение скорости ∆v = 180 м / с.

Задача 4) Найдите начальную скорость мяча, который ускоряется со скоростью 6 м / с.2 со временем 8 сек. Конечная скорость мяча составляет 100 м / с.

Решение:

Приведены данные: ускорение мяча a = 6 м / с2.

Время t = 8 сек.

Конечная скорость vf = 100 м / с.

Для нахождения начальной скорости тела задается уравнение

vi = Vf – в

vi = 100 – (6 × 8)

vi = 100 – 48

vi = 52 м / с.

Задача 5) Рассчитайте изменение скорости движущегося объекта, имеющего начальную скорость 34 м / с. Ускорение объекта 12 м / с.2, а изменение по времени – 7 сек.

Решение:

Данный:

Начальная скорость объекта vi = 34 м / с.

Ускорение объекта a = 12 м / с2.

Изменение по времени t = 7 сек.

Конечная скорость объекта определяется выражением;

vf = Vi + в

vf = 34 + (12 * 7)

vf = 34 + 84

vf = 118 м / с.

Изменение скорости определяется выражением;

∆v = vf – vi

∆v = 118 – 34

∆v = 84 м / с.

Задача 6) Диск движется с начальной скоростью 25 м / с. Диск меняет свою скорость каждые 10 секунд. Изменение ускорения 5 м / с.2. Рассчитайте конечную скорость диска.

Решение:

Приведенные данные:

Начальная скорость диска vi = 25 м / с.

Изменение ускорения ∆a = 5 м / с2.

Изменение времени ∆t = 10 сек.

Изменение скорости равно

∆v = ∆a∆t

∆v = 5 × 10

∆v = 50 м / с.

Конечная скорость диска может быть рассчитана по формуле, приведенной ниже.

∆v = vf – vi

50 = вf -25

vf = 50 + 25

vf = 75 м / с.

Темп изменения скорости называется ускорением. Другими словами, если  скорость возрастала на одну и ту же величину в единицу времени, то такое движение называется движение с равномерным ускорением.

.

Найти ускорение движения тела

Расстояние, ускорение, скорость

Какое бывает ускорение

Ускорение бывает равномерное, положительное и отрицательное.

  • Если скорость изменяется (возрастает или убывает) равномерно, то ускорение называется равномерным;
  • Если скорость возрастает, то ускорение положительно;
  • Если скорость убывает, то ускорение отрицательно.

Формула для нахождения ускорения: a=v/t

Путь, скорость и ускорение

Формула v=at дает соотношение между скоростью, ускорением и временем, а формула S = at2/2 дает соотношение между путем, ускорением и временем. До сих пор, однако, мы не имели соотношения между путем S, скоростью и и ускорением а. Один из способов вывести это соотношение заключается в подстановке t2, выраженного через v и а, в формулу S = at2/2. Решая относительно t формулу v=at, мы получим t=v/a. Возведя обе части в квадрат: t2=v2/a2, подставляя v2/a2 вместо t2, имеем

v2 = 2aS

Задача:

Скорость автомобиля 90 см/сек. Через 3 сек его скорость равна нулю. Найдите его отрицательное ускорение (темп равномерного уменьшения скорости).

Решение:

a=-v/t

Подстановка значений:

a=-90/3=-30 см/сек. за 1 сек.

Ответ можно записать и так: 30 см/сек2, это будет означать, что автомобиль уменьшает свою скорость на 30 см/сек за каждую секунду.

Добавить комментарий